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Abstract 

 
Predictive modeling of plant distributions rests on the assumption that correlations exist between 
the presence/absence of a species and selected climate, topographic, substrate, and land cover 
variables.  Once these underlying patterns are determined, maps can be created in GIS that 
identify all areas that meet the specific conditions for a given species.  Such maps can be used to 
prioritize areas for field surveys of rare plants or assist decision makers in project clearance 
activities.  Using classification tree analysis, we developed correlational models for 44 Wyoming 
plant species listed as BLM Sensitive or Threatened or Endangered under the Endangered 
Species Act.  Presence/absence of each species was the response variable in the models and was 
derived from location records of the Wyoming Natural Diversity Database and Rocky Mountain 
Herbarium.  Environmental variables, including total monthly precipitation, average monthly air 
temperature, monthly shortwave radiation, number of wet days, growing degree-days, local 
topographic relief, bedrock and surficial geology, soils, elevation, and land cover, were used as 
predictors.  Location data were randomly subdivided into model-building and validation data sets 
to test the classification success of the final models.  Species with fewer than 16 present points 
were also modeled using the range/intersection method in which the range of environmental 
values at all present sites of a species were intersected in GIS to identify areas with similar 
attributes across the state.  Wetland plants were modeled with classification tree or 
range/intersection methods and the resulting models were then overlaid with a riparian/aquatic 
model to highlight suitable wetland areas within the species' predicted range.  We found that the 
distribution of rare species in Wyoming was most strongly correlated with specific bedrock and 
soil types, but was also influenced by topographic relief, land cover, and various monthly 
precipitation and temperature values.  Overall, our models were conservative in the area 
predicted for these species and typically had low false positive or commission error rates.  Due to 
the limited number of samples available, we were unable to determine the false negative or 
omission error rates with validation data for many of the plant species.  For those that could be 
tested, the omission error rates were moderate to high.  The distribution maps produced by 
correlational modeling did an excellent job of identifying areas where rare species are unlikely to 
occur and did a good job of highlighting areas of potential habitat that warrant additional on-the-
ground survey. 
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INTRODUCTION 
 
     Federal land management agencies are required under the US Endangered Species Act, 
National Environmental Policy Act, and their own internal regulations to consider the potential 
impacts of land use activities on the survival of listed Threatened, Endangered, or agency 
Sensitive plant species.  Reliable information about the actual or potential distribution of rare 
plant species is essential for agencies to comply with these legal mandates.  Location information 
can help managers determine if species of concern are likely to be present within a proposed 
project area and if field surveys or mitigation are needed for project clearance.  Distribution data 
can also be useful to identify and prioritize potential suitable habitat for additional surveys, 
possible reintroductions, or natural area designation (Elith and Burgman 2002; Fertig and 
Reiners 2002).  
 
     Acquisition of new location information, however, can be expensive and time-consuming, 
especially in poorly-studied or remote areas.  Range maps and locational databases (such as 
herbarium records or natural heritage program datasets) are a valuable tool for identifying the 
known distribution of rare species, but can be limited by incomplete or biased sampling (Brown 
and Lomolino 1998; Stein et al. 2000).  Extrapolating from known distribution points to 
unknown, but potential, areas of habitat can also be difficult if the underlying relationships 
between a species and its environment are poorly known or quantified.  Maps that result from 
extrapolation are not without merit, but may be too conservative or overly optimistic in their 
portrayal of a species' potential range and are often difficult to replicate or test if the underlying 
assumptions of the mapper are not explicitly stated. 
 
     Predictive modeling using Geographic Information Systems (GIS) in conjunction with large 
environmental and species location datasets and computerized statistical methods provides an 
alternative means of identifying areas of potential habitat for plant species.  Modeling rests on 
the assumption that correlations exist between the known distribution of a species and selected 
environmental variables - usually climate, topography, and substrate (Franklin 1995).  If such a 
relationship exists, the modeler can then identify additional geographic areas with similar 
combinations of environmental attributes and predict whether a given species is likely to be 
present.  Two important products from modeling are maps of the potential distribution of plant 
species and detailed descriptions of the environmental attributes that relate to the predicted 
presence (and absence) of each species.  These products are best viewed as hypotheses meant to 
be field tested (Fertig et al. 2002).  Due to competition, disease, herbivory, incomplete dispersal, 
absence of pollinators, anthropogenic disturbance, and historical accidents or methodological 
flaws, incorrect assumptions, and faulty model input data, field validation may indicate that a 
species is not present within areas of predicted habitat.  Because the methods and suppositions of 
the model are explicit, the success or failure of the modeled range maps can be more readily 
evaluated and improved than similar range maps produced by extrapolation from known and 
limited location data. 
 
     Beginning in 1997, we received funding from the US Geological Survey's National Gap 
Program and the National Aeronautical and Space Administration to develop a methodology for 
modeling the potential distribution of selected vascular plant species across the state of 
Wyoming (Fertig 1999; Fertig et al. 2002).  Based on the utility of early versions of these models 
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in correctly identifying potential habitat for the federally Endangered Blowout penstemon (Fertig 
2001), the Bureau of Land Management (BLM) Wyoming State Office contracted with the 
Wyoming Natural Diversity Database (WYNDD) and University of Wyoming in 2001 to 
develop comparable predictive models for 44 Wyoming plant species listed as Sensitive by the 
BLM or Threatened and Endangered under the Endangered Species Act (Table 1).  The methods 
used to develop the models and final results of the modeling effort are summarized in the 
following report. 
 
 
Table 1.  Threatened, Endangered and State BLM Sensitive plant species of Wyoming, with 
distribution by BLM field offices.  X = confirmed from BLM lands in Field Office area; ? = 
unconfirmed or questionable report,  * indicates a species dropped from the BLM state Sensitive 
list in 2002 (Cornelisse 2002). 
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Antennaria arcuata Meadow pussytoes     X  X  X  
Aquilegia laramiensis Laramie columbine        X   
Artemisia biennis var. 
diffusa 

Mystery wormwood         ?  

Artemisia porteri Porter's sagebrush X X   X      
Astragalus gilviflorus 
var. purpureus 

Dubois milkvetch     X      

Astragalus jejunus var. 
articulatus 

Hyattville milkvetch          X 

Astragalus nelsonianus 
[Astragalus pectinatus 
var. platyphyllus] 

Nelson's milkvetch  X   X   X X  

Astragalus proimanthus Precocious milkvetch         X  
Astragalus racemosus 
var. treleasei 

Trelease's racemose 
milkvetch 

   X   X    

Boechera pusilla 
[Arabis pusilla]  

Small rock cress         X  

Cirsium aridum Cedar Rim thistle     X  X X X  
Cirsium ownbeyi Ownbey's thistle         X  
Cleome multicaulis Many-stemmed spider-

flower 
 X         

Cryptantha subcapitata Owl Creek Miner's 
candle 

    X      

Cymopterus evertii Evert's spring-parsley   X       ? 
Cymopterus williamsii Williams' spring-parsley X X        X 
Descurainia torulosa Wyoming tansymustard   ?      X  
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Gaura neomexicana 
var. coloradensis 

Colorado butterfly plant           

Ipomopsis aggregata 
ssp. weberi 

Weber's scarlet-gilia        X   

Lepidium integrifolium 
var. integrifolium 
 

Entire-leaved 
peppergrass 

   X       

Lesquerella arenosa 
var. argillosa 

Sidesaddle bladderpod      X     

Lesquerella fremontii Fremont bladderpod     X      
Lesquerella macrocarpa Large-fruited 

bladderpod 
   X   X  X  

Lesquerella multiceps Western bladderpod    ?       
Lesquerella prostrata Prostrate bladderpod    X       
Penstemon absarokensis Absaroka beardtongue   X        
Penstemon acaulis var. 
acaulis 

Stemless beardtongue         X  

Penstemon caryi* Cary beardtongue X  X       X 
Penstemon gibbensii Gibbens' beardtongue        X   
Penstemon haydenii Blowout penstemon        X   
Phlox pungens Beaver Rim phlox     X  X  X  
Physaria condensata Tufted twinpod    X   X  X  
Physaria dornii Dorn's twinpod    X       
Physaria saximontana 
var. saximontana 

Rocky Mountain 
twinpod 

    X     X 

Rorippa calycina Persistent-sepal 
yellowcress 

  X  X   X  X 

Shoshonea pulvinata Shoshonea   X       X 
Sisyrinchium pallidum* Pale blue-eyed grass        X   
Sphaeromeria simplex Laramie false sagebrush        X   
Spiranthes diluvialis Ute ladies-tresses  X         
Thelesperma 
caespitosum 

Green River greenthread         X  

Thelesperma pubescens Uinta greenthread         X  
Townsendia 
microcephala 

Cedar Mountain Easter-
daisy 

        X  

Trifolium barnebyi Barneby's clover     X      
Yermo xanthocephalus Desert yellowhead     X      
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METHODS 
 
Statistical Modeling Methodology 
 
     Most correlational models of the potential distribution of plant species use presence/absence 
as the response variable.  A variety of statistical methods are available for such binary responses, 
but two of the most widely used techniques are logistic regression and classification tree analysis 
(Franklin 1995; Scott et al. 2002).  Logistic regression is a modification of linear regression for 
conditions in which the response variable is binary (such as presence/absence, yes/no, or 0/1).  
The purpose of logistic regression is to produce a mathematical equation that relates the 
probability of a given binary response to the particular values of single or multiple predictor 
variables (Nicholls 1989).  Instead of using an identity link function as in linear regression, 
logistic regression employs a log odds ratio (or "logit") which is the natural log of the ratio 
between the binary event occurring and not occurring.  The odds of a binary event occurring is 
calculated by exponentiating the logit (Hosmer and Lemeshow 1989).  Because of the log 
function, the distribution of a logistic equation is S-shaped rather than linear and calibrated 
between 0 (not occurring or absence) and 1 (occurring or presence).   
 
     Rather than using a mathematical formula to explain the relationship between predictors and 
binary response, classification tree analysis uses a partitioning algorithm to subdivide predictor 
variables into ever-smaller groups that are approximately homogeneous relative to the response 
variable (Breiman et al. 1984).  Beginning with the entire set of predictors, the classification tree 
model continually subdivides the dataset into pairs of smaller subunits based on the single 
variable that best differentiates between known presence and absence points.  The end result is a 
dichotomously divided classification tree which can be used to classify independent cases and 
describe the environmental space occupied by a species, much as a dichotomously branched 
taxonomic key can describe a specific plant species (Fertig et al. 2002).   
 
     The primary advantage of logistic regression is that the probability of occurrence for a species 
can be readily calculated for each pixel comprising the model grid, whereas no comparable 
measure is available for classification tree analysis.  Logistic regression models, however, may 
be prone to overestimation of the potential range of a species if the cutoffs used to assign 
presence or absence to a pixel are too low (Fielding 2002).  The mathematical formula of the 
logistic regression equation can also be difficult to intrepret and evaluate and tends to produce a 
"one size fits all" model for all input data (Fertig and Reiners 2002; Franklin 1998; Vayssières et 
al. 2000).  Classification tree models recognize multiple combinations of environmental 
conditions under which a target species may occur and can be readily quantified and tested in the 
field.  These models also tend to have lower prediction error rates than logistic regression models 
constructed from the same datasets and have a more intuitive explanation.  For these reasons, we 
opted to use classification tree analysis as the principal statistical technique in developing 
statewide potential distribution models for Wyoming species (Fertig et al. 2002). 
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Acquisition and Preparation of Environmental Data 
 
     Table 2 lists the environmental variables that we used as predictor variables for our 
classification tree analysis.  Ideally, these variables would all have direct effects on the 
physiology, nutrition, or survival of our target organisms (Austin 2002; Franklin 1995).  In 
reality, most of the variables available at state or region-wide spatial scales are either surrogates 
for direct variables, or have indirect effects on plant species.  Examples of such surrogate 
variables include bedrock geology and soil subgroups for soil nutrients and total monthly 
precipitation, number of wet days, or elevation for water availability.  Other potentially useful 
variables that influence the niche or geographic distribution of plant species (such as 
competition, dispersal, and pollinator availability) are simply unavailable at the appropriate 
scales to be incorporated into our models (Fertig and Reiners 2002). 
 
     Environmental variables fall into four main classes: topography, climate, substrate, and land 
cover and may be continuous (numerical) or categorical (discrete categories).  Topographic 
variables include elevation, local relief, slope, and aspect.  Elevation data for our models were 
derived from the US Geological Survey National Elevation Dataset (Gesch et al. 2002,  
 
Table 2.  Environmental variables used as predictors for classification tree analysis of  
Threatened, Endangered, and BLM Sensitive plant species in Wyoming. 
 

Continuous Variables Units Code 
Elevation m ELEV 
Local relief m RELIEF 
Total January precipitation cm PT01 
Total April precipitation cm PT04 
Total July precipitation cm PT07 
Total October precipitation cm PT10 
Number of wet days day NWD 
Average January air temperature ºC TA01 
Average April air temperature ºC TA04 
Average July air temperature ºC TA07 
Average October air temperature ºC TA10 
Maximum July air temperature ºC TX07 
Number of frost days day NFD 
Growing degree days degree-day GDD 
Total January shortwave radiation MJ/m2/day RT01 
Total July shortwave radiation MJ/m2/day RT07 

   
Categorical Variables Note Code 
Bedrock geology See Table 4 BEDGEOL 
Surficial geology See Table 5 SURFGEOL 
Wyoming Soil classification See Table 6 SOIL 
Gap land cover See Table 7 LANDCOV 
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(http://gisdata.usgs.gov/ned/) and were resampled and projected using the Lambert conformal 
conic map projection at a cell size of 60 m (Table 3).  The local relief dataset was developed 
from the 60 m digital elevation model (DEM) by determining the difference between the 
maximum and minimum elevations within a circular neighborhood with a radius of 13 cells (780 
m).  This neighborhood size has been used previously in calculations of local relief for mapping 
ecological units in northwestern Wyoming (Reiners et al. 1999) and is a convenient size for maps 
at a scale of 1:100,000.  Datasets for aspect and slope were created from the 60 m DEM but we 
ultimately chose not to use them in our classification tree analysis because of the likelihood of 
erroneous values being derived from the spatially coarse absent location data used in model 
construction (Fertig et al. 2002). 
 
     Climatological data were obtained from the Numerical Terradynamic Simulation Group 
(NTSG) at the University of Montana (http://www.forestry.umt.edu/ntsg) for the period from 
1980-1997 (Thornton et al. 1997).  Selected climate variables included total precipitation for 
January, April, July, and October, average air temperature for January, April, July, and October, 
maximum July temperature, number of wet days, number of frost days, growing degree days, and 
total shortwave radiation for January and July (Table 2).  These datasets were originally at 1 km 
resolution but were resampled to match the cell size of the 60 m DEMs using bilinear 
interpolation.  Although the resampling did not improve the actual resolution of the 
climatological data, the reduced cell size of the interpolated data produced smoother and more 
realistic boundaries at the scale of 1:100,000.   
 
      Substrate variables included bedrock geology, surficial geology, and Wyoming soils.  
Bedrock geology was derived from the digital version of the 1:500,000 Geologic Map of 
Wyoming digitized by the US Geological Survey (Green and Drouillard 1994; Love and 
Christensen 1985).  Due to limitations in the number of categorical variables allowed by our 
computerized statistical software, the state's 213 geologic formations were reclassified by age 
and major rock type into 26 categories (Table 4), approximating the classification used in 
regional maps prepared by the American Association of Petroleum Geologists (1967) and the 
Geological Survey of Wyoming (1991).  Surficial geology was obtained from the Wyoming 
Ground-Water Vulnerability Mapping Project (Case et al. 1998) and was mapped at a scale of  
 
 
Table 3.  Lambert conformal conic map projection parameters for plant distribution models 
 

Projection    Lambert 
Datum NAD27 
Units Meters 
Spheroid   Clarke1866 
Parameters  
First standard parallel 41  0  0.000 
Second standard parallel               45  0  0.000 
Central meridian                   -107 30  0.00 
Latitude of projection's origin     41  0  0.000 
False easting (meters) 0.00000 
False northing (meters) 0.00000 
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Table 4.  Standardized codes and categories of bedrock geology and their state unit equivalents 
used for modeling vascular plant species in Wyoming.  Classification scheme is modified from 
the American Association of Petroleum Geologists (1967) and Geological Survey of Wyoming 
(1991).   
 
Code Bedrock Geology Category Wyoming Units 
Eex Eocene volcanic extrusive Ta, Taw, Thp, Ts, Tt, Ttl, Ttp, Tts, Twi, Twp 
Ein Eocene volcanic intrusive Tai, Tbf, Ti, Tid,  Tie,  
Eoe Early Eocene Tbs, Tbw, Teml, Tgl, Tglu, Tgrw, Tgt, Tgw, Tgwt,  

Tim, Tta, Tw, Twc, Twd, Twdr, Twg, Twim, Twl,  
Twlc, Twm, Twn 

Eol Late Eocene Tb, Tf, Twa, Twb 
H2O Water H2O 
Kin Cretaceous intrusive Ki 
Kmix Cretaceous mixed 

sandstone/shale 
Kal, Kbl, Kbr, Kcf, Ket, Kf, Kfb, Kfl, Kft, Kgb, 
Kgbm, Klm, Kml, Kmv, Kns, Knt, Kr, Ksb, Kso 

Ksh Cretaceous shale Ka, Kba, Kc, Kcl, Kh, Kle, Kmr, Kmt, Kn, Knc, Kp, 
Ks, Ksn 

Kss Cretaceous sandstone Kav, Kb, Kbb, Ke, Kfh, Km, Kss, Kws 
MiPl Miocene/Pliocene  Tc, Tcd, Tm, Tml, Tmo, Tmu, Tsi, Tsl, Tte, Tu 
Olg Oligocene Toe, Twr, Twrb, Twrc 
Pal Paleocene Kha, Kl, Klc, Kmb, Tco, Tdb, Tfl, Tflt, Tft, Tftl, Tftr,  

Tfu, Th, Tha, TKe, TKf, TKp, TKu 
PCf Precambrian felsic Ugn, Ugn +, Wg, Wgd, Wgn, Wqm, Ws, WVg, WVsv,

Xdl, Xgo, Xgy, Xlc, Xqd, Xsv, YS 
PCm Precambrian mafic !W, Wmu, Wp, Xm, Yla, Yls 
PTJ Permian/Triassic/Jurassic @ad, @c, @cd, @Pcg, @Pg, @Pjs, @Ps, J@, J@gc,  

J@gn, J@n, J@nd, Js, Jsg, Jst, K@, Kg, KJ, KJg, KJk, 
KJs, MzPz, Pfs, Pmo, Pp 

Pze Early Paleozoic _r, DO, MD, MDe, MDg, MDO, Mm, MO, O_, Ob,  
P&c, P&cf, P&h, P&M, P&m, P&Ma, PM, Pzr, Sl 

Qal Quaternary alluvium Qa, Qt, QTg, Qu 
Qlc Quaternary lacustrine Ql, QTb 
Qls Quaternary landslide Qls 
Qs Quaternary sand Qs 
Qt Quaternary till Qg 
Qvf Quaternary felsic volcanic Qi, Qr 
Qvm Quaternary mafic volcanic Qb 
Shear Shear Shear 
Tlvf Late Tertiary felsic volcanic Tcc, Tcv, Thr, Tii 
TQc Tertiary/Quaternary 

conglomerate 
QTc, Tbi, Tcg, Tcr, Tcs, Tep, Tgc, Thl, Tip, Tp, Tr,  
Tv, Twk, Twmo, Twru 
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1:500,000.  The original 25-element classification scheme was used without modification (Table 
5).  Soils data were derived from the 1:500,000 scale digital soil map of Wyoming developed by 
Munn and Arneson (1998) for the Wyoming Ground-Water Vulnerability Mapping Project.  The 
original 45 soil map units in this classification scheme were reduced to 29 units (Table 6) by 
combining similar soil types.  The numerical portion of the code used to designate a combined 
unit was derived from the constituent unit with the most area.   
 
     Land cover is based on models of recent anthropogenic land use and natural disturbance and 
succession regimes on potential natural vegetation at statewide or regional scales (Franklin 
1995).  The Wyoming Gap Analysis Project identified 39-41 major land cover types for the state 
(Driese et al. 1997; Merrill et al. 1996).  Fertig et al. (2002) reclassified these into 31 types based 
on similarities in dominant species or physiognomy (Table 7) to conform to the 32 category limit 
imposed by our statistical software.    
 
 
Acquisition and Preparation of Presence/Absence Data 
 
     Presence data for our 44 target species were derived primarily from the element occurrence 
database of WYNDD.  In cases where WYNDD records depicted element occurrences as 
metapopulations, additional location points were added for subpopulations that were separated 
by more than 2400 m.  In some species, a few present points were derived from the digital 
specimen database of the Rocky Mountain Herbarium (RM).  Arc Macro Language (AML) 
programs were used to intersect the location dataset with each of the environmental datasets and 
to assign specific values for each environmental variable at each known present point. 
 
     Absence data for plant species are not routinely collected, but are necessary for classification 
tree models.  We identified potential absence localities for our target species using the RM's 
digital database of over 12,000 collection sites.  These sites have been established systematically 
(although non-randomly) across Wyoming since 1977 with the intent of documenting every plant 
species at a given locale (Hartman 1992).  We assumed that our target species would have been 
collected at these sites had they been present; if they were not recorded, we considered them 
absent (Fertig 1999; Fertig et al. 2002).  One weakness with this assumption is that a species 
could have been overlooked, especially if the plant was cryptic, ephemeral, or not in an 
identifiable state (such as lacking flowers or fruits) at the time the site was visited.  Despite this 
problem, we felt there was no other practical alternative to identifying negative data over such a 
large modeling domain.  To reduce the likelihood that species were falsely reported as absent we 
did not use locations that we considered inadequately sampled (based on a minimum cutoff of 20 
taxa collected per site).   
 
     To simplify the models, we decided to randomly select approximately 1200 absent points 
from the original pool of over 12,000 available locations.  After assigning environmental values 
to each point using ArcInfo, we stratified the dataset according to bedrock geology and randomly 
selected 600 points with each of the 26 types in Table 4 proportionally represented.  Each newly 
selected point was checked to make sure it was more than 6800 m from previously selected 
points.  An additional 600 points were then randomly selected from the original pool using 8 
elevation categories, again with the goal of proportional representation  [continued on page 17]
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Table 5.  Surficial geology of Wyoming from Case et al. (1998). 
 

Code Description 
Ai Old alluvial plain with scattered deposits of eolian, residuum, and slopewash 
ai Alluvium with scattered deposits of terrace, slopewash, eolian, residuum, grus, and 

glacial 
aR Shallow alluvium mixed with scattered bedrock outcrops 
bdi Dissected bench with scattered deposits of residuum, slopewash, landslide, and 

eolian 
bi Bench including eolian, slopewash, outwash, and bench and/or mesa 
ei Eolian mixed with scattered deposits of residuum, alluvium, and slopewash 
fdi Dissected alluvial fan and gradational fan deposits mixed with scattered deposits of 

slopewash and residuum 
fi Alluvial fan and gradational fan deposits mixed with scattered deposits of slopewash, 

residuum, and eolian 
gi Glacial deposits mixed with scattered deposits of slopewash, residuum, grus, 

alluvium, colluvium, landslide, and/or bedrock outcrops 
Ki Karst areas mixed with scattered deposits of residuum, slopewash, and/or bedrock 

outcrops 
ki Clinker mixed with scattered deposits of residuum, slopewash, alluvium, and/or 

bedrock outcrops 
li Landslide mixed with scattered deposits of slopewash, residuum, Tertiary landslides, 

and bedrock outcrops; landslides too small and numerous to show separately 
Mi Mined areas mixed with scattered deposits of residuum, slopewash, and/or bedrock 

outcrops 
mi Mesa including scattered deposits of residuum and eolian 
oai Glacial outwash and alluvium mixed with scattered deposits of glacial, terrace, hot 

spring, bedrock outcrops, residuum, slopewash, and grus 
pea Playa deposits mixed with scattered deposits of alluvium, eolian, and residuum, playa 

deposits too small to show separately 
Ri Bedrock and glacial bedrock including hot spring deposits and volcanic necks; mixed 

with scattered deposits of eolian, grus, slopewash, colluvium, residuum, glacial, and 
alluvium 

ri Residuum mixed with alluvium, eolian, slopewash, grus, and/or bedrock outcrops 
sci Slopewash and colluvium mixed with scattered deposits of slopewash, residuum, 

grus, glacial, periglacial, alluvium, eolian, and/or bedrock outcrops 
tdi Dissected terrace deposits mixing with alluvium, residuum, eolian, and slopewash 
Ti Structural terrace including and/or mixed with deposits of alluvium, eolian, 

residuum, slopewash, and terrace 
ti Terrace deposits mixed with scattered deposits of alluvium, residuum, eolian, 

slopewash, and outwash 
tre Shallow terrace deposits mixed with scattered deposits of eolian and residuum 
ui Grus mixed with alluvium, eolian, slopewash, grus, and/or bedrock outcrops 
xi Truncated bedrock mixed with scattered shallow deposits of eolian, terrace, 

residuum, alluvium, old alluvial plain, bench, and slopewash 
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Table 6.  Modified Wyoming soil classification used for modeling BLM Sensitive plant species.  
Derived from Munn and Arneson (1998). 
 
Code Subunits Zone Description 
WY01  1 Typic Dystrocryepts-Typic Haplocryalfs, loamy-skeletal, mixed and 

Histic Cryaquepts, fine-loamy over sandy or sandy-skeletal, mixed 
WY06C  Combination of WY06 & WY28 

WY06 3 Typic Haplocryalfs, Typic Dystrocryepts and Typic Haplocryolls, 
loamy-skeletal and Histic Cryaquepts, fine-loamy over sandy or 
sandy-skeletal 

10 Typic Haplocryalfs, Typic Dystrocryepts and Typic Haplocryolls, 
loamy-skeletal, mixed and Histic Cryaquepts, fine-loamy over sandy 
or sandy-skeletal, mixed 

WY28 8 Typic Haplocryalfs and Typic Dystrocryepts, loamy-skeletal, mixed 
and Typic Haplocryolls, fine-loamy, mixed 

WY07C  Combination of WY02 and WY07 
WY02 1 Typic Haplocryolls, fine-loamy and Histic Cryaquepts, fine-loamy 

over sandy or sandy-skeletal 
WY07 3 Typic Haplocryolls, fine-loamy; Chromic Haplocryerts, fine and Histic 

Cryaquepts, fine-loamy 
WY08C  Combination of WY03, WY04, WY05, and WY08 

WY03 1, 2 Typic Cryorthents and Humic Dystrocryepts, loamy-skeletal and 
Histic Cryaquepts, fine-loamy over sandy or sandy-skeletal 

WY04 2 Typic Cryorthents, loamy-skeletal; Rock Outcrop; and Histic 
Cryaquepts, fine-loamy over sandy or sandy-skeletal 

WY05 2 Histic Cryaquepts fine-loamy over sandy or sandy-skeletal and Humic 
Dystrocryepts; loamy-skeletal 

WY08 3 Rock Outcrop and Lithic Cryorthents, loamy-skeletal 
WY10  4 Typic Torripsamments, mesic 

7, 9, 10 Typic Torripsamments, frigid 
WY11  4 Calcic Haplosalids, fine, mesic 

10 Typic Haplosalids, fine, frigid 
WY14  4 Typic Haplargids and Typic Natrargids, fine-loamy or coarse-loamy, 

mesic 
WY15  4 Typic Torrifluvents, sandy-skeletal, mesic and Typic Haplocambids, 

fine-loamy over sandy or sandy-skeletal, mesic 
WY16C   Combination of WY09 and WY16 

WY09 4 Typic Haplargids and Typic Haplocalcids, fine-loamy over sandy or 
sandy-skeletal, mesic and Typic Torriorthents, fine-loamy and coarse-
loamy, mesic 

9 Ustic Haplargids and Ustic Haplocalcids, fine-loamy over sandy or 
sandy-skeletal, frigid and Ustic Torriorthents, fine-loamy and coarse-
loamy, frigid 

WY16 5 Ustic Haplargids, Ustic Haplocalcids and Aridic Haplustolls, fine-
loamy, mesic and Torriorthents, loamy-skeletal, mesic 

WY17C   Combination of WY12, WY13, WY17, and WY33 
WY12 4 Typic Torriorthents, loamy, mesic and Rock Outcrop 
WY13 4 Typic Torriorthents, fine, mesic and Rock Outcrop 
WY17 5 Typic Torriorthents, loamy-skeletal, mesic and Rock Outcrop 
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10 Rock Outcrop and Typic Torriorthents, loamy-skeletal, mixed, frigid  
WY33 9 Lithic Torriorthents, loamy-skeletal, frigid and Rock Outcrop 

WY18  5 Typic Torriorthents and Entic Haplistolls, fine-loamy, mesic  
WY19  5 Typic Haplogypsids, fine, mesic 
WY20  6 Typic Hapludalfs and Typic Argiudolls, fine-loamy and Typic 

Haplaquolls, fine, frigid 
WY22  6 Typic Argiudolls and Typic Haplaquolls, fine-loamy, frigid 
WY23  7 Typic Argiustolls, fine-loamy and Typic Argiustolls fine-loamy over 

sandy or sandy-skeletal, mixed, frigid 
WY25  7 Ustic Torriorthents and Aridic Ustochrepts, loamy-skeletal, frigid 
WY27  7 Typic Torrifluvents and Typic Haplaquolls, fine-loamy over sandy or 

sandy-skeletal, mixed, frigid 
WY29  8 Histic Cryaquepts and Typic Cryaquolls, fine-loamy over sandy or 

sandy-skeletal, mixed 
WY31C   Combination of WY30, WY31, and WY32 

WY30 8 Typic Dystrocryepts and Lithic Cryorthents, loamy-skeletal, mixed 
and Rock Outcrop 

WY31 8 Typic Dystrocryepts and Typic Cryorthents, loamy-skeletal, mixed 
WY32 8 Typic Dystrocryepts, loamy-skeletal, mixed and Rock Outcrop 

WY34  9 Ustic Haplargids and Ustic Natrargids, fine-loamy, frigid 
WY35  9 Typic Natrargids and Typic Torriorthents, fine, frigid 
WY36  9 Ustic Torriorthents and Ustic Haplocalcids, coarse-loamy, frigid 
WY37  9 Typic Petrocalcids and Ustic Calciargids, fine-loamy over sandy or 

sandy-skeletal, frigid 
WY38C   Combination of WY38, WY39, and WY43 

WY38 9 Ustic Haplocambids and Ustic Haplargids, coarse-loamy, frigid 
WY39 10 Ustic Haplargids, Ustic Haplocambids and Ustic Natrargids, fine-

loamy, mixed, frigid 
WY43 6 Ustic Haplargids and Ustic Haplocambids fine and fine-loamy, mesic 

WY40C   Combination of WY21, WY24, WY26, and WY40 
WY21 6 Ustic Haplocambids and Ustic Torriorthents, fine, frigid and Rock 

Outcrop 
WY24 7 Ustic Haplocambids and Ustic Torriorthents, fine, frigid  
WY26 7 Ustic Torriorthents and Ustic Haplocambids, fine, frigid 
WY40 10 Ustic Haplocambids and Ustic Torriorthents, coarse-loamy, mixed and 

Typic Torrifluvents, loamy-skeletal, mixed, frigid 
WY41  10 Aridic Haplustolls and Ustic Haplocambids, fine-loamy, frigid 

 
WY42  3, 5 Typic Hapludolls and Typic Hapludalfs, loamy-skeletal, mixed, frigid 
WY44  7 Ustic Haplargids and Ustic Torrifluvents, fine-loamy over sandy or 

sandy-skeletal, mixed, mesic 
9 Ustic Haplargids and Typic Torrifluvents, fine-loamy over sandy or 

sandy-skeletal, mixed, mesic 
WY45  8 Typic Hapludalfs and Aridic Haplustepts, loamy-skeletal, mixed, 

frigid 
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Table 7.  Modified Gap land cover classification for Wyoming derived from Merrill et al. (1996), 
and Driese et al. (1997).   Note: The primary cover types of clearcut conifer (42007) and burned 
conifer (42016) were replaced by their secondary types for this analysis. 
 

Code Landcover Category Wyoming Units 
AcDun Active sand dunes 73001 
AlpRk Alpine bare rock and soil 74002, 91001 
AlpTn Alpine tundra 82001 
Aspen Aspen forest 41001 
BkSge Black sagebrush steppe 32008 
BrOak Bur oak woodland 41002 
BsnRk Basin bare rock and soil 74001 
DougF Douglas-fir forest 42003 
DstSh Desert shrub 32010 
FrRip Forest-dominated riparian 61001 
GrsWd Greasewood fans and flats 32012 
GrWet Graminoid-dominated wetland 62002, 62003 
Hmdis Human disturbed 11001, 21001, 21002, 75001 
Junpr Juniper woodland 42015 
Limbr Limber pine woodland and scrub 42009 
LodgP Lodgepole pine forest 42004 
MesSh Mesic upland shrub grassland 31003, 32001 
MGras Mixed grass prairie 31001 
MtSge Mountain big sagebrush 32005, 32006 
Pdosa Ponderosa pine forest 42010 
Playa Unvegetated playa 71001 
SbAlp Subalpine meadow 82002 
SGras Short grass prairie 31002 
ShRip Shrub-dominated riparian 62001 
SpFir Spruce-fir forest 42001 
StBsh Saltbush fans and flats 32011 
VgDun Vegetated dunes 32013 
Water Open water 52001 
WhtBk Whitebark pine forest 42008 
WySge Wyoming big sagebrush 32007, 32009 
XerSh Xeric upland shrub 32002 
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Table 8.  Biomes used for selecting absent locations for validation of plant models.  Modified 
from Barbour and Billings (2000). 
 

Code Biome 
ALP Alpine 
EDF Eastern deciduous forest 
FOOT Foothills (transition between RMF and Great Plains grasslands/ 

Intermountain desert steppe) 
IDGRS Intermountain desert steppe/Great Plains grasslands 
IDS Intermountain desert steppe 
RMF Rocky Mountain forest 
WET Wetlands 

 
 
 
and sufficient distance between points.  These initial 1200 points were checked for accuracy by 
comparing location and elevation data from the original specimen labels with 1:100,000 DRGs in 
ArcView and repositioned as necessary.  Over 100 points were dropped from the repositioned 
point set based on a reduced distance criterion of 5200 m, along with points whose TRS values 
(as obtained from the public land survey system), did not match the values in the corresponding 
herbarium records.  Two more rounds of random selection occurred, each emphasizing 
proportional representation of the remaining variables (Table 2) that were under-sampled in the 
earlier rounds.  Ultimately we identified a subset of 1206 potential absent points for modeling 
that adequately represented the range of environmental predictors and provided good spatial 
representation across the state. 
 
     For each target species, the pool of potential absence sites was further reduced depending on 
whether the plant was actually known from any of the absent points.  Additional points were 
eliminated if they were from the same TRS section or within 2400 meters of a known present 
point for that species.  Finally, absent points were removed if they were from a biome type in 
which the species was not likely to occur (Table 8).  This helped reduce possible inflation of 
classification success due to use of locations that were obviously unsuitable, the so-called 
problem of the "naughty-nots" (Michael Austin, personal communication in Fertig et al. 2002). 
 
     Once presence and absence locations were identified for each target species, we randomly 
subdivided each group of points into model-building and validation data sets.  For species with 
less than 16 present locations, no points were selected for validation and model testing was 
conducted only with absent points.  If a species was known from 16 or more locations, we used 
25% of the total number of present locations for validation.  After the number of desired 
validation points was calculated, we randomly stratified the available points by geographic area 
to minimize over-sampling present sites from the same general location.  Absence points were 
also stratified by location, with 20% being randomly selected for validation and 80% for model 
construction.  The final point sets for model-building and validation for our model of Cirsium 
aridum Dorn (Cedar Rim thistle) are shown in Figures 1 and 2. 
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Figure 1.  Known present points for Cirsium aridum used for model-building and validation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Inferred absence points for Cirsium aridum used for model-building and validation.  
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Classification Tree Development and Pruning 
 
     To create our classification tree models, the environmental data from the presence and 
absence data points in the model building sets were imported into the statistical software 
program S-Plus (Professional Release 1).  For our models, a variety of topographic, climate, 
substrate, and land cover datasets (Table 2) were selected as independent variables and known 
present and absent locations of our target plant species were used as the dependent variable.  
From the initial data pool of present and absent points (or "root" node in classification tree 
terminology), the data set was continually subdivided into pairs of smaller subsets (called nodes) 
based on the single environmental variable that accounted for the greatest difference between 
known presence and absence (Figure 3; Table 9).  This splitting continued along each branch of 
the tree (using different variables and values at each split) until all resulting nodes reached a 
predetermined minimum number of points or the node consisted of all present or all absent 
points. 
   
     In S-plus, three parameters control when splitting stops: the minimum number of observations 
before the split (MinCut), the minimum node size (MinSize), and the minimum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Unpruned classification tree for Cirsium aridum model.  Consult Table 9 for the 
values of the environmental variables used at each node of the tree.  In this model, 5 terminal 
nodes predicted presence for C. aridum (indicated by "Yes") and 8 terminal nodes predicted 
absence (indicated by "No").   
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Table 9.  Classification tree node definitions for unpruned model of Cirsium aridum (MinPct = 
0.0).  Codes: Node_Num = node number; Node_Def = environmental variable selected at each 
node and the defining condition; Node_Size = total number of location points at each node; 
(Num_No,Num_Yes) = the number of absent and present points at each node; (Pct_No,Pct_Yes) 
= percentage of absent and present points at each node relative to the total number of absent 
and present points used to construct the model; Node_Type = presence (Yes) or absence (No) 
score assigned to the node based on the previous percentages.  Terminal nodes are indicated by 
a * and terminal Yes nodes are in bold.  Consult Figure 3 for a visual depiction of this 
classification tree and tables 2, 4, 5, 6, and 7 for values of the environmental variables.   
Note: The node definitions in this example are identical to those used in model b in Figure 4 
(MinPct = 0.2) except for the elimination of nodes 16 and 17 and node 8 being classified as a 
terminal Yes node. 

Node_Num) Node_Def Node_Size (Num_No,Num_Yes) (Pct_No,Pct_Yes) Node_Type 
1) root 976 (961,15) (100,100) Yes 
  2) SOIL:WY34,WY41 67 (55,12) (5.7,80) Yes 
    4) NWD<58.5 40 (28,12) (2.9,80) Yes 
      8) TA01<-6.99 10 (2,8) (0.2,53.3) Yes  
        16) BEDGEOL:Eoe,Olg 8 (0,8) (0, 53.3)  Yes * 
        17) BEDGEOL: Eol,TQc 2 (2,0) (0.2, 0) No * 
      9) TA01>-6.99 30 (26,4) (2.7,26.7) Yes 
       18) BEDGEOL:Eol 2 (0,2) (0,13.3) Yes * 
       19) BEDGEOL:Eoe,MiPl,Olg,Pal,TQc 28 (26,2) (2.7,13.3) Yes 
         38) PT01<1.29 21 (21,0) (2.2,0) No * 
         39) PT01>1.29 7 (5,2) (0.5,13.3) Yes 
           78) PT04<3.945 3 (1,2) (0.1,13.3) Yes * 
           79) PT04>3.945 4 (4,0) (0.4,0) No * 
    5) NWD>58.5 27 (27,0) (2.8,0) No * 
  3) SOIL:WY01,WY06C,WY07C,WY08C,WY10,WY11,WY14,WY15,WY16C,WY17C,  
       WY18, WY20,WY23,WY27,WY31C,WY35,WY36,WY38C,WY40C,WY42,WY44,WY45  
       909 (906,3) (94.3,20) No 
    6) BEDGEOL:Eoe 179 (176,3) (18.3,20) Yes 
     12) TX07<25.83 37 (34,3) (3.5,20) Yes 
       24) RT01<7.415 26 (26,0) (2.7,0) No * 
       25) RT01>7.415 11 (8,3) (0.8,20) Yes 
         50) RT01<7.43 2 (0,2) (0,13.3) Yes * 
         51) RT01>7.43 9 (8,1) (0.8,6.7) Yes 
          102) RELIEF<244 7 (7,0) (0.7,0) No * 
          103) RELIEF>244 2 (1,1) (0.1,6.7) Yes * 
     13) TX07>25.83 142 (142,0) (14.8,0) No * 
    7) BEDGEOL:Eex,Ein,Eol,H2O,Kmix,Ksh,Kss,MiPl,Olg,PCf,PCm,PTJ,Pal,Pze,Qal,Qlc,      
        Qls,Qs, Qt,Qvf,TQc,Tlvf  730 (730,0) (76,0) No * 
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node deviance (MinDev).  Splitting continues until a node is homogeneous (node deviance = 0), 
or the number of observations in a node is less than the number of MinSize observations.  When 
a split does occur, each node of the node pair must have at least the MinCut number of  
observations, thus MinSize is always at least two times larger than the value of MinCut.  We 
found by experimentation that the optimal size for MinCut was 10% of the number of present 
points in the model building dataset.  We found that if MinCut and MinSize were too small, the  
resulting models became overly complex (and validated poorly), while if these values were too 
high the models were too simplistic, obscuring potentially interesting environmental 
relationships (Fertig et al. 2002).  We chose MinDev to be 0.01, the default value assigned by S-
Plus. 
 
     When a branch of the classification tree can no longer be subdivided it is called a leaf or 
terminal node.  By default, S-Plus assigns a value of "yes" (predicted present) for terminal nodes 
in which the majority of points are from known populations of the target species, or "no" 
(predicted absent) if the majority of points are from absent locations.  To compensate for the low 
number of present points available for the model relative to the number of absent points, we 
reclassified the terminal nodes based on the percentage of available present and absent points at 
the node.  In our revised classification, terminal nodes were ranked "yes" if the percentage of all 
available present points at the node was greater than the percentage of all available absent points, 
or "no" if the percentage of all available absent points at the node was greater than the percentage 
of present points (Fertig et al. 2002).  By making this change we significantly reduced the 
number of nodes with a high percentage (but minority) of present points that would have 
otherwise been scored as "no".  This resulted in models that predicted more geographic area as 
potential habitat but had a significant reduction in omission error (false negatives) (Fertig et al. 
2002). 
 
     An example of a revised S-Plus classification tree for Cirsium aridum Dorn is shown in 
Figure 3 and Table 9.  The model was generated using a MinCut of 2 and a MinSize of 4.  Each 
line in the table contains the node number (Node_Num), the environmental variable selected by 
the model at that node (Node_Def), the total number of location points at that node (Node_Size), 
the number of absent and present points (Num_No, Num_Yes), the percentage of absent and 
present points at the node relative to the total number of available absent and present points in 
the model (Pct_No, Pct_Yes), and the presence (Yes) or absence (No) score assigned to the node 
based on the previous percentages (Node_Type).  Node 1 (also called the root node) represents 
the entire model-building dataset.  In this example, the model began with 976 location points, of 
which 961 were absent and 15 were present (with each representing 100% of the available absent 
or present points).  The root node was subdivided into nodes 2 and 3 based on the modified 
Wyoming soil classification (SOIL).  All location points with a state soil value of WY34 or 
WY41 (Table 6) were assigned to node 2, while all other points were placed in node 3*.  In all, 
67 records (55 absent and 12 present) were placed in node 2, while 909 points (906 absent and 3 
present) went to node 3.   
   
     The 67 points in node 2 were subdivided into two smaller subsets (nodes 4 and 5) based on 
the number of wet days (NWD).  40 points (28 absent and 12 present) with the number of wet 
days less than 58.5 were placed in node 4, while the remaining 27 points with NWD > 58.5 went 
 
*No location data for this model were from WY19, WY22, WY29, or WY37 soil types. 
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to node 5.  Since node 5 contained only absent points, it was not further subdivided even though 
the number of points still exceeded the MinSize value of 4.  Node 4, however, could still be split 
into two smaller groups (nodes 8 and 9) based on a threshold value of -6.99º C for average 
January air temperature.  Splitting continued along all branches of this tree until every node 
contained only present or absent points (nodes 13, 16, 17, 18, 24, 38, 50, 79, 102) or the nodes 
contained fewer than 4 total points (based on the value of MinSize) or two or more points (based 
on the MinCut value of 2) as in nodes 78 and 103. 
 
     The final step in developing a classification tree is to simplify the tree by removing 
extraneous branches by "pruning".  Unpruned models tend to overfit the data used in model 
construction, resulting in predicted distribution maps that strongly match present points, but 
often perform poorly in predicting independent validation data.  Although S-PLUS has pruning 
algorithms, they do not work with our revised classification scheme based on percentages.  We 
developed a new pruning method that eliminated nodes in which the percentage of present or 
absent points were at or below a selected threshold called the minimum percent for pruning 
(MinPct).  Using an ArcInfo AML, we could identify the MinPct thresholds at which successive 
terminal nodes could be pruned back towards the root node.  Additional pruning was done for 
models in which a pair of terminal nodes at the same branch were both coded as either "yes" or 
"no".  Such "companion nodes" were pruned back to the preceding node.  Figure 4 illustrates the 
application of increasingly large MinPct values to the classification tree for Cirsium aridum.  In 
general, we found that lower values of MinPct resulted in more complex models that predicted 
relatively small geographic areas and often had higher omission error rates for validation point 
sets.  By contrast, higher MinPct cutoffs produced models that predicted significantly larger 
ranges and had low omission error, but often relatively high commission (false positive) error 
rates (Fertig et al. 2002). 
 
 
Creation of Potential Range Maps  
 
     Completed classification trees typically consist of 1-6 branches culminating in a terminal 
"yes" node, each of which identifies different combinations of environmental variables and 
values that describe the potential habitat of the target species.  Table 10 depicts the five distinct 
"yes" branches or node pathways for the Cirsium aridum model pruned with a MinPct of 0.2 
(Figure 4b, Table 9).  For example, node pathway "a" (nodes 8, 4, 2) indicates that C. aridum is 
predicted to occur in areas that have soil types WY34 or WY41, fewer than 58.5 wet days per 
year, and average January air temperature less than -6.99º C.  Node pathway "b" (defined by 
nodes 18, 9, 4, 2) demonstrates that this species can also occur under the same conditions of soil 
and wet days if average January air temperature is greater than -6.99º C as long as bedrock 
geology consists of late Eocene deposits (Eol).  Other potential "yes" pathways emphasize other 
combinations of environmental variables, including local relief, total January shortwave 
radiation, maximum July air temperature, and average April and January monthly precipitation. 
 
     In GIS we created potential distribution maps by intersecting the selected environmental 
variables at each node of a "yes" path to identify just those geographic locations that met every 
condition specified in the path.  The final map was produced by merging the areas selected in  
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Figure 4.  Six of the nine potential classification trees for the Cirsium aridum model illustrating 
different levels of pruning.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          a. Unpruned (MinPct = 0.0)                                    b.  Pruned with MinPct = 0.2 (selected model) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

               c. Pruned with MinPct = 0.8                                             d. Pruned with MinPct = 2.7 
 
 
 
 
 
 
 
 
 
 
 
 
            e. Pruned with MinPct = 5.7                                     f. Pruned with MinPct = 20.0 
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Table 10.  Path composition and likelihood for classification tree model of Cirsium aridum. 
 
Yes Path Node List % of Present Points Likelihood Class 

a 8, 4, 2 53.3 High 
b 18, 9, 4, 2 13.3 Medium 
c 78, 39, 19, 9, 4, 2 13.3 Medium 
d 50, 25, 12, 6, 3 13.3 Medium 
e 103, 51, 25, 12, 6, 3 6.7 Low 

 
 
 
each separate pathway and overlaying the coverage on a state map with county boundaries and 
US and Interstate highways (Figure 5). 
 
     Not all pathways that describe potential habitat for a species are equally probable.  In the case 
of Cirsium aridum, path "a" contained 8 of the 15 known present points (53.3%) used to 
construct the model, while paths b, c, and d each contained 2 present points (13.3% each) and 
path e had just 1 present point (6.7%) (tables 9, 10).  To help differentiate between the relative 
significance of each pathway, we developed a simple scoring system to measure the likelihood of 
any given modeled point belonging to a specific pathway.  Pathways were scored as "high" if the 
percentage of present points for the path were at least twice the average value for all paths, "low" 
if the percentage of present points were less than one-half the average value, and "medium" if the 
percentage of present points were between one-half and twice the average for all paths (Table 
10).  In the final potential range map, each likelihood class was color-coded using a different 
gray tone to visually depict areas of differing probability of likely habitat (Figure 5). 
 
 
Model Validation and Selection 
 
     Using automated pruning algorithms we were able to produce 2-13 different classification 
tree models for each of our target species.  For those species with more than 16 known present 
points, we used validation with independent present and absent points to measure the accuracy of 
each classification tree in order to select the single model that best described the potential range 
of the species.  Six different classification success parameters can be measured (Table 11).  Total 
success rate is a measure of the percentage of all points (both present and absent) that are 
correctly classified by the model.  This can be subdivided into the present success rate (the  
percentage of known present points classified correctly by the model) and absent success rate  
(the percentage of known absent points classified correctly).  By contrast, total error rate is a 
calculation of the percentage of all points (present and absent) that are misclassified by the 
model and consists of two components: omission or false negative error rate (the percentage of 
known present points that are misclassified) and commission or false positive error rate (the 
percentage of known absent points that are misclassified by the model) (Franklin 1995; Fielding 
2002).   
 
     These classification success and error metrics can be applied to both model-building and 
validation data sets (Table 12).  Since model-building data are used to construct the model their 
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Figure 5.  Potential distribution of Cirsium aridum in Wyoming based on a classification tree 
model pruned with a MinPct of 0.2. 
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Table 11.  Classification success and error rate matrix. 
 

 Model Present Model Absent 
Known Present Classified Correctly - 

Present Success Rate 
(PSR) 

Misclassified -
Omission or False 

Negative Error Rate 
(OER) 

Known Absent Misclassified - 
Commission or False 
Positive Error Rate 

(CER) 

Classified Correctly - 
Absent Success Rate 

(ASR)  

 
Total Success Rate (TSR) = percentage of all known points (present and absent) classified correctly by 
the model  
Total Error Rate (TER) = percentage of all known points (present and absent) misclassified by the model  
 
 
classification success rates are naturally very high and their error rates quite low, making them 
uninformative for testing model accuracy.  Total classification success rates for validation 
datasets are often nearly as high as those for model-building and may be of similar low utility.  
Fielding (2002) suggests that omission and commission error are the most useful tools for 
assessing model accuracy because they can lead to the most costly mistakes in misdirecting 
management or survey priorities for the target species.  Omission error is especially costly for 
rare species because areas of known occupied habitat are considered unsuitable by the model.   
 
     In selecting the best model to represent a given species, we utilized summary tables (Table 
13) to compare omission and commission error and predicted area under different pruning 
scenarios.  We found that omission and commission were typically inversely proportional, with 
omission error decreasing and commission error increasing as models became less complex and 
the area of predicted range increased.  We tended to select models that showed the largest 
decrease in omission error with the smallest relative increase in commission error and which had 
a smaller overall geographic area.  In the case of Cirsium aridum, we found that model 1b with a 
 
 
Table 12.  Classification success and error rates for model-building points and validation points 
in the Cirsium aridum model based on MinPct = 0.2.   
 
               Model-Building Points                                           Validation Points 
 Model 

Present 
Model 
Absent 

 Model 
Present 

Model 
Absent 

Known 
Present 

14/15 
(93.3%) 

1/15 
(6.7%) 

Known 
Present 

3/4 
(75.0%) 

1/4 
(25.0%) 

Known 
Absent 

5/961 
(0.5%) 

956/961 
(99.5%) 

Known 
Absent 

4/185 
(2.2%) 

181/185 
(97.8%) 

 
Total Correct:  970/976  (99.4%)                            Total Correct:  184/189  (97.4%) 
Total Incorrect:  6/976  (0.6%)                                Total Incorrect:  5/189  (2.6%)
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MinPct of 0.2% had the greatest drop in omission with the smallest increase in commission error, 
so we selected this model for the final report (Figure 5).   
 
 
Modeling Plants with Limited Data (Range/Intersection Models) 
 
     Although classification tree analysis can be applied to datasets of any size, the technique is 
less useful when the number of available case studies drops below a minimum size threshold 
(Breiman et al. 1984).  In this study, we found that classification trees developed with fewer than 
8 present locations usually resulted in overly simple models with 3 or fewer terminal nodes.  Due 
to their simplicity, these models often omitted potentially useful environmental information in 
tree construction and, in many cases, overestimated the area of likely potential habitat.  For these 
situations we developed an alternative protocol (range/intersection modeling) that used the 
environmental conditions correlated with each present location in the model-building dataset to 
identify additional geographic areas in the state with the same environmental attributes (Fertig et 
al. 2002).  Unlike classification tree models, range/intersection models did not use environmental 
information from absent locations for model development and were created entirely in GIS, 
rather than using statistical software.  The final distribution maps produced by the range/ 
intersection method could be validated in the same way as classification tree models, although 
present points were usually not available for validation if fewer than 16 points existed for model 
building. 
 
     The same environmental variables used in classification tree modeling were used to construct 
range/intersection models except for number of wet days, maximum July air temperature, 
number of frost days, and growing degree days.  The values of categorical variables used in 
range/intersection modeling were calculated using the Field/Summarize function of ArcView 
(Table 14).  In some instances expert knowledge was used to add or delete values if the selected 
 
Table 13.  Summary of validation success and predicted area for 9 potential models of Cirsium 
aridum.  Codes: MinPct = minimum percent threshold for pruning; OER = omission error rate, 
CER = commission error rate. 
 

 Model Points Validation 
Points 

 

Model MinPct 
(%) 

OER 
(%) 

CER 
(%) 

OER 
(%) 

CER 
(%) 

# Yes 
Paths 

Predicted Area 
(km2) 

% of WY 

1a 0.0% 6.7 0.3 50.0 1.6 5 1,761.4  0.70 
1b 0.2% 6.7 0.5 25.0 2.2 5 2,203.7  0.87 
1c 0.5% 6.7 0.9 25.0 3.2 5 2,947.4  1.16 
1d 0.8% 6.7 1.6 25.0 3.2 4 4,170.1 1.65 
1e 2.7% 6.7 3.7 25.0 6.5 2 10,635.8 4.20 
1f 3.5% 6.7 6.3 25.0 10.3 2 14,792.4  5.84 
1g 5.7% 6.7 9.2 25.0 13.5 2 24,453.5  9.66 
1h 18.3% 0.0 23.8 25.0 31.4 2 67,077.6  26.50 
1i 20.0% 20.0 5.7 50.0 9.7 1 18,818.8  7.43 
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values were considered incomplete or erroneous.  Minimum and maximum values of continuous 
variables were also determined using the Field/Statistics function, but to improve prediction 
accuracy these values were buffered using the following formulas: 
 
 MinNew = Min - dVar     and     MaxNew = Max + dVar 
 
where dVar = K * Mean for ELEV, RELIEF, PT, and RT variables and dVar =  1 ºC * (K/0.05) 
for TA variables.  Values of K ranged from 0.05 to 0.2 depending on whether we wished to  
 
 
Table 14.  Values of variables used in construction of range/intersection model of Trifolium 
barnebyi in Wyoming with K = 0.05. 
 

Continuous Variables 
Variable Units Min 

 
Max Mean dVar MinNew MaxNew

 
Elevation m 1747  2029  1904 95 1652 2124 
Relief m 96 220 155 8 88 228 
Total January 
Precipitation 

cm 
 

2.09  2.56  2.26  0.11 1.98 2.67  

Total April 
Precipitation 

cm 
 

3.89  4.70  4.30  0.22 3.67  4.92  

Total July 
Precipitation 

cm 
 

1.70  2.15  1.89  0.09 1.61  2.24  

Total October 
Precipitation 

cm 
 

2.65  3.07  2.82 0.14 2.51  3.21  

Average January 
Air Temperature 

ºC - 7.39 - 6.84  - 7.09  1 - 8.39  - 5.84  

Average April 
Air Temperature 

ºC 4.15  6.24  5.34 ºC 1 3.15  7.24  

Average July Air 
Temperature 

ºC 18.01  20.21  19.25 ºC 1 17.01 21.21  

Average October 
Air Temperature 

ºC 5.57  7.06  6.41 ºC 1 4.57  8.06  

Total January 
Shortwave 
Radiation 

MJ/m2/day 6.82  7.11  6.99  0.35 6.47  7.46  

Total July 
Shortwave 
Radiation 

MJ/m2/day 25.00  25.12  25.07  1.25 23.75  26.37  

 
Categorical Variables 

Variable Values 
Land Cover Junpr 
Bedrock Geology Ksh, PTJ 
WY Soil  WY16C, WY35 
Surface Geology Ri, sci 
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buffer the continuous variables by 5 to 20% and were determined by experimentation with each  
model.  Once the ranges of the variables were established, we used ArcInfo to find areas in the 
state that satisfied all the environmental conditions.  The resulting model grid was overlaid on a 
state map with roads and county lines. 
 
     All species selected for our study were initially modeled using the standard classification tree 
methods.  Those which validated poorly or produced unsatisfactory potential distribution maps 
(usually species with 8 or fewer known present points) were also modeled using the 
range/intersection technique.  The resulting models were then compared and the model with the 
best combination of low validation commission error and small geographic range was selected 
for inclusion in this report.  To illustrate, we developed models for Trifolium barnebyi (Isely) 
Dorn & Lichvar (Barneby's clover)using both methods (Figure 6; Table 15).  We ultimately 
selected range/ intersection model 2a due to its lower commission error rate and more realistic 
potential range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Comparison of potential distribution maps for classification tree and 
range/intersection models of Trifolium barnebyi. 
a.  Classification tree model 1a (MinPct = 0.0) and potential range map of T. barnebyi (red dots 
indicate model-building present points). 
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Figure 6.  Continued. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b.  Classification tree model 1b (MinPct = 3.4) and potential range map of T. barnebyi. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c. Range/Intersection model 2a and potential range map of T. barnebyi. 
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Table 15.  Comparison of validation success rates for classification tree and range/intersection 
models of Trifolium barnebyi. 
 Model Points Validation Points Predicted 

Area 
(Km2) 

% of WY
Model MinPct OER (%) CER (%) OER (%) CER (%) 

1a 0.0 0 0 na 3.6 300.4 0.12 
1b 3.4 0 3.4 na 14.3 5719.6 2.26 
2a na 0 0 na 0 74.8 0.03 

 
 
Modeling Wetland Plants 
 
     Modeling wetland plants presents a special challenge because there is no statewide dataset of 
wetland features, which are typically very fine-grained and often not represented on maps of 
large spatial extents, such as the state of Wyoming.  If such a dataset did exist, there would still 
be the problem of the positional errors associated with the wetland features and the point 
datasets.  These spatial inaccuracies can result in incorrect wetland attributes being assigned to 
present and absent location points for our modeled species, which in turn can propagate errors in 
classification tree and range/intersection models.  Our approach to the problem of modeling 
wetland plants was to first create a standard classification tree or range/intersection model, as if 
the plant species was an upland plant.  Since these models predict a lot of upland area and tend to 
greatly overestimate the potential area and habitats available to wetland plants, we then 
intersected the upland models with a riparian model to get a more realistic estimate of potential 
area (Fertig et al. 2002). 
 
     We created the riparian/aquatic model from the 1:100,000 enhanced hydrography digital line 
graphs (DLGs) for Wyoming available from the Wyoming Natural Resources Data 
Clearinghouse (http://www.sdvc.uwyo.edu/clearinghouse/).  This dataset includes both perennial 
and intermittent lakes, ponds, reservoirs, rivers, streams, marshlands, and ephemeral washes 
(Table 16).  Riparian areas were modeled by buffering the hydrographic features using buffer 
widths determined by the Wyoming Gap Analysis Project (Merrill et al. 1996) (Table 17).  The 
buffer areas were attributed to indicate the source hydrographic feature and whether the feature 
was perennial or intermittent.  This allowed us to use only those riparian types in which a plant 
species occurred when intersecting the riparian model with the upland model and was an 
improvement over the riparian/aquatic model used in our earlier wetland plant modeling efforts 
(Fertig et al. 2002), which indicated only presence or absence of perennial features.  The earlier 
model also had a problem in that the large lakes and reservoirs had been digitized from satellite 
imagery and were significantly different from the corresponding features in the enhanced 
hydrography DLGs.  We also repositioned the present points for our wetland species (usually by 
less than 100 m) to ensure they were near hydrographic features as represented by the 1:100,000 
scale DRGs or hydrography DLGs.  This helped ensure that the points received the correct 
riparian attribute value from the narrowed riparian features.  The riparian types in which the 
present points occured were then determined from this attribute and only those types were 
intersected with the upland model. 
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Table 16.  Riparian and aquatic habitat types used to intersect classification tree and 
range/intersection models for selected wetland obligate plant species.   
 

Code Description 
LakI Lake or pond, intermittent 
LakP Lake or pond, perennial 
LakRipI Lake or pond riparian, intermittent 
LakRipP Lake or pond riparian, perennial 
ResI Reservoir, intermittent 
ResP Reservoir, perennial 
ResRipI Reservoir riparian, intermittent 
ResRipP Reservoir riparian, perennial 
StrRipI Stream riparian, intermittent 
StrRipP Stream riparian, perennial 
Wet Marsh or wetland 
WRiv Wide river 
WRivRip Wide river riparian 
Wsh Ephemeral wash 

 
 
 
Table 17.  Buffer widths applied to the hydrographic features used in the creation of the 
riparian/aquatic model. 
 

Feature Strahler 
Stream Order 

Buffer Width (m) 

Stream 1 40 
2 40 
3 60 
4 90 
5 120 
6 150 
7 210 

Reservoir 90 
Lake or Pond 90 
Wide River 300 
Marsh or Wetland 0 
Ephemeral Wash 0 
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     Classification success and error rates were determined for both the upland model and the 
wetland model created from the intersection process.  Due to the intersection, the omission error 
rates for the wetland model can be no lower than those for the upland model, but since the 
wetland model predicts significantly less area, the commission error rate was greatly reduced.  
The map for a wetland species shows the modeled riparian areas within the area predicted by the 
upland model, along with highways and county boundaries (Figure 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Potential distribution of Sisyrinchium pallidum in southeastern Wyoming.  Light gray 
polygons represent areas of potential habitat for this species in upland areas, as derived from a 
standard classification tree model.  Darker gray lines superimposed over the light gray polygons 
are wetland habitats identified by our riparian model. 
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RESULTS AND DISCUSSION 
 
Summary of Potential Distribution Models 
 
     Appendices A and B contain the final results of our modeling efforts for 44 listed Threatened, 
Endangered, and BLM Sensitive plants in Wyoming.  The parameters and variables used to 
construct these models, as well as the classification success and error rates for validation data, 
are summarized in Tables 18-20.  Of our 44 target species, 23 were modeled using standard 
classification tree analysis and 21 were developed with the range/intersection method.  Six of 
these species were further modeled using the wetland protocol (4 derived from classification tree 
and 2 from range/intersection models). 
 
     Twenty continuous and categorical environmental variables were used to construct our 
classification tree models, while only 16 of these variables were used for our range/intersection 
models (Tables 19-21).  For the classification tree models, all but one variable (growing degree 
days) were selected by at least one model.  Bedrock geology was the variable used most 
frequently, appearing in 38 of 44 models (86.4%) and being selected as the first variable in 6 of 
23 classification tree models (26%).  Among the most commonly used bedrock types were 
Eocene volcanic, Eocene lake sediment, Early Paleozoic calcareous sediment, and Quaternary 
landslide deposits.  Soil variables were used in 35 models (79.5%) and were also selected first in 
6 classification tree models (26%).  The most frequently selected soil types represented aridic or 
poorly weathered inceptisols or entisols.  At least one of the four total monthly precipitation 
variables was used in 39 models (88.6%), although no single precipitation variable occurred in 
more than 68% of the models.  Likewise, the 5 temperature variables appeared in 32 models 
(72.7%), but only average January air temperature was used at least 30 times (68%).  The only 
other variables used in over 70% of the models were relief (75%) and Gap land cover (72.7%) 
(Table 21).  Number of wet days appeared in 10 of 23 classification tree models (making it the 
fifth most commonly used variable), but appears less significant overall because it was not used 
in range/intersection models. 
 
     Results from independent validation suggest that our models do a very good job of identifying 
areas where rare species are unlikely to occur, but are less successful in correctly predicting 
known location points (Table 18).  Commission error rates (false negatives) ranged from 0-5.5% 
(mean = 0.78%) for our validation data, indicating that very few of the known absent points for 
our target species were misclassified as being in suitable habitat.  By contrast, omission error 
(false positives) was much higher, averaging 34.4% for the 18 species in which sufficient 
numbers of present points were available for validation.  Our previous modeling work on a broad 
cross section of the state's flora, however, has demonstrated that omission error rates tend to 
decrease as the number of available present points for model construction increases (Fertig et al. 
2002).   Thus validation based on a limited number of independent data points derived from 
herbarium or natural heritage program records may be far less useful for testing model accuracy 
than actual on-the-ground field surveys.         
 
     Overall, our models were extremely conservative in the amount of area predicted for the 
state's listed Threatened, Endangered, and BLM Sensitive plants.  Total predicted area ranged 
from a low of 1.5 km2 (0.0006% of Wyoming) for Cleome multicaulis (Many-stemmed spider-
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Table 18.  Summary of classification tree, range/intersection, and wetland models for 44 listed 
Threatened, Endangered, and BLM Sensitive plant species in Wyoming.  Codes:  MinCut, 
MinSize, and MinPct are the parameters used to create and prune the classification tree models.  
These parameters do not apply to range/intersection models so they are scored "na" (no data 
available).  Model types are standard classification tree (S), range/intersection (RI) and wetland 
(W).  VAL OER, VAL CER, and VAL TER represent the omission error rate, commission error 
rate, and total error rate for independent validation datasets.   
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Antennaria arcuata 2 4 0.3 S, W 33.3 0.0 0.9 
Aquilegia laramiensis 1 2 0.1 S na 0.5 0.5 
Artemisia biennis var. diffusa na na na RI na 0.0 0.0 
Artemisia porteri 2 4 0.2 S 33.3 0.5 1.6 
Astragalus gilviflorus var. 
purpureus 

2 4 0.5 S 20.0 2.4 2.9 

Astragalus jejunus var. articulatus na na na RI na 0.0 0.0 
Astragalus nelsonianus 
[Astragalus pectinatus var. 
platyphyllus] 

2 4 0.6 S 50.0 5.5 6.9 

Astragalus proimanthus na na na RI na 0.0 0.0 
Astragalus racemosus var. 
treleasei 

1 2 0.0 S na 0.0 0.0 

Boechera pusilla [Arabis pusilla] na na na RI na 0.0 0.0 
Cirsium aridum 2 4 0.2 S 25.0 2.2 2.6 
Cirsium ownbeyi 1 2 0.7 S na 0.0 0.0 
Cleome multicaulis na na na RI, W na 0.0 0.0 
Cryptantha subcapitata na na na RI na 0.7 0.7 
Cymopterus evertii 2 4 1.3 S 33.3 2.4 3.3 
Cymopterus williamsii 2 4 0.6 S 50.0 2.5 3.9 
Descurainia torulosa 1 2 0.0 S na 2.6 2.6 
Gaura neomexicana ssp. 
coloradensis 

3 6 0.5 S, W 12.5 0.5 1.1 

Ipomopsis aggregata var. weberi na na na RI na 0.0 0.0 
Lepidium integrifolium var. 
integrifolium 

na na na RI na 0.0 0.0 

Lesquerella arenosa var. argillosa na na na RI na 0.0 0.0 
Lesquerella fremontii 1 2 0.1 S 0.0 0.5 0.5 
Lesquerella macrocarpa 1 2 0.1 S na 0.7 0.7 
Lesquerella multiceps na na na RI na 0.0 0.0 
Lesquerella prostrata na na na RI na 0.0 0.0 
Penstemon absarokensis 3 6 0.4 S 25.0 2.8 3.7 
Penstemon acaulis var. acaulis na na na RI na 0.0 0.0 
Penstemon caryi 2 4 1.5 S 12.5 1.0 1.4 
Penstemon gibbensii na na na RI na 0.0 0.0 
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Penstemon haydenii na na na RI na 0.0 0.0 
Phlox pungens 3 6 0.6 S 20.0 0.6 1.6 
Physaria condensata 2 4 0.8 S 20.0 0.6 1.1 
Physaria dornii na na na RI na 0.0 0.0 
Physaria saximontana var. 
saximontana 

3 6 0.6 S 50.0 2.4 4.0 

Rorippa calycina 4 8 1.0 S, W 25.0 2.0 3.3 
Shoshonea pulvinata 1 2 0.1 S 50.0 0.5 1.4 
Sisyrinchium pallidum 2 4 0.5 S, W 100 0.6 3.6 
Sphaeromeria simplex 2 4 0.2 S 60.0 2.2 3.8 
Spiranthes diluvialis na na na RI, W na 0.7 0.7 
Thelesperma caespitosum na na na RI na 0.0 0.0 
Thelesperma pubescens na na na RI na 0.0 0.0 
Townsendia microcephala na na na RI na 0.0 0.0 
Trifolium barnebyi na na na RI na 0.0 0.0 
Yermo xanthocephalus na na na RI na 0.0 0.0 

 
flower) to nearly 8,500 km2 (3.3% of Wyoming) for Astragalus nelsonianus (Nelson's 
milkvetch) (Appendix A).  The average predicted range of our 44 target species is 1590 km2, or 
about 0.06% of the state's total area. 
 
 
Application of Models and Caveats 
 
     Correlational modeling can be a useful tool to describe the environmental conditions and 
habitats associated with rare plant species.  In GIS, these habitat relationships can be used to 
generate potential range maps that indicate where a given species is likely to occur (and not 
occur).  Accurate distribution maps and ecological descriptions can help land managers, 
consultants, and conservation biologists more efficiently select and prioritize areas for survey or 
reintroduction of rare plants, or identify areas where resource development will not interfere with 
the continued survival of these species (Elith and Burgman 2002; Fertig et al. 2002).  Plant 
modeling also has great potential for conducting gap analyses to identify suites of species, 
habitats, or geographic areas that are under-represented in the existing network of special 
management areas across the state (Fertig and Thurston 2001).  Finally, modeling can identify 
interesting patterns in the potential distribution and niche partitioning among closely related 
species, helping plant geographers generate hypotheses on the evolution of endemic and rare 
species (Fertig et al. 2002). 
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Table 19.  Summary of continuous environmental variables used in classification tree, 
range/intersection, and wetland models for 44 listed Threatened, Endangered, and BLM 
Sensitive plant species in Wyoming.  Codes:  Model types are standard classification tree (S), 
range/intersection (RI), and wetland (W).  Elev = elevation, Relief = local relief, PT01 = total 
January precipitation, PT04 = total April precipitation, PT07 = total July precipitation, PT10 = 
total October precipitation, NWD = number of wet days, RT01 = total January shortwave 
radiation, RT07 = total July shortwave radiation TA01 = average January air temperature, 
TA04 = average April air temperature, TA07 = average July air temperature, TA10 = average 
October air temperature, NFD = number of frost days, and GDD = growing degree days.  "x" in 
these columns indicates the variable was used in development of a classification tree model.  "1" 
indicates the variable was chosen at the root node.  "r" indicates a variable used in 
range/intersection models.  
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Antennaria arcuata S,W x x       1        
Aquilegia laramiensis S  x       x x       
Artemisia biennis var. 
diffusa 

RI r r r r r r  r r r r r r    

Artemisia porteri S x   x  x 1          
Astragalus gilviflorus 
var. purpureus 

S      x    x  1     

Astragalus jejunus var. 
articulatus 

RI r r r r r r  r r r r r r    

Astragalus nelsonianus 
[Astragalus pectinatus 
var. platyphyllus] 

S x    1 x x    x      

Astragalus proimanthus RI r r r r r r  r r r r r r    
Astragalus racemosus 
var. treleasei 

S x  x x     1        

Boechera pusilla [Arabis 
pusilla] 

RI r r r r r r  r r r r r r    

Cirsium aridum S  x x x   x x  x    x   
Cirsium ownbeyi S  x      1  x       
Cleome multicaulis RI, W r r r r r r  r r r r r r    
Cryptantha subcapitata RI r r r r r r  r r r r r r    
Cymopterus evertii S     x x x          
Cymopterus williamsii S       x x         
Descurainia torulosa S x x x x    x  x       
Gaura neomexicana ssp. 
coloradensis 

S, W       x   1    x   

Ipomopsis aggregata 
var. weberi 

RI r r r r r r  r r r r r r    

 37



Species 

  M
od

el
 T

yp
e 

 E
le

v 

 R
el

ie
f 

 P
T

01
 

 P
T

04
 

 P
T

07
 

 P
T

10
 

 N
W

D
 

 R
T

01
 

 R
T

07
 

 T
A

01
 

 T
A

04
 

 T
A

07
 

 T
A

10
 

 T
X

07
 

 N
FD

 

 G
D

D
 

Lepidium integrifolium 
var. integrifolium 

RI r r r r r r  r r r r r r    

Lesquerella arenosa var. 
argillosa 

RI r r r r r r  r r r r r r    

Lesquerella fremontii S   x  x    x        
Lesquerella macrocarpa S x   x   x  1        
Lesquerella multiceps RI r r r r r r  r r r r r r    
Lesquerella prostrata RI r r r r r r  r r r r r r    
Penstemon absarokensis S  x x     x       x  
Penstemon acaulis var. 
acaulis 

RI r r r r r r  r r r r r r    

Penstemon caryi S  x    x x  x        
Penstemon gibbensii RI r r r r r r  r r r r r r    
Penstemon haydenii RI r r r r r r  r r r r r r    
Phlox pungens S  x x   x x  1 x       
Physaria condensata S x    x    x        
Physaria dornii RI r r r r r r  r r r r r r    
Physaria saximontana 
var. saximontana 

S  x x  x x    x       

Rorippa calycina S, W  x  1 x     x   x    
Shoshonea pulvinata S  x x              
Sisyrinchium pallidum S, W      x x x         
Sphaeromeria simplex S  x    x     x      
Spiranthes diluvialis RI, W r r r r r r  r r r r r r    
Thelesperma 
caespitosum 

RI r r r r r r  r r r r r r    

Thelesperma pubescens RI r r r r r r  r r r r r r    
Townsendia 
microcephala 

RI r r r r r r  r r r r r r    

Trifolium barnebyi RI r r r r r r  r r r r r r    
Yermo xanthocephalus RI r r r r r r  r r r r r r    
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Table 20.  Summary of categorical environmental variables used in classification tree, 
range/intersection, and wetland models for 44 listed Threatened, Endangered, and BLM 
Sensitive plant species in Wyoming.  Codes:  Model types are standard classification tree (S), 
range/intersection (RI), and wetland (W).  Bedgeol = bedrock geology, Surfgeol = surficial 
geology, Soil = Wyoming soil classification, and Landcov = Gap land cover.  "x" in these 
columns indicates the variable was used in development of a classification tree model.  "1" 
indicates the variable was chosen at the root node.   "r" indicates a variable used in 
range/intersection models.  
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Antennaria arcuata S, W x    
Aquilegia laramiensis S   1  
Artemisia biennis var. diffusa RI r r r r 
Artemisia porteri S x x x  
Astragalus gilviflorus var. purpureus S  x x  
Astragalus jejunus var. articulatus RI r r r r 
Astragalus nelsonianus 
[Astragalus pectinatus var. platyphyllus] 

S x  x x 

Astragalus proimanthus RI r r r r 
Astragalus racemosus var. treleasei S  x   
Boechera pusilla [Arabis pusilla] RI r r r r 
Cirsium aridum S x  1  
Cirsium ownbeyi S x    
Cleome multicaulis RI, W r r r r 
Cryptantha subcapitata RI r r r r 
Cymopterus evertii S 1   x 
Cymopterus williamsii S 1  x x 
Descurainia torulosa S 1   x 
Gaura neomexicana ssp. coloradensis S, W  x   
Ipomopsis aggregata var. weberi RI r r r r 
Lepidium integrifolium var. integrifolium RI r r r r 
Lesquerella arenosa var. argillosa RI r r r r 
Lesquerella fremontii S x   1 
Lesquerella macrocarpa S    x 
Lesquerella multiceps RI r r r r 
Lesquerella prostrata RI r r r r 
Penstemon absarokensis S 1 x x  
Penstemon acaulis var. acaulis RI r r r r 
Penstemon caryi S 1 x x  
Penstemon gibbensii RI r r r r 
Penstemon haydenii RI r r r r 
Phlox pungens S x  x  
Physaria condensata S   1  
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Physaria dornii RI r r r r 
Physaria saximontana var. saximontana S x x 1 x 
Rorippa calycina S, W x  x x 
Shoshonea pulvinata S 1   x 
Sisyrinchium pallidum S, W x  1 x 
Sphaeromeria simplex S x x 1 x 
Spiranthes diluvialis RI, W r r r r 
Thelesperma caespitosum RI r r r r 
Thelesperma pubescens RI r r r r 
Townsendia microcephala RI r r r r 
Trifolium barnebyi RI r r r r 
Yermo xanthocephalus RI r r r r 
 
 
 
     The final maps produced from our modeling are best viewed as hypotheses of the potential 
distribution of the target plants.  Like all hypotheses, these maps need to be tested rigorously in 
the field to identify methodological flaws, incorrect assumptions, and faulty input data so that 
future iterations of the models can be improved.  Field users, however, need to recognize the 
practical limitations of the models.  Spatial errors in the digital data layers of environmental 
attributes, as well as their qualitative coarseness, may result in mismatches between the predicted 
distribution of a plant species and correlated environmental features in the field, so care must be 
taken in trying to use the maps to identify specific locations on the ground.  In view of this, the 
maps are probably best used to identify general geographic areas occupied by the target species. 
Once these areas are located, the environmental attributes identified by the classification tree or 
range/intersection models and expert knowledge of the specific habitat characteristics of the 
species (especially at the microscale) can be used to recognize likely habitats on site. 
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Table 21.   Summary of environmental variables usedmost frequently  in modeling 44 
Threatened, Endangered, and BLM Sensitive plant species in Wyoming. 
 
Environmental 
Variable 

# of Models 
With Variable 
Selected First 
by Classif. Tree 

# of Models 
With Variable 
Selected Second 
or Later by 
Classif. Tree 

# of Models 
With Variable 
used for Range/ 
Intersection 
Method 

Total # of 
Models With 
Variable Used 

BEDGEOL 6 11 21 38 
SOIL 6 8 21 35 
RELIEF 0 12 21 33 
LANDCOV 1 10 21 32 
PT10 0 9 21 30 
TA01 1 8 21 30 
SURFGEOL 0 8 21 29 
PT01 0 8 21 29 
RT07 4 4 21 29 
ELEV 0 7 21 28 
PT04 1 5 21 27 
PT07 1 5 21 27 
RT01 1 5 21 27 
TA04 0 2 21 23 
TA07 1 0 21 22 
TA10 0 1 21 22 
NWD 1 9 0 10 
TX07 0 2 0 2 
NFD 0 1 0 1 
GDD 0 0 0 0 
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