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Chapter 1 

PREDICTING THE PAST: CORRELATION, EXPLANATION, 
AND THE USE OF ARCHAEOLOGICAL MODELS 

Lynne Sebastian and W. James Judge 

MODELS AND ARCHAEOLOGY 

One of the more interesting developments in the field of archaeology in the 
recent past is the emergence ofpredictive modeling as an integral component of the 
discipline. Within any developing and expanding field, one may expect some initial 
controversy that will, presumably, diminish as the techniques are tested, refined, 
and finally accepted. Weare still very much in the initial stages oflearning how to 
go about using predictive modeling in archaeology, and this book represents an 
effort by some of the leading experts in the field to present a comprehensive and 
detailed examination ofthis approach to understanding how people in the past used 
the landscape in which they lived. 

There are probably as many definitions of the term model as there are scientific 
disciplines; several will be suggested in subsequent chapters of this book. We would 
like to offer a definition presented by David Clarke, who noted that models are 
"hypotheses or sets of hypotheses which simplify complex observations whilst 
offering a largely accurate predictive framework structuring these observations" 
(1968:32). There are two key aspects of this definition. The first is that models are 
selective abstractions, which of necessity omit a great deal of the complexity of the 
real world. Those aspects of the real world selected for inclusion in a model are 
assumed to be significant with respect to the interests and problem orientation of 
the person constructing the model. This is an important concept, since it indicates 
that there is no such thing as a truly objective model, be it inductively or 
deductively generated. Thus all models reflect, to a considerable degree, subjectiv
ity on the part of the observer. 

The second key aspect has to do with the predictive capability ofmodels. Note 
that by this definition models have predictive content, and thus the term predictive 
modeling is somewhat redundant. We will employ this term here, however, since it 
has been widely accepted in archaeology. 
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This emphasis on the predictive aspects ofmodels brings us to a more detailed 
examination ofthe concept ofprediction itself, which the dictionary defines as "the 
ability to foretell on the basis ofobservation, experience, or scientific reason." One 
might even say that prediction is the essence of science because it allows us to 
formulate expectations about the future state of a system that are based on our 
knowledge of such systems or of similar ones (i.e., models). The point is that 
prediction is important, and that it is achieved scientifically through the generation 
of hypotheses that can be tested against the empirical record. Thus the method of 
prediction is essentially a deductive process, regardless of the form ofgeneration of 
the model itself. Although the degree offormality might vary considerably, nearly 
all archaeological research today is based on a fundamentally deductive methodology. 

Verification oHormal predictive statements (hypotheses) through empirical 
testing against the archaeological record frequently involves techniques of sam
pling. In one sense all archaeology involves sampling, since we are never confronted 
with the complete record of past human behavior. Realizing this, archaeologists 
distinguish between relative degrees ofsampling, as in "100 percent inventory" vs 
"sample survey." In this case, even though the results ofboth surveys are acknowl
edged to be samples, the latter term refers to a formally articulated, specific 
sampling strategy that guides the character of the inventory. 

We mention sampling at this point because in the past formal sampling has 
frequently been confused with, and at times even identified with, predictive 
modeling; in the eyes of some, the implementation of a sampling design actually 
constitutes predictive modeling. Unfortunately, this confusion of sampling and 
predictive modeling has led to erroneous interpretations of the capabilities of the 
latter. Some researchers have even assumed that simply by adopting formal sam
pling techniques they would be able to predict archaeological site loci and thus 
satisfy legal compliance requirements without having to undertake expensive, 100 
percent inventory surveys. 

We would emphasize that sampling and predictive modeling are not the same 
thing and that formal sampling is neither required by predictive modeling nor 
limited to that approach. Sampling is simply one method of verifying testable 
hypotheses (albeit a very important one). In the strict sense-i.e., as a technique of 
data acquisition-formal sampling is no more (or less) related to or important to the 
modeling process than is 100 percent inventory survey. 

One of the most unfortunate results of this confusion is that land-managing 
officials are at times led to believe that it is relatively easy to predict where all sites 
should be, and that by sampling a few ofthe predicted sites the archaeologists can 
do their jobs while saving themselves time and effort and saving the taxpayers a 
great deal ofmoney. Realizing the distinction between sampling and prediction is a 
valuable first step in understanding how very complex the process of predictive 
modeling really is. 

Both archaeologists and managers can and should be interested in refining 
attempts to model human behavior and in refining the sampling techniques used to 
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gather the data needed to verify such models. But neither models nor sampling 
should be viewed as a panacea destined to solve all the problems ofmanagement of 
archaeological resources and of compliance with existing legislation. This is a 
methodological fact of life that will be demonstrated repeatedly throughout this 
book. 

THE PROBLEM OF EXPLANATION 

Explanation in Archaeology 

In the process of maturation, perhaps all scientific disciplines pass from a 
basically descriptive stage to a stage in which true explanation is attempted-a 
process of development that is sometimes painful and often divisive. The archaeo
logical profession has been experiencing this transi tion for the past two decades, and 
the process has been both difficult and variably successful. 

Twenty years ago, archaeology was a discipline in which most of the activity 
was directed toward describing the data that we recover. Since that time archaeolo
gists have increasingly made conscious and consistent attempts to explain the 
changes in cultural process that were documented during the prior descriptive 
phase of archaeological research. It is obvious that such documentation must take 
place before explanation can be sought, but it is equally apparent that a discipline 
such as archaeology cannot remain at the descriptive level if it is to realize its full 
potential in contributing to scientific understanding. 

Thus archaeologists who are undertaking the inventory and excavation of 

archaeological resources today are not simply concerned with accurately describing 

the artifacts and other data they find; they are equally concerned with placing those 

data in the context of explanation. That is, once they have determined what the 

things they recover are (or, more accurately, were) and how those things changed 

through time, they become interested in determining why such changes took place, 

in the explanation ofsuch changes. In terms of the current jargon ofour profession, 

we have progressed from dealing strictly with the archaeological context ofthe data 

to exploring their systemic context and finding means of linking the two realms. 


As it has matured, archaeology has changed from a descriptive, documentary 

discipline to one that attempts to understand certain aspects of human behavior 

with reference to independent events and variables known to have occurred in the 

past. It is this attempt to understand human behavior that has given archaeology a 

new direction-a new sense of purpose, perhaps. Some would even say that this 

effectively legitimizes archaeology as a profession that is dependent in large part on 

public funding, but such a statement would evoke considerable argument among 

archaeologists themselves. In any case, most archaeologists would agree that we 

have progressed as a discipline, and that the new sense of purpose arising from 
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explanatory research emphases should be of concern to both archaeologists and land 
managers. 

It is in the context of this transition from description to explanation that an 
important dichotomy apparent in this book arises. Those who read large sections of 
this book rather than using specific parts as a reference volume will soon notice that 
some authors focus on models that are deductively derived and attempt to predict 
how particular patterns of human land use will be reflected in the archaeological 
record while others are working with inductively derived models that identify and 
quantify relationships between archaeological site locations and environmental 
variables. The latter models, which we term correlative, are by far the more common 
in current modeling practice. It is our contention (and one that is shared by some 
but not all ofthe volume authors) that this emphasis on descriptive models will and 
should eventually be replaced by an emphasis on models that are derived from our 
understanding of human behavior and cultural systems, models with explanatory 
content. 

The Value of Correlative Models 

This call for explanation and explanatory models should not be taken as 
disparaging research that focuses on empirical analysis. Description, classification, 
and inductive generalizations are basic building blocks in any science. It should be 
clear from the sheer weight ofinformation on correlative models in this volume and 
from the material presented in the management-oriented chapter (Chapter II) that 
correlative models are informative and extremely valuable in many contexts. 

In Chapter II Kincaid suggests that for some applications, simply knowing 
where sites are likely to be located relative to various environmental variables is 
sufficient. For large-scale planning purposes, for example, this level ofknowledge 
about the distribution ofarchaeological resources may indeed be all that is needed 
for immediate purposes. But as suggested below, it may not be a wise use of 
resources to plan a research project solely to produce this level of information. 

Several of the concepts introduced by Kvamme in the model applications 
chapter (Chapter 8)-those ofactivity space and use intensity in particular-make clear 
a second important contribution ofcorrelative models. Ifa research project requires 
information about the general nature ofhuman use ofa landscape, correlative models 
provide invaluable data. It is both intuitively obvious and clear from the ethno
graphic record, for example, that human groups employing different subsistence 
strategies make use of their environments in very different ways. Their mobility 
patterns vary enormously, and the particular resources and proportions of those 
resources used are equally variable. In the archaeological record these differences 
will be reflected as differences in the scale ofredundancy in distributions ofcultural 
remains, that is, how big an area must be inspected before patterns in the archaeo
logical record begin to repeat. Likewise, the nature and strength of correlations 
between cultural remains and features ofthe environment will be strongly affected 
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by differences in prehistoric resource selection. If we wish to monitor variability 
among human systems on the large scale, correlation models can provide a quantifi
able and easily displayed measure of differences and similarities. 

The Limitations of Correlative Models 

Despite the utility ofcorrelative models for planning purposes and for certain 
research applications, their general usefulness is limited for several reasons. The 
first is that no matter how carefully designed, methodologically sophisticated, and 
thoroughly tested a correlative model is, the end product is simply a series of 
statements about correlations between the occurrence of cultural remains and 
particular parameters or conjunctions of parameters of the modern environment. 
Correlation does not tell us anything about causality. We do not know, and cannot 
determine from the model, why this relationship between cultural materials and 
environmental factors exists. Worse yet, from an archaeological perspective, we do 
not know and cannot determine anything about the human system that created and 
deposited these cultural materials other than some very general notions about the 
distribution of their activities on the landscape. 

The second limitation grows out of the first. Because correlative models are 
designed to tell us where sites are located (relative to various environmental varia
bles) and not why they are located as they are with respect to those variables, even 
when they work exceedingly well, we do not know why they work. To the manager 
who only needs to know where sites are this may not immediately appear to be a 
major limitation. But ifwe do not know why a model works in one particular study 
area, we will not know whether we should expect it to work in the next valley or the 
next county or in a similar but distant environment. Thus correlative models are 
not truly predictive, but consist ofprojections ofan observed pattern from a sample 
to the whole universe. When the focus ofattention shifts to a new data universe, the 
process ofprojection must begin anew. As will be discussed in the next section, this 
lack ofgeneralizability in correlative models should make this limitation ofconcern 
to managers as well as to the professional archaeologist. 

The third limitation arises because correlative models require measurable, 

mappable data. For this reason, they depend heavily on environmental factors to 

provide their independent variables, and because of this they are most successful 

when applied to societies whose movements, group size, and activities are highly 

regulated by aspects of their environment-generally hunters and gatherers. With 

a shift from food collection to food production, human societies enter into a different 

kind of relationship with their environment (characterized by Kohler in Chapter 4 

as one ofincreasing intensification). This does not mean that settlement locations of 

formative level societies cannot be modeled or that they are unresponsive to 

environmental factors. But the relationship with environmental factors is probably 

more indirect and is certainly more complex and interactive. Additionally, with 

increasing sedentism, social and political factors come to have an increasing impact 
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on the distribution of activities and thus of sites, lessening the correlations with 
strictly environmental variables. 

Finally, because human groups with different subsistence orientations and 
different levels of technology use the landscape in very different ways, correlation 
models based on environmental variables are difficult to build for areas that have 
been occupied over a long period oftime. In the American Southwest, for example, 
where the same area may have been used by Paleoindian, Archaic, Puebloan, and 
A thabaskan groups, a single correlation model of the relationships between cultural 
resources and environmental variables would be ofvery limited value. In such cases, 
an entire series ofseparately derived and tested models might be necessary, one for 
each major adaptation type. 

The Value ofExplanatory Models 

The discussion above of the transition to explanation in modern American 
archaeology makes clear the importance ofexplanatory models to the archaeological 
profession and suggests that explanatory models are central to whatever value 
archaeology has for society as a whole. As anthropologists, we are interested in 
human behavior, in cultural variability and similarity, in cultural stability and 
change, in the adaptation of humans as cultural beings to their natural and social 
environments. As social scientists, we have an obligation to add to the store of 
human knowledge about humanity, and as archaeologists we have a unique oppor
tunity to contribute knowledge about the long-term history of humankind, about 
adaptational successes and failures, and about the evolution of the complex social, 
political, and economic systems that order and dominate our lives. 

If the value ofexplanatory models to archaeologists is clear, the value of these 
models to landholding agencies and to individuals involved in the field ofcultural 
resource management is far less obvious. Because correlative models are relatively 
straightforward to develop and because simple environmental variables are rela
tively easy to measure, these models are viewed as cost-effective and objective. And 
in the short run they often provide the kinds of information needed. This has 
sometimes led to a perception on the part ofmanagers that explanatory models are 
an unnecessary luxury. There are at least two reasons, however, why such models 
may, in the long run, prove to be critical to the very people who now question their 
utility or at least their cost-effectiveness. 

The first reason has to do with the lack of generalizability for correlative 
models that was discussed above. Ifwe do not know why a model works in one study 
area, we have no way ofknowing whether it will work in a new study area; however 
much we may believe or expect that it will work, we cannot know. In order for a 
cultural resource manager to use information derived from models, even for the 
most general planning purposes, he or she must know that the model works within 
specified levels ofconfidence and precision. With correlative models, therefore, the 
process of model development, testing, refinement, and retesting can never be 
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short-cut: every new situation will require the development and verification of a 
new model. 

With explanatory models, on the other hand, eventually we can hope to be 
able to offer general models that can be demonstrated to be applicable in any 
situation characterized by a specified set ofcultural system and ecosystem variables. 
The key word here is, of course, "eventually"; as noted in the next section, 
explanatory models are extremely complex and difficult to build, and it may be a 
long while before we can be consistently successful in doing so. But that does not 
alter the potential value to resource managers ofsuch powerful and truly generaliz
able models. 

The second reason why explanatory models are potentially ofgreat value in a 
management context has to do with the basic foundation of cultural resource 
management as it was envisioned in the National Historic Preservation Act (NHPA). 
One ofthe more colorful senior members ofthe American archaeological community 
admonishes his students not to lose sight of their major research objectives and 
become bogged down in trivia by reminding them that "It's hard to remember that 
you started out to drain the swamp when you're up to your [anatomical reference 
deleted] in alligators." Cultural resource management (CRM), especially as it is 
practiced in large land-managing agencies, tends to have the same problem. 
Sometimes we become so bogged down in the minutia of finding sites and protect
ing sites and mitigating impacts to sites that we lose track of the reason why these 
things called "sites" have any importance, any claim to protection under the law. 

A great deal of time and energy is devoted to compliance with Section 106 of 
the NHPA, the section that mandates consideration of the impacts of federal 
undertakings on cultural resources and avoidance or mitigation of those impacts 
where possible. Sometimes this attention to Section 106 causes us to lose track ofthe 
requirements ofSection 110, which charges federal agencies with the larger task of 
locating, inventorying, and nominating to the National Register ofHistoric Places 
the eligible properties under their control and instructs them to take care that these 
properties are not "inadvertently transferred, sold, demolished, substantially 
altered, or allowed to deteriorate significantly." In management terms, so much 
energy is going into the support program that the primary program gets slighted. 

Probably the most commonly cited criterion for claiming National Register 
eligibility for a prehistoric site is that it has "yielded, or may be likely to yield, 
information important in prehistory or history" (36 CFR 60.4). It is their information 
content rather than any intrinsic value that gives archaeological sites significance and 
thus a legal right to protection, and it is because ofthis information content that the 
landholding agencies have been given a mandate to manage these resources. 

It is the long-range goals ofSection 110 compliance that can most benefit from 
the kind of understanding of the archaeological record that could be gained from 
explanatory models. For most archaeological sites discovered during the course of 
CRM-funded surveys, the survey recording and analysis will constitute the only 
scientific attention ever accorded to those sites. We would suggest, therefore, that 
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by calling for archaeological models that emphasize explanation rather than correla
tion, managers would maximize their return on realizing the information potential 
of the sites under their jurisdiction and find themselves in a better position to fulfill 
their responsibilities under Section ItO. While correlation models might eventually 
become powerful and sophisticated enough to meet some of the requirements of 
Section 106 compliance, explanatory models could, in the long run, come much 
closer to meeting the need of compliance with Section ItO. 

The Limitations of Explanatory Models 

The limitations ofexplanatory models are discussed by Altschul in Chapter 3, 
but his evaluation of the problems can be summed up in one short sentence: 
explanatory models are extremely difficult to create and validate. The length of the 
method and theory chapter (Chapter 4) and the complexity of the arguments 
presented therein by Ebert and Kohler make clear the difficulty ofidentifying the 
linkages and warranting the arguments in a model that is based in anthropological 
theory. The length ofthe model applications chapter (Chapter 8) and the complex
ity of the techniques discussed by Kvamme make it clear that currently correlative 
models are far ahead of explanatory models in methodological sophistication and 
mathematical expression. 

The other serious limitation ofexplanatory models is one that is common to all 
attempts at explanation in archaeology. It has to do with assigning meaning to what 
we find in the archaeological record, In building an explanatory model we use 
information derived from the systemic context-often from ethnographic or ethno
archaeological research, but sometimes from geography, ecology, or other fields
to generate hypotheses about the archaeological context. If we build these hypo
theses into models and test them against the archaeological record and find that the 
results tend to confirm the model, then we assign meaning to the archaeological 
remains based on our interpretations of the systemic context. 

The danger here is that our understanding of the systemic context will be 
incorrect. If we say that finding x in the archaeological record will mean that J 
happened in the systemic context, and if our ideas about J are wrong, then no 
matter what we find in the archaeological record our interpretations will be flawed. 
For example, until the late 1960s most archaeologists believed that hunters and 
gatherers lead an extremely difficult and precarious existence, teetering constantly 
on the brink of starvation and devoting every waking hour to the quest for food. 
Given such a perspective it seemed obvious that any hunter-gatherer group that 
had the opportunity to do so would immediately adopt agriculture, which was 
viewed as an easier and more secure way oflife. Subsequent research demonstrated 
that hunting and gathering is, in fact, a rather stable and secure means ofmaking a 
living and that agriculture is, in fact, both a more laborious and (in many environ
ments) a less secure subsistence strategy. Most of the early archaeological research 
on the origins of agriculture was based on these incorrect notions about the 
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systemic context ofhunting and gathering, and the results were, therefore, wrong 
or at least inadequate. 

Although this danger of being fundamentally wrong is certainly an important 
limitation of explanatory models, it is also in a sense an indication of progress. As 
long as archaeologists concentrated solely on description and documentation it was 
nearly impossible for them to be wrong in any but trivial matters. But when they 
took the major step ofattempting true explanation, they had to accept the risk of 
being profoundly wrong along with the rewards of gaining knowledge. The same 
relationship exists between correlative and explanatory models. Although there 
may be arguments about how to test for correlation or how to measure the strength 
of a correlation or assign confidence limits to it, once those are resolved the only 
question that remains is whether a correlation exists or not. With explanatory 
models the risks of being very wrong are much higher, but the potential gains in 
knowledge are correspondingly increased. 

In the final analysis, we would suggest, a willingness to accept the risk ofbeing 
wrong is one of the requirements of science. Scientific explanation consists of 
theories, statements about the way that we believe the world operates. An individ
ual scientist offers an explanation that he or she believes accounts for as much 
variability in the phenomenon under study as possible. Subsequently this scientist 
and others test this explanation against data concerning the phenomenon, and the 
explanation is refined and revised to cover yet more of the variability. Empirical 
generalizations concerning the data can serve as one source ofexplanatory hypoth
eses, but those hypotheses cannot subsequently be tested against the same data. 
And empirical generalizations based on the archaeological record can never gener
ate explanations ofhuman behavior. We would argue that while correlative models 
are valuable in several contexts and explanatory models have several serious 
limitations, the ultimate goal of archaeological modeling, whether carried out for 
research purposes or to meet management needs, should be explanation. 

HISTORY OF THE BLM PREDICTIVE MODELING PROJECT 

In May 1983 a group of Bureau of Land Management (BLM) state archaeolo
gists and Forest Service regional archaeologists from the Rocky Mountain states 
were meeting in Salt Lake City as part of a multistate task force designing 
procedures to deal with oil and gas development on public lands. During the course 
of these meetings, a number ofinformal discussions took place about the potential 
and problems ofpredictive modeling. It soon became clear that this was a subject of 
both great interest and great concern to the task force members, and a decision was 
made to begin a group project to study the ramifications and requirements of 
predictive modeling and to coordinate modeling efforts throughout the Mountain 
West. 

As it happened, the Colorado State Office and Service Center of the BLM had 
recently initiated a predictive modeling study project, and with the support and 
cooperation of many people in the management hierarchy of the BLM, the newly 
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organized group ofstate and regional archaeologists was able to secure permission in 
September of 1983 to expand the scope of this already approved project to encom
pass an in -depth, state-of-the-art study of predictive modeling in archaeology. All 
those who had been at the task force meetings recognized that such a study was 
necessary if the problems encountered as a result of previous uses of predictive 
modeling in resource management contexts were to be avoided. This volume is the 
first product of the BLM Cultural Resource Predictive Modeling Project, but it is 
not the only product being planned. A training program and a technical assistance 
service for field personnel are planned, along with a set of demonstration models, 
which will be developed in future phases of this project. 

In their proposal to expand the predictive modeling study to make it as 
comprehensive as possible, the Project Advisory Team (PAT; that is, the BLM and 
Forest Service archaeologists) pointed out that several predictive modeling 
attempts that had recently been carried out in management contexts had been 
highly controversial and oflimited utility. They went on to add that since knowl
edge about this topic was limited among cultural resource professionals-both 
within the government and outside it-the lack of standards, guidelines, and 
procedures was hindering effective and efficient use of modeling for resource 
management. 

The specific failings ofpast modeling efforts that they noted included failure to 
address management needs, lack ofspecificity, poor use ofexisting data, ineffective 
or biased sampling designs, inappropriate statistical analysis techniques, failure to 
collect inventory data suitable for the development ofa predictive model, develop
ment of models using nonreplicable techniques, lack of comparability of and 
inappropriate use of environmental variables, lack of phasing to allow for model 
testing and refinement, and failure to use such technical aids as remote sensing and 
geographic information systems to streamline model development. 

The stated goals of the expanded predictive modeling project were 

1. to evaluate trends in the development of predictive modeling critically, 
using knowledge gained through past research; 

2. to explore the feasibility and practicality of predictive modeling for 
meeting management objectives; 

3. to analyze and define the components of the model-building process, 
particularly with respect to cultural resource management; 

4. to develop a set of standards for the archaeological and environmental 
data to be used in modeling efforts; and 

5. to provide BLM field offices with information on data collection for 
modeling purposes and statistical manipulations of those data. 

The most important step in meeting these goals would be to contract with a 
team ofoutside consultants-archaeologists with national reputations in the field of 
predictive modeling-to produce a comprehensive, publishable report on this 
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topic. In addition, this project would have considerable input from BLM personnel, 
from a volunteer advisory group consisting of archaeologists for other federal 
agencies and individuals from State Historic Preservation Offices and the National 
Advisory Council on Historic Preservation, and from the professional archaeological 
community, including private contractors, representatives ofprofessional organiza
tions, and personnel from universities and museums. These individuals are named 
in the Acknowledgments at the front of this book. 

To ensure that the profession at large would have the opportunity for a high 
level of input, several steps were taken. Once the expansion of the predictive 
modeling project had been approved, the PAT met at the Nevada State Office in 
Reno to determine how to organize and implement the project. As part of this 
meeting, the PAT met with representatives of the Society for American Archaeol
ogy (SAA) in an effort to secure society input and support for this project from its 
inception. The project team also corresponded with the society's president and 
executive committee, outlining the goals ofthe project and requesting suggestions 
for potential contractors and comments on the initial chapter outlines for the 
proposed book. In addition, members ofthe team met with regional representatives 
of the SAA to discuss the project and secure input, and the Procurement and 
Personnel Committee of the PAT held an open meeting for potential contractors 
and other interested persons at the 1984 annual meetings of the SAA in Portland, 
Oregon. 

From the beginning of the project the BLM's Washington office provided 
normal intra-agency coordination among Washington, D.C., agencies. The PAT 
provided project briefings in Washington for top-level management and for senior
level agency archaeological program heads. Useful project direction was offered by 
these individuals, and most agreed to organize and provide a formal review of the 
initial draft document by their respective agencies. 

Preliminary chapter outlines for the proposed predictive modeling book were 
prepared at the November 1983 meeting in Reno. Once these had been reviewed by 
the various advisory groups, final outlines were prepared, and requests for proposals 
were sent to potential contractors suggested by the various advisory groups and by 
members of the PAT. Those who wished to bid on one or more chapters responded 
with proposals that included detailed revised outlines for the chapters of interest. 
Successful bidders were selected on the basis ofseparate cost and technical propos
als, with technical merit being more important than price. Since quality perform
ance was considered vital to a successful project, the government reserved the right 
to award a contract on other than the lowest-price basis ifa higher-priced proposal 
was rated higher in quality. The revised outlines submitted by the successful 
bidders were once again circulated to the advisory groups for comment, and then in 
August ofl984 the entire book-production team-authors, editors, and PAT -met 
in Denver for a prework conference. 
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THE PRODUCTION OF THIS VOLUME 

At the prework meeting the authors and editors were given a cram course on 
the history and goals ofthis project, and then we attempted, in the course ofseveral 
strenuous but exhilarating days, to give structure and coherence to this exercise in 
authorship by committee. We dealt ruthlessly with redundancies, struggled with 
what proved to be an insurmountable dichotomy among the authors in their view of 
the very nature of predictive modeling, and shifted the content and order of the 
chapters so many times that everyone (except the technical editor, who was 
keeping score) lost track of the "new" order by the third day. 

One of the most difficult tasks of those days in Denver was to get a group of 
largely academic- and contract-oriented archaeologists to think in terms of man
agement issues. Indeed, the very phrase "management concerns" produced mock 
groans by the end ofthe first day. We did gradually become more aware of the whole 
gamut of problems implied in the concept of management concerns, but it also 
became apparent to everyone that in writing and editing this book we could only do 
what we knew best-produce a book about predictive modeling; the real grappling 
with management concerns would have to be done by those who understood them 
best - the federal archaeologists of the PAT. A t that point Dan Martin and Chris 
Kincaid, charter members of the PAT, agreed reluctantly to write the management 
issues chapter of the book with heavy input from the other team members; 
subsequently Burt Williams bowed to similar pressure and "volunteered" to be a 
coauthor on this chapter. By the end of the Denver meeting we had developed a 
final outline for the book and for each of the chapters, and the authors' difficulties 
began. 

Between August of 1984 and January of 1985 most of the material in Chapters 
2-10 of this book was written-an impressive feat given that all of the authors had 
simultaneous major commitments to teaching or to other contracts and writing 
responsibilities. In February of 1985, after we had a chance to at least skim most of 
the manuscripts, the editors and the PAT met to discuss the "product" and to 
make various editorial decisions. It was again clear that the main body of this book 
was not as management-oriented as the team members had hoped, but it was also 
clear that the manuscripts before us were the raw material ofan invaluable resource 
volume-containing comprehensive, up-to-date treatments of the theoretical, 
methodological, and technical issues facing those who attempt to do archaeological 
predictive modeling. And again, this meant that the burden ofmeeting "manage
ment concerns" was going to lie wholly on the PAT members who were writing the 
management issues chapter. After this meeting, the editors' difficulties began. 

In a slow, collaborative process between editors and authors (and taking the 
written comments of the PAT closely into account) we gradually shaped the 
individual manuscripts into the chapters of a generally unified book. As noted 
below, we made no effort to impose an artificial consistency ofviewpoint on these 
authors. Archaeological predictive modeling is a field in which no consensus has 
emerged: that is one of the main points that is demonstrated in this book. When 
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the authors and editors had reached agreement on draft chapters, the book was sent 
out for a detailed and extensive peer review in October of 1985. 

The reviewing agencies and organizations are also listed in theAcknow/edgmentr. 
The review comments were compiled by the PAT and the volume editors, who 
carefully considered all comments and then summarized them by areas ofconcern. 
Minor questions or comments were handled by the editors; more substantial 
comments were forwarded to the authors, who responded in whatever way seemed 
appropriate and incorporated changes based on points raised by the reviewers into 
their various chapters. The results of the review are discussed in Chapter 12. 

It was at this point that we hit the only major snag in the whole process of 
producing this volume. The Washington office of the BLM was not satisfied with 
the management concerns chapter and did not release it for review along with the 
rest of the book. Through a very long process ofdiscussions between the PAT and 
the Washington office, it eventually became clear that Chapter II would have to be 
completely rewritten. Chris Kincaid once again accepted this task, and in 1988 she 
produced a draft of the chapter as it appears in this book. Chapter II and Chapter 
12, the summary by Judge and Martin, were sent out for comment to a smaller 
corpus of reviewers selected from the large number of people who reviewed 
Chapters 1-10. 

We have included this detailed discussion ofthe history ofthe BLM predictive 
modeling project and of this book because we, as editors, feel that this volume 
represents the culmination ofa remarkable cooperative effort-something that we 
can say because the credit for those noteworthy aspects of this project lies with 
others. The determination and far-sightedness of the PAT members who conceived 
the notion ofa large-scale, comprehensive, and high-quality effort and then guided, 
coaxed, and coerced the project into becoming a reality were certainly remarkable 
and commendable. Special merit accrues to Dan Martin and Chris Kincaid, who 
kept the project going during the long Chapter II delay and who wrote and rewrote 
the new Chapters 11 and 12 to solve the problems. 

Finally, this book represents a remarkable degree ofinvolvement and coopera
tion on the part of many people from all sectors of the archaeological profession. 
This has certainly contributed substantially to the quality of the book, but equally 
important, this level ofcooperation seems to us to indicate that the often decried 
isolationism of academic, federal, and contract archaeologists may, like reports of 
Mark Twain's demise, have been greatly exaggerated. 

THE STRUCTURE OF THIS BOOK 

General Orientation 

It will probably be helpful to the general reader to know four things about the 

overall orientation ofthis book at the outset. The first ofthese is that this is a book 
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about modeling in the context of prehistoric archaeology. While many of the 
principles suggested and techniques used would undoubtedly be ofuse to archaeol
ogists studying classical and historical societies, particular problems and concerns of 
those scholars and techniques that would be especially helpful to them are touched 
on only in passing in this book. This orientation is a reflection of the background 
and experience of the authors and editors, and it is also a result ofmost ofthe extant 
predictive modeling studies having been concerned with prehistoric cultural 
remams. 

The second thing, while we are on the subject of the intended audience for this 
volume, is that we have tried to maintain a balance between materials that would be 
of most interest to landholding agency managers and federal and state archaeolo
gists and material that would be of interest to the archaeological profession in 
general. Certain chapters, such as the method and theory discussion by Ebert and 
Kohler in Chapter 4, will certainly be ofgreatest interest to professional archaeolo
gists, while other chapters, such as the management perspectives chapter by 
Kincaid (Chapter 11) will be of greatest interest to managers. Still other chapters, 
such as the statistics discussion by Altschul and Rose (Chapter 5), will probably be 
viewed by readers of both persuasions as a resource document to be consulted as 
needed. The result of this effort to balance the book among somewhat disparate 
audiences is that nearly all readers will find some parts of the book more interesting 
than others. We have attempted, through our discussion below of the subjects 
covered in each chapter, through frequent cross-referencing, and through the 
production of a relatively detailed index, to enable the reader to identify quickly 
those subjects and discussions that are likely to be of interest to him or her. 

The third thing to be noted is that even though some of the volume authors 
are strongly committed to the necessity for constructing explanatory models with 
major deductively derived components (see especially Ebert and Kohler in Chapter 
4), by far the largest part of the book consists of information on correlative models 
derived largely or wholly through inductive means. These conflicting conceptions 
of the proper nature and direction of predictive modeling in archaeology are clear 
throughout the book; there was some discussion about the advisability ofattempt
ing to impose an editorial "synthesis" on the two camps of authors to create a 
theoretically and methodologically unified book, but we felt that this was artificial 
and premature. The division that is apparent in this book between those who are 
building sophisticated and fascinating correlative models and those who insist that 
archaeology is explanation or it is nothing is a reflection of the state of predictive 
modeling in American archaeology today. We felt that if this book was to be a fair 
summary of" the state of the art," the unresolved theoretical conflicts as well as the 
exciting technological and methodological advances should be explored. We have 
offered our own ideas on explanation and correlation in archaeological models in a 
previous section of this chapter, but we tried not to impose those ideas on the 
authors during the editing process. 

The final point that we should raise about the general orientation of this book 
is that it is heavily biased toward models for hunter-gatherer societies. It was not 
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planned that way, and we tried to decrease this bias after the first draft of the book 
was finished. But we found that it was not that simple. In large part this emphasis on 
hunter-gatherers is a reflection of the emphasis on correlative models. As was noted 
in the discussion of the limitations of correlative models above, these models are 
most successful when applied to societies with a food-collecting subsistence base 
and relatively simple and fluid forms of social and demographic organization. In 
addition, this emphasis on hunter-gatherers seems to be a result of the interests of 
many of the researchers carrying out archaeological modeling projects today, so in 
this way the book is again a reflection ofcurrent developments in the field. We see 
this lack of modeling interest in middle-level or formative societies as well as 
historical societies as unfortunate, however, and would like to think that an 
increased interest in this topic will be one ofthe trends in future modeling projects. 

A Preview of Coming Attractions 

The main body of this book contains information that can roughly be divided 
into four topics. Chapters 2 through 4 present general discussions related to the 
modeling process. In Chapter 2 Kohler first reviews the intellectual history ofwhat 
we today call predictive modeling, tracing the changing views of the relationship 
between human societies and their environment through time. He then discusses 
the contributions of the culture ecologists and especially that ofJulian Steward to 
our thinking abou t this relationship. Finally, he describes the growing interest in 
predictive modeling in recent years and suggests a set of general criteria for 
evaluating models-generalizability, simplicity, internal consistency, precision, 
and falsifiability-using a group of example modeling projects to illustrate these 
concepts. 

In Chapter 3 Altschul discusses models in general and the process ofmodeling. 
He suggests a typology of predictive models based on the spatial referent of the 
model and provides archaeological examples of the various types. He also discusses 
the methodological pitfalls of the various types of models and their strengths and 
weaknesses. Finally, he provides an overview ofthe model-building process, touch
ing on data collection, synthesis, and evaluation; selection of independent and 
dependent variables; and model testing and refinement. All of these topics are 
addressed in detail in Chapters 5 through 8. 

Chapter 4, by Ebert and Kohler, deals not with modeling as such, but with the 

theoretical and methodological considerations that must underlie all modeling 

efforts if the resultant models are to be faithful replications of human systems. 

Although the material presented is sometimes difficult, the concepts under discus

sion are, in the long run, just as critical to the success of modeling efforts as are 

questions of data collection or statistical manipulation. The authors discuss the 

organization ofhuman systems and the implication ofvarious organizational princi

ples for the nature of the archaeological record produced. They also consider the 

relationship between human systems and the ecological systems ofwhich they are a 
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part. Finally, they discuss the archaeological record itself-the way it is formed and 
the processes that affect it after the cultural materials are deposited-and offer 
suggestions about the implications ofthese formation and transformation processes 
for archaeology in general and for predictive modeling in particular. 

Chapters 5 through 8 cover the details of the modeling process presented in 
overview in Chapter 3. In Chapter 5 Altschul and Rose discuss statistical approaches 
to modeling, particularly the theoretical and methodological considerations that 
must be taken into account in the course of building quantitative models. This 
chapter is not a cookbook ofstatistical techniques, but rather presents information 
on the general types ofquantitative models. They discuss techniques ofprediction 
and classification, emphasizing the strengths, limitations, and underlying assump
tions ofeach, and describe various procedures for verifying the resultant models and 
generalizing from them. 

Chapter 6, by Altschul and Nagle, covers the strategies and techniques 
involved in collecting new data for use in model development. The importailt and 
complex topic of sampling and the attendant problems of unit size and shape, 
sample size and means of selection, and techniques of parameter estimation are 
covered in detail. The authors also present a valuable discussion of the particular 
problems that arise when data must be collected within the constraints ofcultural 
resource management surveys, where the survey universe and often the survey 
intensity are prescribed on the basis ofconsiderations that have nothing to do with 
modeling requirements or research needs. Finally, they discuss various considera
tions of data recording, especially those imposed by "no collection" surveys. 

In Chapter 7 Kvamme discusses the use of already collected data for model 
development, a topic ofconsiderable importance given the quantity ofexisting data 
and the cost of data collection. As the author points out, the major problem with 
using existing data is that they very often are biased, and usually the type or types 
of biases present in the data base are unknown. He discusses the most common 
types ofbias and suggests the effects that such biases will have on models developed 
using these data. He then offers a series ofprocedures for reducing deficiencies and 
minimizing the effects of biases. Finally, he describes ways of evaluating models 
built with existing data and means of determining what additional data must be 
collected in order to create a satisfactory model. 

In Chapter 8 Kvamme goes on to discuss the actual steps in model building, 
beginning with the selection of variables and describing in detail various quantita
tive techniques for pattern recognition and assessment. He then considers the 
difficult problem of assessing model performance, discussing various means for 
measuring accuracy rates and assigning confidence limits to model results and 
providing a comparative analysis of several kinds of quantitative models. 

Chapters 9 and 10 present information on types of technical aids that are 
available to assist researchers in the development ofpredictive models. In Chapter 9 
Ebert summarizes the field of remote sensing, describing the devices used, the 
kinds ofdata that can be derived, and the types ofanalytical procedures commonly 
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applied to them. He then discusses the general potential of remote sensor data for 
predictive modeling applications and describes and evaluates several archaeological 
modeling projects that have involved the use of such data. 

In Chapter 10 Kvamme and Kohler discuss a very exciting and relatively new 
technological aid, the Geographic Information System (GIS). A GIS comprises a set 
of computer programs, the hardware on which the programs run, and a spatially 
organized data base. In a GIS, data are derived from maps and similar sources of 
information on spatial relationships, and these data are stored not sequentially, as 
they are in most data base management applications, but in a form that retains the 
organizational information of the original data as well as the actual values of the 
variables. The applications of GIS discussed by Kvamme and Kohler make it clear 
that the potential of these systems for aiding in the predictive modeling process is 
enormous. 

Finally, Chapter 11 is concerned with the federal management perspective on 
archaeological predictive modeling. The chapter is organized around a series of 
commonly asked questions, e.g., "What kinds ofmodels are therd When do we use 
which type?" Kincaid summarizes relevant conclusions reached by the various 
authors and describes the potential usefulness of models for such central tasks of 
CRM as inventory, evaluation, resource protection, and planning. 

In Chapter 12Judge and Martin offer an appraisal both ofthe relative success or 
failure of the project in meeting the goals set for it originally and of the massive 
review process to which the draft manuscript was subjected. They then suggest 
several major issues raised in the course of this volume that they feel should be 
central questions in future modeling efforts. 

The final section of this volume is an appendix compiled by Thoms, which 
presents an annotated review and assessment of a number of important and 
representative archaeological predictive modeling projects that have been carried 
out in recent years. The purpose of this appendix is to provide additional informa
tion on the kinds of projects that have been done, on the types of data that have 
been generated, and on the successes and pitfalls of such projects in the past. 

We hope that this book will become a major reference volume for the archaeo
logical profession as a whole as well as filling its original role in providing compre
hensive, up-to-date information on topics related to predictive modeling for federal 
archaeologists and land-use managers. We feel that the blend ofinformation offered 
here on modeling concepts, mathematical and statistical techniques, technical aids 
(such as remote sensing and GIS), and concerns about the relationship between 
modeling and archaeological method and theory will go a long way toward meeting 
the needs of researchers who are interested in this form of data analysis and 
interpretation and who wish to construct informed, sophisticated models. 
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Chapter 2 


PREDICTIVE LOCATIONAL MODELING: 
HISTORY AND CURRENT PRACTICE 

Timothy A. Kohler 

In a volume primarily devoted to predicting locations ofarchaeological mate
rials on the basis of factors in the natural environment, it seems important to spend a 
little time examining the anthropological underpinnings for such endeavors. In the 
first part ofthis chapter, relevant portions ofthe history ofanthropological thought 
up to the 1940s are reviewed briefly and the contributions of Julian Steward are 
discussed in greater detail. Steward's work is emphasized in this historical section 
because, I will argue, most proponents of predictive locational modeling adopt
though not always consciously-both a cultural ecological position on the nature of 
culture and the cultural ecological causal approach to understanding. 

In the second major division ofthis chapter the development ofarchaeological 
settlement pattern studies is discussed as it relates to these developments in theory; 
many settlement pattern studies differ from predictive locational models only in 
their lack ofexplicit extrapolation to a spatial population. This specialized discus
sion does not attempt to summarize the entire history ofsettlement pattern studies; 
see Parsons (1972) or Ammerman (1981) for a more comprehensive review. 

Finally, the potential uses ofpredictive locational models from both manage
ment and research perspectives are set forth, followed by a few examples from the 
literature. These examples are meant to illustrate the diversity of approaches 
currently in use and some of the most obvious issues that these approaches raise. 
The reader interested in additional examples ofrecent locational models is referred 
to Kohler and Parker (1986) and to the appendix of this volume. 

An important premise of this chapter is that predictive modeling as it is 
presently practiced is fundamentally about environmental determinism. That is 
why, in the next section, we briefly recapitulate the increasingly sophisticated 
forms this paradigm has taken. Why are the social, political, and even cognitive/ 
religious factors that virtually all archaeologists recognize as factors affecting site 
location and function usually ignored in predictive modeling? 

One obvious reason is that most models are constructed inferentially, starting 
from a sample of archaeological sites in a region and generalizing to an unknown 
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population ofsites in that same region. This is made possible by resorting to maps 
displaying environmental categories across the total region with which site loca
tions have been empirically correlated in the sample. At the same time, a total 
mapping ofsites (the remains ofthe social and political network) is not available, or 
a predictive model would not be necessary. 

Altschul is clearly correct when he says, in the next chapter of this volume, 
that "magnet sites" may significantly affect settlement density in their neighbor
hoods, presumably for reasons that go far beyond factors of the physical and biotic 
environments. In his example, the density ofsettlements around major Hohokam 
sites in the Santa Cruz River Valley ofsouthern Arizona was greater than predicted 
on the basis ofenvironmental features. And yet, it is possible to find examples in the 
archaeological record where precisely the opposite effect has been documented. In 
some periods ofits history, for example, Teotihuacim in the Basin ofMexico seems 
to create a vacuum around itself; in others, sites seem to be denser in its vicinity 
than elsewhere (maps associated with Sanders et al. 1979). To further complicate 
matters, such changes may be due in part to changes in the area's role in a much 
larger, supra-regional system (see Paynter 1982:xi) that may be poorly understood. 
On a smaller, simpler scale, the large Pueblo I site ofGrass Mesa in the Dolores River 
Valley of southwestern Colorado also seems to have created a partial settlement 
vacuum in its vicinity during the peak of its occupation (Kohler 1986:37). 

This brings us to a second reason why nonenvironmental variables have not 
been used in most predictive locational models: archaeologists simply don't know 
horP to use them. It is reasonable to believe that our sister disciplines, such as 
geography, might have solved such problems, particularly for the non-hunter
gatherer societies that they have emphasized. This is not the place for an exhaustive 
review ofgeography, but it is worth mentioning two approaches commonly used in 
the geographic literature to see whether they might help us. 

One such approach with deep roots is the well-known central place theory, 
conceived by Von Thunen in 1826, expanded by Chris taller in 1933, and introduced 
to the English-speaking world by Ullman in his famous article, "A Theory of 
Location for Cities" (1941; in Boyce 1980). Among other things, the theory predicts 
that cities will arise in the centers of productive areas; that they will be larger as 
their tributary areas become larger; that when a region is packed with cities the 
"tributary" spates will be best described as hexagons; and most important, that a 
hierarchy ofcity size occurs, with centers in each class being predictable in number 
and in distance from each other. Ullman noted, as have many others, that the actual 
location ofcenters may be distorted by the distributions ofresources and transpor
tation routes, and that 

the type of scheme prevailing in various regions is susceptible to many influences. 
Productivity of the soil, type of agriculture and intensity of cultivation, topography, 
governmental organization, are all obvious modifiers .... 

The system of central places is not static or fixed; rather it is subject to change and 
development with changing conditions .... 
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Chris taller may be guilty ofclaiming too great an application ofhis scheme. His criteria 

for determining typical-size settlements and their normal number apparently do not fit 

actual frequency counts of settlements in many almost uniform regions [in Boyce 

1980: 17.6-177). 


Given the subtleties and especially the fluidity of the sociopolitical environ
ment, is it any wonder that archaeologists have chosen to concentrate on those 
relatively stable, "distorting" factors of the natural environment for locational 
prediction? In general, the central place model appears to be more valuable for 
analysis of a total spatial pattern of contemporaneous settlements than it is for 
prediction ofthe total distribution from some small subset ofit. Nevertheless, it does 
have potential within a predictive context if enough of the settlement system is 
known to enable discernment of levels of size-class hierarchy, typical spacing of 
settlements within levels, and degree of influence of the various environmental 
factors serving to distort the ideal pattern. (For more discussion of central place 
modeling see Haggett et al. 1977 and various articles in Smith 1976.) 

Another possibly relevant line ofinquiry in geography is the study of industrial 
location. Let us assume for a moment that there are enough similarities between the 
problem of minimizing transport costs in the placement of factories and in the 
placement of relatively stable residential locations to make such an analogy worth
while. Economic assumptions have thoroughly permeated this field so that, at least 
until very recently, profit maximization, in the context of perfect and complete 
information and thorough predictability of future circumstances, has been the 
single goal guiding analysis. In Alfred Weber's "least-cost" model (1929), the goal 
was to minimize transportation costs per unit of production, although benefits of 
agglomeration and labor availability might slightly distort the location predicted to 
be ideal on this basis (Gold 1980:217-231). 

Later refinements of Weber's approach concentrated on correcting overly 

simplistic assumptions about transport costs, market demand, and methodological 

factors, and it was not until the 1970s that analysts began to question its reliance on 

economic factors in general and distance costs (as opposed to other costs) in 

particular (Gold 1980:218). Now, to judge by Gold's recent review of this area, 

interest centers on questions that were previously ignored, including how decisions 

are made in industrial organizations; how the wider industrial, business, and 

sociopolitical environments affect locational decisions; the extent to which attitudes 

about regions predispose locational behavior; and how locational searches are 

actually conducted. Gold concludes that such research is at an "exploratory stage" 

but that previous (exclusively economic) theory put forward "a model ofbehavior 

which, by its inherent assumptions, says little about" the processes by which 

real-world locational decisions are reached" (Gold 1980:230-231). At this point it 

appears that archaeologists can profit from reading this literature but will not be 

able to find here a working, realistic model that will solve their own problems. 


While archaeologists must redouble their efforts to build workable models 

with predictive power that take into account how social and political variables as 

well as those of the narrow economic environment affect location, and while 
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questions as to how locational decisions are reached in relatively small scale societies 
need more attention from archaeologists, the field as it presently exists-not as it 
perhaps should be-is the subject of the remainder of this chapter. 

THE WIDER HISTORICAL DEBATE: HOW AND TO WHAT 
EXTENT DOES THE NATURAL ENVIRONMENT INFLUENCE 
HUMAN BEHAVIOR? 

Attempts to explain differences among human societies are as old as the 
recognition of that diversity. The role of environmental factors in creating this 
diversity has been a subject ofinquiry and debate since antiquity. In classical times 
these inquiries ranged from abstract questions about the origin of the earth and of 
humankind to the search for 

rational explanations for the existence of both health and disease, explanations which 
called for consideration, among other factors, of the nature and direction of winds, the 
effects of swamps and damp places, the relation ofsunlight and of the sun's position in 
the heavens to the proper siting of houses and villages, and which, by extension, 
encompassed investigation of the effects of "airs, waters, and places" on national 
character [Glacken 1967:7-8]. 

An early example of this perspective is the Hirtorier of Herodotus. Written in the 
fifth century Be and primarily concerned with the struggle of the Greeks to free 
themselves from Persian influence, the Hirtorier also provides sketches of some 50 
societies with attention to their geographic location, environment, dress, food, 
dwellings, form ofself defense, and prestige as judges among other peoples (Hodgen 
1964:23). 

Yet in the Mediterranean world following the collapse of the Roman Empire, 
this comparative, cross-cultural tradition of inquiry that included environmental 
factors within its scope lost ground to theological interpretations ofcultural diver
sity. Diffusion of the original Adamic culture, as outlined in the first chapters of 
Generir, followed by local degeneration was generally considered to be sufficient 
explanation for diversity through the fifteenth and sixteenth centuries (Hodgen 
1964:254-294). 

A prominent dissenter was Jean Bodin, a French jurist writing towards the end 
of the sixteenth century, who argued that 

a sound solution to the problem of cultural diversification was not to be clouded by 
controversy over the early peopling ofthe world, or by a theory oforiginal sin, migration, 
or the breakdown of tradition among the bearers of the Adamic tradition. Leaving all of 
this to one side, he elected to take man as a given, concentrating on the relation ofseveral 
cultures to land, to climate, and to the topographical features ofthe several geographical 
regIOns.... 
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The physical constitution of men, or their humoral makeup, determined their moral 
aptitudes or dispositions. Environment, climate, the conditions oftime and place, did all 
the rest, reacting on men through their bodies [Hodgen 1964:276, 278]. 

For example, Bodin characterized people from hot climates in the northern hemi
sphere as being small of stature, weak, dark-haired and dark-skinned, fearful of 
heat, sad, hardy, mutinous, solitary, sober, and philosophic. People from cold 
regions were supposed to exhibit the opposite qualities (Hodgen 1964:279-280). 

Grand schemes seeking to establish causal connections on ethnic, regional, or 
even continental scales between environmental factors (especially climate) and a 
wide variety of racial and cultural characteristics became more prominent in 
eighteenth-century Enlightenment thinking. Even the Baron de Montesquieu, 
although he was particularly prone to considering the form of government as the 
factor affecting all other aspects ofsociety, did not ignore the influences ofclimate 
and environment. He was also willing to accord different factors causal primacy 
among different societies: 

Nature and climate rule almost alone among the savages [people with no nonlocal 
political structures and no domesticated plants or animals]; customs govern the Chinese; 
the laws tyrannize in Japan; morals had formerly all their influence in Sparta; and the 
ancient simplicity of manners once prevailed at Rome [Evans-Pritchard 1981:7]. 

We may conclude that even in the humanistic, rationalistic eighteenth century 
some natural philosophers took the position that, at least for some societies, causal 
initiative was to be found in the natural environment rather than in the mind. It was 
in reaction to such views that towards the end of the eighteenth century John 
Adams was led to complain, 

The world has been too long abused with notions that climate and soil decide the 
characters and political institutions of nations. The laws ofSolon and the despotism of 
Mahomet have, at different times, prevailed at Athens; consuls, emperors, and pontiffs 
have ruled at Rome. Can there be desired a stronger proof, that policy and education are 
able to triumph over every disadvantage of climate? [Glacken 1967:685]. 

Montesquieu in particular, and to a lesser extent some ofhis contemporaries, clearly 
saw the interrelationship and interdependency among all aspects of a society 
(Evans-Pritchard 1981:4), thus laying the foundations for a functional view of 
culture that is one of the building blocks for modern cultural ecology. Although 
sweeping generalizations establishing connections directly from climate to human 
personality sound remarkably odd today, they represent unsophisticated precur
sors to modern cultural ecological positions that differ mainly by invoking a more 
credible and restrained chain of causation. 

On the whole, however, eighteenth-century environmental or geographic 
determinism was a minor thread in a fabric that 
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stressed the factor ofconscious rational choice as the key to explanation of sociocultural 
differences.... [Enlightenment theoreticians] could not see a superorganic system 
interacting with the natural environment and responding with adaptive evolutionary 
transformations, which were neither comprehended nor consciously selected by the 
individual members of the society [Harris 1968:51]. 

A necessary prerequisite to the techno-environmental perspective as espoused 
by Harris was a credible theory of evolution, supplied for biology in the mid
nineteenth century by Darwin, even as Spencer was elaborating a similar theory for 
sociocultural evolution-a theory already expressed in part in the earlier writings of 
Turgot, D'Holbach, and others (Harris 1968: 123). The goal ofthe great anthropolo
gists over the last half of the nineteenth century (Spencer, Tylor, and Morgan) was 
to develop cultural evolutionary sequences using data from archaeology and from 
contemporary primitive societies. Their comparative method used modern "survi
vals" ofearlier forms, not necessarily as exact replicas ofstages through which other 
groups had progressed but as models from which something could be learned about 
earlier adaptations. 

In geography at this time the focus ofinterest continued to be on the sort of 
geographic determinism espoused by Jean Bodin and reflected in some of the 
writings of Montesquieu. This view is strongly expressed in the writing of the 
nineteenth-century German geographer Friedrich Ratzel (1896-1898). Ellen Sem
ple, who helped to interpret the ideas ofRatzel to the English-speaking world in the 
early 1900s and who is often regarded as an extreme geographical determinist, wrote 
of the effects ofenvironment and climate on human stature, musculature, pigmen
tation, vocabulary, economy, population density, and migration, as well as of the 
"physical effects of geographic environment" (Semple 1911:40). 

Interesting counterpoints to such views also appeared in the nineteenth 
century, however. The reciprocal nature of the relationship between people and 
their environments-ignored in simple environmental or geographic 
determinism-was beginning to be appreciated in some quarters. George Marsh, in 
Man and Nature, or Physical Geography as Modified by Human Action (1864), reasoned that 
many important influences emanate not from nature to humans but rather in the 
opposite direction. 

In the early years of the twentieth century, historical particularism, most 
purely exemplified by Franz Boas, constituted a rebellion against the largely 
unilinear cultural evolutionary sequences of the nineteenth century and against the 
comparative method used by Morgan, Spencer, and others. Nor did this new school 
of anthropological thought have any use for the simple, mechanical, large-scale 
correlations among environmental features, race, and culture that were still being 
promulgated by some geographers. One ofBoas's most prominent students evalu
ated the causes behind the historical particularists' avoidance of environmental 
factors in the discussion of cultural phenomena: 

24 



PREDICTIVE MODELING: HISTORY AND PRACTICE 

In part this represents a healthy reaction against the old naive view that culture could be 

"explained" or derived from the environment. For the rest, it is the result of a 

sharpening of specific anthropological method and the consequent clearer perception of 

culture forms, patterns, and processes as such: the recognition of the importance of 

ditTusion, for instance, and the nature of the association of culture elements in "com

plexes." Most attention came to be paid, accordingly, to those parts of culture which 

readily show self-sufficient forms: ceremonial, social organization, art, mythology; 

somewhat less to technology and material culture; still less to economics and politics, and 

problems of subsistence. Much of the anthropology practiced in this country in the 

present century has been virtually a sociology of native American culture; strictly 

historic and geographic interests have receded into the background, except where 

archaeological preoccupation kept them alive [Kroeber 1939:3]. 


Ironically, in his ethnographies Boas remarked on environmental factors influencing 
site location, as in his astute observation that the distribution of population among 
the Central Eskimo was strongly related to conditions of sea-ice favorable to 
hunting the ringed seal (Damas 1969:1). In his later, more general work, however, he 
downplayed the role of the environment as a determinant of human behavior. 

Another ironic feature of the impact of historical particularism on anthropol
ogy is that it showed the way for a more productive analysis of the relationship 
between culture and environment. By reducing the scale of his observation-by 
being a particularist-Boas in some ways anticipated a more modern approach to 
the problem ofcorrelating settlement practices with environmental features. In his 
discussion of the roots of ecological explanation in anthropology, Ellen (1982:5-6) 
makes the important point that 

The problem of drawing correlations between environmental and social phenomena is 

very much a question of magnitude-the geographic (or demographic) scale of the 

correlations postulated .... The more specific the correlation the greater the possibility 

ofthere being a single determining relationship and the greater the accuracy in predict

ing future events under specified conditions. 


This is a crucial observation for the task of locational modeling. Many valid 
criticisms can be made of naive environmental determinism for its suggestions of 
large-scale, simplistic correlations between environmental and cultural features. 
These criticisms are not all germane, however, to more specific correlations 
between certain environmental features and certain aspects of human behavior. 
Settlement systems and ecosystems are both complex, and we should not expect to 
find simple correlations between them. The task oflocational modeling is to isolate 
those aspects of the environment that do influence settlement behavior and place 
them into perspective with nonenvironmental factors that also influence settlement 
behavior. 

In the generation of anthropologists following the period in which historical 
particularism reached its ascendancy, people like Kroeber and, to a lesser extent, 
Wissler (e.g., Wissler 1922) once again began to study the relationship between 
environment and culture. This time, however, the relationship was stripped of 
causality. Both Kroeber and Wissler were interested in culture areas that were 
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relativistically defined in terms of their distinguishing characteristics and occurred in 
different environmental settings .... [T]he concept of adaptation of the cultures, 
especially of the nature of social groups ..., [was not) taken into account. In fact, this 
would smack of reductionism, which Kroeber, holding firmly to the idea that cultures 
should be dealt with on the superorganic level alone, had always opposed [Steward 
1973:53-54). 

Julian Steward and Cultural Ecology 

The contributions of one of Kroeber's students ultimately have had more 
impact on archaeology than those of Kroeber himself. Along with a number of 
influential contemporaries that included Omer Stewart and Leslie White (Stewart 
1943; White 1949), Julian Steward (1938,1955) was responsible for three advances in 
the discussion of environmental concepts that have specific importance for the 
practice of locational modeling. First, Steward, unlike anthropologists using the 
culture-area concept, was interested in causal explanation rather than correlation; 
second, he emphasized the effect of particular local aspects of the environment on 
particular facets of culture, thus moving away from large-scale correlations of 
regional environments with "culture types"; third, he identified more or less 
specific pathways through which environments might influence cultures (in his 
"culture core" concept) and tried to devise a procedure for studying the extent of 
these influences (Ellen 1982:52-53). 

In Steward's terms, those aspects of a culture that were most closely connected 
with environmental exploitation constituted the "culture core"; other aspects, 
determined by purely cultural historical factors, were considered secondary fea
tures. Core features and secondary features had to be identified empirically, and 
these could be expected to differ in differing environments and cultures. For a 
particular culture, discrimination between core and secondary features began with 
an examination of the natural environment and of the relations between the 
environment and the economy. Next, the patterns ofbehavior involved in exploit
ing this environment with a specific technology were recognized. Finally, the 
influence of these behavior patterns on other aspects of culture was assessed 
(Steward 1938:2; 1955:37,40). All aspects of culture implicated in these investiga
tions constituted the core; the residua were the secondary features. This procedure 
clearly reveals the direction and type of causality that Steward believed to be at 
work in the relationship between environment and culture. 

Not all features of the natural environment equally influence the core of 
culture, and what is important may be expected to vary from area to area. For the 
aboriginal groups occupying the Great Basin and adjacent portions of the Colum
bian and Colorado plateaus at the time of contact with Euroamericans, for example, 
Steward suggested that "the important features of the natural environment were 
topography, dimate, distribution and nature ofplant and animal species, and, as the 
area is very arid, occurrence ofwater" (1938:2). He took the density and distribution 
of the population; the division of labor at sexual, familial, and communal levels in 
hunting, fishing, and seed-gathering; the territory covered and the time required 
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for different economic pursuits; and the size, composition, distribution, and degree 
of permanency of villages to be behavior patterns that were directly and strongly 
influenced by the nature of the environment, in the context of the technology 
available to exploit it (Steward 1938:2). 

His comments on the village locations of specific groups were based on 
conversations with informants who were recalling a lifeway that by that time was 
extinct and, usually, on visits to the areas in question. Many of these comments 
indicate which factors Steward considered to be determinants of site location. The 
Northern Paiute of Owens Valley, for example, lived in an area that was rich and 
diverse in comparison with most of the Great Basin. Their villages were relatively 
permanent and were situated on the alluvial fans of streams where these water
courses emerged from the canyon wall, about 2-4 mi from the Owens River. These 
locations afforded access to abundant water and were centrally located with respect 
to critical floral resources (except for pinon nuts) growing in or near the valley. Sites 
related to pinon nut extraction and use were located in the adjacent Inyo and White 
mountains and might be occupied during part of the winter in the event of 
abnormally abundant harvests. As important determinants for winter (or perma
nent village locations for all the groups he studied, Steward repeatedly mentions the 
availability of water, ample timber for houses, and fuel, and he also emphasizes 
avoidance of areas with unacceptably cold winter temperatures. Thomas (1973) 
used simulation to predict what the artifact dispersal patterns should be ifSteward's 
reconstruction of the Great Basin Shoshonean subsistence-settlement system ap
plied to precontact times in the Reese River Valley. Steward's predictions, as 
operationalized by the simulation, were generally verified. 

Some ofSteward's views on the responsiveness ofsite location to environmen
tal factors will be systematized into a more general framework in Chapter 4 and 
hence are worth additional discussion here. To judge by Steward's work, the 
locations of winter villages in the Great Basin ought to be relatively predictable on 
the basis ofassociated environmental features. For example, Steward characterized 
the entire Shoshonean culture as practically, even "gastrically," oriented. Since 
Shoshonean groups were frequently at risk of starvation, their adaptation (broadly 
speaking, including the location of their settlements) was constantly exposed to 
selective processes. Social and political factors that may affect site location
defensibility; access to trade partners and routes; and economic, social, and political 
obligations to nonlocal groups-were of minimal importance in comparison with 
many areas in North America where warfare was more frequent, economic speciali
zation more pronounced, the family not the basic economic unit, and social and 
political groups more rigidly structured and less local. It will be argued in Chapter 4 
that this constellation of factors-which will be placed on the low end of a 
continuum of "intensification"-results in settlement behavior that is quite 
responsive to environmental factors. Moreover, the structure ofthe environment is 
such that the resources apparently affecting winter village location are relatively 
concentrated in space, overlap to a fairly high degree, and exhibit either high 
temporal constancy-meaning that they can always or nearly always be found in the 
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same place, as in the case ofwater and certain aquatic resources-or high temporal 
contingency-meaning that they are seasonally predictable. It will be argued in 
Chapter 4 that this kind ofpatchiness and this kind oftemporal predictability make 
for high site visibility and high site predictability on the basis of environmental 
variables. 

The location ofpinon-gathering stations, on the other hand, depends in part 
on the distribution of pinon resources, which in any year are relatively widely 
distributed, seldom overlap with other critical resources, and exhibit low temporal 
predictability. Logically, this environmental structure should lead to dispersed, 
poorly visible, and poorly predictable distributions for archaeological materials 
deposited during pinon exploitation. On the basis of these observations, and of 
Steward's discussions, we would expect different parts ofthis settlement system to 
have differing visibility and variable degrees of predictability on the basis of 
environmental variables. 

Even this brief discussion ofSteward's approach and conclusions clarifies the 
continuity between inductive locational modeling and Steward's work. Steward 
demonstrated that-at least for some site types and in some environments exploit
ed by some groups in the arid portions of western North America-there is good 
reason to believe that location was highly responsive to a relatively limited number 
ofmap-readable environmental determinants. In addition, he argued for a more or 
less one-way directionality of influence: from the environment, as exploited by a 
particular technology, to the culture core. Finally, although his research was 
influenced by a strong and consistent theoretical orientation, Steward argued that 
the particular aspects of the environment that are most relevant to adaptation 
(which is to say, to the composition of the culture core) have to be discovered 
empirically. 

People in Their Ecosystem: Post-Stewardian Developments 

Locational modeling-particularly in its inductive variety -normally assumes 
that certain environmental variables strongly influence site location. If settlement 
behavior can be considered to be part of the "culture core," this assumption finds 
support in Steward's cultural ecology. The strong, although frequently implicit, 
reliance oflocational modeling on Steward's theories or on other variants of what 
Trigger (1971) calls "deterministic ecology" makes the resultant models susceptible 
to the many criticisms to which Steward's work has been subjected in the last two 
decades. 

One outstanding problem is an ambigu,ity in the definition ofthe culture core, 
which is noted both by Harris (1968:660-662) and by Kohl (1981:102). There is no 
rigorous objective procedure for determining what constitutes the core, and it is 
dear from Steward's own statements that the core may occasionally encompass 
social, political, and even religious patterns. May we assume that all aspects of 
settlement behavior are core elements? Ifnot, which aspects are? Another problem 
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is Steward's assumption ofan unrealistically unidirectional influence ofthe environ
ment on culture. A third problem is unrecognized complexity and variability in how 
the environment is perceived in different cultures (Brookfield 1969). 

Steward's approach enjoys continued popularity among many practicing 
archaeologists, especially those involved in hunter-gatherer studies (Bettinger 
1980: 190). As a result ofthese problems, however, and perhaps also as a result ofthe 
increasingly sophisticated ecological studies of the last two decades, many human 
ecologists and some archaeologists have begun to abandon Steward's framework in 
favor of an ecorystemic perspective influenced by evolutionary ecology-a develop
ment that is more evolutionary than revolutionary. A very selective sample might 
include publications by Marston Bates (1953),]. W. Bennett (1946), Harold Brook
field (1968), J. G. D. Clark (1952), David L. Clarke (1968), Harold Conklin (1961), 
Kent Flannery (1968), Stanton Green (1980), Donald Hardesty (1975), Robert 
Netting (1974), Roy Rappaport (1971), and Bruce Winterhalder(1981), among many 
others. Al though each ofthe researchers who has shifted to an ecosystems perspec
tive has unique points to make, Roy Ellen (1982:75-78) has attempted to summarize 
several characteristics shared by most workers involved in this reorientation of 
culture/environment studies: 

I. Monism. Behavioral and environmental traits are analyzed as part of a 

single system. Culture becomes part of animal behavior, or at least it must 

follow rules that do not contradict those imposed by natural selection. 


2. Complexity. Significance and causality in this single, integrated system 

containing both the culture and the environment are "found in the web of 

finely interrelated factors rather than with general propositions at the level of 

gross categories" (Ellen 1982:76). 


3. Connec/i'vity and mutual causality. "In the ecosystem view, all social activi

ties impinge directly or indirectly on ecological processes and are themselves 

affected by those same processes. Fauna (including humans), vegetation, soil 

structure, and microclimate are intricately related and mutually interdepend

ent (Ellen 1982:76). 


4. Process. In this systemic view of relationships the emphasis is on the 

interaction ofvariables (for example, positive and negative feedback relation

ships) rather than on correlations between social and environmental variables 

at particular states of the system. 


5. Populations as analytic units. Local human populations replace societies as 

units of observation and analysis, a situation analogous with the ecological 

analysis of nonhuman populations. 


Local, detailed paleoenvironmental reconstructions are of special concern to the 
archaeologists involved in this reorientation, and this is a concern with which 
Steward would have been sympathetic. There is an increasing awareness that such 
information must not simply be brought in as an after-the-fact explanation for 
observed changes through time in human use ofthe landscape, as has long been the 
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practice. Rather, settlement system studies should account in a dynamic manner for 
changing resource distributions related to changing climates (e.g., Darsie 1983). 

The challenge to Steward's approach posed by these advances is also implicitly 
a challenge to locational modeling as typically practiced. Future advances in 
locational modeling depend on our learning how to incorporate the richness and 
complexity of the systemic perspective in our locational predictions. 

THE EMERGENCE OF SETTLEMENT PATTERN STUDIES 
IN ARCHAEOLOGY 

One important result ofJulian Steward's insistence on the importance of the 
local environment in the study ofliving (and recently living) cultures and of his 
interest in the location ofethnographic settlements was the development ofstudies 
of archaeological settlement patterns. The survey component of the Virti Valley 
program conducted in the late 1940s was instituted largely as a result ofSteward's 
influence (Willey 1953:xviii). Willey'S 1953 monograph about this work is generally 
regarded as having defined a new field of inquiry in archaeology: 

The material remains of past civilizations are like shells beached by the retreating sea. 
The functioning organisms and the milieu in which they lived have vanished, leaving the 
dead and empty forms behind. An understanding of structure and function of ancient 
societies must be based upon these static models which bear only the imprint oflife. Of 
all those aspects ofman's prehistory which are available to the archaeologist, perhaps the 
most profitable for such an understanding are settlement patterns. 

The term "settlement pattern" is defined here as the way in which man disposed himself 
over the landscape in which he lived [Willey 1953: I). 

Willey included within the scope of settlement pattern studies the nature of 
dwellings and their arrangement within settlements and the nature and distribu
tion ofcommunal buildings. His discussion ofthe role ofenvironmental, technologi
cal, and demographic change in affecting settlement patterns is not elaborate by 
modern standards; he was much more interested in how the community patterns of 
these large, late-prehistoric sites in Peru were affected "by various institutions of 
social interaction and control" (1953: 1). 

Nevertheless, a field lPaf defined, and a series ofpapers (Willey 1956) published 
three years after Willey's Virti Valley report contains many contributions emphasiz
ing the importance of environmental variables in determining the distribution of 
human populations across the landscape (e.g., Haury 1956; Heizer and Baumhoff 
1956; Williams 1956). Other authors (e.g., Sears 1956) were interested more in the 
social and political aspects of community patterning than in environmental rela
tions. In 1968 Trigger defined the various aspects ofsettlement patterns somewhat 
more rigorously than had previously been done, and he distinguished among the 
probable determinants oflocation for individual buildings, community layouts, and 
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"zonal patterns" (Trigger 1968). In the case ofzonal patterns, he states that "the 
overall density and distribution of population of a region [are] determined to a large 
degree by the nature and availability of the natural resources that are being 
exploited" (1968:66). He notes, however, that broad economic (as opposed to simple 
subsistence), political, religious, and defensive factors may also be important 
determinants of site location among agriculturalists. 

In the 1970s several important initiatives added new items to the list of 
environmental variables that archaeologists were willing to consider as possible 
determinants oflocation, and they also affected the ways that these variables were 
handled analytically. For example, the "situation" of a site (Roper 1979:11-14) or 
the putative "territory" ofthe community occupying it (Vita-Finzi and Higgs 1970) 
began to be scrutinized in addition to the more traditional on-site environmental 
characteristics. Catchment analysis, as this investigation is usually called, was 
designed to provide insight into the economic activities of the occupants ofa site. 
Like most efforts to use the distribution ofenvironmental variables in understand
ing site location, catchment analysis makes the joint assumptions that 

the most important transactions for most people were with the environment ... [and 

that) humans tend to minimize the time or effort expended in their economic transac

tions with the environment (or perhaps they include effort and time expenditure as 

considerations in these transactions). In societies without advanced transportation these 

two factors -strong economic coupling with the environment and minimization of time 

and effort-encourage location close to important economic resources [Kohler and 

Parker 1986:400; emphasis original). 


Another important advance made in the 1970s was in the analysis of data. 
Steward himself had avoided statistical approaches, and following perhaps uncon
sciously in his footsteps virtually all settlement pattern studies for many years 
followed an anecdotal form. That is, the investigator called attention to apparent 
tendencies for sites to be located in areas having specific constellations of natural 
features, much in the same way that Steward did in his Basin-Plateau work cited 
above. Where these relationships were patent, the observations were probably 
correct, at least to the extent that the original surveys were not biased by an 
internalized model of"where sites should be." Nevertheless, it was a great contri
bution to settlement pattern studies when the participants in the Southwestern 
Anthropological Research Group (SARG) helped to introduce a more rigorous 
testing procedure for determining the degree ofrelationship between site locations 
and environmental variables. This procedure involves the creation ofexpected site 
distributions for comparison with observed site distributions, using formal statisti
cal inferential techniques. 

The SARG organization was dedicated to investigating systematically the 

question of why archaeological sites (or, in some versions, prehistoric population 

aggregates) in the Southwest were located where they were (Plog and Hill 1971). 

The members ofSARG began with the basic assumption that activities were located 

in such a way as to optimize the return on energy investment and then proposed 
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three somewhat more specific hypotheses for testing. These hypotheses suggested 
that activity loci were 

1. situated with respect to critical on-site resources, 

2. situated so as to minimize the effort expended in acquiring required 
quantities ofcritical resources, and 

3. located so as to minimize the cost ofresources and information flow among 
loci utilized by interacting populations (Plog and Hill 1971:12). 

Most participants concentrated on the first two problems, and in his perceptive 
insider's view of the SARG research design several years after its inception, Dean 
(1978:107) suggests that this was due to procedural and logistical considerations. 
The difficulty ofoperationalizing and testing the third hypothesis would have been 
great. 

Plog and Hill's suggested procedures for testing these hypotheses using null 
models and statistical comparisons of where sites were and were not located were 
rarely used by the SARG participants. More often, the SARG researchers concen
trated on searching for significant differences in site location frequencies across 
environmentally defined strata. The methods proposed by Plog and Hill have, 
however, become standard in cultural resource management and in some research 
contexts. The potential utility of this brand of locational research was clearly 
foreseen by Plog and Hill (1971:11): 

our research should lead to the ability to predict site locations (and something about 
organizational characteristics of sites) from the distribution of critical resources and 
other critical variables. And, conversely, we ought to be able to predict the critical 
variables by examining the site distribution patterns. 

Some of the problems with the "critical resources" concept are noted in the 
Chapter 4 discussion of how variables are selected-in inferential or deductive 
models-as potential determinants oflocational behavior. Hill (1971:58) suggests 
that critical resources are those "without which the system would collapse" (but 
see Sullivan and Schiffer 1978:172). Dean (1978:108) acknowledges that SARG has 
been primarily concerned with food resources and suggests that availability offuel, 
structural wood, and other nonfood resources might also be important in determin
ing site location. 

While it is clear that those ofus who are engaged in locational modeling owe a 
substantial debt to the SARG participants, it is important to call attention to a final 
comment by Sullivan and Schiffer concerning the difference between investigating 
the distribution and movement ofpeople through space in the systemic, behavioral 
context and investigating the spatial distribution of archaeological sites: 

[PJrehistoric peoples most likely did not locate "sites" anywhere. However, they did 
establish, occupy, and abandon behaviorally significant spaces, such as activity areas, 
camps, and settlements .... Sites are nothing but deposits of material remains in the 
environment that archaeologists recognize as being potentially informative about past 
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cultural behavior and organization .... Owing to secondary deposition, multiple 

occupations, and other formation processes, sites usually are not equivalent on a 

one-to-one basis to camps, settlements, or population aggregates [Sullivan and Schiffer 

1978:169]. 


The discovery of statistical associations between site types and environmental 
variables, they continue, may be potentially useful for developing predictive 
models for cultural resource management (CRM) and for evaluating survey sam
ples, but construction of such models "has little to do with the formulation and 
testing of behavioral principles" (1978: 169). 

THE ERA OF PREDICTIVE MODELING 

It is clear from the above citations that in the early 1970s there was already 
some talk about predictive modeling, although there were relatively few examples 
of what this term might mean. To avoid ambiguity, we can define a predictive 
locational model as a simplified set of testable hypotheses, based either on behav
ioral assumptions or on empirical correlations, which at a minimum attempts to 
predict the loci of past human activities resulting in the deposition of artifacts or 
alteration of the landscape. Thus defined, the potential applications of predictive 
models are certainly not limited to CRM contexts. Green (1973) conducted a 
locational analysis of prehistoric Mayan sites (defined as the loci of one or more 
structures) in northern British Honduras (now Belize). In this research she shared 
the SARG assumption that "sites were located so as to minimize the effort 
expended in acquiring critical resources" (1973:279). Several soil and vegetation 
variables, along with variables reflecting distance from navigable bodies ofwater (in 
the belief that access to commerce was a critical resource), were tested for associa
tion with counts of sites per unit area, using multiple linear regression. The 
resultant multivariate statistical model ofsite location was interpreted as predicting 
high probability for site location in areas with large tracts ofgood agricultural land 
and in proximity to trade routes. In a sample of 150 quadrats known to contain only 
22 sites, about 22 percent ofthe variance in the number ofsites observed in each 4.25 
km2 quadrat was explained by the independent variables selected by the regression 
routine. Quadrats with high negative residuals (no sites found, several predicted) 
were considered as probably containing undiscovered sites, and such quadrats were 
assigned a high priority for future survey efforts. Because sites were located in the 
centers of arable tracts rather than on their margins, Green inferred that residences 
were probably located so as to have garden plots in their immediate vicinity. 

As predictive models began to be applied in CRM contexts, many still

unresolved issues concerning the appropriate use ofpredictive models were identi

fied almost immediately. 


33 



KOHLER 

Predictive models are probability statements; they are not "facts," and cannot substi
tute for facts in any application requiring the use of hard data about specific individuals 
as decisionmaking criteria .... 

The problem is that some archaeologists have told some planners that our predictive 
models can be used as hard data, when in actuality it is our hard data on site location and 
significance that must be figured into the planner's cost-benefit ratio. To substitute a 
scientific hypothesis (our predictive model) for scientific fact (actual site location) as a 
criterion for a planning decision is to court disaster. 

There is only one way for us to get the hard data for use in such decisions: by an 
intensive ground reconnaissance of the entire area to be affected by a proposed project 
[Wildesen 1974: 1-2J. 

In the latter half ofthe 1970s the Bureau ofLand Management, Forest Service, 
Corps of Engineers, Interagency Archeological Services, and some State Historic 
Preservation Officers were beginning to sponsor both surveys that would result in 
predictive models and attempts to build predictive models from data already 
collected (Interagency Archeological Services [lAS] 1976:3; King 1978:73). Although 
important federal historic preservation legislation dates back to the turn of the 
century (the Antiquities Act of 1906; the Historic Sites Act of 1935), the National 
Historic Preservation Act of 1966, amended in 1976 and 1980, has been of signal 
importance in this growth ofpredictive models, especially Section 106 of that act, 
which requires that federal agencies "take into account" the effects oftheir actions 
on properties eligible for the National Register ofHistoric Places (King 1984; Scovill 
1974). In conjunction with Executive Order 11593 (1971), other sections of the 
National Historic Preservation Act, the National Environmental Policy Act ofI969, 
and various implementing regulations, this statute gives federal agencies the 
"substantive responsibility to identify historic properties on their lands and nomi
nate them to the National Register, and to record such properties when they must 
be destroyed" (King 1984: 116). Highly variable legislation for the protection and 
identification of archaeological resources also exists in state and local jurisdictions 
(Rosenberg 1984). 

Federal (and occasionally state) agency response to this legislation has 
included predictive modeling, under the assumption that it will be a long time (to 
say the least) before a total, comprehensive inventory of archaeological resources 
can be conducted on lands under their jurisdiction. 

For comprehensive planning, predictive survey may best be considered an ongoing 
process in which increasingly fine-tuned predictions can be made as more and better 
information becomes available. If the archaeologist continues to survey a new selection of 
sample units every time, he will eventually obtain a 100 percent sample. This is a rational 
goal for statewide comprehensive surveys and for federal agency surveys conducted 
under section 2(a} ofExecutive Order 11593. The advantage of predictive survey is that 
rome useful data for purposes ofplanning in the entire study area became available almost 
immediately . . . and it is probable that all the information needed to carry out 
responsible preservation planning will be available before physical inspection has 
covered even 50 percent of the land [King 1978:92; emphasis original). 
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The flood of predictive models that appeared in the late 1970s shows that 
contractors were happy to respond to agency requests for such models, even though 
Uudging by the variability in techniques and products) no one was sure how 
prediction might best be accomplished. Early attempts include Dincauze and 
Meyer (1976), Fuller et a1. (1976), Hackenberger (1978), Robertson and Robertson 
(1978), Scott et a1. (1978), Woodward-Clyde Consultants (1978), Holmer (1979), 
Barber and Roberts (1979), Burgess et a1. (1980), Kohler et al. (1980), Muto and Gunn 
(1980), and Senour (1980). 

A Taxonomy for Predictive Locational Models 

Before we can begin to talk about the very dissimilar enterprises that have 
been called "predictive locational models" during the last 10 years, we need to 
establish some definitions and build a classification for what has been done so far. 
Another purpose for classification is to highlight what this author believes to be the 
most significant dimensions of variability among the predictive locational models 
put forward to date. Specifically, I propose a classification with three distinguishing 
dimensions: level of measurement, procedural logic, and target context (Figure 
2.1). 

Many models for site location or settlement behavior are intuitive or not fully 
operationalized. The ugly word operationali'Zation refers to the process of careful 
definition ofall the terms in a model in such a way that the same predictions can be 
made from a model by different people. If a model can be objectively, replicably 
mapped, it is operationalized; a model consisting of the statement that "sites are 
located near rivers on dry, level ground," for example, is not mappable until site, 
near, river, dry, level, and ground have been rigorously defined. 

As we move to the right in Figure 2.1, we move from models with no 

measurement to models based on variables measured at the categorical or nominal 

level (such as soil type) or ordinal level (such as resources ranked in order of 

hypothesized importance) to models based on variables measured at the interval or 

ratio level (such as slope, distance to water, estimated net primary productivity, 

and so forth). There is nothing wrong with site location models that are not 

operationalized if they provide insights into settlement behavior, as does Binford's 

(1980) distinction, based on a review ofhunter-gatherer subsistence and settlement 

system organization from around the world, between foragers and collectors. Until 

a model is operationalized, however, it cannot be mapped and cannot be used for 

management. This is one problem with the informal models ofsettlement pattern 

that are found in many Class I overviews based on existing literature and site files. 

The most important distinction along the dimension labeled level ofmeasurement is 

between the box on the left, containing unoperationalized models, and the two 

boxes on the right, containing operationalized models. 


The other two dimensions in this dassification-procedurallogic and target 

context-need to be discussed together. Most predictive models in cultural 
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Examples: 

I. Many unquantified discussions of prehistoric settlement systems in particular regions; also, Binford's (1980) forager/collector model 

2. Many unquantified discussions of prehistoric settlement patterns in Class I overviews 

3. Pilgram 1982 

4. Limp and Carr 1985 

5. Most cultural resource management predictive locational models: e.g., Kvamme (1980), Nance et al. (1983) 

6. Models based on optimal foraging theory (e.g., Winterhalder 1983:207-208) and other model-based approaches (e.g., Jochim 1976) 

Figure 2.1. A suggested taxonomy for the different types oflocational models that appear in the literature. 
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resource management have been inductive (used here synonymously with the terms 
inferential or empirical/correlative) in their logic. That is, they begin with survey data 
on the distribution of archaeological materials across the landscape in relation to 
some (usually environmental) features, and then they estimate the spatial distribu
tion ofthe population ofarchaeological materials from which the sample was drawn. 
The logical alternative to this procedure is to begin with a theory as to how people 
use a landscape and to deduce from that theory where archaeological materials 
should be located. 

By target context I mean the "theater of operations" for the model. The 
systemic context (Schiffer 1972) is the dynamic living system observed by ethno
graphers and ethnoarchaeologists. (Ofcourse, it too is subject to inference, partial 
observation, and informant perception.) The sum total of the materials collected, 
altered, organized, and deposited by the participants in this system, and the spatial 
distributions of these materials, constitute the archaeological context (Schiffer 
1972). This context can never be directly observed, however, and as soon as we 
begin to sample materials from it, analyze them, and make interpretations, we enter 
the interpretive or analytic context (Kohler et al. 1985). Some of the processes and 
activities in each of the contexts are discussed in Chapter 4. 

In two senses inductive models automatically operate in the analytic context. 
First, to make predictions directly about the systemic context they would have to 
make some attempt to control for the effects of the postdepositional and deposi
tional processes that separate the analytic from the systemic context (see Chapter 
4); this is rarely, ifever, done. Second, and more insidious, the sampling and analysis 
processes of the analytic context are invisibly imbedded in inferential predictive 
locational models. Any inferentiallocational model predicts only what would have 
been found had the population of space from which the sample was drawn been 
surveyed in the same manner as was the sample, using the same rules for attribute 
coding, site recognition, and data analysis. Such inferential models predict neither 
the systemic interaction between a cultural system and a landscape nor the archaeo
logical context resulting from it; rather, they predict what we will find and how we 
will interpret it if we consistently follow a particular set of rules for fieldwork and 
analysis. For this reason I say that inductive models normally operate in the analytic 
context. The challenge for inductive models is to build the bridge to the systemic 
context by making the analytic methods (including discovery) as "transparent" 
(non-bias-making) as possible and by controlling for the effects ofdepositional and 
postdepositional processes in the archaeological context. 

Deductive models, on the other hand, begin with some theory predicting 

human behavior in the systemic context. The challenge for deductive models is to 

build the bridge to the analytic context, which is where the outputs of the system 

can be observed. This bridge-building-whether from the systemic to the analytic 

context or vice versa-is referred to as explanation (see discussion in Chapter 4). 

Explanatory models, as I suggest the term be used, are inherently neither inductive 

nor deductive. Instead, they are models that attempt to build the bridge between 

the dynamics of the living system and its observed outputs. 
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There is at least one sense, however, in which deductive models are clearly 
preferable to inductive models. Except when we are working with living groups we 
are limited to testing predictive locational models in archaeology in the analytic 
context. Thus, an explanatory, inferentiallocational model would end up making 
predictions about behavior in the systemic context that could not be immediately 
tested, although in a cycle of scientific inquiry these predictions could be used to 
suggest theory from which implications for future testing are drawn. An explana
tory, deductive locational model would result in predictions for the analytic context 
that would be directly testable. 

Examples 

A detailed review of even a small proportion of the predictive models of the 
past decade would take much more space than is available here. The only reasonable 
way to approach this mass of material is to pick a few themes and trace them 
through a highly selective sample of the available references. Discussions of sam
pling, statistical methods, use of remote sensing data, and use of geographical 
information systems are generally avoided here, as they are treated in detail 
elsewhere in this volume. The four models to be discussed here were chosen 
because they illustrate particular cells in the proposed taxonomy and because they 
focus on various geographic regions. 

I would suggest that some of the same criteria used to evaluate research 
designs and theory can be used to assess predictive locational models. One obvious 
criterion that should be applied is the accuracy of these models. Do they supply 
reliable predictions! Unfortunately, this information is available for so few models 
(see Appendix) that other, more general guidelines need to be considered. This, in 
itself, underlines the need for additional attention to model testing, refinement, and 
verification. In the discussion below of examples of predictive models, I have 
followed Blalock's (1979) suggested criteria for judging what constitutes good social 
science theory in general. 

I. Generalhabitity. Generalizable models can be applied to large areas, 
rather than small; are applicable to different adaptations and environments, 
rather than just to one; take into account the entire settlement system, rather 
than just part ofit; and have implications for human organizational systems in 
general as well as prediction ofsite locations in particular. Generalizability has 
both a conceptualization component-are the theoretical arguments applica
ble across a broad range of situations?-and a comparability component-if 
our theories can be applied across a broad range of situations, can our 
measurement operations be guaranteed to be applicable in the same broad 
range of circumstances (Blalock 1982:29)? 

2. Simplicity. Other things being equal, a simple (or parsimonious) model is 
to be preferred to a complex one. After all, one reason people make models in 
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the first place is that the real world is too complex to be readily and unambigu
ously understood. 

3. Internal Consirtency. Like other models, predictive locational models must 

be mathematically and logically consistent. 


4. Precirion. Precision refers to the fineness of detail in the predictions. 

Precision may involve spatial detail: are predictions made to the square mile 

or the square meter? Or it may involve content: how fine-grained are the 

predictions ofwhat will be found in various locations? Are various possible site 

types, periods, or assemblage types differentiated? Other things being equal, 

a model that is precise in its predictions is to be preferred to one that is not. 


5. Falrifiability. It must be possible to prove that a model is wrong. 

The last two of these characteristics can be lumped together for convenience, 
since a model that is not precise in its predictions cannot be falsified. Internal 
consistency is a more or less mechanical problem that needs no further mention here 
(but see Kohler and Parker 1986:398). There are, however, severe and perhaps 
unresolvable conflicts among generalizability, precision, and simplicity in predic
tive modeling, as in social science theory in general (Blalock 1982:27-31). 

A Predictive Land-Use Model for North-Central Washington 

In an overview based on a survey ofexisting literature, Robert Mierendorf et 
al. (1981) first constructed a predictive model for site location in a large study area 
encompassing the corridors oftwo proposed transmission lines and then carried out 
a "sensitivity analysis" for the predicted archaeological resources in these same 
areas. The sensitivity analysis was designed to predict the likelihood that disturb
ances in different geographic tones will significantly impair the research value of 
predicted archaeological resources, given the predicted regional research value of 
these resources, their density, and previous disturbances in each zone. I will 
consider only the predictive aboriginal land-use model in this discussion. 

Ifwe have to fit this model into one of the pigeonholes shown in Figure 2.1, it 
would probably be best to call this an inductive model aimed at the analytic 
(archaeological) context, at a nominal level ofmeasurement, although to the (rather 
large) extent that the authors rely on an ethnographic model, it could be argued 
that this is primarily a deductive approach. There is no formal statistical model for 
site location, type, or density, but the model was operationalized to the extent that 
a map could be made. To the extent that the model construction relied on data from 
archaeological site excavation and survey, it is fair to calfit inductively based. The 
model also takes into account the seasonal distribution and density of resources, 
however, and draws on recent hunter-gatherer studies. In some places it apparently 
(and implicitly) assumes a least-cost solution to location ofsettlements in cases of 
conflicts between the location of resources. For example, many researchers assume 
that storage of fish and roots was necessary in order for human inhabitants in the 
Columbian Plateau to survive the harsh, resource-poor winter months in a rela
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tively sedentary fashion. In this study area, fishing and presumably fish and perhaps 
root storage were concentrated along the large rivers, the Columbia and Okanogan. 
These same river valleys, however, were probably unfavorable winter locations 
from the point of view of adequate shelter from severe winter winds and the 
availability ofwood for fuel. Mierendorf et al. assume that in decisions about winter 
village locations priority would be given to distributions of landforms providing 
shelter from winter winds and to the availability of fuel, which is a bulky, heavy 
item in comparison with stored food. 

The predictive model is based on a vegetation map and a set of topographical 
contour maps. The model recognizes six broad zones of archaeological resource 
types and densities (Mierendorf et al. 1981:90): 

1. Summer hunting and gathering zone; low density. Areas supporting 
summer hunting ofdispersed ungulates. The highest elevations, which have a 
mesic vegetation and are accessible only in the summer, are mapped as part of 
this zone. 

2. Summer and fall hunting and gathering zone; low density. Areas support
ing dispersed ungulate hunting in the summer and fall. Intermediate eleva
tions with a xeric vegetation are included in this zone. 

3. Spring, summer, and fall (on map) and winter (in text) hunting and 
gathering zone; low density. Low-elevation, steppe vegetation zones not 
included in any of the other categories are mapped in this zone. These areas 
are relatively accessible in winter. 

4. Summer fishing camp zone; high density. Areas within 10 km (6.2 mi) of 
falls and rapids on the Columbia and Okanogan rivers and mouths oftributar
ies to these rivers are included here. Catchment sizes are modified to reflect 
steep river valleys, resulting in a linear distribution for this zone. 

5. Winter residence zone; moderate to high density. Areas in which stands of 
timber, protected canyons and valleys, and water resources are available 
within a 5 km (1.3 mi) radius of each other are mapped in this zone. 

6. Overlap of fishing camp and winter residence zones; high density. 

Generalizability. This model is intended to be applicable to a study area in 
north-central Washington that covers more than 21,000 km2 (8000 mi2). The tem
poral scope of the model is assumed to be the entire local prehistoric sequence. Its 
applicability to other areas may be slight, inasmuch as it relies on local ethnographic 
analogs and archaeological data for its predictions. 

Simplicity. The model is moderately parsimonious in its selection of inde
pendent (causal) variables. Three different types ofvariables (shelter, fuel, and food 
resources) are considered for their possible effects on the locations ofthree different 
site types. Both on-site and catchment-area variables are considered. The model 
gains simplicity but loses realism and precision by not incorporating changing 
resource distributions due to changing climates and changing adaptation types due 
to intensification. 

40 



PREDICTIVE MODELING: HISTORY AND PRACTICE 

Precision. The model gains precision by considering seasonal distributions of 
resource types and by identifying differing site types and densities. On the other 
hand, the very large study area, the rather poor quality of available maps of 
important resource distributions, and the hand-measurement techniques all con
tribute to low spatial resolution in prediction. It is hard to imagine, particularly, 
how the distribution of the winter village zone could be accurately mapped using 
these manual techniques. The authors themselves call attention to these shortcom
ings (Mierendorf et al. 1981:84,94). 

In many ways this study is exemplary among the "overview" documents that 
attempt to predict prehistoric land use. Most such overviews result in unoperation
alized models that remain at a verbal, unmapped, unmeasured level, somewhere in 
the far left-hand box in Figure 2.1. It also avoids too heavy a reliance on existing 
survey records that (if typical ofmost areas) are biased toward certain types ofsites. 
This is achieved by giving more weight to natural resource distribution than to the 
existing site data base and by building a reasonable model for the use of those 
resources by using the ethnographic record. Even granting unlikely climatic stabil
ity assumptions resulting in unchanging resource distributions, the danger in such 
an approach, ofcourse, is that if adaptation types other than those present in the 
documented ethnohistory were ever present, they will not be identified or pre
dicted by such a model. 

A weakness that this model shares with most overview documents is the 
absence of attempts to validate statistically the variables selected as probable 
determinants of site location. Of course, in cases where no existing data base is 
available or where the existing data are irretrievably flawed, this is the only possible 
approach. In other cases, however, there should be an effort to build a null, random 
model for the location ofarchaeological resources for statistical comparison with the 
actual distributions. Impressionistic isolation of determinant variables should be 
avoided since it may result in the use ofvariables whose significance cannot in fact 
be demonstrated or in the failure to use variables whose significance could be 
demonstrated. Even ifthe selected variables are the correct ones, the model will not 
be convincing to those who have other subjective impressions of the determinants 
of site location. 

A Hierarchical Choice Model for Site Location 

Before moving to predictive models based on deductive, optimizing assump
tions and inductive models involving substantial analysis of ratio-level data, a brief 
discussion of an approach to settlement location analysis proposed by Limp and 
Carr (1985) will be useful. Their model should probably be categorized as a 
deductive approach to the systemic context, on an ordinal level of measurement 
(Figure 2.1). These authors propose that people make decisions about anything, 
including location of activities, by ranking the available alternatives into sets of 
equal preference value and then randomly selecting an alternative from the possibil
ities in the highest available preference set. This "general theory of rational choice" 
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was derived by Arrow (1951). The ordering of available options into these prefer
ence sets is based on "conditional preference aspects"-those aspects of the 
environment (broadly speaking) that directly bear on choices. When there is more 
than one "choice-making" aspect to be considered, it is assumed that the alterna
tives are evaluated in a sequential, hierarchical fashion by the decision-maker. In 
this framework an unfavorable aspect of a location (e.g., no water or too much 
water) cannot be mitigated by another, favorable aspect, as could happen in a linear 
additive modeL 

One key decision to be made in the analytic context when using this model is a 
choice as to how many preference sets should be assumed to have been in use for 
each choice-making aspect. Ifthere are only two preference sets for each variable
satisfactory and unsatisfactory locations-the approach is formally identical to a 
"satisficing" approach (Simon 1957), as used by Williams et aL (1973) in the Great 
Basin, for example. As the number ofsets that need to be ranked becomes greater 
than two for each variable, the framework approaches the optimization called for by 
classical marginalism: large numbers ofbits ofinformation have to be considered by 
both the decision-maker and the analyst. Intermediate numbers of preference sets 
imply an ordinal level of measurement. 

Limp and Carr (1985) present a few brief examples ofhow this framework can 
be applied in different settings. They convincingly argue that hierarchical choice 
analysis is a realistic model for how people make decisions, since it does not assume 
that they can make, or wish to make, perfect calculation of return rates on every 
variable for every possible location. Nor are the data requirements in the analytic 
context as huge as for an optimal foraging theory model, for example. The hierar
chical decision process assumed by this framework does not lend itself to easy 
discovery through any presently available computer algorithms, however, and it 
certainly cannot be reconstructed by such linear additive models as multiple linear 
regression, for example (Kohler and Parker 1986:428-430). 

Generalizability. Because of its flexibility and its explicit reference to the 
systemic context, this model has very great generalizability. It has the ability to 
bring all kinds ofchoice-making aspects into consideration, not just those related to 
food resources. Indeed, one of the problems with the approach is that it is so very 
general that it gives few internal guidelines as to how it might be applied to a 
specific area. How many choice-making aspects should we expect? Where should 
the "break points" for a ratio-level variable like distance to water be established for 
each preference set, and how do we know this? Can an inferential technique be 
devised to reconstruct hierarchical decision frameworks from a distribution of 
points with and without archaeological resources? These are important questions 
that need to be addressed before application ofsuch models can advance very far. 

Besides these operational difficulties, we may. ask to what extent it is appro
priate to view all, or most, site locations as the result of "free" decisions in the 
systemic context. Kohler and Parker (1986:432-438) have identified a number of 
constraints on choice, instances in which "rational" decision rules are violated, 
cases where there is extreme lag in response to changing environmental determi
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nants, and other factors that make it difficult to analyze site location as though it 
were the outcome of simple, rational decisions. Then too, it will be suggested in 
Chapter 4 that settlement systems have a kind ofinternal logic that has little to do 
with individual or even group decisions at particular moments in time. Despite 
these very real problems, it is not easy to see how human behavior can be analyzed 
and predicted in the systemic context without considering how and why people 
make decisions. 

Simplicity and precision cannot be evaluated for this example, since they depend 
on particular applications of the framework. 

An Inferential Model for Site Location in Central and Southeastern Utah 

The next case was selected as an example of the most common approach to 
predictive locational modeling in North America and particularly in the arid West. 
This is an inferential multivariate predictive model, operating on a ratio level of 
measurement and targeting the analytic context. This example, in common with 
many others that could be mentioned, is the result of a Class II (sample) cultural 
resource inventory-in this case, three tar sands areas in Utah (Schroedl 1984; Tipps 
1984; Appendix, this volume). 

For the larger two of the three study areas a two-phased random sample of 
quarter-sections was drawn, selecting 5 percent ofthe population on the first round 
and an additional 5 percent on the second round. (The third area was simply 
sampled at 10 percent, since it comprised only seven 160-acre quadrats.) The 
sequential samples were actually surveyed at the same time, but the results were 
recorded separately so that model building and model testing and revision could be 
conducted using different sets ofdata. Survey intensity and means ofdistinguishing 
sites and isolated finds are explicitly described in the report. For each site, probable 
age and cultural affiliation were recorded, and the site was classified into one of 10 
descriptive site types (for example, pithouses, rockshelters, and lithic scatters with 
features). A second functional classification, more useful for explanatory purposes, 
was devised by evaluating eight criteria for the 158 sites/components in the sample: 

1. diversity and size of the tool assemblage 

2. maximum density of artifacts 

3. frequency of debitage (lithic debris) 

4. site size 

5. number of features 

6. type of features and amount oflabor investment represented 

7. presence of trash or midden deposits 

8. presence of stratified deposits 

The first five ofthese variables-those measured at the ratio level-were analyzed 

using principal components analysis (see Chapter 5). Four groups emerged on the 
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two significant factors, and these were interpreted as representing the major 
functional types suggested by Binford (1980) for logistically organized hunter
gatherers. The non-ratio-Ievel variables were used to check the site classifications; 
these variables usually supported the type assignments made on the basis of the 
principal components analysis. 

Site location analysis began with univariate descriptive frequencies for all sites 
in each study area with respect to elevation, aspect, slope, distance to permanent 
water, primary and secondary landform, depositional environment, primary and 
secondary vegetation, and primary and secondary geologic substrate. 

One nice feature of this report is the discussion of how point estimates and 
confidence intervals for the total population of sites in each study area were 
calculated (Tipps 1984). It is relatively rare for confidence intervals to be calculated, 
which is a waste ofone of the main advan tages of random design adopted by most 
surveys. Tipps also warns her readers, quite correctly, that in two ofthree samples 
the amoun t ofskewness relative to the sample size may lead to confidence intervals 
that are misleadingly narrow, using the normal parametric estimation techniques 
employed (for a discussion of statistical terms used here, see Chapter 5). 

Two separate predictive models were developed (Schroedl 1984). One ofthese, 
incorporating Landsat imagery, turned out not to be very informative and will not 
be discussed further. Predictive models were constructed only for the two larger 
survey areas, which were somewhat more similar to each other than they were to 
the third area, and the two larger areas were pooled for purposes of analysis. 
Disappointingly, the functional identification ofsites carefully worked out earlier in 
the report was not used for locational analysis and prediction, probably because of 
sample size considerations imposed by the inferential approach. (Division of the 
total pool ofsites into its constituent classes significantly reduced the sample size in 
each class, which in turn makes it less likely that significant relationships with 
environmental variables will be discovered.) Nor is there any analysis ofthe location 
of the considerable number of isolated finds recorded during the survey. 

The model-building process went through several preliminary stages. In the 
first, nine variables were used in a discriminant analysis to find the best linear 
function differentiating between sample quadrats from the initial 5 percent samples 
that contained, or did not contain, sites. Distances were measured from the center 
ofeach 1OO-acre quadrat. The directional aspect was broken into two components to 
avoid the problem typically associated with measurements in circular degrees. (A 
symptom of this problem is that 359" and 1° are very similar measurements.) The 
variables were 

1. difference between the maximum and minimum elevation in each quadrat 

2. distance to nearest permanent water 

3. percentage of the quadrat covered by pinon-juniper 

4. number of drainages within the quadrat 

5. average quadrat elevation 

44 



PREDICTIVE MODELING: HISTORY AND PRACTICE 

6. distance to nearest river 

7. distance to nearest wooded area 

8. north-south aspect 

9. east-west aspect 

In the first two-group analysis, only the first four variables were selected by the 
stepwise procedure used for construction ofthe one discriminant function. Reclassi
fication of the quadrats on which the function was based into their original groups 
(sites, no sites) was 73 percent successful; classification error rates for the quadrats of 
the second 5 percent sample were about 10 percent higher. These results are 
somewhat lower than, although within the range of, other similar attempts tabu
lated by Schroedl (1984: 155). A second stage ofrefinement, which involved discard
ing three outliers from the analysis and using more of the sample quadrats in the 
initial classification-building portion of the discriminant analysis, improved these 
results; two additionai variables (5 and 6 above) also contributed to the linear 
discriminant function. 

The final analysis employed all ofthe sample quadrats and discriminated three 
groups ofquadrats: those without sites, those with one site, and those with more 
than one site. Reclassification rates were quite high but, ofnecessity, were based on 
the same sample for which the functions were obtained in the first place. In a 
three-group solution there may be one or two significant linear discriminant 
functions; there are two in this example. The first, explaining about 40 percent of 
the total variance, showed that high-elevation quadrats with relatively large pro
portions of pinon-juniper contained a larger number of sites than low-elevation, 
unwooded quadrats. The second function, which explained about 12 percent ofthe 
total variance, was orthogonal to the first; that is, this function exploited a dimen
sion ofvariability uncorrelated with the high elevation/high pinon-juniper vs low 
elevation/low pinon-juniper dimension. Apparently there were several quadrats 
that had a relatively high number of drainages but were not significantly higher in 
elevation than those having only a few drainages. These same quadrats were also 
located a long way from a river and tended to contain only one site; they were 
differentiated from quadrats with no sites or with two or more sites along this 
dimension. 

Genera/habUity. It seems probable that this solution exploits a good deal of 
variability peculiar to this particular sample; it would be surprising if the second 
dimension of variability turned out to be typical of much of the intermountain 
West. The first dimension is much more general; a similar discriminator could 
probably be found in many areas at similar elevations in the intermontane region. 

Simplicity. The final predictive model, in the form of the classificatory equa

tions derived from the discriminant analysis, allows unambiguous classification of 

any quadrat from the spatial population into one ofthe three groups on the basis of 

measurements on six variables (the original nine variables less distance to wooded 

area and the two aspect determinations). 
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Precision. The 160-acre quadrats do not allow for very precise prediction of 
site location. The author points out, quite reasonably, that achieving higher spatial 
precision over large areas is extremely time consuming without the use of such 
computerized data-collection aids as geographic information systems (see Chapter 
10). Nor are the predictions very fine grained in terms ofthe types ofsites predicted 
to be present. Some gain in precision in terms of the number of sites predicted for 
unsurveyed quadrats is achieved by the three-group solution, in contrast to the a 
priori site/nonsite classes used by most analysts. There is little reason to expect, 
however, that the local environment in quadrats with one site should be opposable 
to that in quadrats with more than one site along a continuum that is at right angles 
(or uncorrelated with) the continuum that distinguishes between quadrats with no 
sites and quadrats with many sites. Some functional differentiation in site types is 
almost certainly being exploited here, and the results might have been even better 
had this distinction been taken into account for prediction. 

An Optimal Foraging Theory Model ofSite Location for the Northeastern 
Continental Shelf 

Barber and Roberts (1979) present both an inductive and a deductive approach 
to the difficult problem of estimating site types and densities on those portions of 
the continental shelffrom the Bay of Fundy in Maine to Cape Hatteras in North 
Carolina that are now submerged but were exposed at or after 18,000 BP. Although 
they face unusual measurement problems because ofthe nature oftheir study area, 
their conceptualization problems are the same as those for a dry-land model. Only 
their deductive model-based on optimal foraging theory-will be discussed here; 
see the Appendix for a summary of the entire project. 

Optimal foraging theory models are derived from fundamental assumptions in 
evolutionary ecology and population genetics in which change in the relative 
frequency of traits in a population is interpreted as being due to differential 
inclusive fitness among the individuals in that population. From this perspective, 
the goal ofbehavior should be to maximize the individual's proportionate contribu
tion to the genotype of the next generation. Unfortunately, inclusive fitness is 
difficult or impossible to measure, but it may have correlates that can be measured. 
Optimal foraging theory assumes that the net rate of energy captured by an 
individual (or some similar measure) is such a correlate, and that it will be maxi
mized by selective forces (Smith 1980:58). 

There has been an extended discussion about the applicability ofsuch models 
to human populations. Those cultural ecologists who accept the "monism" dictate 
discussed above consider these models to be clearly relevant. Eric Alden Smith 
(1980: 12-15) points out that there is a middle ground between two extreme positions: 
(a) that cultural processes are perfectly analyzable in terms ofgeneral evolutionary 
models, with the only meaningful distinction being that cultural evolution is more 
rapid and more finely tuned; and (b) that cultural processes are shaped by purely 
cultural goals that have no necessary congruence with biological criteria for 
adaptation. 
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lA] third alternative is ... that cultural criteria guiding decisions and long-term changes 

are closely correlated with, but not isomorphic with, biological criteria of adaptive 

success. In this case, biological factors acting at the proximate level ensure that cultural 

modes ofinheritance will not substitute selective criteria that are consistently in conflict 

with fitness maximization .... 


Selective criteria ofgenetic evolution, and those ofculture change or individual decision

making, will be generally but not perfectly correlated [1980:14-15]. 


Models for the location of behavior based on optimal foraging theory share 
some similarities with the general choice theory used by Limp and Carr. Since they 
deal in decisions, both operate within the systemic context. The hierarchical choice 
methods essentially specify how choices are made (choice mechanisms), however, 
while optimal foraging theory also specifies why choices are made (choice goals). In 
one sense the approach advocated by Limp and Carr is more generalizable, since 
goals other than optimizing food intake can be accommodated. Optimal foraging 
theory is more complete, and perhaps more useful, however, since it contains 
internal guidelines to predict exactly what choices will be made given an array of 
information on resource costs. Both use a deductive logic for prediction. 

The information needed to apply and test optimal foraging models is difficult 
and expensive to collect, and it has not been easy to test such models, even in 
modern ethnographic contexts (but see Smith 1980; Winterhalder 1983). In the 
archaeological context the problems are multiplied immensely. These problems are 
particularly serious for the application discussed here, since no detailed paleoenvi
ronmental maps are available for the inundated continental shelf. For some of the 
resources, return rates have been experimentally estimated by Perlman (1976). 
Since the rigorous quantification ofnet resource yields called for by optimal foraging 
theory was impossible for most resources, the authors dichotomize the major 
potential food resources along two dimensions: the probable importance of the 
resource, based on grossly estimated caloric return rates (primary vs secondary 
resources), and the degree to which location in the immediate vicinity of the 
resource is necessary for efficient exploitation of that resource (determinate vs 
indeterminate resources). Shellfish, for example, have relatively low return rates 
and are therefore secondary, but they are localized in space and have a large amount 
of waste weight, which would encourage location of sites in the vicinity of the 
resource (Barber and Roberts 1979:306). The resources characterized in this manner 
are shown in Table 2.1. 

The authors recognize that the immediate predictions made by optimal 
foraging theory concern what resource patches will be exploited under what 
conditions. Locations ofsettlements, therefore, are one order ofinference removed 
from the predictions that optimal foraging theory is designed to make. The spatial 
resolution of predictions is so low for this particular model, however, that this may 
not be a problem. Only four zones are differentiated for prediction: full coastal, 
estuarine, inland valley, and upland. Given that the locations ofthese zones change 
during marine transgression, Barber and Roberts separate the extremely long 
period of interest (beginning at 18,000 BP) into six 3000-year segments. They also 
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TABLE 2.1. 


Resources categorized by return rate and role in influencing site location 


Importance 
Resource (Return Rate) Role in Determining Location 

nuts (various oaks, hickory, and pecan) pnmary indeterminate 
mammoth and mastodon secondary indeterminate 
caribou secondary indeterminate 
moose secondary indeterminate 
seals (spring) primary determinate 

(other seasons) secondary indetermina te 
walrus secondary indeterminate (?) 
anadromous fish pnmary determinate 
other fish primary (1) determinate (1) 
marine molluscs secondary determinate 

From Barber and Roberts 1979:307-314 

subdivide the north-south expanse ofcontinental shelfinto three subareas: Maine> 
southern New England> and Mid-Atlantic. 

For each period> in each subarea, predictions are made concerning the proba
ble site size, site density, and to a limited extent, site type in each of the four 
environmental zones (a portion of one of their tables is reproduced here as Table 
2.2). The authors assume that site size is correlated with population size; dispersed 
populations will be found in areas with "predictable, mobile, and evenly distributed 
resources," leading to small sites. Aggregated populations and, consequently, large 
sites will be found in areas with unpredictable, immobile, and clumped resources 
(Barber and Roberts 1979:316). The effects on site size ofsuch variables as duration 
of occupation and location reuse are not considered. Site density, in turn, is 
considered to be a function of the "relative attractiveness of the several environ
ments for exploitation" (1979:317) and so is predicted only on an ordinal level within 
each period, for each subarea. Barber and Roberts intend these projections ofsite 
size and frequency to be suggestive; they do not believe that more precise estimates 
could be calculated reliably using available information. 

Genera/ixability and Precision. Models in which both decision mechanisms and 
decision goals are fully specified by theory seem to provide the only consistently 
deductive, truly rigorous formulation for predicting site location. For optimal 
foraging theory models the resources actually used must be inferred for each specific 
application, and return rates for these resources must be calculated for each case. 
Once these inferences and calculations have been made, however, all predictions as 
to resource use then follow automatically from the theory itself. This is in contrast 
to the rational choice theory approach described above, or to the satisficing 
approach, where preference sets or acceptability criteria must also be discovered 
inferentially or made up using rules of thumb. 

When optimal foraging theory models are used to predict the locations of 
activities resulting in the deposition of archaeological materials, the explicit focus 

48 



TABLE 2.2. 

Example predictions 

Anadrtmwus-Firh 
Subarea Time Span (BP) PaleQm'PirQnment Predicted Site Siu Prtdicted Site Shtft Middens Presmt Camps PreStnt 

Maine 18,000-12,000 under glacier or sea none none 

12,000-9000 full coastal small low 
estuarine small low 
inland valley very small low x 
upland very small low 

9000-6000 full coastal small-medium medium-low X 
estuarine small medium X X 
inland valley 
upland 

small 
small 

low 
low 

X 'i:j 
:;tl 
tr1 
0 

6000-3000 full coastal 
estuarine 

small-large 
small-medium 

medium-high 
medium 

X 
X X 

r5...., 

t 

inland valley 
upland 

small-medium 
small 

medium 
low 

X <: 
tr1 

?: 
g 
tr1 
r 
Z 
9 
::r: en ...., 
0 
:;tl 
-< 
~ 
0 
'i:j 
:;tl 
>
() ...., 
r5 
tr1 

From Barber and Roberts 1979:322 
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on the spatial distribution and return rates offood resources (only) is a two-edged 
sword. There is no reason to doubt that there will be a general correlation between 
the distributions of archaeological materials and the distribution of exploited 
resources; after two decades of settlement pattern analyses this is no longer a 
surprising conclusion, or even one worthy ofresearch in itself. Considerably more 
work if needed, however, on predicting exactly what these materials will be, how 
they were deposited, and what their relationship was to other materials elsewhere 
on the landscape. This task will require consideration ofmore than the distribution 
of food resources. 

Optimal foraging theory assumes that all humans are foragers. In Chapter 4 we 
will argue that, since not all humans are foragers, the degree of intensification 
affects the organization of the settlement systems, and this in turn determines how 
spatially predictable the sites generated by that system will be on the basis of 
variables in the natural environment alone. For example, in the case of foragers we 
might expect that many resource patches-especially if they overlap spatially in 
their temporal availability with other nonsubstitutable resources and are relatively 
isolated rather than continuous in their spatial distribution-will support residen
tial bases. These same resource patches, however, may be visited intermittently by 
specialized task groups in a logistically organized subsistence system. In still more 
intensified systems, variables other than the distribution ofenvironmental resour
ces become increasingly important in the location ofresidences and other site types. 
We need to begin trying to make predictions with more specificity about how 
human settlement systems interact with the environment-not just where undif
ferentiated sites or materials will end up on the landscape, but what kind of use 
these represent in the systemic context. 

The lack of behavioral (and spatial) precision is no fault of these particular 
authors, who suffered more severe measurement problems than most. No large 
predictive locational models have ever been constructed with great behavioral 
specificity. These considerations are relevant here, I believe, because if such 
specificity is ever to be achieved it will be through a deductive approach to the 
systemic context, using detailed reconstructions of the resource availability in the 
paleoenvironment. 

The generalizability of optimal foraging theory models for human use of the 
landscape is limited by their relatively low degree of"portability " across different 
adaptation types, especially those ofincreasing intensification. The precision with 
which these models do what they were explicitly designed to do-predict foraging 
exploitation ofresource patches-is probably high in the ideal case, although this is 
difficult to test. In the particular example discussed here, measurement problems 
interfere with high precision. 

Simplicity. Optimal foraging theory models are wonderful in the simplicity of 
their design and the economy oftheir assumptions. In fact, it is this very simplicity 
that prevents them from being more general. What is not simple, however, is 
handling the mass ofratio-level information necessary to rigorously map a predic
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tive model based on this theory. For such purposes a geographic information system 
(Chapter 10) seems essential. 

I do not mean to minimize the shortcomings of optimal foraging theory, 
particularly as they might affect the accuracy ofprediction. One such shortcoming 
is the assumption that each resource patch, and the landscape as a whole, will be 
used at its maximum capacity, when in fact hunter-gatherers typically do not 
expand their populations to the carrying capacity of the region. Another is that 
cultures frequently have high-status resources (and conversely exhibit food taboos) 
that do not have any obvious relation to resource abundance or caloric content. 
Readers should consult Martin (1983, 1985), Sih and Milton (1985), Hawkes and 
O'Connell (1985), Yesner (1985), and Smith and Winterhalder (1985) to capture the 
complexity of the recent debate on issues surrounding application of optimal 
foraging theory to human societies. 

Discurrion 

Gmeralizability. One clear conclusion emerges from these four examples: 
deductive theories of settlement location that work from first principles have 
considerably more potential generalizability than do specific models designed for 
particular areas and derived almost entirely through empirical procedures. Thus, 
the framework of decision theory and analysis discussed by Limp and Carr (1985) is 
very generalizable; the optimal foraging theory framework is somewhat less gener
alizable but can still be applied to differing environments and adaptation types. 

The inductive or inferential framework, ar an overall strategy, is very generaliza

ble. An ii1d~tive model can be constructed for any area that has a partially known 

arc~ _ ethnographic record. But we must differentiate between a strat

~ (Of .\l~'l$is or prediction (inductive generalization vs deductive implication) 

and a mud::!' ftplaining or predicting site location. An optimal foraging theory 

model can be applied in any area; only the structure ofthe environment in question, 

and the resources actually used, change. Each new inferential model starts from 

scratch: of the infinity of variables that might have affected how people used space, 

which actually did? 


Precision. There is no inherent difference between inferential and deductive 

models in their potential spatial resolution ofprediction. As it happens, none of the 

models discussed above had finely resolved spatial predictions, although some 

inferential models (for example, those discussed by Kvamme later in this volume) 

do. There is more to precision than spatial resolution, however. How fine-grained 

are the predictions of site type or of the cultural and natural forces at work in the 

formation of the archaeological record? Are predictions made about assemblage 

content? As such questions approach behavior in the systemic context more closely, 

it becomes more natural to frame them in a deductive manner. 


Simplicity. The discussion of the two deductive models for site location 

suggests that there is a general trade-off between simplicity and generalizability. 
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The optimal foraging theory model is more parsimonious but less generalizable than 
hierarchical choice theory. Inferentially constructed models are not necessarily 
more parsimonious than deductive models. Although the examples used here shed 
no light on this question, Limp and Carr (1985) suggest that a few processes can 
generate a multiplicity of forms. Since inferential models deal with forms, and 
deductive models with processes, the latter may prove more parsimonious. 

CONCLUSIONS 

Some of what has been said above seems to favor deductive approaches over 
inferential approaches to the problem of predicting types and locations ofarchaeo
logical materials, and the same will be true of the method and theory discussion in 
Chapter 4. And yet, while models are classified one way or another here for 
taxonomic purposes, it is evident that neither purely deductive nor purely induc
tive models are possible. In the first case, we would not know how to apply the 
model to a particular area; in the second, we would not know what variables should 
be considered for inclusion in the analysis. 

Much of this book will be devoted to discussing the kinds of inductively 
derived models that constitute most current efforts in archaeological predictive 
modeling. While empirical correlative models can be very useful in specific cases, in 
this chapter and in Chapter 4 we would like to balance the picture somewhat by 
suggesting that deductive explanatory models should have greater utility in the 
long run. Both the manager and the researcher want predictive models that are 
ureful, after all, and as Blalock (1979:120) points out, there are several ways that 
utility can be defined in such a context. One ofthese is in the significance ofwhat we 
learn through the application of the model. I think that nearly everyone will agree 
that it is more significant to learn something about both the systemic and archaeo
logic contexts at the same time than it is to learn about the archaeologic or analytic 
context alone, as is so often the case for inferential models. 

Another indication ofutility is whether the application of the model results in 
predictions that go beyond those that could have been made by common sense or 
by a casual examination of the phenomena in question. As long as we couch our 
analyses in terms of casually observable variables (for example, a dichotomy 
between site presence or absence) it will be hard to transcend common sense 
predictions, such as the prediction that sites will cluster around resources basic to 
human needs. 

A third potential criterion for utility is the generalizability ofa model to other 
times and places. In fact, until such time as we begin to gather reliable estimates of 
model accuracy, I suggest that we strive to build models that are both generalizable 
and precise. Ifgeneralizable and precise models can be constructed, I think we will 
find that accuracy will take care of itself. 
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Chapter 3 

MODELS AND THE MODELING PROCESS 

Jeffrey H. Altschul 

In Chapter 2 a model was defined as "a simplified set of testable hypotheses." 
Researchers investigating a particular phenomenon create a model by isolating 
various components of the phenomenon and then positing (or hypothesizing) a 
relationship or series ofrelationships among them. The result is a simplified version 
of the phenomenon that mimics, in a general way, the events or behaviors in 
question. 

One ofthe utilities ofa model is that it is possible to hypothesize how changes 
in one or more components will affect the final state ofthe phenomenon; that is, one 
can predict what the phenomenon will "look like" given specified changes in 
particular components. All models are predictive in this sense. It is important to 
emphasize, however, that prediction is not synonymous with explanation and that 
predictive accuracy alone is not necessarily the best indicator of a model's utility. 
For instance, the old adage 

Red sky at night, sailor's delight; 
Red sky in morning, sailor take warning 

is a perfectly valid predictive model of the weather. Based on a single observation 
one can predict whether or not there will be a storm in the immediate future. 
Nowhere is it implied that the color of the sky explains why the weather is the way 
it is; the only implication is that a particular condition will occur based on a certain 
observation. 

An explanatory model of the weather might involve a series of differential 
equations deduced from theoretical propositions relating air pressure, relative 
humidity, wind currents, and the like, and it is quite possible that the predictive 
success of this model might be less than that of the old sailors' adage. The choice 
between these two models would depend on one's goals. Looking at the sky might 
be the best approach ifone is interested simply in predicting the immediate weather 
conditions. If, on the other hand, one wishes to understand the process, then it 
would be far better to reanalyze the internal logic of the second model in hopes of 
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refining the hypothesized relationships among components and ultimately produc
ing a higher success rate. 

A similar situation exists with models that are used to predict the locations of 
archaeological sites. Ifone is simply interested in predicting whether a location will 
or will not contain a site, then in many areas of the world a highly successful 
predictive statement would be to say that no individual location contains a site. 
This conclusion is based on the fact that sites are relatively rare "events" and cover 
only a minute fraction ofthe earth's surface. For example, two surveys conducted in 
conjunction with predictive modeling in the mountainous sections of the western 
United States showed that in at least these cases a "no site" prediction would have 
been right more than 99 percent of the time (Kvamme 1983; Reed and Chandler 
1984). 

Cultural resource managers and archaeologists, however, are less concerned 
with the overall predictive success rate of a model than with the likelihood of a 
wrong prediction. Basically there are two types of predictive errors: a prediction 
can be made that a location (or area) contains a site when in fact it does not, and 
conversely a prediction can be made that a location does not contain a site when in 
fact it does. The first type oferror may lead to increased costs or to inefficient use of 
resources and will be called a wasteful error. Errors of the second type lead to the 
destruction of cultural resources and will be termed groH errors. 

The errors defined above can be associated with the classical Type I and Type 
II errors defined by Jerzy Neyman and Egon Pearson in a series ofpapers in the late 
1920s and early 1930s (e.g., 1933a, 1933b). As these statisticians pointed out more 
than a half century ago, in a hypothesis-testing framework there are always two 
potential errors: we may reject the null hypothesis when it is in fact true (Type I) or 
we may accept the null hypothesis when it is false (Type II). To relate these errors 
to predictive modeling, we can take as the null hypothesis that an area will not 
contain a site. Ifwe reject the null hypothesis when it is true (i.e., accept the fact 
that there is a site when there is none) we are committing a Type I error or, as it may 
be viewed from a management perspective, a wasteful error. If, on the other hand, 
we accept the null hypothesis that a site does not exist in the area when indeed one 
does, then we are committing a Type II error, which we have more forcefully named 
a gross error. 

An ideal predictive model minimizes both types of errors; that is, it makes 
correct predictions. In practice, however, models do make wrong predictions. In 
this regard, we can make two observations. First, in general it is much more costly 
in cultural resource management to make a gross error than a wasteful one. Second, 
the likelihood ofmaking a gross error is inversely related to the likelihood ofmaking 
a wasteful error. To see the logic ofthe second point, one needs to understand that 
the primary means of reducing gross errors is by increasing the amount of land 
predicted to contain sites. But unless site location can be predicted with no errors 
(which is highly unlikely), this procedure will increase the number of wasteful 
errors. 
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The choice between two models, then, has less to do with overall success than 
with minimizing errors, especially gross errors. In general, a more powerful predic
tive model is one that for a specific proportion ofgross errors to total predictions also 
minimized the area predicted to contain cultural resources. Let us assume, for 
example, that there are two predictive models ofsite location for the same region, 
Model A and Model B. When both models predict that 5 percent of the region will 
contain sites, predictions derived from Model A are found to be correct 70 percent of 
the time, while those from Model B are correct 80 percent of the time. Our first 
inclination would be to conclude that Model B is a superior predictor. Let us say 
that upon closer examination, however, we find that in all its predictions Model A 
makes only 5 percent gross errors while Model B makes 10 percent. For most 
management purposes, then, Model A is twice as good as Model B (for additional 
discussion of these two types of modeling errors, see Chapter 8). 

TYPES OF MODELS 

Until now the discussion has proceeded as though differences in types of 
models were not important. While it may be true that any model that satisfactorily 
minimizes errors can be a useful predictor, the form of the model will determine in 
large part the confidence placed in it and one's willingness to make it even better. 

The scientific literature is replete with discussions of models, modeling, and 
prediction (e.g., Braithwaite 1960; Hempel 1965; Kaplan 1964; Salmon 1971; Scriven 
1959, 1962; Zetterberg 1963). During the past two decades archaeologists have also 
become increasingly interested in these subjects (Binford 1972, ed. 1977; Clarke 
1968, ed. 1972; Earle and Christenson 1980; Flannery 1968, ed. 1976; Fritz and Plog 
1970; Gardin 1980; Read 1974; Renfrew 1973; Renfrew and Cooke 1979; Renfrew et al. 
1982; Salmon 1975, 1976, 1978). Archaeological models range from simple analogs to 
complex simulations. Although the properties and forms of the various types of 
models differ in important respects, a more fundamental distinction, which bears 
directly on any discussion ofthe types ofmodels used to predict site location, can be 
made. 

In general, models can be divided into two groups based on the degree to 

which they can be operationalized. Those that contain components or relationships 

between components that cannot be measured in a replicable and reliable manner 

will be termed intuitive models, whereas those with components that can be so 

measured will be called objective models. Objective models are further distinguished 

on the basis of (a) the spatial referent of the dependent variable (i.e., whether 

aspects of site location for an area or specific locale are being predicted), (b) the 

predominant form ofprocedural logic (inductive or deductive), and (c) the nature of 

internal relationships among model components (i.e., whether independent varia

bles are given equal weight or relative weights). On the basis ofthese criteria, three 

categories of objective models can be defined: arsociational, areal, and point-specific 

models (Table 3.1). 
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TABLE 3.1. 


Types of objective predictive models of site locations 


Model Type 

Primary Procedural Logic 

Inductipt Deductipe 
Variable 
Weight 

Spatial 
Referent 

Associational Overlay or composite 
models 

Adaptive types E 
Q 
u 
A 
L 

A 

R 

E 

Areal Map interpolation 
Pattern recognition 
Grid prediction 

Simulation 
Discrete probability 

distributions 
Hierarchical decision 

R 

E 

L 

A 

L 

models A 

Point-specific Pattern recognition 
Point-specific 

prediction 

Central place models 
Gravity models 
Optimum location models 
Polythetic-satisficer 

models 

T 

V 

E 

P 

o 

N 
T 

The classification presented above differs from the one presented in Chapter 2. 
The previous typology was based on three criteria: the level ofmeasurement ofthe 
independent variables, the model's procedural logic, and the target context. Here 
our primary concern is not with the level of measurement but simply whether the 
measurements are made in a consistent and replicable way. For models that can be 
operationalized in an objective manner, interest now shifts to the form ofthe model, 
that is, to the relationships among the internal components and to the nature of the 
dependent variable. 

Intuitive Models 

Intuitive models can be derived through either inductive or deductive logic, 
with the reference frame being either the archaeological record or patterns of 
human behavior. An example of an intuitive model is the statement, "You'll find 
arrowheads on high ground near water. H This statement may be based on repeated 
observation or on a common-sense theory a~ut human behavior. But regardless of 
whether the statement is based on inductive observation or on deductive thinking, 
the most important characteristic of this model from a scientific standpoint is that 
the components are not fully conceptualized. While everyone may understand the 
thrust of the statement, there will not necessarily be agreement on what is high 
ground or what "near water" means. The relationship( s) among landform, distance 
to water, and artifacts is only partially established. Until everyone can agree on 
what the terms mean they cannot be operationalized in a way that is replicable. 
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Until the variables are operationalized they cannot be measured, and without 
measurement the relationship( s) cannot be tested. 

Many archaeologists might contend that intuitive models are not really models 
at all, reserving that term only for constructs that can be measured and tested. 
Leaving aside the philosophical issues, there is good reason to consider intuitive 
thought in a discussion ofpredictive modeling. Much ofthe recorded archaeological 
data base in the United States was derived through intuitive models. American 
archaeologists have only recently concerned themselves with formalizing their 
notions about site location into research designs. Many archaeologists have sur
veyed and continue to survey land based on their ideas about where they will find 
sites. Moreover, these intuitive models are often the basis for more intensive 
research projects. For example, in the early 1970s the Corps of Engineers began 
plans for the development of Sardis Lake, a reservoir covering about 1400 ha in 
southeast Oklahoma. The agency commissioned a survey that consisted of one 
person trying to find as many sites as possible in a I-month period (Neal 1972). The 
survey was based on personal intuition and reports from amateurs and resulted in 31 
sites being recorded. These sites, along with six others recorded later, formed the 
basis for 10 years of intensive excavation. 

Not only have intuitive models been the basis ofmuch professional work, they 
have been the mainstay ofamateur archaeology. As a result, recorded site locations 
in most areas ofthe United States do not necessarily reflect where sites are located 
but only where people have looked for them. Models of site location based on 
existing data can lead to predictions with very high accuracy rates. After all, if 
people have only looked for sites in certain types ofplaces, then it is inevitable that 
site locations will be highly correlated with specific environmental attributes. This 
is not to say, however, that all data collected on the basis of intuition must be 
ignored. Procedures for reducing the biases inherent in this type of data do exist 
(e.g., subsampling and weighted analysis) and will be discussed in Chapter 7. 

It is important to remember that intuitive models are not examples of bad 
science or ofbad thinking. Indeed, creativity and intuition are the most important 
and most illusive parts ofthe scientific process. The first question many archaeolo
gists ask themselves prior to designing a survey for a region is, "If I were a 
prehistoric inhabitant, where would I live?" The problem is that many archaeolo
gists stop there and never formalize their answer. Thus, no matter how brilliant 
their insight or how many sites they find, no one can objectively evaluate how well 
their model works. 

Objective Models 

Associational Models 

Often archaeologists are interested in determining whether patterns exist in 

the data. For instance, suppose a survey records 2, sites in a 1000 ha pinon-juniper 
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zone and 10 sites in an adjacent 2500 ha sagebrush zone. The first question asked by 
an archaeologist might be whether the difference in site frequency between the 
vegetative zones is greater than would be expected if there were no association 
between site location and the vegetation. One approach to answering this question 
would be to compute a goodness-of-fit statistic. If the value obtained exceeded a 
specific level of a chi-square distribution, the association could be considered 
significant. 

Ifit were determined that a significant association existed, the results might be 
used as the basis for a simple predictive model. It might be predicted, for example, 
that in another study area more sites would be found in the piiion-juniper zone than 
in the sagebrush zone. If this prediction were based solely on the patterning 
observed in a single survey, our confidence in it would be fairly low regardless of the 
strength of the association or the proximity of the two study areas. Confidence in 
the expected outcome might be greater if this prediction were based on 15 surveys 
in nearby regions, although we still would not be in a position to express our 
confidence in a quantitative fashion. 

Models similar to the one described above are common throughout archaeol
ogy. Many predictive models developed in cultural resource management studies 
take the form of relatively simple pattern-recognition, associational models. For 
instance, Kohler et al. (1980) conducted an intensive survey of the Halloca Creek 
drainage, which consists ofabout 2 percent ofthe area ofthe Fort Benning Military 
Reservation in Georgia. Twenty-one prehistoric and 10 historical sites were found. 
Site locations were examined to determine whether they covaried with six envi
ronmental variables. To evaluate the relationship between soil type and site 
location, for example, the observed numbers of sites per soil type were compared 
with the distribution expected if there was no relationship. After computing the 
appropriate chi-square statistic, the investigators concluded that the relationship 
between site distribution and soil type was nonrandom. 

In a similar fashion Kohler and his colleagues examined the associations 
between site location and vegetation, distance to water, slope, relative elevation, 
and distance to roads. The results suggested that the distribution of sites was 
nonrandom in relation to slope, soils, and horizontal distance to water and that it 
was random relative to the other variables. For each significant environmental 
feature, the investigators defined a variable with two states, favorable to site 
location and unfavorable to site location. A map ofeach variable was created for the 
entire military reservation, along with a composite map on which the three varia
bles were overlaid. Areas where favorable values for all three variables intersected 
were considered high-probability zones; areas with two favorable scores were 
defined as medium-probability zones; and the remaining areas were considered 
low-probability zones. 

Associational models like the one described above are among the most com
monly used predictive models in cultural resource management (e.g., Campbell et 
al. 1981, 1983; Chandler et at. 1980; Grady 1980; Klesert 1982, 1983; Larralde and 
Nickens 1980; Reed and Nickens 1980; Thomas et al. 1981). These models are 
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attractive primarily because of their simplicity; they are easy to construct and 
relatively straightforward to understand. They are not without their problems, 
however. For one thing, it is simply not true that the intersection of several 
favorable values for environmental variables will necessarily be a better predictor of 
archaeological site location than the individual variables themselves. The intersec
tion is only a more precise predictor ifthe variables are independent ofone another, 
which is highly unlikely with environmental variables. For instance, well-drained 
soils are only associated with certain types of landforms and with a restricted 
number of vegetative communities. Each of these variables individually may be 
highly correlated with site distribution, but before it can be concluded that the 
predictive power ofthe model will be increased by using all three simultaneously it 
has to be shown that site ,jistribution is associated with each variable after control
ling for the influence of the other two (see Chapter 5 for an extended discussion of 
spatial autocorrelation and statistical independence). 

A second major problem with associational models is generalization. For the 
most part, associational models have been developed as part ofClass I overviews or 
using the results from surveys ofmanagement-selected areas. They are usually not 
derived from probabilistic sample surveys and thus may contain biases that will be 
magnified if the model is generalized (i.e., extended to areas that have not been 
surveyed). 

The predictive power of this type of model, and certainly the generalizability 
of associational models, would be increased if the suggestions concerning the 
associations between site location and environmental attributes were not based 
solely on pattern recognition but instead were deduced from principles of human 
behavior. One would then be in a po~ition of demonstrating that an association 
between site location and an independent variable or set ofindependent variables 
exists, as well as being able to explain why the association exists. 

From a research perspective, explanation is our ultimate goal; only when we 
can explain why the phenomenon occurs can we be said to truly advance our 
understanding ofhuman behavior. Deductively derived models, however, are also 
superior from a management point ofview. Ifwe do not understand why patterns 
occur, our confidence that they will reoccur in the future will always be somewhat 
tempered. This is especially true when we deal with human behavior. The assump
tion that settlement locations were conditioned by environmental features may be 
valid in a general sense, but it will not explain why sites are frequent in one river 
valley and rare in another. Pattern-recognition models often show that settlement 
distributions are highly patterned, but without some sort of explanatory frame
work, management decisions based on these patterns are grounded more on faith 
than on reason. 

There are only a few examples ofdeductively based associational models. One 

such model was developed by Sabo et a1. (1982; see also Sabo and W addelll983) in a 

cultural resources overview for the Ozark-St. Francis national forests in Arkansas. 

These investigators used the concept ofadaptation type to model successive prehis

toric and historical human ecosystems in the Ozark Mountains. An adaptation type 
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relates regional environmental potential to specific levels of socioeconomic and 
technological organization. Sabo et al. (1982) defined four prehistoric and 14 histori
cal types in the Ozarks, e.g., Late Pleistocene/Early Holocene hunting and gather
ing, and Late Holocene horticultural, hunting, and gathering adaptations. 
Expected archaeological site types and their distributions within four major physio
graphic zones were derived for each adaptation type. The predictions were tested 
with 254 previously recorded sites. For each site, attributes of four environmental 
variables were recorded. <kmode cluster analysis resulted in groups that corre
sponded to the predicted site classes. 

In general, the Ozark-St. Francis model is more convincing than a pattern
recognition associational model, but it would be even more convincing if the 
adaptation types were not so broad. One cannot avoid the sinking suspicion that, 
given the conceptual framework, virtually any result could be viewed as consistent 
with the model. The general approach, however, is in the right direction. 

Has the emphasis on associational models in cultural resource management 
contexts really been misplaced? The answer seems to hinge on the stated objec
tives. Associational models provide a means ofoperationalizing the environmental 
variables that may be related to site location. In this sense they are a tremendous 
improvement over intuitive models. Associational models can be used to provide a 
first guess about site location and as a basis for future research; they can, for 
instance, define environmental dimensions that will be useful in stratifying a region 
for a Class II survey. Associational models, then, can be a good first step, but hardly 
a step at which to stop. 

Areal Models 

Areal models are those that predict certain characteristics of sites or cultural 
resources, such as density or frequency, per a specified unit ofland. For the most 
part, areal models are more attractive than associational models because the latter 
only produce relative statements about site location, such as "more sites will be 
found in this area than in that one" or "more sites are found in this zone than would 
be expected by chance alone," and these statements are often inadequate for 
research or management needs. In many instances researchers and managers want 
to know more than just the fact that one zone will contain more sites than another; 
they want to know how many sites each zone will contain and what the site density 
in each zone will be. 

Answers to such questions lie in the area of estimation, that is, deriving a 
reasonable estimate ofan unknown characteristic ofsites and/or ofsite distribution 
in a specified region on the basis ofa sample ofthat region. This issue falls under the 
topic ofsampling, which will be discussed in more detail in Chapter 6. Because of the 
close association between sampling and many forms ofareal models, some archaeol
ogists have viewed predictive modeling as synonymous with sampling for the 
purpose of parameter estimation (e.g., Ambler 1984). There are, however, good 
reasons for keeping the two separate. Parameter estimates are based on assumptions 
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about how the population ofcharacteristics is distributed and how that population 
is sampled. When some type ofprobabilistic sampling design is used (i.e., when the 
sampling technique, frame, fraction, unit, etc., are specified), an estimate of a 
population value can be computed. While this value is the best guess or prediction 
of the population value, it must be remembered that it is not characteristics of the 
populations that are being modeled but characteristics ofthe sampling distribution. 
That is, sampling theory makes no statements about how the population was 
derived (in this case, about how sites become located in specific places). Instead, 
sampling theory only allows us to determine the likelihood that a particular sample 
would result given a certain hypothesis about the underlying population. 

Predictive models ofsite location (as they are being defined here) all use some 
aspect of site location as the dependent variable that is being predicted by one or 
more independent variables. In areal models the nature of the relationship between 
the independent variable( s) and the dependent one is usually determined for 
relatively small areas, and this same relationship is then projected to exist in larger, 
more inclusive areas. Although this notion of projecting from a sample to a larger 
population is similar to parameter estimation, many areal models are generalized on 
some basis other than probability theory. 

Kriging, for instance, is a technique for generalizing that uses the concept of 
spatial autocorrelation-the presence of a characteristic in one area makes its 
presence in adjoining areas more likely (see Chapters 5 and 7). Basically a method of 
map interpolation, kriging uses moving averages and involves estimating values, 
and the errors associated with those values, for spatially distributed variables. 
Although kriging has been most extensively used in trend analysis on geologic 
mineral deposits, Zubrow and Harbaugh (1978) have provided several examples of 
how this technique can be used to predict site densities on the basis ofsamples. In 
one example they simulate how an archaeologist can divide an area into grid units 
and then, using his/her intuition about where sites are located, survey 12.5 percent 
of the grid units most likely to contain sites. A krige analysis ofthe results produces 
site density estimates for the entire region that are reasonably close to the true 
values. 

Kriging and other map interpolation techniques, such as trend surface analy

sis, have been largely ignored as bases for predictive models in cultural resource 

management, probably because most archaeologists are not well versed in these 

techniques. Whatever the reason, it is fair to say that the potential ofmodels based 

on map generalization has not been realized. Models ofthis type could be especially 

useful at the Class I or overview stage of work (e.g., Hansen 1984). 


One of the most popular types of predictive models used in cultural resource 

management is an areal-based pattern-recognition model. Although differing in 

form, most ofthese models utilize sample data to compute a mathematical function, 

which is then used to predict some aspect ofsite location (e.g., presence/absence or 

site density) for unsurveyed units. A variety of statistical techniques have been 

used in these models, including multiple linear regression, discriminant function 
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analysis, and logistic regression, but whatever the statistical technique the logic of 
these models is the same. 

The predictive model developed for the Bisti-Star Lake region of northwest
ern New Mexico (Kemrer 1982) is a good example of this type of model. The 
Bisti-Star Lake region is located in the Sanjuan Basin and consists ofvarious tracts 
of coal leases totaling approximately 191,500 ha (77,500 acres). The modeling 
approach adopted was to use the results of six previous surveys to create a 
predictive model. On the basis of these results, Kemrer and his associates devised 
eight site classes (Table 3.2), each of which served as the dependent variable in a 
separate predictive model. 

Landsat multispectral satellite data were then used to classify soil and water
source characteristics of the area into eight "environmental classes." Adopting an 
approach similar to that often used in remote sensing, the investigators used a 
sample oftraining pixels (in this case equivalent to an area ofabout 50 by 70 m) with 
known environmental characteristics to obtain a mathematical function by which 
unknown pixels throughout the area could be classified. In this manner very fine 
scaled environmental data were obtained. 

The next step was to place a 2 by 2 km grid over a map of the Bisti-Star Lake 
region. Seventy-eight "environmental" variables were then calculated for each grid 
square. Eight ofthese were simply the number ofpixels per unit for each ofthe eight 
environmental classes. A second set ofeight variables consisted ofthe proportion of 
pixels per grid square classified into each class. The remaining 56 variables repre
sented all unique two-way interactions between frequency and proportional varia
bles, respectively, of the eight environmental classes. 

TABLE 3.2. 


Bisti-Star Lake region site classes 


Site ClalS Number 

Lithic undiagnostic lithic scatters 410 

Anasazi sites dated to Basketmaker III - Pueblo III, as well as all 
sites considered to be Anasazi but not assigned to phases 178 

Pre-19B Navajo Navajo sites dating from the late 1600s to 1933 146 

Post-1933 Navajo :-.Iavajo sites dating from 1933-1980 358 

Total :-.Iavajo all :-.Iavajo sites combined (includes those that could not be 
assigned a date) 569 

Anglo/Spanish historical sites dating from 1700-1940 3 

Unknown historical historical sites that could not be affiliated with a specific 
group 14 

all sites combined 1174 

From Kemrer 1982:62 
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The 2 by 2 km grid squares were then used as units ofobservation for which the 
dependent variables (the number of archaeological sites of a specific site class per 
unit) and the independent variables (the 78 variables based on different methods of 
associating pixels of each spectral class per unit) could be measured. Linear equa
tions were developed for each site class using a multiple linear regression formula. In 
essence, these equations served as predictive models so that if the values for the 
eight environmentally related pixel variables could be determined for a grid unit, 
the number of sites of each site class could be predicted. 

The models were tested with data derived from a 15 percent sample survey of 
the Bisti-Star Lake region. Areas surveyed were not chosen through a probabilistic 
sampling design but were instead purposely selected to test the entire range of 
variability in cultural resource density. Based on the discrepancies between pre
dicted and observed numbers ofsites, the models were refined by recalculating the 
linear equations with the survey data. 

Models such as the one described above have recently become very popular in 
cultural resource management (e.g., Gordon et a1. 1982; Kranzush 1983; Lafferty et 
a1. 1981; Morenon 1983; Nance et a1. 1983; Newkirk and Roper 1982; Peebles 1983; 
Sessions 1979). Much ofthis popularity is probably due to the ease with which these 
models are created and to their apparent predictive power. Two inherent problems 
ofthese models should be pointed out, however. First, as with many spatial analytic 
techniques, grid size affects the results. The models developed on the basis ofa 2 km 
grid in the Bisti-Star Lake region differed substantially from those based on 1 km 
squares in nearby regions (compare Kemrer 1982 with Sessions 1979). Studies in 
other areas have also shown that widely differing results can be expected as the grid 
size is altered (e.g., Kranzush 1983), and thus far no one has been able to resolve this 
issue for a particular region, to say nothing of the general case. 

A second problem, which is also related to grid size, has to do with the 
characterization of the environment. Most often the environment of each unit is 
characterized on the basis ofone or, at the most, a small number of points in each 
grid unit from which environmental variables are measured. These points are 
argued to be representative of the environment of the larger grid unit. This 
approach is difficult to justify even for small units (say 40 acres or less) and simply 
misleading for large units. Commonly this approach leads to inaccurate predictions. 
For instance, Kranzush (1983) found a relatively high frequency of sites in 4O-acre 
units that were predicted not to contain any. She notes that in many cases the 
center point of the unit (from which the environmental variables were extrapo
lated) may not have been suitable for settlement but one could usually find at least 
one spot in the unit that was suitable. 

The approach developed by Kemrer (1982) for the Bisti-Star Lake region is an 
innovative solution to this problem (see also Tipps 1984), but the use of Landsat 
images to create environmental variables is not without its difficulties. The devel
opment of an environmental data base at pixel-level resolution requires not only 
appropriate aerial photographs but also a detailed understanding of the statistical 
procedures involved. For instance, Landsat classes that can be accurately mapped 
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are often extremely broad owing to the poor spectral resolution of the sensor. Areal 
models based on such classes, then, may be oflittle use to the land manager. Yet, 
even when fine spatial resolution is achieved the information is often wasted 
because the pixel data have to be aggregated into larger units so that they can be 
comparable with other independent environmental variables mapped at cruder 
resolution. These and other considerations will be discussed at length in Chapter 9. 

Although inductive procedures, such as map interpolation and pattern recog
nition, are the most common bases for areal models, such models can also be 
developed deductively on the basis oftheoretical propositions about human settle
ment. Hierarchical decision models (Limp 1983a, 1983b), simulalion models (Chad
wick 1978; Thomas 1972, 1973), and probability distribution models (Hodder 1976; 
Hodder and Orton 1976; Thomas 1972, 1973) are all examples ofareal models of this 
type. As a group these models are more diverse than other categories previously 
discussed. Although they vary widely in their internal logic and procedure, they do 
share a common emphasis on explaining why humans settle in certain areas and not 
in others. 

Theory-based, deductive areal models have not received much attention in 
cultural resource management studies, probably for one or more of three reasons. 
First, theoretically based models require more time [Q create. The internal connec
tions between variables must be explicitly stated, as must the logical arguments 
supporting those relationships. Second, validation procedures are more onerous. 
Deductive models must demonstrate that they are not only consistent with the data 
but also more parsimonious than any alternative. In contrast, inductive models are 
judged primarily on the accuracy of their predictions. No claim is necessarily 
forwarded about how the population was formed in these models, only that the 
dependent variable covaries with one or more independent variables. 

Some archaeologists contend that all pattern-recognition models are based on 
the assumption that the environment shapes decisions about where humans settle; 
this assumption is almost always implicit in these models, and the relationship 
between environment and human settlement is never specified. Although theory
based models also assume a relationship between environmental factors and settle
ment, the relationships between environmental factors and locational behavior are 
spelled out according to some behavioral theory. Thus, these models are easier to 
crilique than those based on the generalization that environment is related in some 
unspecified way to settlement. 

Finally, the predictive statements derived from some types of deductive 
models are not of a form that is useful for management purposes. For instance, 
probability distribution models yield statements about the expected number of 
sites per sample unit, but this type ofmodel will not predict which units will contain 
sites. Instead, such models predict that in the aggregate a specified number ofunits 
will contain no sites, a certain number will contain one site, and so on. 

While the three reasons cited above may account for the less extensive use of 
deduclively based areal models in cultural resource management, they are not good 

72 



MODELS AND THE MODELING PROCESS 

reasons. The fact that deductively based models need to be more explicit and are 
more difficult to validate should not necessarily be viewed as a detriment. Clearly, a 
model that has successfully gone through this process has much more research 
utility than one that has not. Even from management's perspective, there is good 
reason to keep a balance between inductive and deductive modeling. Inductive 
models, as they are currently used in cultural resource management, may provide 
useful day-to-day information. They are not, however, designed to provide deep 
insight into the relationship between humans and the environment. Yet it is these 
latter relationships that underlie, albeit implicitly, all inductive models being used. 
In contrast, deductive models have not to date performed well in providing 
on-the-ground information for making management decisions. But research into 
these models is one of the prime mechanisms of forwarding our understanding of 
man-man and man-land relationships that affect the spatial arrangement ofhuman 
settlement. Emphasizing one approach to the exclusion of the other is the surest 
way to stymie the potential of predictive modeling in general. 

Point-Specific Models 

In the past few years there has been a growing trend to shift the level of 
prediction from the sampling unit to the site itself. Instead of making predictions 
about the number ofsites in a sampling unit, archaeologists have explored methods 
ofassessing the likelihood that any particular spot will or will not contain a site. The 
appeal of such an approach to both management and research is immense. Not 
surprisingly, point-specific models have become the predominant form of site 
locational modeling within the BLM's cultural resource management program (e.g., 
Burgess et al. 1980; Kvamme 1983; Larralde and Chandler 1981; Peebles, ed. 1981; 
Reed and Chandler 1984). 

Pattern-recognition point-specific models in archaeology are based on proce
dures developed in the field of remote sensing (see Chapter 9 for an in-depth 
discussion of this subject). In remote sensing, scientists use reflected radiation 
values to classify locations ofinterest on the earth's surface into prespecified groups, 
such as forest vs nonforest, wheatfields vs nonwheatfields, and so on. In the simplest 
terms, they first calibrate a "training set" ofknown cases, such as vegetation types, 
by measuring different spectral bands; then for other cases, locations with unknown 
vegetation types, the different spectral characteristics are used to infer vegetation 
types. The validity of such classification schemes is evaluated using test data that 
were not used to calibrate the original model. 

A similar approach has been adopted in archaeology, using numerical classifica

tion techniques like discriminant function analysis and logistic regression. The 

predetermined groups are defined on the basis ofcertain combinations ofdiscrimi

nating variables, so that if the same variables are measured for an unknown case it 

can be placed with a specified degree of probability into one group or another. 


In addition to adopting the numerical classification techniques, many 

archaeologists have also borrowed the concept of a binary response variable. That 
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is, given locations are classified as being a site or a nonsite. This is unfortunate, 
because all sites are lumped into one category. No distinction is made between big 
and small sites, functionally distinct sites, or sites from different time periods. This 
is unrealistic, since nearly all anthropological studies indicate that a particular 
configuration of environmental variables is not equally important in all temporal 
and functional contexts. With the site/nonsite dichotomy, however, sites are either 
present or absent, and all sites are created equal. From a managerial perspective, 
information on different types of sites may not only be important but required. 
Clearly, different management strategies are required for small lithic scatters and 
for large ceremonial centers. 

There are also statistical problems associated with lumping all sites into one 
group. These will be discussed at length in Chapters 5 and 7. Suffice it to say here 
that these problems fall into two groups. The first has to do with the use ofwhat are 
usually heterogeneous groups in mathematical models that assume that the groups 
being used are internally homogeneous. For example, discriminant analysis is a 
popular modeling technique in which two or more groups are statistically distin
guished from one another. If there is only slightly more between-group variation 
than within-group variation, the results will be largely useless and can even be 
highly misleading. Lumping site classes together almost always increases within
group variability of the site group, often to such a degree that sites are more 
dissimilar to each other than they are to nonsites. 

The second set of problems involves generalization. In the case of areal 
pattern-recognition models using probabilistic ally selected sampling units, general
izing the results is relatively straightforward. The sampling unit is the same as the 
sample element, and parameter estimates can be computed following formulas for 
element sampling. This is not the case for point-specific models, since the sites 
found within the sampling units are used as the units ofanalysis. Thus, the sample is 
a cluster sample, and unless the appropriate adjustments are made in calculating the 
group variances and covariances, there are likely to be serious errors in the 
computation of the mathematical function (see Chapter 6). 

The preceding discussion does not mean that all pattern-recognition point
specific models are inaccurate or lead to invalid predictions. Given the strong appeal 
ofthese models and the recent emphasis placed on them, however, it is important to 
discuss the problems that can arise. One solution to some of these problems would 
be the development ofa response variable with multiple categories. The creation of 
multiple groups does not invalidate the use of such techniques as discriminant 
analysis or logistic regression. It simply makes them more realistic, flexible, and 
amenable to management and research concerns. The problem ofgeneralization can 
be mitigated by careful attention to how the model will be used. Ifits sole purpose is 
to act as a heuristic device, pointing out patterns of covariation between the 
environment and site location, then problems associated with generalizing the 
results are probably not as critical as if the predictions were to be used as the basis 
for management decisions. 
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From a theoretical standpoint, the most powerfullocational models should be 
those that not only predict where sites are located but explain why they are located 
there as well. Models of this type include central place models (Berry 1967; Berry 
and Pred 1965; Chris taller 1966, 1972; Crumley 1976; Haggett 1965; Johnson 1977; 
Losch 1954; Skinner 1977; Smith 1976), gravity models (Crumley 1979; Haggett 1965; 
Johnson 1977; Olsson 1970; Plog 1976), optimal location models (Wood 1978), and 
polythetic-satisficer models (Williams et al. 1973). Some of these, such as central 
place or optimal location models, have a long history in the field of human 
geography and have only recently been adapted for use with nonindustrialized 
societies by archaeologists and anthropologists. Others, such as the polythetic
satisficer model, have been developed by archaeologists on the basis of ethno
graphic research and basic principles of human behavior. 

Much like deductively based associational and areal models, deductive point
predictive models have been overwhelmingly ignored in cultural resource studies. 
Many ofthe reasons for this situation cited in the previous sections also hold true at 
the point-specific level. These models are more difficult to develop than correla
tional models, and the validation process is more involved. In addition, the accuracy 
of these models is usually not very high. For instance, in archaeology central place 
models are generally used more as a yardstick to evaluate deviations from a 
theoretical pattern than as a predictor of actual site location. 

The land manager reading this section may well have decided that, given the 

inherent difficulties associated with the use of deductive models, the current 

emphasis on pattern recognition represents a conscious decision on the part of 

archaeologists. This is a false impression. Outside the confines ofcultural resource 

management, pattern-recognition models have been much less discussed or devel

oped than their theoretically based counterparts. The reason for this disparity goes 

beyond any simple explanation of academic vs nonacademic research goals. What 

appears to have happened is that a perception has developed among landholding 

agencies that locations of archaeological sites can be predicted within acceptable 

accuracy levels. This perception was probably fostered by a number of theoretical 

studies, sponsored at least in part by the BLM and the Forest Service, that 

investigated the potential of pattern-recognition approaches to predicting site 

location (e.g., Cordell and Green 1983; Grady 1980; Hurlbett 1977; Kvamme 1983). 


The net result has been a tremendous emphasis on the methodological issues 

involved in prediction at the expense of studies of behavioral processes. The 

implications of this trend can be illustrated with a simple example. Let us suppose 

that on the basis of environmental attributes 70 percent of all site locations in a 

region could potentially be predicted. Let us further suppose that an associational 

model was developed that predicted 50 percent ofthe site locations. By creating an 

areal-based discriminant function model the result might be to increase the model's 

predictive capability to 60 percent; with a point-specific logistic regression model, 

to 65 percent; and with a point-specific quadratic discriminant model, to 67 percent. 

The point is that the increase in the sophistication of the statistical models has not 

led to a proportional increase in our ability to predict site locations. In this case, as 
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with most of the research in predictive modeling in the past few years, all of the 
effort has been devoted to finding ways ofincreasing our predictive power through 
statistical methods. It is not surprising, then, that as more and more research has 
gone into predictive modeling this research has yielded smaller and smaller 
increases in predictive power. Because patterns of environmental attributes will 
only account for so much of the variation in settlement patterns, no matter how 
much time and money are invested in developing statistical methods or sampling 
designs, at some level a point ofdiminishing returns is reached. That point is rapidly 
approaching in predictive modeling. 

A legitimate question for a land manager to ask would be, "Is the additional 30 
percent worth it?" There is no simple answer to this question, although an example 
from anthropology may be useful. In a study ofpolitical systems in highland Burma, 
Edmund Leach (1954) began with an analysis of the ecological situation. He argued 
that the distribution of two economic systems covaried fairly well with differences 
in environmental settings, but that once the environmental correlates had been 
factored out, a number ofdifferences between systems were still left unexplained. 
Leach used his ecological analysis as a springboard into a more detailed study ofthe 
social structure. The result was a far-reaching (and now classic) analysis ofpoliti cal 
and social dynamics embedded in a culture, a result that simply could not have been 
obtained through the study of ecological relationships alone. 

As Chapter 4 will make clear, much ofwhat is considered important about the 
study of archaeological remains is part and parcel of the percentage for which 
pattern-recognition models cannot account. Although these models are useful and 
informative in certain contexts, it is also true that no matter how the term is 
defined, much of what archaeologists consider to be "significant" begins where 
pattern recognition leaves off. 

THE MODEL-BUILDING PROCESS 

It should be clear from the foregoing discussion that there are many kinds of 
predictive models ofsite location. Some are largely or wholly operationalized, others 
are intuitive; some are based on deductive arguments, others are inductive. 
Numerous modeling techniques exist, and the choice of a technique depends on 
research objectives and the available data base. Moreover, predictive models are not 
mutually exclusive. As archaeologists have learned over the past decade, the line 
between .induction and deduction is neither' hard nor fast. There is no reason why 
different modeling techniques cannot be used to analyze the same data, and in fact, 
there is good reason to do just this. 

Regardless of the form ofa model or of the specific techniques used, the basic 
steps in the modeling process are the same for all models (Figure 3.1). The rest of 
this chapter will be devoted to outlining this process; Chapters 6-8 will discuss this 
process in much greater detail. 
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Objectives 

1 

Review of Existing Data 

I. Data Collection 
2. Data Synthesis and Evaluation 

1 
Model Components 

I. Dependent Variable 
2. Independent Variables 
3. Relationships Between Variables 

1 

Model Development 

1. Use of Existing Data 
2. Collection of New Data 

1 

Model Testing 

I. Use of Existing Data 
2. Collection of New Data 

1 

Model Refinement 

Figure 3.1. The model-building process. 
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Identification of Objectives 

As Figure 3.1 shows, the first step in the modeling process is the specification of 
goals or objectives. In the process ofidentifying objectives a clear distinction needs 
to be maintained between short-term and long-term goals. In the long run, 
management and research goals are probably not that different; cultural resources 
are protected for what they can tell us about the past and how the past evolved into 
the present. It is the information content of the resources, not their physical 
make-up, that has been deemed worthy of preservation. To best fulfill this legal 
obligation, federal and state agencies need to know not only where resources are 
located but also why they are located there. This objective is our end goal. It is not 
at all clear that we can ever reach it, but as scientists we are committed to continue 
striving for it. 

In order to reach this goal, we need to have a better understanding of the 
necessary intermediate steps or short-term goals. Often developers of Class I and 
Class II models refer to their results as "preliminary predictive models," which 
suggests that they view these models as intermediate steps along the way to a 
better understanding ofsite location. Perhaps the most significant criticism that can 
be made about predictive modeling programs in most cultural resource manage
ment contexts is that there is no consensus as to the overall objective of these 
programs. Models continue to be developed as if they represented the desired end 
product. Instead of calling for the refinements of existing models, scopes of work 
usually require the creation of a new model. The results are not cumulative, and 
thus it is little wonder that most federally sponsored predictive modeling programs 
are bogged down in a seemingly endless progression of virtually identical models. 

From the perspective of the land management agencies, it would be prudent 
to identify both long-term goals and the steps needed to achieve them. On the basis 
ofthis overall plan, an agency could decide whether it would be more productive to 
award a contract for an overview that requires the creation of a multivariate model 
of site location or whether it would be more useful to invest that effort in research 
designed to develop locational variables that make sense from a theoretical 
standpoint. 

Data Collection 

The first step in modeling locational behavior for a specific region is to amass 
the available data. Four basic sources ofdata are commonly used: historical docu
ments, ethnographic research, archaeological data, and environmental data. 

Historical documents include explorers' and colonial accounts ofNative Amer
ican culture and associated settlement patterns. Land-use records are sometimes 
available, as are ba?tism and death records for Spanish missions. The latter are 
especially useful for examining such issues as intergroup movement, population 
change, and ethnohistoric settlement patterns (e.g., Munoz 1982). Many of these 
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records have been examined by ethnohistorians, and secondary sources exist for 
nearly every region of the United States. 

Ethnographic research represents a complementary data source. Ethnographic 
analogy ofone form or another has been a mainstay ofarchaeological interpretation 
since the inception of the discipline. Ethnographic analyses of indigenous subsist
ence and settlement systems were used by archaeologists as the basis for 
settlement-pattern studies long before cultural resource predictive modeling 
became an issue. Perhaps the best known study of this type is Julian Steward's 
(1938) Basin-Plateau A boriginal Sociopolitical Groups, which served as the foundation for 
numerous settlement and subsistence models both within and outside the Great 
Basin (Flannery and Coe 1968; Jennings 1957; MacNeish 1964; Thomas 1972, 1973; 
Williams et al. 1973). In addition to direct analogy, ethnographic studies are useful 
as sources for general propositions about settlement decision behavior (e.g.,Jochim 
1976; Lee and DeVore 1968; Yellen 1977). Finally, the growing field of ethno
archaeology continues to supply much-needed data on factors and constraints 
leading to decisions about where people live as well as on depositional and post
depositional processes that affect the archaeological record (Ascher 1962; Binford 
1976, 1978a, 1978b, 1979, 1980, 1981; Coles 1973; Gould 1978, 1980; Kramer 1979). 

Recorded archaeological data exist in a variety offorms. Site records are stored 
at the state level, either in a central repository or dispersed among several state 
institutions (usually museums and universities). Several federal agencies keep their 
own records, which mayor may not be duplicated at the state repository. Regional 
data bases,· such as the Southwestern Anthropological Research Group (SARG; 
Euler and Gumerman 1978) and Intermountain Antiquities Computer System 
(IMAC; University of Utah et al. 1982), exist for some areas. Private institutions, 
museums, and local historical and archaeological societies also may have informa
tion. Finally, as has been true since the beginning ofarchaeological research, one of 
the best sources for site locational information is the local informant. 

Extant archaeological data vary considerably in quality and quantity. In order 
to assess the existing data one must evaluate a number offactors. The number and 
intensity ofsurveys has a direct bearing on the distribution ofknown sites and the 
types of sites recorded. Definitional criteria for sites are often subjective and 
nonreplicable. The reliability and comparability ofrecorded information is an open 
question that must be resolved before this information can be used in model 
building (see Chapter 7). 

Environmental data can be gathered at two levels. At a macro or regionalleve!, 

data can be collected on a variety of topics, including climate, vegetation, geology, 

hydrology, and physiography. Sources of these types of data include many federal 

and state agencies, such as the Soil Conservation Service, the Forest Service, the 

U.S. Geological Survey, the Fish and Wildlife Service, the National Oceanic and 

Atmospheric Administration, and the Bureau of Land Management. An increas

ingly important source of data on environmental conditions is aerial imagery. 

Remote sensing and Landsat images have emerged as extremely useful tools for 
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identifYing and classifYing environmental dimensions and as means of objectively 
measuring environmental variables (see Chapter 9). 

At the site level we are often interested in which environmental features 
affected the decision to settle in a particular spot. Studies ofthis nature are classified 
under the rubric ofcatchment analysis (e.g., Higgs and Vita-Finzi 1972; Jarman et 
al. 1972; Roper 1979; Vita-Finzi 1969, 1978; Vita-Finzi and Higgs 1970). Environmen
tal zones that surround each site can be analyzed in terms of their potential 
economic value. Studies of this type, coupled with environmental and subsistence 
data from excavated sites (e.g., pollen, flora, fauna, and malacological analyses), can 
help to shape our understanding of the subsistence strategy. 

Data Synthesis and Evaluation 

Once the available data have been gathered, they must be synthesized and 
evaluated in terms oftheir applicability for predicting site location. One ofthe first 
tasks is to identify general trends ofcultural change and stability and trends in the 
distribution of known sites. Map interpolation techniques, such as trend surface 
analysis, kriging, etc., can often be useful aids in discerning general trends. 

One result of this type of background research must be the identification of 
known sites or at least of the types of sites crucial to understanding regional 
settlement systems. Here interest lies in determining the effects of what some 
authors call the "big site" phenomenon (Rogge and Lincoln 1984) and what will be 
called "magnet" sites in Chapter 6. Implied in the notion of a magnet site is the 
existence ofsocial factors that led people to locate other types ofsites closer to or 
farther from a particular site than would be expected just on the basis of the 
prevailing subsistence system. Unless the exact locations of these magnet sites are 
known, it is extremely doubtful that site locations can be successfully predicted in 
that region. 

In the Santa Cruz River Valley ofsouthern Arizona, for example, a predictive 
model was developed on the basis of a Class I overview (Westfall 1979). A Class II 
sample survey demonstrated that the Class I model overestimated the importance 
ofcertain environmental zones and therefore was not particularly useful. A second 
predictive model, which was based on environmental variables derived from work 
in the Gila Bend area about 80 km (50 mi) to the west (McCarthy 1982), was also 
tested against the Class II results and again was found not to be a very accurate 
predictor ofsite location. An intensive Class III survey revealed the problem; three 
major Hohokam communities were identified in environmental contexts that did 
not contain such communities in the Gila Bend area. Each community consisted ofa 
central platform-mound complex surrounded by smaller sites lying within 1.5-5 km 
of the central complex (Rogge and Lincoln 1984). Only a small proportion of sites 
were found outside these communities. 

In most areas of the country the proportion ofknown, large, complex sites is 
higher than the corresponding proportion ofknown sites in other categories. People 
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have been drawn to large sites, especially those that exhibit major architectural 
features or mounds, since the nineteenth century. Many of these sites, which 
probably represent social centers and/or the top elements of the regional settle
ment hierarchies, have been formally recorded or are at least known to local 
residents. The point is that in areas where socially complex societies developed, 
predictive models based solely on environmental variables are bound to fail. Yet, in 
most areas the locations of many of the magnet sites are known and can be 
determined either by examining the existing site records or asking local informants. 
Thus, the existence and importance ofthese sites can be evaluated at an early stage 
in the modeling process (say a Class I level). If this were accomplished, the 
construction of useful social predictive variables should be possible. 

This discussion of magnet sites points out the importance of being able to 
distinguish site classes. Ideally, site classes are defined along two dimensions, time 
and function. In practice, however, this task is often difficult even with excavation
based data, to say nothing of the problems involved in using site files or even 
survey-based data. At the data-evaluation stage it is important to determine (or 
hypothesize) the types of sites expected to be found for each culture period and 
their probable locations. The magnitude of the discrepancy between theory and 
existing data can then be gauged. That is, we can determine how many sites can be 
classified by period and function, with the remaining sites grouped into a residual 
category. Examination ofthe residual category, which in many areas ofthe western 
United States will constitute between 60 and 80 percent of an recorded sites, will 
determine the types of research questions that can legitimately be asked. These 
questions in turn will affect the type ofdependent locational variables that can be 
modeled and thus the nature of the independent variables that can be used. 

Identification of environmental dimensions along which site locations vary is 
an important step. It is, however, only one step. Most predictive models developed 
in cultural resource management contexts have viewed this step as the only one or at 
least the most important one, paying lip service to other factors affecting site 
location. It is also important to bear in mind that the environmental variables that 
directly covary with site location are probably best viewed as proxies for whatever 
decision-making criteria led to the selection of locations exhibiting this environ
mental feature (Kohler and Parker 1986). For example, landform may be a proxy for 
considerations of defense, agricultural potential, floral resources, or any other 
reason that a group may have for choosing a place to live or to conduct activities. It 
follows that several environmental variables may reflect the same decision-making 
criterion or that one environmental variable may be an indicator ofportions of two 
or more decision criteria. Moreover, the criteria for choosing a site location were 
probably different in different parts of a single settlement system, and certainly 
these criteria changed through time and between settlement systems. 

Given this situation, it would be best to study the covariation ofenvironmen

tal features with each separate site class. This ideal situation is rarely realized 

because ofthe problems ofdistinguishing site classes, but it is still possible to model 

expected distributions of sites based on theoretical principles or ethnographic cases 
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and evaluate the results against the known data base. Using ethnographic informa
tion about Great Basin settlement systems, Thomas (1972, 1973) wrote a computer 
simulation that projected the expected distribution of cultural remains across 
environmental zones and then tested these predictions against the archaeological 
record. This approach offers a way of evaluating the effects of environmental 
attributes on the settlement system that could be a powerful complement to the 
pattern-recognition studies in vogue today. 

In addition to examining environmental factors that affect decisions about 
where to settle, we need to evaluate the natural processes that affect the creation 
and present state ofthe archaeological record. Archaeologists have become increas
ingly sensitive to the difference between the systemic context in which residues of 
past behavior are deposited into the archaeological record and the archaeological 
context in which they are recovered (Ammerman et al. 1978; Binford 1976, 1978b, 
1979, 1980; Ebert et al. 1984; Schiffer 1968, 1976; Schiffer and Rathje 1973; see also 
Chapter 4 of this volume). In general, this growing awareness has not been 
incorporated into predictive models, probably because of our poor understanding of 
these processes and of the attendant difficulties in modeling them. Failure to take 
into account depositional and postdepositional processes leads to predictive models 
that, at best, predict where sites have been seen and not necessarily where they are 
or were. 

Several recent studies indicate the potential for increasing the power of 
predictive models by including geomorphic factors. For example, Artz and Reid 
(1983) use a relatively simple soil-geomorphic model to predict the location of 
buried Archaic sites in the Little Caney River Basin of northeastern Oklahoma. 
Previous surface surveys had not found any Archaic materials in the area, leading 
some investigators to question whether the region had been occupied during this 
period. Artz and Reid developed a model based on the proposition that the relative 
age and stability ofa geomorphic surface is often reflected by the properties of the 
soil developed below it. The model was used to identify buried surfaces that in the 
past were suitable for habitation. Subsequent investigation ofthese surfaces showed 
that Archaic sites, although buried, were indeed located in the Little Caney River 
Basin. 

Model Components-Dependent Variables 

To develop a model one has to be cleat about exactly what it is that is being 
modeled. As far as site location is concerned there are a variety of potential 
dependent variables. It is possible to predict site presence or absence, site density, 
site types, site functions, or various combinations thereof. Moreover, the depend
ent variable can change, although this will require either drastic internal revisions 
or an entirely new model. For example, at an early stage of research archaeologists 
might predict that sites will be found in greater numbers in areas within 100 m of 
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permanent water and on land with slopes with less than a 5 percent grade. Formally 
this relationship might be expressed as 

p(AIB n C) > peA) 

where peA) stands for the probability that an area contains a site, B for areas within 
100 m of permanent water, and C for land with slopes ofless than 5 percent grade. 
Thus, the equation simply states that the probability that an area contains a site is 
greater if it meets conditions Band C than it is for all areas in general. 

At a later stage of research it may be found that the relationship between site 
location and the two independent variables is much more precise. This relationship 
might be modeled with a linear equation of the form 

A =D + FIB +F2C + E 

whereA equals site density; B is distance to water in meters; C is slope in degrees;F 1 
and F2 are the weights for Band C, respectively; D is a constant; and E is an error 
term. In this case two independent variables are being used to predict the number 
of sites per survey unit. While the two equations represent two fundamentally 
different models, it is also fair to say that they are part of the same model-building 
process, with the latter equation being a more refined expression of the former. 

Ideally the dependent variable should be specified first, followed by creation of 
the model. Usually in predictive modeling, however, a dependent variable is 
selected on the basis of the data available and the types of independent variables 
being used. Most archaeologists tend to be less concerned with the exact nature of 
the dependent variable (as long as it bears on some aspect ofsite location) than with 
meeting the assumptions of the modeling procedure, especially in a mathematical 
model.. 

In ~ we want to proceed from crude measures of site location, such as 

relative d~~uta (~,e., more sites here than there), to more powerful variables that 

will predict a sf~cific site type in a particular location. Although the level of 

locational specificity modeled is directly related to the nature ofthe data that can be 

used to test it, it is necessary to guard against blind acceptance of a dependent 

variable simply because a particular modeling technique is used. Deciding to 

predict site density because "that's what multiple linear regression predicts" is 

definitely putting the cart before the horse. Selection of an appropriate dependent 

variable has to do with defining management and/or research objectives as well as 

identifying the nature of the data base available or being collected. Once this 

decision has been made, an appropriate way to model the phenomenon can be 

found. 


Model Components-Independent Variables 

Selecting independent variables and determining their interrelationships are 

perhaps the most difficult steps in the model-building process. There are no rules 
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that govern this process and few guidelines that can be offered. Variables and their 
relationships can be derived from inspiration, intuition, creative thought, and/or 
previous experience. Certainly it is true that if one has a good grasp of general 
anthropological or sociological propositions about the factors that affect decisions as 
to where behaviors will be conducted, one is more likely to make an informed choice 
ofvariables. There is no guarantee, however, and Clark's (1982:232-234) discussion 
of false starts and mental gestation periods aptly describes this process. 

The development of model components and the definition of their interrela~ 
tionships should be the areas in which archaeologists make their greatest contribu
tion to the predictive modeling process. This, however, has not been the case. 
Instead, there has been a tendency among archaeologists producing predictive 
models to concentrate on the sophisticated multivariate mathematical techniques 
and to give only casual attention to the predictive variables. In most cases, 
methodological discussions focus on the inner workings of the statistical procedures 
with only passing references to the reasons why specific variables were chosen or to 
how these variables are theoretically related to site location. Indeed it appears that 
investigators are assuming that the relationship(s) between the environment and 
site location cannot be specified, other than that there is one, and that if only 
enough environmental variables are put into the equations something useful will 
come out. 

There is nothing wrong with searching for patterns, but it is important to 
realize that the ways in which aspects of the environment are conceptualized and 
measured seriously affect the types ofstatistical tests that can be used as well as how 
they are interpreted. Since most archaeologists are more atuned to the relationship 
between site locations and the surroun.ding environment than they are to statistical 
theory, it stands to reason that it is in this area ofspecification oflocational/environ
mental relationships that archaeologists could make important in~roads. 

In an ideal setting a predictive model would be built by first identifying the 
characteristic ofsite location, such as site density or frequency (i.e., the dependent 
variable) and then identifying all the social, environmental, and geomorphic factors 
(i.e., the independent variables) that impinge upon it. One can envision a series of 
differential equations describing the relationships among the various factors. In 
order to learn whether a site would be found at a particular location one would 
simply assign appropriate values to the variables in the equations, and "presto!" the 
answer would appear. Unfortunately, at this time such a model cannot be created. 
While it might be possible to incorporate all three factors into one model, the result 
would be extremely complex, difficult to evaluate, and probably would have very 
low predictive power. 

Perhaps the best approach for now is to develop a series of models. For 
instance, it might be hypothesized that settlement in a specific river valley followed 
some process that can be modeled with a specific probability distribution. The 
importance ofspecific environmental variables might be assessed through the use of 
a pattern-recognition technique. Finally, a model ofpaleo land surfaces that would 
have been suitable for habitation could be constructed using information about 
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geomorphic processes. The results of the models would be mutually reinforcing. If 
one model worked better than another in a particular area, this information could be 
used to refine the model and eventually would yield a better understanding of the 
settlement process. 

Regardless of whether one or several models are developed, the form ofeach 
model will be the same. In each case a dependent variable will be predicted by one or 
more independent variables. Some models in archaeology consist of logical state
ments (such as "if ... then") that connect the independent variables in some type 
ofcausal or deterministic fashion. These models are useful when theoretical reasons 
can be posited for the connections. Often, however, archaeologists cannot be this 
specific, and in these cases there are two advantages to using a mathematical 
model: the relationships between the variables are explicit, and the variables must 
be objectively defined and measured, a feature often lacking in the logical models. 

The major disadvantage ofmathematical models is that each model comes with 
its own set of underlying assumptions. For instance, most of the statistical tech
niques used in predictive modeling assume a linear relationship between the 
varia bles. Theoretically, there is no reason to believe that the relationship between 
site location and the environment is linear any more than it is quadratic or any other 
function. While the goal is to work toward theoretically defined connections 
between variables, a start must be made somewhere, and it is perfectly reasonable 
to begin this process by using predefined relationships between variables as long as 
it is understood that these relationships are arbitrary. 

Once a specific modeling technique is chosen the necessary data to develop the 
model must be gathered. For some types of models the data may already be on 
hand. Associational models can be developed on whatever data exist. The minimal 
restrictions imposed by these models and the ease with which they can be devel
oped probably account for their popularity in overview-level research. 

Other types of models will require the collection ofnew data or the reformat

ting of existing data. For example, once it is decided to model site density per 

kilometer (A) on the basis of slope (B) and distance to water (C) using a linear 

equation of the form 


A D + F lB + Ft: + E 

information must be collected on A, B, and C so that the weights (F 1 and F 2), 
constant (D), and error term (E) can be defined. 

The decision as to whether to use existing data or to collect new data to 

develop the model will depend on the following criteria. Are the temporal and 

functional site classes that can be defined with existing data sufficient for the model? 

Are the environmental data that can be obtained from existing maps or site forms 

suitable for the proposed model? In particular, can patterns in microenvironmental 

variability be identified from existing records and does the distribution of known 

sites by environmental zone reflect aboriginal settlement decisions or is it skewed 

by postdepositional processes? Finally, since many predictive models generalize 

from a sample, can the existing data be considered in any sense to be representative 
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of the phenomena of interest? To answer these questions, information must be 
gathered about the size and distribution of previous surveys as well as their 
intensities. Using this information, the researcher can determine whether survey 
results are comparable, if all environmental zones have been adequately covered, 
and if the types ofsites found within the surveyed areas are representative of the 
settlement system as a whole. 

Based on these criteria, gaps in the existing data base can be discerned. ln 
order for the model to be successful, data on paleoenvironmental and geomorphic 
conditions, chronological and functional dimensions of site classes, and social and 
economic aspects of the subsistence and settlement systems must meet the 
requirements of the modeling technique. The existing data base must also be 
assessed to determine how far the data can be generalized. From this evaluation, the 
researcher can determine what types of data, if any, must be collected in the field 
before model building can begin. 

Once gaps in the existing data are defined, a research program can be devel
oped to obtain the needed information. While it may seem obvious that research 
programs should be developed to meet the needs ofthe particular situation, this has 
often not been the case. In the usual course ofevents the first major research project 
in a region is an overview, combining a review of the existing data and a literature 
search and producing a planning document (e.g., BLM 1978). In essence, the 
primary goal of this overview is to decide how future work should be conducted. 

It would seem logical that the sample surveys that generally form the next step 
in these major research projects should be based on the designs outlined in the 
overview documents. In practice, sample surveys tend to follow rigid, almost 
standardized formats in which 10 percent of a management-defined area (often an 
aggregate or series of aggregates of coal lease tracts) is sampled in 40- or 160-acre 
quadrats through the use ofa simple or stratified random sample (see Berry 1984 for 
a discussion of other problems with this approach). 

The uniformity of this design appears to be based on a desire to obtain 
consistent and comparable results. While the objectives are commendable, the 
approach is misguided. As will be discussed throughout this volume, the selection of 
sampling technique, sampling fraction and sample size, and sample unit size and 
shape are decisions that cannot be made in the abstract but are dependent on the 
nature ofthe phenomena ofinterest and the research objectives. A 4O-acre quadrat 
may be an ideal sampling unit for estimating site density but a very poor choice for 
studying intersite relationships. Moreover, consistent results have less to do with 
the sampling design than with issues of survey intensity, site visibility, and sam pie 
unit accessibility (see Chapter 6). Indeed, the best approach to achieving substan
tive comparability between projects is not through design standardization but 
instead through design flexibility. 

The research design not only specifies how the area will be searched for sites 
but also how sites will be defined and recorded. Definition ofsite classes will usually 
require fairly intensive artifact analyses. "No collection" (or limited collection) 
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policies, while perhaps defensible from a preservation standpoint, run counter to 
modeling requirements. The present situation in which temporal and/or functional 
site classes are only poorly developed is unlikely to change unless intensive artifact 
collections are made. Again, as with sampling design, decisions regarding data 
recording are best made in relation to a specific project and not at an agency-wide 
level. 

Model Testing 

A central aspect ofmodel development is model testing; in fact it can be argued 
that a model does not really exist until it has been tested. Model testing requires 
independent data. In general, archaeologists have relied either on collecting new 
data for testing or on splitting their sample in two, using one half to develop the 
model and the other half to test it. The former tendency has led to many predictive 
models remaining untested or being tested only with the data used to derive them. 
The latter approach often results in such small samples that models can be neither 
reliably developed nor reliably tested. There are a number ofstatistical techniques 
for validating models that circumvent many of the problems described above; these 
techniques are discussed in Chapter 5. 

In the validation stage it is necessary to examine not only the model itselfbut 
also the data upon which it is based. Double-blind tests, common in forestry and 
agriculture, are totally lacking in cultural resource management. Most agencies try 
to ensure that land is surveyed for cultural resources only once. While the intent of 
this policy is understandable (after all, if the entire land base can never be 
completely surveyed, why waste money on resurveying parts of it), it must be 
remembered that the intended use ofa predictive model from the agency's perspec
tive is to allow for useful planning and management decisions about cultural 
resources in a much larger area. Thus, the argument can be forwarded that, because 
the model is only as good as the data upon which it is based, time and money spent 
ensuring the quality of the data are prudent and wise investments. 

Model Refinement 

Unless 100 percent predictive accuracy is achieved, a model can theoretically 
always be improved by changing the variables and/or respecifying the relationships 
among them. It is extremely unlikely that we will ever achieve the high level of 
predictive accuracy that would imply either complete understanding ofpast behav
ior or past behavior that was so deterministically patterned that it can be accurately 
predicted whether it is understood or not. 

The real question for the land managing agency is "how accurate is accurate 

enough!" The answer to this question depends on the agency and on the research 

objectives as well as the anticipated results. For instance, a first attempt may 

explain 60 percent of the variance in site location and indicate major trends in 

settlement patterning. A researcher might consider this result a tremendous 

success, while a land manager might view it as a dismal failure. 
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Much of the above discussion has been phrased in an ideal context, where 
sufficient time and resources are available. In practice, federal agencies are not in a 
position to execute grandiose regional survey designs. Instead, federal archaeolo
gists have all they can do to inventory lands to be affected by timber sales and 
mineral leases. But this does not mean that predictive modeling is some "pie-in
the-sky" scheme dreamed up at the state and regional levels and foisted on district 
and forest archaeologists. Modeling is part and parcel of what we do as scientists. 
We cannot evaluate a site located during a timber-sale survey unless it is first placed 
in some type of scientific context or, if you will, some type of model. 

At this time it is less important for the archaeological community to show 
land-managing agencies how to build accurate models than it is for us to demon
strate the proper use and importance ofthe modeling process. Scientific models are 
not like model airplanes; they are not built and then put on the shelf. Yet this is 
exactly what is being done with predictive models of site location. Archaeologists 
are being asked to build models that can be used as is for the indefinite future. 

Scientific models get better as they are refined. Usually as our predictive 
power increases, our understanding of the phenomena increases as well. Better 
understanding leads to new and innovative ways of looking at old data and of 
collecting new data. Often sites are found where it was previously believed there 
were none, even in areas that have been looked at before. 

From a management perspective, the most important issue facing the agencies 
is not whether to invest in predictive models but whether the modeling process 
should be an integral part of the overall cultural resource management program. It 
can be argued that the agencies should utilize models and the modeling process 
because it is in their best interest to do so. In the short run the first few predictive 
models will probably not be very powerful. They will not be substitutes for 
inventory surveys, and perhaps they will not even be very good planning tools. 
Moreover, a commitment to the model-building process may require the restruc
turing of the cultural resource management program to ensure that projects are 
designed to meet specific objectives and that their results are cumulative. Standard
ization will have to give way to flexibility in research design, and the agencies may 
have to be prepared for larger rather than smaller sampling fractions. In the long 
run, however, a commitment to modeling may be the land managing agencies' best 
hope for the creation of useful tools to guide future development and management 
of this country's cultural resources. It is to this end that this volume is devoted. 

On behalf of Martin Rose and Chris Nagle, my coauthors in Chapters 5 and 6, I would like to 

acknowledge the following individuals. Throughout the years our ideas on predictive modeling and 
spatial analysis have been sharpened by conversations with, comments from, and criticisms of many 
people. Among the most influential have been George Cowgill, Dan Martin, Mike Garratt, Gene 
Rogge, and Ken Kvamme. With regard to this particular volume we would like to thank those who 
supplied documents and manuscripts pertaining to predictive modeling. These include Michael B. 
Schiffer, Bruce Louthan, Chris Kincaid, and Richard Fike. We would also like to acknowledge the 
support ofthe various agencies and firms who sponsored much ofour research in predictive modeling. 

88 



MODELS AND THE MODELING PROCESS 

Of note here are Dr. Prentice Thomas (New World Research), Dr. Christian Zier (Centennial 
Archaeology), Dr. John Hanson (Kaibab National Forest), Gary Stumpf (Bureau of Land Manage
ment), Dan Martin (Bureau of Land Management), and Marie Cottrell (U.S. Army Corps of Engi
neers). Finally, we gratefully acknowledge Lynne Sebastian and June-el Piper for their masterful 
editorial skills, and Jim Judge for ensuring that this document reached its final form without 
substantive changes to the authors' ideas or ideals. 

REFERENCES CITED 

Ambler, J. Richard 
1984 The Use and Abuse of Predictive Modeling in Cultural Resource Management. American 

Antiquity 42:140-146. 

Ammerman, Albert J., Diane P. Gifford, and Albertus Vorrips 
1978 Towards an Evaluation ofSampling Strategies: Simulated Excavations ofa Kenyan Pastoral

ist Site. In Simulation Studies in Archaeolor;y, edited by Ian Hodder, pp. 123-132. Cambridge 
University Press, London. 

Artz, Joe Alan, and Kenneth C. Reid 
1983 Modeling the Location of Buried Archaic Sites in Northeastern Oklahoma: A Geomorphic 

Perspective. Paper presented at the 48th Annual Meeting of the Society for American Archaeol
ogy, Pittsburgh. 

Ascher, R. 

1962 Ethnography for Archaeology: A Case from the Seri Indians. Ethnolor;y 1:360-369. 


Berry, B. J. L. 
1967 Gtography ojMarket Centers and Retail DiItribution.Foundation of Economic Geography Series. 

Prentice-Hall, Englewood Cliffs, New Jersey. 

Berry, B.). L., and A. Pred, editors 
1965 Central Place Studies: A Bibliography oJTheory and Applications. Bibliographic Series No. I, with 

Supplement. Regional Science Research Institute, Philadelphia. 

Berry, Michael S. 
1984 Sampling and Predictive Modeling on Federal Lands in the West. American Antiquity 

49:842-853. 

Binford, Lewis R. 
1972 Contemporary Model Building: Paradigms and the Current State ofPaleolithic Research. In 

Models in Archaeolor;y, edited by David L. Clarke, pp. 109-166. Methuen, London. 

1976 Forty-seven Trips: A Case Study in the Character of Some Formation Processes of the 
Archaeological Record. In Contributions to Anthropolor;y: The Interior PtopltS oJNorthernAlarka, edited 
by E. Hall, pp. 299-351. National Museum of Man Series No. 49. Ottawa. 

1978a Nunamiut Ethnoarchaeolor;y. Academic Press, New York. 

1978b Dimensional Analysis of Behavior and Site Structure: Learning from an Eskimo Hunting 
Stand. American Antiquity 43:330-361. 

1979 Organization and Formation Processes: Looking at Curated Technologies. Journal ojAnthro
pological Research 35:255-273. 

1980 Willow Smoke and Dogs' Tails: Hunter-Gatherer Settlement Systems and Archaeological 
Site Formation. American Antiquity 45:4-20. 

1981 Bones: Ancient Men and Modern Mythr. Academic Press, New York. 

89 



ALTSCHUL 

Binford, Lewis R., editor 
19'J7 For Theory Building in Archaeology. Academic Press, New York. 

Braithwaite, R. B. 
1960 Scientific Explanation. Harper Torchbooks, New York. Originally published 1953, Cambridge 

University Press, London. 

Bureau of Land Management (BLM) 
19'J8 Cultural Resource Management Manual. Department of the Interior, Washington, D.C. 

Burgess, R. J., K. L. Kvamme, P. R. Nickens, A. D. Reed, and G. C. Tucker, Jr~ 
1980 Clall II Cultural Resource Inventory of the Glt1I11>ood Springs Resoura Area, Grand 1unction District, 

Colorado. Nickens and Associates. Submitted to the Bureau of Land Management. Copies 
available from Bureau of Land Management, Grand Junction District, Colorado. 

Campbell, Janice L., Prentice M. Thomas, Jr., and Carol S. Weed 
1983 The Right Stuff: Determining Factors in Site Location on Military Reservations. Paper 

presented at the Southeastern Archaeological Conference, Columbia, South Carolina. 

Campbell, Janice L., Carol S. Weed, and Prentice M. Thomas, Jr. 
1981 Archaeological Inpertigatiom at the Fort Gordon Military RmrPation, Georgia. Report oflnvestiga

tion No. 33. New World Research. Submitted to Interagency Archeological Services. Copies 
available from Interagency Archeological Services, Atlanta. 

Chadwick, A. J. 
19'J8 A Computer Simulation ofMycenaean Settlement. In Simulation Studies in Archaeology, edited 

by Ian Hodder, pp. 47-57. Cambridge University Press, London. 

Chandler, Susan M., Alan D. Reed, and Paul R. Nickens 
1980 Ecological Yariability and Archaeological Siu Location in Soutbwesltrn Colorado: The Clall II Cultural 

Resource Inventory of the Bureau of Land Management's Sacred Mountain Planning Unit. Nickens and 
Associates. Submitted to the Bureau of Land Management. Copies available from the Bureau of 
Land Management, Montrose District, Colorado. 

Christaller, V. 
1966 Central Places in Southern Germany, translated by C. W. Baskin. Prentice-Hall, Englewood Cliffs, 

New Jersey. 

19'J2 How I Discovered the Theory ofCentral Places. InMan, Space and Environment, edited by P. W. 
English and R. C. Mayfield, pp. 601-610. Oxford University Press, London. 

Clark, G. A. 
1982 QuantifYing Archaeological Research. In Advanw in Archaeological Metbod and Theory, vol. 5, 

edited by Michael B. Schiffer, pp. 217-273. Academic Press, New York. 

Clarke, David L. 

1968 Analytical Archaeology. Methuen, London. 


Clarke, David L., editor 

19'J2 Models in Archaeology. Methuen, London. 


Cordell, Linda S., and Dee F. Green, editors 
1983 Theory and Model Building: Refining SUrPey Strategies for Locating Prehistoric Heritage Resources. 

Cultural Resources Document No.3. USDA Forest Service, Southwest Regional Office, Albu
querque. 

Coles,]. M. 

19'J3 Archaeology by Experiment. Charles Scribner's Sons, London. 


Crumley, Carole L. 
19'J6 Toward a Locational Definition ofState Systems ofSettlement. American Antiquity 78:59-73. 

90 



MODELS AND THE MODELING PROCESS 

Crumley, Carole L. 
1979 Three Locational Models: An Epistemological Assessment for Anthropology and Archaeol

ogy. In Advances in Archaeological Method and Theory, vol. 4, edited by Michael B. Schiffer, pp. 
141-173. Academic Press, New York. 

Earle, Timothy K., and Andrew L. Christenson, editors 
1980 Modeling Change in Prehistoric Subsistence Economier. Academic Press, New York. 

Ebert, James 1., LuAnn Wandsnider, and Signa Larralde 
1984 Theoretical, Methodological and Economic Aspects of Nonsite Surface Survey, Nonsite 

Sampling and Predictive Modeling. Paper presented at the 49th Annual Meeting of the Society 
for American Archaeology, Portland. 

Euler, Robert C., and George J. Gumerman, editors 
1978 InrJeftigations of the Southwestern Anthropological Research Group: The Proceedings ofthe 1976 Confer

ence. Museum of Northern Arizona, Flagstaff. 

Flannery, Kent V. 
1968 Archaeological Systems Theory and Early Mesoamerica. In Anthropological ArehaeoloF;) in the 

Americas, edited by Betty J. Meggers, pp. 67-87. Anthropological Society of Washington, 
Washington, D.C. 

Flannery, Kent V., editor 

1976 The Early Mesoamerican Vii/age. Academic Press, New York. 


Flannery, Kent V., and Michael D. Coe 
1968 Social and Economic Systems in Formative Mesoamerica. In New Perspectives in Archaeolog;y, 

edited by Sally R. Binford and Lewis R. Binford, pp. 267-283. Aldine, Chicago. 

Fritz,J. M., and F. T. Plog 

1970 The Nature of Archaeological Explanation. American Antiquity 35:405-412. 


Gardin, Jean-Claude 
1980 Archaeological Constructs: An Aspect of Theoretical Arehaeolog;y. Cambridge University Press, 

London. 

Gordon, E. Kinzie, KrisJ. Kranzush, Laura M. Viola, and DonnaJ. Knox 
1982 A Clan II Cultural Inventory of the Lower White River and Danforth Hills Known Recoverable Coal 

Resources Areas (KRCRA), MoIfat and Rio Blanco Counties, Colorado. Gordon and Kranzush, Inc. 
Submitted to the Bureau ofLand Management, Contract No. Y A-533-CTO-I063. Copies availa
ble from the Bureau of Land Management, Craig District Office, Craig, Colorado. 

Gould, R. A. 
1978 Explorations in Ethnoarchaeolog;y. School of American Research and University of New Mexico 

Press, Albuquerque. 

1980 Living Archaeolog;y. Cambridge University Press, Cambridge and New York. 

Grady,James 
1980 Environmental Factors in Archaeological Site I.oeations. Colorado Bureau of Land Management 

Cultural Resources Series No.9. Denver. 

Haggett, P. 

1965 l.ocational Analysis in Human Geography. St. Martin's, New York. 


Hansen, Eric 
1984 The Whole is Greater than the Sum of its Parts: Small-Scale Surveys and Regional-Level 

Research. American Antiquity 4:35-43. 

Hempel, Carl G. 

1965 Aspects o.f ScientifiC Explanation. Free Press, New York. 


91 



ALTSCHUL 

Higgs, E. S., and C. Vita-Finzi 
1972 Prehistoric Economies: A Territorial Approach. In Papm in Economic Prehistory, edited by E. S. 

Higgs, pp. 27-36. Cambridge University Press, London. 

Hodder, Ian 
1976 Some New Directions in the Spatial Analysis ofArchaeological Data at the Regional Level. In 

Spatial Archaeolot:J, edited by David L. Clarke, pp. 223-351. Academic Press, New York. 

Hodder, Ian, and Clive Orton 
1976 Spatial Analylil in Archaeolot:J. Cambridge University Press, London. 

Hurlbert, Richard E. 
1977 Environmental Comtraint and Settlement Predictability, Northwestern Colorado. Colorado Bureau of 

Land Management Cultural Resources Series No.3. Denver. 

Jarman, M. R., C. Vita-Finzi, and E. S. Higgs 
1972 Site Catchment Analysis in Archaeology. In Man, Settlement, and Urbanism, edited by P. J. 

Ucko, R. Tringham, and G. W. Dimbleby, pp. 61-66. Schenkman, Cambridge, England. 

Jennings, Jesse D. 
1957 Danger Cave. Society for American Archaeology Memoir 14. 

Jochim, Michael A. 
1976 Hunter-Gatherer Subsistence and Settlement: A Predictive Model. Academic Press, New York. 

Johnson, G. A. 
1977 Aspects of Regional Analysis in Archaeology. Annual Reviews in Anthropolot:J 6:479-508. 

Kaplan, Abraham 
1964 The Conduct ofInquiry: Methodolot:J for Behavioral Science. Chandler, New York. 

Kemrer, Meade F., editor 
1982 Archaeological rariability within the Bisti-Star Lake Region, Northweltern New Mexico. ESCA-Tech 

Corporation. Submitted to the Bureau of Land Management, Contract No. YA-553-CTO-114. 
Copies available from Bureau of Land Management, Albuquerque District, Albuquerque, New 
Mexico. 

Klesert, Anthony L. 
1982 A Predictive Model of Aboriginal Site Location within the Rio Grande National Forest, 

Colorado. In Studiel of the Prehiltoric and Historic Cultural Resources or the Rio Grande National Forest, 
edited by Anthony L. Klesert. Centuries Research, Inc. Submitted to the USDA Forest Service. 
Copies available from USDA Forest Service, Southwest Regional Office, Albuquerque. 

1983 A Predictive Model of Site Potential in the Rio Grande National Forest, Colorado. Paper 
presented at the 48th Annual Meeting of the Society for American Archaeology, Pittsburgh. 

Kohler, Timothy A., and Sandra C. Parker 
1986 Predictive Models for Archeological Resource Location. In Advances in Archaeological Method 

and Theory, vol. 9, edited by Michael B. Schiffer, pp. 397·452. Academic Press, New York. 

Kohler, Timothy A., T. P. Desjeans, C. Feiss, and D. F. Thompson 
1980 An Archaeological Survey of Selected Areas of the Fort Benning Military Reservation, Alabama and 

Georgia. Remote Sensing Analysts. Submitted to the Heritage Conservation and Recreation 
Service, Contract No. C-5716(78). Copies available from Interagency Archeological Services, 
Atlanta. 

Kramer, C., editor 
1979 Ethnoarchaeolot:J: Implications ofEthnography for Archaeolot:J. Columbia University Press, New 

York. 

92 



MODELS AND THE MODELING PROCESS 

Kranzush, Kris J. 
1983 The Reanalyris ofC/ass II Cultural Rewurce Inventory Data from the Lower White River Known Recoverable 

Coal Rewurce Area, Rio Blanco County, Colorado: Final Report. Gordon and Kranzush, Inc. Submitted 
to the Bureau ofLand Management, Contract ;\10. Y A-553-CTO-1063. Copies available from the 
Bureau of Land Management, Craig District, Craig, Colorado. 

Kvamme, Kenneth L. 
1983 A Manual for Predictive Site Location Models: Examples for the Grand Junction District, 

Colorado. Draft submitted to the Bureau of Land Management, Grand Junction District, 
Colorado. 

Lafferty, Robert H., Ill, Jeffrey L. Otinger, Sandra Clements Scholtz, W. Fredrick Limp, Beverly 
Watkins, and Robert D. Jones 

1981 Settlement Predictions in Sparta: A Locational Analysis and Cultural Resource Anmment in the Uplands of 
Calhoun County, Arkansar. Arkansas Archaeological Survey Research Series No. 14. Fayetteville. 

Larralde, Signa, and Susan M. Chandler 
1981 Archaeological Inventory in the Seep Ridge Cultural Study Tract, Uintah County, Utah, with a Regional 

Predictive Model for Site Location. Bureau of Land Management, Utah Cultural Resource Series No. 
5. Salt Lake City. 

Larralde, Signa, and Paul R. Nickens 
1980 Archaeological Inventory in the Red Wash Cultural Study Tract, Uintah County, Utah. In 

Sample Inventorier ofOil and Gar Fieldr in Eartern Utah, 1978~1979, assembled by Paul R. Nickens. 
Bureau of Land Management, Utah Cultural Resource Series, No.5. Salt Lake City. 

Leach, Edmund R. 

1954 Political Systems orHighland Burma. G. Bell and Sons, London. 


Lee, Richard B., and Irven DeVore, editors 

1968 Man the Hunter. Aldine, Chicago. 


Limp, W. Fredrick 
1983a Location Choice and Settlement Predictions: The Conformity of Method and Theory. 

Paper presented at the 48th Annual Meeting of the Society for American Archaeology, Pitts
burgh. 

1983b An Economic Model ofSettlement Aggregation and Dispersal. In Ecological Models in Economic 
Prehistory, edited by Gordon Bronirsky, pp. 18-45. Arizona Stare University Anthropological 
Research Papers No. 29. Tempe. 

Losch, A. 
1954 The Economicr of Location, translated by W. H. Wolgam and W. F. Stolper. Yale University 

Press, New Haven. 

Mac;\leish, Richard S. 

1964 Ancient Mesoamerica Civilization. Science 143:531-537. 


McCarthy, Carol Heathington 
1982 An Archaeological Sample Survey of the M.iddle Santa Cruz River Basin, Picacho Rerervoir to Tucson, 

Arizona. Arizona State Museum Archaeological Series No. 148. Tucson. 

Morenon, E. Pierre 
1983 Environmental Diversity and Prehistoric Site Location: Rhode Island Case Studies. Paper 

presented at the 48th Annual Meeting of the Society for American Archaeology, Pittsburgh. 

Munoz, Jeanne 
1982 A Partial Index to the Mission San Gabriel Baptism, Marriage, and Death Registers. Report 

submitted to the U.S. Army Corps of Engineers, Contract No. DACW90-81-C-0016. Copies 
available from the U.S. Army Corps of Engineers, Los Angeles District Office. 

93 



ALTSCHUL 

Nance, C. Roger, Harry Holstein, and David C. Hurst 
1983 Evaluation of Multiple Regression Models Predicting Archaeological Site Distributions at 

Fort McClellan, Alabama. Paper presented at the 48th Annual Meeting of the Society for 
American Archaeology, Pittsburgh. 

Neal, Larry 
1972 Arrmment of the Cultural-Historical Resourw of Clayton Lake. Oklahoma River Basin Survey, 

University ofOklahoma. Submitted to the U.S. Army Corps ofEngineers. Copies available from 
the U.S. Army Corps of Engineers, Tulsa District, Tulsa, Oklahoma. 

Newkirk, Judith A., and Donna C. Roper 
1982 Predictive Modelling in the Piceance Basin, Northwestern Colorado. Gilbert/Commonwealth. Submit

ted to the Bureau ofLand Management, Contract No. Y A-553-CTI-136. Copies available from 
the Bureau of Land Management, Craig District, Craig, Colorado. 

Neyman,]., and E. S. Pearson 
1933a On the Problem of the Most Efficient Tests ofStatistical Hypotheses. Philosophical Transac

tiom of the Royal Society 231:281-337. 

1933b The Testing ofStatistical Hypotheses in Relation to Probabilities A Priori. Proceedings ofthe 
Cambridge Philosophical Society 24:492-510. 

Olsson, G. 
1970 Explanation, Prediction, and Meaning Variance: An Assessment of Distance Interaction 

Models. Economic Geography 46:223-233. 

Peebles, Thomas C. 
1983 Discriminant Analysis in Site Predictive Models: Problems and Prospects. Paper presented 

at the 48th Annual Meeting of the Society for American Archaeology, Pittsburgh. 

Peebles, Thomas C., editor 
1981 Report on the Cultural RelOurm in the Form::r Navajo-Hopi 10int Use Area (FT1978). Department of 

Anthropology, Northern Arizona University. Submitted to the Bureau ofIndian Affairs. Copies 
available from Bureau ofIndian Affairs, Flagstaff Administrative Office, Flagstaff, Arizona. 

Plog, Stephan 
1976 Relative Efficiencies of Sampling Techniques for Archeological Surveys. In The Early Meso

american Village, edited by Kent V. Flannery, pp. 136-160. Academic Press, New York. 

Read, Dwight 
1974 Some Comments on the Use of Mathematical Models in Anthropology. American Antiquity 

39:3-15. 

Reed, Alan D., and Susan M. Chandler 
1984 A Sample-Oriented Cultural Resource Inventory in Carbon, Emery, and Sanpete Counties, 

Utah. Nickens and Associates. Draft submitted to the Bureau of Land Management, Contract 
No. YA-553-CT2-1080. Copies available from the Bureau of Land Management. 

Reed, Alan D., and Paul R. Nickens 
1980 The Cisco Cultural Resources Study: A Sample-Oriented Inventory, East-Central Utah. In 

Sample Inventories of Oil and Gas Fields in Eastern Utah 1978-1979, edited by S. L. Larralde, P. R. 
Nickens, and A. D. Reed. Bureau ofLand Management Cultural Resource Series No.5. Salt Lake 
City. 

Renfrew, Colin, editor 

1973 The Explanation ofCultural Change: Models in Prehistory. Duckworth, London. 


Renfrew, Colin, and Kenneth L. Cooke, editors 

1979 TransJormations: Mathematical Approaches to Culture Change. Academic Press, New York. 


Renfrew, Colin, Michael J. Rowlands, and Barbara Abbott-Segraves, editors 
1982 Theory and Explanation in Archaeology: The Southampton Conference. Academic Press, New York. 

94 



MODELS AND THE MODELING PROCESS 

Rogge, A. E., and T. R. Lincoln 
1984 Predicting the Distribucion ofArchaeological Sites: A Case Study from the Central Arizona 

Project. Paper presented at the 49th Annual Meeting ofthe Society for American Archaeology, 
Portland. 

Roper, Donna C. 
1979 The Method and Theory ofSite Catchment Analysis: A Review. InAdvanm inArcbaeological 

Metbod and Tbeory, vol. 2, edited by Michael B. Schiffer, pp. 119-140. Academic Press, New York. 

Sabo, George, III, and David Waddell 
1983 Adaptation Type Models and Site Prediction in the Arkansas Ozarks. Paper presented at the 

48th Annual Meeting of the Society for American Archaeology, Pittsburgh. 

Sabo, George, III, David Waddell, and John H. House 
1982 A Cultural Resource OvtrPiw of tbe Ozark-St. Francis National Forest. Arkansas Archeological 

Survey. Submitted to the USDA Forest Service. Copies available form USDA Forest Service, 
Russellville, Arkansas. 

Salmon, M. H. 
1975 Confirmation and Explanation in Archaeology. American Antiquity 40:459-470. 

1976 "Deductive" versus "Inductive" Archaeology. American Antiquity 41:376-380. 

1978 What Can Systems Theory Do For Archaeology? American Antiquity 43:174-183. 

Salmon, Wesley 
1971 Statistical Explanation and Statistical Relevance. University of Pittsburgh Press, Pittsburgh. 

Schiffer, Michael B. 
1968 Archaeological Context and Systemic Context. American Antiquity 37:156-165. 

1976 Bebavioral Arebaeolag;y. Academic Press, New York. 

Schiffer, Michael B., and W. L. Rathje 
1973 Efficient Exploitation of the Archaeological Record: Penetrating Problems. In Researcb and 

Tbeory in Current Arcbaeolog;y, edited by Charles L. Redman, pp. 169-179. John Wiley; New York. 

Scriven, Michael J. 

1959 Explanation and Prediction in Evolutionary Theory. Science 130:477-482. 


1962 Explanation, Prediction, and Laws. In Minnerota Studies in tbe Pbilosophy afScience, vol. 3, edited 
by H. Feigl and G. Maxwell, pp. 170-230. University of Minnesota, Minneapolis. 

Sessions, Steven E., editor 
1979 Tbe Arcbaeolog;y ofSoutbwest Gallegor Mesa: Tbe EPee Survey Project. Navajo Nation Papers in 

Anthropology No. 1. Window Rock, Arizona. 

Skinner, G. 
1977 Cities and the Hierarchy of Local Systems. In Tbe City in Late Imperial Cbina, edited by G. 

Skinner, pp. 275-351. Stanford University Press, Stanford. 

Smith, Carol A. 

1976 Regional Analysir, 2 vols. Academic Press, New York. 


Steward, Julian H. 
1938 Basin-Plateau Aboriginal Socio-political Groups. Bureau of American Ethnology Bulletin No. 120. 

Washington, D.C. 

Thomas, David Hurst 
1972 A Computer Simulation ofGreat Basin Shoshonean Subsistence and Settlement Patterns. In 

Models In Arcbaeolag;y, edited by David L. Clarke, pp. 671-704. Methuen, London. 

1973 An Empirical Test ofSteward's Model ofGreat Basin Settlement Patterns. American Antiquity 
38:155-176. 

95 



ALTSCHUL 

Thomas, Prentice M., Jr., Carol S. Weed, L. Janice Campbell, and Jeffrey H. Altschul 
1981 The Central CoallI Project; A Clail II Inventory afSelected Portions OfCarbon, Emery, and Sevier Countier, 

Utah. Report of Investigation No. 25. New World Research. Submitted to the National Park 
Service, Contract No. CX5000-2-0087. Copies available from the Archeological Service Branch, 
Division of National Register Programs, National Park Service Southeast Regional Office, 
Atlanta. 

Tipps, Betsy L. 
1984 The Tar Sands Project: Cultural Resource Inventory and Predictive Modelling in Central and Southern 

Utah. P-III Associates. Submitted to the Bureau ofLand Management, Contract No. Y A55I-CT3
340038. Copies available from the Bureau of Land Management, Richfield, Utah. 

University of Utah, Bureau of Land Management, and Forest Service 
1982 Intermountain Antiquities Computer System User's Guide: Instructions and Computer 

Codes for Use with the IMAC Site Form. Copies available from the University of Utah 
Archaeological Center, Salt Lake City. 

Vita-Finzi, Claude 
1969 Early Man and Environment. In Trends in Geography-An Introductory SUrPey, edited by 

U. Cooke and J. H. Johnson, pp. 102-108. Pergamon, Oxford. 

1978 Archaeological Sites in Their Setting. Thames and Hudson, London. 

Vita-Finzi, Claude, and E. S. Higgs 
1970 Prehistoric Economy in the Mount Carmel Area of Palestine: Site Catchment Analysis. 

Promdings of the hehistorie SOCiety 36:1-37. Cambridge, England. 

Watson, P. J., S. A. LeBlanc, and C. R. Redman 

1970 Explanation in ArehaeolofJ; An Explicitly SCientific Approach. Columbia University Press, New 
York. 

Westfall, Deborah A. 
19'7') An Archaeological Overview of the Middle and Lower Santa Crux Basin: A Class I Cultural Rtfourct 

Survey for the Central Arixona Project-Tucson Division. Arizona State Museum Archaeological Series 
No. 134. Tucson. 

Williams, Leonard, David Hurst Thomas, and Robert Bettinger 

1973 Notions of Numbers: Great Basin Settlements as Polythetic Sets. In Research and Theory in 
Current ArchaeolofJ, edited by Charles L. Redman, pp. 215-237. John Wiley, New York. 

Wood, John J. 
1971 Fitting Discrete Probability Distributions to Prehistoric Settlement Patterns. In The Distribu

tion ofPrehistoric Population Aggregates, edited by George J. Gumerman, pp. 63-82. Prescott College 
Anthropological Reports No.7. Prescott, Arizona. 

1978 Optimal Location in Settlement Space: A Model for Describing Locational Strategies. 
American Antiquity 43:303-309. 

Yellen, J. E. 

1977 Archaeological Approaches to the Present. Academic Press, New York. 


Zetterberg, Hans L. 
1963 On Theory and Verification in SociolofJ. Reprinted. Bedminister, Totowa, New Jersey. Originally 

published 1954, Almquist and Wiksell. 

Zubrow, Ezra B. W., and John W. Harbaugh 
1978 Archaeological Prospecting: Kriging and Simulation. In Simulation Studies in ArchaeolofJ, 

edited by Ian Hodder, pp. 109-121. Cambridge University Press, London. 

96 



Chapter 4 


THE THEORETICAL BASIS OF ARCHAEOLOGICAL 
PREDICTIVE MODELING AND A CONSIDERATION OF 

APPROPRIATE DATA-COLLECTION METHODS 

James I. Ebert and Timothy A. Kohler 

This chapter) intended for both managers and archaeologists) discusses 
archaeological predictive modeling from the theoretical and methodological stand
point. During discussions between the authors and editors of the volume and 
Bureau ofLand Management and Forest Service archaeologist/managers that took 
place before the book was written, it was suggested that the material contained 
herein should be directed toward the cultural resource manager. The implication 
was that managers would not be interested in the sorts ofthings that archaeologists 
often produce. This was to be a practical volume, a guide to how predictive 
modeling can be done and how it should be used-not a compilation of esoteric 
anthropological theory. Some of those present seemed to be looking for a guide for 
the manager/archaeologists on how to do "pragmatic" predictive modeling that 
would cut research costs; others leaned more toward wanting a document that 
would question the propriety of using predictive modeling for purposes ofassess
ment or mitigation. 

Both groups seemed to feel that locational predictive modeling had already 
been developed in useful form; the problems from their perspective lay in deciding 
how or whether modeling should be used. It is our feeling that we do not know as 
much as we should about how to do predictive modeling at present; that it is a 
worthwhile goal to want to understand the process more thoroughly; and that 
through the proper combination of rigor and research we can probably learn to do 
such modeling in the near future. But at this stage in our understanding of the 
modeling process, it would be premature to attempt to produce a guidebook. 

In the two years since the original manuscripts for this volume were written) it 
has become even more apparent that many archaeologists and cultural resource 
managers want and need a guide to predictive modeling. With accelerating fre
quency, especially during the past year, we have received calls and letters from 
colleagues (some of whom are archaeologists and some of whom are not) in the 
remote sensing and GIS fields who are contracting and experimenting with 
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archaeologists who want to implement predictive models in their study areas. 
Those colleagues are invariably armed with third-or fourth-generation xerox copies 
ofearly drafts ofcertain chapters from this volume, chapters that purport to tell just 
how to do predictive modeling. After wading through the pro's and con's ofvarious 
regression and sampling methods, they suddenly realize that the "modeling" 
advocated in those chapters has a surprisingly and perhaps dangerously simplistic 
foundation beneath all of the mathematical discussions. 

"Surely there was more to prehistoric human behavior than this implies," said 
one colleague, himself a Native American trained as an archaeologist, remote 
sensing specialist, and geographic information system researcher. "This is what we 
do to map fox or squirrel habitats: look for water and shelter and food and then 
draw polygons and isopleths around them. Squirrels don't have canteens but 
Indians did. Do these archaeologists think they know all about how complex past 
peoples' seasonal rounds were, why they went where they did?" 

The au thors ofthis chapter feel, in fact, that we as archaeologists do not know all 
about the complex systemic behavior that must be the basis of archaeological 
predictive modeling. The theme of this chapter, then, is that while there may be 
more than one way to do predictive modeling once we know how to do it, as 
suggested elsewhere in this volume, there is only one way to learn how to do it. For 
those who contend that we already know how to do predictive modeling ("we do it 
all the time"), this could be rephrased to read that there is only one way toprove that 
we know how to do it. Developing predictive modeling as a tool to aid both 
archaeologists and cultural resource managers must proceed from a consideration of 
just what it is that both of these groups want and need to know about. 

While some might feel, superficially, that archaeologists want to "explain" 
while managers just want to know where and what the resource is, we will illustrate 
that these goals are inseparable. Both must be approached from a theoretical 
standpoint-starting with the consideration of how we believe systems of human 
adaptation operated in the past and moving logically in the direction ofevaluating 
how the ways we discover, collect, and analyze our data are compatible with 
learning what we need to know. 

Several reviewers of this chapter have protested that we are presenting "just 
one theory ofpredictive modeling" here. We would like to make it clear that the 
terms theory and theoretical are used here not in any partitive sense ("... he has one 
theory and she has another ...") but rather to indicate where one begins trying to 
build the framework of ideas and methods, and the hypothetical links between the 
two, that will be a prerequisite to being able to do predictive modeling, no matter 
what one means by that. This chapter, then, is about "The Theoretical Basis of 
Archaeological Predictive Modeling," as opposed to "The Non-Theoretical Basis of 
Predictive Modeling." What, one might ask, could be meant by non-theoretical 
predictive modeling? Again, using theory to mean the framework by which ideas are 
evaluated, a non-theoretical approach would be one that begins with an attempt at 
the "unbiased" interpretation and derivation ofknowledge from data, a direction 
that we will characterize in this chapter as empirical predictive modeling. 
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Empirical predictive modeling, in its simplest form, consists of using the 
results of site surveys of an area and matching the locations of sites with certain 
landform features or other indications of past characteristics of the environment. 
Once these correspondences are noted, the proposition is set forth that more sites 
will be found in areas where the greatest proportion ofpreviously found sites was 
located. 

In more complex manifestations, empirical predictive modeling breaks pre
viously found sites into functional or other assumed types, derives complex taxon
omies of environmental indicators, sometimes specifies multiple working hypo
theses about the relationships between these two sets of variables, and applies 
sophisticated mathematical models (correlation and other associational analyses) to 
determine which sets ofcorrelations are strongest. Then the same "prediction" is 
made-that sites will be distributed in unexamined areas the same way (that is, 
with respect to the same environmental indicators) that they were in the previously 
explored area. 

In a sense, empirical predictive modeling often works-that is, correspond
ence between the presence ofsites and ofgross environmental indicators often exist 
at some level of statistical confidence. Mathematical confidence tests have nothing 
to do with explanatory confidence, however; they only test the probability of 
obtaining specific results by chance, given certain characteristics of the samples 
from which data are drawn. It will be suggested in this chapter that the "success" of 
some empirical predictive models has as much to do with the ubiquity of the 
archaeological record across the landscape, and with natural postdepositional proc
esses, as with the realities of the archaeological record. 

This chapter will explore in depth the differences between theoretical and 
empirical predictive modeling. We begin with general properties ofhuman adapta
tional systems as a first step in an exploration of the processes that anthropological 
and ethnoarchaeological research suggests are responsible for the formation of the 
archaeological record. The complexities of human adaptational systems and their 
"translation" into the archaeological record may make difficult reading for non
archaeologists, but they are inescapable. In order to learn to apply empirical 
predictive modeling to the archaeological record, one must "work back" through 
these complexities, which may be even more difficult than our approach of"work
ing forward" through them. 

It will also be suggested that one way to make this learning task-and future 

empirical predictive modeling, once we learn how-easier and more economical is 

to fit our data discovery and measurement methods to the things we want to know 

about. In other words, we need to make our data-collection methods compatible 

with our goal of explaining complex, multicomponent human systems. One major 

difference between present-day attempts at empirical predictive modeling and a 

theoretical approach is that empirical modeling has inappropriate data biases 

already built in. The data upon which it is based have been cast in terms ofsites with 

various assumed functions. It will be suggested in this chapter that new methods of 

data collection, based instead upon our ideas about how the archaeological record is 
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formed and designed to allow the evaluation ofinherent biases, may often be helpful 
in the development of any workable predictive model, whether explanatory or 
empirical. 

As was seen in Chapter 2, researchers have been experimenting with empirical 
predictive modeling for many years and are continuing to do so today. Most of the 
locational predictions made in archaeology today are statements ofempirical corre
lation. True prediction of archaeological distributions of materials and of their 
concomitant behavioral and natural causes is a worthy goal and one that is impor
tant and necessary for both the cultural resource manager and the archaeologist. 
Modeling and prediction are integral parts of the scientific explanatory process, as 
will be illustrated in this chapter. They form a very real part ofwhat archaeologists 
must do to link their beliefs about the operation and organization of past systems 
with the observable remains of the archaeological record, and they constitute the 
only means by which those beliefs can be tested. Cultural resource managers need 
to know where archaeological materials are located, where they can be found by 
archaeologists, and what these materials are in order to preserve or otherwise 
manage them. 

The archaeologist and the manager are united in their attempt to arrive at 
successful predictive models. There may occasionally be talk of theory vs applica
tions, of the research goals of the archaeological scientist being at odds with the 
pragmatic objectives and responsibilities of the manager. But research cannot be 
separated from such applications as attempting to predict the locations ofarchaeo
logical materials. Research provides information about the basic operation of past 
human organizational systems; the discard of materials from these systems; the 
incorporation of archaeological materials into what is discovered and seen as the 
archaeological record; and the ways in which archaeologists discover, measure, and 
interpret this record. Withou.t this information there is no hope of understanding 
the mechanisms that create cultural resources. Prediction is not a rote empirical 
process: its scope encompasses the entire framework ofarchaeological inquiry and 
explanation. Archaeologists and managers are partners in cultural resource man
agement and study. 

We conclude our introduction with a discussion of what this chapter is and 
what it is not. This chapter is different from the rest of the book: it presents ideas 
about how the world works, about the structure ofarchaeology and anthropology, 
about the organization ofhuman systems, about the formation ofthe archaeological 
record, and about how archaeologists perceive and use that record. Looking at the 
task oflocational prediction from this perspective tends to highlight the difficulty 
and intricacy of the task, since it soon beco.mes apparent that a large number of 
complex considerations can affect the locations and even the degree ofpredictabil
ity of archaeological materials. These are things that must be explored before we 
can hope to predict successfully and predict with understanding the locations of 
cultural resources. Although we present methodological suggestions for overcom
ing some of these difficulties, we risk being regarded as spoilers to the extent that 
we cannot at this time offer easy fixes for all of the problems we can foresee in 
locational prediction. 
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This chapter is not an overview of how people are currently proposing, or 
attempting, to do predictive modeling; these topics are discussed in other chapters. 
Instead of focusing on the modeling process, this chapter discusses some of the 
things that we need to think about (and some ofthe ways in which we might think 
about them) in order to perfect the process of predicting whatever we decide to 
predict. To begin with, we attempt to define the places that modeling and 
prediction occupy within the explanatory framework ofarchaeology-that is, what 
are modeling and prediction? What do we want (or what do we need) to model and 
predict? The question of research goals is also addressed-what will we have to 
learn in order to be able to do these things? 

Methodological questions are very important in this discussion. The interpre
tations that we make concerning the archaeological record are probably influenced 
as much by how archaeologists deal with their data as by what people actually did in 
the past. How can we collect the appropriate data? How can we ensure consistency 
and comparability in data collection, measurement, and analysis within and 
between surveys and other studies? Should or can every researcher have a unique 
research problem or orientation, or are there general problems upon which we must 
concentrate, problems ofcritical importance to the manager and the archaeologist? 
And finally (and perhaps most important from a management perspective), how can 
we efficiently collect data and do the other research that is necessary if we are to 
learn how to predict characteristics of the archaeological record and how to give 
these characteristics meaning in terms of past behavior? 

These and many other topics are explored in this chapter. We begin by 
discussing the framework ofarchaeological explanation within which modeling and 
prediction must take place. 

PREDICTION, MODELS, AND THE SCIENTIFIC 
FRAMEWORK OF ARCHAEOLOGY 

The archaeological record is a complex amalgam of patterning in material 

objects created by the organization of peoples' activities in the past and by the 

intervening cultural and natural processes that have preserved or rearranged these 

materials since they were lost or abandoned by their past owners. The archaeologi

cal record consists solely ofpatterns that we can see today-that is, it is a contempor

ary phenomenon. It is important to note that these patterns do not ordinarily 

record a single moment frozen in time that, given the proper expertise, we should 

be able to reconstruct. In fact, the archaeological record is not ordinarily the simple 

result of past episodes of individual behavior, and it is only through a scientific, 

explanatory archaeological framework that we can give it meaning. Nor is the 

archaeological record a mirror that reflects past behavior in a dark, warped, and 

incomplete fashion. This is only the case ifwhat we want to do is to reconstruct in 

microscopic (and normally impossible) detail an instant view ofthe past. We would 

argue that this is not the goal ofarchaeology. The nature and scale of the archaeo

lOt 



EBERT AND KOHLER 

logical record is such that we will be more successful in understanding it if we 
consider it not as the reflection ofactions ofindividuals but rather as the cumulative 
record ofan entire system. These systems are not directly embodied in nor are they 
equivalent to the materials we find in and on the ground. Linking past organiza
tional systems with the archaeological record can only be accomplished through the 
explanatory framework of archaeology. The only distortions in this reasoning 
process will exist in archaeologists' models, not in the archaeological record. 

Explanation in Archaeology 

Explaining things in archaeology is a two-way street, a progression of theory 
and method. Theory is the way in which we think about things, particularly about 
the existence, nature, and direction ofcause-and-effect relationships, and method is 
the way in which we go about dealing with data. These two parts of the explanatory 
process are inseparable, regardless ofwhat the archaeologist wants to explain. In the 
chart shown in Figure 4.1, some of the links between theory and method in 
archaeological explanation are shown. This diagram is intended more as a guide to 
how we might think about the explanatory process than as an indisputable flow 
chart ofarchaeological thought, and many other categories in the progression might 
be acknowledged. The point is that explanation involves both theory and method. 
In the diagram, one might proceed in either direction-from ideas about human 
subsistence, settlement, mobility, and technological organization (that is, the 
organization of systems) to interpretation of patterning in the archaeological 
record, or vice versa. Linking the two extremes ofthis diagram constitutes explana
tion and requires the modeling ofa series ofintervening processes. These processes 
transform the ways that people organized their systems into what we see today as 
the archaeological record. One class of these processes links static archaeological 
data with the dynamics ofpast systems; the study of these has been referred to as 
formulation of"middle-range theory" (Binford, ed. 1977:6-9). In our diagram, this 
class comprises discard behavior and depositional and postdepositional processes; in 
its broadest sense, middle-range theory provides guidelines for generating empiri
cally falsifiable outcomes from general theory. Other factors that further remove the 
patterning we see in the archaeological record from past systemic organization are 
those introduced by archaeological methodology itself-the ways in which 
archaeologists recover, measure, analyze, and interpret the archaeological record. 

These things that separate high-range theory from the meaning that we assign 
to patterned data represent complicating factors in attempts to interpret the 
archaeological record. Moving from one of these complicating factors to another 
requires qualitative rather than simply quantitative "translation" -that is, the 
physical archaeological record left behind after the action ofeach of these factors is 
ofa very different nature than it was before. In the course ofthis chapter, each ofthe 
components of the explanatory archaeological framework will be discussed. First, 
however, the place ofmodeling and prediction-the subject ofthis volume-in the 
explanatory process must be addressed. 
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Figure 4.1. The explanatory framework of archaeological science. Explanation is the process of modeling human 
subsistence, settlement, and mobility organization using archaeological and anthropological data, as well as anthropological, 
environmental, and systems theory, and confirming these models using prediction to derive expectations for data 
patterning. These predictions must also be linked with higher-level theory through middle-range theoretical propositions 
concerning the things that separate the static archaeological record from the organization of human systems. Empirical, 
inductive projection, sometimes referred to as "prediction" in the literature, is a methodological exercise in which the 
results of future archaeological discovery are projected from noting correspondences between where sites have been found 
previously and environmental or landform features of assumed significance. 
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Modeling and Prediction 

In Figure 4.1, the lowest box, interpretation ofdata patterning, is connected 
with the highest theoretical category, subsistence and settlement/mobility organi
zation, by the two-way process of explanation. Explanation involves integrating 
archaeological data with other sorts of information-ethnographic, ethnoarchaeo
logical, historical, environmental-to create models that connect the archaeological 
record with what we think was happening in the past. These models are abstract 
and complex formulations and can never be proved to be strictly "true." In fact, 
this is not their purpose: they are constructs that help us to assign meaning, rather 
than laws or translational rules. Yet they need to be tested or confirmed ifwe are to 

know whether they are realistic and useful, and whether they elucidate the 
mechanisms behind how people live in their world. 

The way that models are tested is through prediction. Prediction is the 
formulation of hypotheses-that is, testable statements of expectations-based 
upon models. If predictions based on models are found to be successful, then the 
model and the theories upon which it is based tend to be confirmed. In the structure 
ofscientific explanation, models and theories can never be proved to be true, but if 
the mechanisms behind the predicted phenomena are being modeled faithfully, the 
predictions based on them will be consistently successful. 

Successful prediction ofphenomena in the real world is an accomplished fact in 
many scientific disciplines, such as electronics, chemistry, and physics. These 
successes consist of experiments in which predictions based on models are con
firmed in a wide variety of situations, with external influences being held "equal." 
Such successes are unknown at present in archaeology. Not only are we unable to 
predict phenomena over a wide range of situations, but there is virtually no 
agreement as to what we want to predict and what we have to model in order to do 
that. 

What Do We Want to Predict and What Do We Need to Model? 

The literature dealing with predictive modeling is usually directed toward 
determining the locations of archaeological materials, whether for discovery pur
poses (Artz and Reid 1983; Davis 1980a, 1980b; House and Ballenger 1976; Lynch 
1980; McManamon 1981a, 1981b; Nance 1980, 1981; Spurling 1980; Warren 1979), for 
purposes of finding archaeological "voids" (Baker and Sessions 1979; Kemrer 1982; 
Kemrer, ed. 1982; Klesert 1983; Kvamme 1980, 1982, 1983a; Parker 1985; Peebles 1983; 
Sabo and Waddell 1983; Scholtz 1980, 1981), or for more avowedly explanatory 
purposes (Chandler and Nickens 1983; Limp 1983; Nance et al. 1983; Waddell 1983). 
Prediction of the locations of archaeological materials is a primary concern of 
cultural resource managers, as well, for in order to manage resources one must know 
where they are. It could be argued, and will be argued later in this chapter, that 
prediction ofthe locations ofsites is an ambiguous goal, for the concept of the site is 
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of uneven usefulness when the ways in which archaeological materials are depos
ited, accumulated, and discovered are taken into account. 

There may well be things other than simple locations, too, that archaeologists 
and managers might want to predict. Densities of materials, for example, might be 
of interest (Foley 1981c; Thomas 1973). The diversity or clustering of assemblage 
components at different sample unit sizes (Whallon 1973, 1974, 1984) or the occur
rence of patterning congruent with intrasite activity structure (Kintigh and 
Ammerman 1982) are other possibilities. The most obvious thing, or at least the first 
thing, that cultural resource managers need to predict, however, is the location of 
cultural resources. 

To make predictions we need to have models, and those models must span the 
entire explanatory framework rather than simply concentrating on those things we 
want to predict. Models exist at a theoretical level, not an empirical one. Their 
purpose is to elucidate the mechanisms behind the formation processes ofthe archaeo
logical record, i.e., to explain it. Prediction, then, is a subset of explanation. 
Whether predictions are to be locational or not, it is human organizational systems 
that must be modeled, as well as all those complicating factors between this highest 
level of human behavior and the archaeological record as we see and measure it. 

Cultural resource managers and archaeologists share the need for explanatory 
models. We do not yet have many satisfactory archaeological models or even 
components of such models. It will undoubtedly take many more years to decide 
what sorts of models are needed by both archaeologists and managers. Some of the 
things that we may need to consider in this decision process-those "complicating 
factors" referred to above-are discussed in the remainder of this chapter. 

THE NATURE AND ORGANIZATION OF HUMAN SYSTEMS: 
SETTLEMENT) MOBILITY) AND TECHNOLOGY 

A Systems Perspective on Prediction 

As discussed in Chapter 2, anthropologists interested in the relationships 
between people and their environment have increasingly adopted an ecosystemic 
perspective on these relationships. Over the past two decades archaeologists have 
also acquired the habit of referring to the dynamic interaction between people and 
the ecosystem as the settlement system without worrying too much about what it 
means, in general, to call something a system. (A notable exception is D. L. Clarke 
[1968].) Yet our acceptance ofthis term has significant implications for our attempts 
to predict the locations ofcultural resources. A system may be practically defined as 

a circumscribed complex ofrelatively bounded phenomena, which, within these bounds, 

retains a relatively stationary pattern ofstructure in space or ofsequential configuration 

in time in spite of a high degree of variability in the details of distribution and 

interrelations among its constituent units oflower order [Weiss 1973:40]. 
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This vague characterization can be sharpened by an exclusion. The mere fact 
that something is composed of several components does not necessarily make it a 
system; a distinction can be made between systems and mechanisms. In a mechanism 
such as a typewriter, for example, one action rigidly triggers other actions in a 
com pletely determined manner, corresponding to notions ofstrict linear cause and 
effect. In systems, however, there is much freer interplay between the components, 
despite considerable predictability in the actions ofthe system as a whole. Systems 
are not, however, composed of parts that are chaotic in their behavior. Living 
systems have an evolutionary tendency toward consolidation along stereotyped 
tracks and toward determinancy in the behavior of the parts; such systems ulti
mately realize some balance between flexibility (indeterminancy) and rigor (deter
minancy) (Weiss 1973:54-59). Relatively rigid designs have great efficiency but are 
only successful if the problems to be solved are always the same. 

Another characteristic ofliving systems (for example, a human community of 
hunter-gatherers in its regional ecosystem) is that they tend to provide stability of 
existence for their components (individual bands or households, for example), 
although the state of any of these components at any time is itself unpredictable, 
varying far more than the state of the system of which the components are a part 
(Piaget 1978:59-72). This characteristic of systems leads in turn to a hierarchy of 
predictability that Weiss calls stratified determinism: there is predictability in the 
behavior of the system despite demonstrable indeterminism in the individual 
constituents of that system. 

We suggest that human settlement systems share many characteristics with 
general living systems. Settlement systems are the way that people move around on 
and locate themselves within a landscape. The individual constituents of this 
system-the locations ofindividuals or groups at any given moment, the ways that 
decisions are made or rationalized, the likes or preferences of human participants, 
and all the minute details that seem to constitute the everyday world when one is 
actually involved in a system-are inherently less predictable than are the structure 
and patterning of the system as a whole. 

This is not to say that any part of the operation ofgeneral systems or ofhuman 
settlement/mobility systems is random or, in the final analysis, indeterminate. The 
point is that scientific research addressing a research problem dealing with a system 
component must be targeted at the system to which the component belongs. Our 
job in spatial prediction, then, is to understand the structure of the system first. 
Accordingly, we will spend some time in this chapter discussing what the structure 
of a settlement system might include. 

In the course of this chapter we will argue that modeling undertaken for 
purposes of predicting the locations and characteristics of phenomena in the 
archaeological record should take place on the level of human organizational 
systems. In order to demonstrate this, we propose to take the reader on a journey 
through the many stages of archaeological explanation, beginning with some 
approaches to modeling the nature of human settlement/mobility systems. 
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It will be important to remember that although individuals obviously make 
artifacts and other parts ofthe archaeological record, neither the patterning nor the 
role ofthese portions ofthe archaeological record in space and time can be equated 
with the actions (and even less the thoughts or decisions) of individuals or with 
specific episodes of behavior. Neither are the cultural materials we find today 
located where they are because ofsimple interactions between human behavior and 
specific resources or landscape variables. 

The patterning of materials in the archaeological record is a result of the 
organization ofthe cultural system that produced those materials. A cultural system 
is not the summation of the actions of individuals but rather consists of the 
components in an organizational framework under which actions are structured; the 
patterning ofcultural materials will embody aspects of this framework rather than 
provide any sort of instant view of a frozen ethnographic moment (Binford 1981). 

In cultural systems, people, things, and places are components in a field that consists of 

environmental and sociocultural subsystems, and the locus ofcultural process is in the 

dynamic articulations of these subsystems [Binford 1965:205J. 


The actors in a cultural system are not only people, but places, artifacts, strategies, 
schedules, landscapes, climate, environment, resources-and many other things as 
well. 

One hallmark of contemporary attempts at archaeological prediction, and 
indeed of much modern archaeology in general, is the explicit or implicit assump
tion that environmental factors are major, even exclusive, determinants of much 
human behavior (site location, subsistence strategies, etc.). Environmental varia
bles, such as distance to water, distance to resources assumed to have been 
important, shelter, and available lookouts, are compared with the location of 
archaeological materials to determine whether there are correlations between these 
landscape characteristics and such cultural variables as the location of sites. The 
causal link between site locations and natural, independent variables is usually 
considered to be multivariate-that is, people positioned their sites with respect to 
an optimal combination of all the resources in which they were interested. 

Probably the best example of this approach is in Jochim (1976), often cited as 
one ofthe seminal works in archaeological prediction. Jochim argues that, since the 
distributions of individual resources seldom coincide, these resources exercise 
differential degrees of"pull" on settlements in relation to their value to the people 
who occupied those settlements. One problem with this approach is that it is based 
on a model of the individual person as decision-maker and of specific resources as 
the basis for making decisions about where to locate activities. That is, it attempts 
to predict specific components ofthe larger organizational system without regard to 
the system ofwhich they are a part. This is not the level ofhuman organization that 
must be addressed; it is the structure of human organizational systems within 
ecosystems that needs to be modeled in order to predict things about the compo
nents of human systems. How ecosystems variables relate to this task will be 
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considered later in this chapter; now, however, we will attempt to illustrate an 
approach to modeling human systems. 

Systemic Mobility/Settlement Organization 

Archaeologists and cultural resource managers work with an archaeological 
record produced by prehistoric human systems. All the "facts" that we know about 
these past systems are actually meanings that we have assigned to the archaeologi
cal record. Empirical correlative models that use distances between sites and 
resources as bases for predictions assume that simple proximity of one thing to 
another implies some sort of connection or causality, and that distance negates 
these relationships. The assumption that proximity means something is of course 
supportable when one is observing ethnographic instants in time. It would be 
supportable in the interpretation ofthe archaeological record ifwe could be assured 
that we are observing therein instants in past time, i.e., a spatially and temporally 
nonoverlapping archaeological record. Not only have we no such assurances, but in 
fact it is almost certain that we are not. Many locations are used for short time 
periods within most human systems; resources may be transported great distances 
in anticipation of future needs; and many resources are not in constant demand. 
Prehistoric people, for instance, could certainly travel some distance without taking 
a drink, and they certainly had the mental resources to carry water with them. We 
should have as much capacity to realize (on another level) that the location ofone 
component ofa system-where an artifact is discarded, or where a camp is made-is 
affected by the patterning of other components in space and time: for instance, 
where another camp was made and what was there last week, or what a group 
anticipates it will find at the next camp. Rather than being due to the immediate 
proximity of the resources, in fact, archaeological site patterning is the result of 
long-term repetition (or lack thereof) in the "positioning of adaptive systems in 
geographic space" (Binford 1982:6), and the use ofspace is not uniform, even within 
the same system. Some activities occur at concentrated locations and some do not. 
The spatially concentrated nature of some activities and the dispersed nature of 
others have been discussed in terms of"ranges" ofvarious types (Foley 1977, 1978, 
1981b; Jochim 1976), settlements vs activity "nodes" (Isaac 1981: 134), and catch
ments (Vita-Finzi and Higgs 1970). 

The very nature of human systems-organized through such tactics as plan
ning and anticipation and effected through caching, transport of materials, staged 
manufacture, and intensive reuse and recycling ofmaterial items-brings the use of 
proximity arguments in predictive modeling under question. Human behavior is 
different from animal behavior in that animals in general do not flexibly or con
sciously anticipate, plan, or transport, cache, and recycle materials; animals do not 
have behavioral systems organized in a human way. 

The things that people do that involve planning, anticipation, and the com
plex geographic repositioning ofmaterials (some or most ofwhich are not left where 
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they were used, or are reused there and other places in other times) will not be 
understandable in any simple way through correlations ofartifacts or other cultural 
evidence and supposed nearby resources. Ofcourse, unplanned events and activi
ties will be represented in the archaeological record, for even in the most highly 
planned systems (and perhaps particularly in them) unanticipated contingencies 
will arise. These events, in fact, may be explainable through artifact-resource 
proximity arguments-these are the things that people do like animals, and the 
same sorts ofpredictive modeling that our previously mentioned colleague uses to 
model fox and squirrel habitats can be used to "predict" them. 

So there are aspects of both human organization and "animal" behavior 
embodied in the archaeological record-perhaps we do know how to do some 
archaeological predictive modeling after all! But before you skip the rest of this 
chapter and turn to discussions about the best regression models, we think that just 
a few very important questions must be asked, including What proportion of human 
behavior if immediate and unplanned (and thus explainable usingproximity arguments) and what 
proportion is systematically organized? Which portions ofhuman behavior are we most interested 
in? 

The nature of activities that happen at any place during an occupation will of 
course have a relationship to the resources available there, but this relationship may 
not be a simple one, and its strength will be affected by such environmental 
characteristics as the distribution or diversity of resources (Harpending and Davis 
1977) or the annual range oftemperatures requiring, enabling, or restricting storage 
of foodstuffs (Binford 1980). But economic resources are not the only actors in 
human organizational systems, and they will not be the only determinants ofwhere 
different activities are carried out in these systems. What a group does at one place, 
for instance, may be as much affected by what they will do at the next place they 
visit, or what they did at the last place they visited, as it is by the available resources 
at the current location. 

An examination ofone taxonomy ofdifferential mobility patterns will help to 
illustrate the interlocking nature of the parts of a human organizational system, as 
well as the implications of different forms of organization for the formation and 
ultimately the predictability ofthe arc~aeological record. Binford (1982) has distin
guished a number of ranges or mobility zones that can be used in different 
combinations to characterize the ways that people use the space around their 
residential base. A residential base is the place where a group lives, where resources 
are consumed, where children are reared, and where most maintenance activities 
take place. Residential camp sizes vary, mostly in relation to population sizes. 
There are certain complications in this relationship, however, that prevent direct 
projections of population on the basis of site size, as will be discussed later in this 
chapter. Surrounding the residential base is the foraging radius, which is usually 
considered to be within 10 km of the camp in any direction; resources in this zone 
are exploited in the course of trips that last a day or less and from which both 
resources and people return to the residential camp. This area contains locations, 
places where resources are extracted and where limited processing is carried out. 
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Few maintenance activities are carried out at locations. Outside the foraging radius 
is a logistical radius, which is exploited by special-purpose task groups who stay away 
from the residential base for at least one night and sometimes for months. Within 
the logistical radius, both maintenance activities and special-purpose activities can 
and do take place. 

Not all groups use these different radii to the same extent. The use of these 
radii varies with the frequency with which a group's residential base is moved, and 
this, in turn, is conditioned by environmental and perhaps in some cases social 
factors. In highly diverse environments almost all resources can be found within a 
group's foraging radius, and people in equatorial jungles and possibly in some other 
environments, such as the Kalahari Desert and the southern parts of the North 
American Great Basin, particularly during the summer months, acquire nearly all 
resources using a generalist encounter strategy during daily walkabouts. Intensive 
use ofthe foraging radius, however, leads to quick depletion ofresources, and when 
this happens the residential camp is moved, most often to one edge of the old 
foraging radius. From this new basecamp a new foraging radius is established 
(Figure 4.2). Only half of this new radius is actually usable for foraging, ofcourse, 
since the portion shared with the old radius is still depleted. This sort ofmobility 
strategy results in what Binford (1982: 10) calls a half-radius continuous pattern. 

• Foraging Radius 

~ Residential Bases 

Figure 4.2. The half-radius continuous pattern ofexploitation ofthe landscape by foraging groups. When 
the resources within a foraging radius are depleted, the group moves its residential base to the far edge of that 
foraging radius and begins to exploit another half-radius. Materials lost or discarded within the foraging radius 
are expected to be oflow density and relatively continuous distribution (after Binford 1982). 
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In more differentiated or simpler environments, a complete radius leapfrogpattern 
of residential mobility is more often found ethnographically. This settlement 
system consists of residential moves that result in little or no overlap between 
successive foraging radii but produce logistic radii that do overlap (Figure 4.3). In 
this situation, logistical camps are often located at old residential bases because 
materials in these abandoned camps can be reused and because the specialized 
task-group members are familiar with the old residences and their surroundings
reasons for site location that are at least partly nonenvironmental. Examples of 
cultures with this type of settlement system include the northern Paiute and the 
Shoshone. A variation of the complete radius leapfrog pattern that is common in 
lower-biomass settings is the point-to-point pattern found in high-elevation settings 
and claimed to be used, for example, by the Yaghan ofTierra del Fuego (Wills (980). 
In this case residential moves involve no overlap in use zones at all, not even in the 
logistic radii. The location of residential camps under this mobility pattern repre
sents a compromise among the locations of known but spatially incongruent 
resource distributions. These resources are then exploited through logistic mobility. 

Foraging Radius D Residential Bases

•
D • Locations 

Logistic Radius 0 Reoccupied Locations 

Figure 4.3. The complete radius leapfrog pattern oflandscape use. This model was devised to typifY the 
land-use strategy oflogistically oriented groups. Locations that are reused within the zones oflogistic radius 
overlap could contain assemblages representing different functional uses. Archaeological materials found within 
the foraging radii would be dispersed and continuous; materials at locations within the logistic radius are more 
focused but may represent multiple functional occupations (after Binford 1982). 
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Some Examples of Variability in Reuse of Places 

Binford's mobility/settlement type taxonomy, as described above, is not an 
attempt to arrive at any "whole truth" about human spatial organization; rather it 
is an attempt to model different types oforganization so that their consequences in 
the archaeological record can be predicted. Binford's model is not altogether 
theoretical in its derivation; rather,.it is based on ethnographic examples gathered 
by anthropologists and ethnoarchaeologists studying hunter-gatherers, pastoral
ists, and agricultural groups throughout the world. Ethnographic and ethno
archaeological accounts ofvariations in mobility and settlement patterning indicate 
that groups operating under different mobility/settlement patterns exhibit differ
ent patterns ofreuse ofplaces. This observation has important implications for our 
understanding of the complexity of the archaeological record. 

A number ofexpectations or predictions about the reuse ofplaces can be drawn 
from Binford's mobility model. Binford's suggestion that under the complete
radius leapfrog pattern old residential bases will be reused for special-purpose 
logistic functions leads to the expectation that, under such a mobility organization, 
sites will occur at definite points within the landscape where different functions 
would overlap. In addition, since the location of residential bases represents a 
compromise among the locations of resources exploited through logistic mobility, 
we might also anticipate reuse ofresidential locations as residences, assuming stable 
distributions oflogistically exploited resources. 

For the half-radius foraging pattern, on the other hand, there are no logistic 
camps and resources are more evenly distributed. Reuse ofresidential camps might 
be less common under this form oforganization, in part because foraging radii would 
more likely be depleted ofcritical resources for some time and in part because ofthe 
nature of the environments in which foraging is most commonly practiced, as will be 
discussed below. Foraging radius locations-places where resources are encoun
tered and perhaps minimally processed-could be expected to occur almost ran
domly within the foraging radius, a pattern that through time would lead to a 
low-visibility but continuous archaeological record. 

Anthropologists and archaeologists have found that living hunter-gatherer 
and pastoralist groups that pursue a relatively generalist strategy and fall toward 
the foraging end ofthe mobility/settlement scale utilize their foraging radii more or 
less continuously. Population densities among such groups are characteristically 
low. An annual average density of 0.03 persons per square kilometer has been 
recorded among the /Kade area Bushmen (Harako 1978; Tanaka 1969), and even 
among the relatively densely populated Ituri Forest Pygmy a density ofonly 0.2 to 
0.6 persons per square kilometer is typical. Characteristically, such peoples exploit 
their sparsely populated ranges relatively evenly. 

Foley (1981c:21) cites very low densities of artifacts among such groups in 
Africa, even on residential bases if those bases were only occupied once. What is 
more, a large percentage ofartifacts among such groups are discarded at what Foley 
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calls "secondary home range foci," which are the equivalent of Binford's "loca
tions" within the foraging radius. These locations are usually used only once, and 
their occurrence throughout the environmentally diverse home range assures even 
distribution ofdiscarded items. Gould (1980) reports that among Australian aborigi
nes only about 1percent oflithic discard occurs at the residential basecamp; most of 
the rest occurs within the home range (foraging radius). The results of evenly 
distributed, low-density discard over the length oftime monitored by ethnologists 
are almost invisible, but over archaeological time this discard process can produce 
impressive and relatively continuous densities of discarded materials. 

This discussion has important implications for the ways in which the archaeo
logical record of foragers should be surveyed, measured, bounded, and analyzed, a 
topic to be discussed in greater length in later sections of this chapter. Given a 
foraging adaptation, it is clear that, in much of the contemporary archaeological 
record, discrete "sites" will not be apparent. Nonetheless, the continuous archaeo
logical record left by groups employing a foraging strategy includes within it 
materials related to both types of activity areas used by these groups (residential 
and nonresidential loci). 

Although few human groups pursue a pure foraging subsistence strategy, most 
groups represented in the archaeological record may well have pursued a foraging 
strategy at least part of the time. A model such as Binford's, which contrasts two 
extreme subsistence and mobility/settlement strategies-foraging and 
collecting-is not meant to reflect the real world as much as to provide a basis for 
predictions. All actual human strategies should fall somewhere between these two 
extremes. Among groups that depend more heavily on logistically organized collect
ing strategies, there are definite nodes or foci in the landscape that are repetitively 
used for the same or different purposes. Even among near-classic foragers, such as 
the Bushmen described by Yellen (1976), some camps can be seen to be resettled 
even within the short span of ethnographic time. 

Most North American prehistoric and ethnohistorically recorded hunters and 
gatherers could be expected to employ subsistence strategies more closely resem
bling the collecting portion of Binford's model and thus to exhibit a logistic 
mobility/settlement pattern. For example, most Shoshone groups of the Great 
Basin, who exploited only wild foods even ethnohistorically, occupied a number of 
functionally differentiated types ofcamps. Four major food sources were exploited: 
Indian ricegrass seeds, pinon nuts, jackrabbits, and antelope (Powell 1980). Winter 
villages served as residential bases, and foraging for seeds and rabbits took place 
near these camps; in addition, at least two types of special-purpose camps were 
occupied. Pinon camps, which were reused when the nuts were locally available, 
were occupied by one or more families for periods ranging from 2 weeks to several 
months. Antelope camps were also reused, although only about once every 12 years 
owing to pressure on antelope populations. When these antelope camps were in use, 
however, rhey were occupied by a large population consisting ofmany residential 
groups, and they were spatially quite extensive. The Shoshone antelope drive camp 
is a good example of a location being chosen not on the basis of "multivariate" 
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determinants but instead because of the presence ofa single resource. As Thomas 
(1983:79) notes, at antelope camps "the short-term gainls] of high-bulk animal 
procurement temporarily offset the high costs of transporting essentials such as 
firewood and water." 

The pastoralist Navajo also exhibit differentiated use of locations within a 
home range centering on a permanent camp. Some of these functionally specific 
locations are used only once or infrequently (temporary windbreaks, tent loca
tions), but many more are revisited regularly (e .g., stock shelters, storage features, 
dumps, antelope hunting corrals, sweathouses; Kelley et al. (982). Although com
monly characterized as pastoralists, the Navajo also grow crops, and they maintain 
agricultural fieldhouses when the distance from the permanent camp to the field is 
greater than ca. 3.2 km (Russell (978). Some ofthese field houses are occupied for the 
entire agricultural season, and commonly they are reoccupied from year to year. 

As people become more intensively agricultural and residentially sedentary, 
their logistic use of nonresidential locations may actually be greater than that of 
hunter-gatherers. But because there is little residential relocation, these special
purpose locations are used for more or less the same set of functions, although not 
necessarily all at the same time. Among Pueblo agriculturalists, both living and 
prehistoric, special-purpose sites have often been lumped under the rubric of 
"fieldhouses," although they may have had many functions, including agricultural 
camps, lookouts, hunters' camps, and storage facilities (McAllister and Plog 1978; 
Moore (978). Mesoamerican analogies suggest that small fieldhouse locations origi
nally occupied for purposes of tending agricultural fields may grow into larger 
residential villages through time (Fish and Fish 1978). Ellis (1978) observes that 
among the New Mexico Pueblos most fieldhouses belong to single individuals and 
thus represent recurring occupations for only a generation. She also notes that these 
structures are used not only while fields are being tended but also for "vacations." 

Implications of Variations in Settlement/Mobility Patterns 
for the Archaeological Record 

Binford's model of hunter-gatherer subsistence strategies and their concomi
tant settlement/mobility organizations has suggested two polar extremes, that of 
subsistence generalists with a foraging pattern of spatial use, and that ofspecialist 
collectors whose use of space is logistically organized. Ethnographic and ethno
archaeological documentation provides support for the conceptual validity ofboth 
of these patterns and also suggests that most groups occupy a position somewhere 
between these extremes. Prehistoric systems also can be expected to fall somewhere 
on this continuum-in other words, some aspects of their use of space will be 
continuous and other aspects will result in the reuse of places for the same or 
different functions. 

What are some of the implications of these patterns for the formation of the 
archaeological record, particularly with respect to predictive modeling? A first 
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obvious implication is that within any single organizational system there should be a 
number of different site types with functionally and formally different contents. 
The determinants ofthe placement ofthese different site types vary, with some site 
locations (those of residential sites in logistic systems, for instance) being compro
mises among the locations ofknown resources (i.e., determined and multivariate). 
Some site types, for instance residential bases and locations in foraging systems, will 
be far less predictably located on the basis ofcorrelations with resource locations. 
Still another class of sites, special-use camps within logistic systems, may be 
locationally quite dependent upon the occurrence of a single resource and inde
pendent of the occurrence of other resources. In order to predict the locations of 
special-use sites, one would need to know just what resources were being exploited 
at and around them. The archaeological dilemma about the function of "field
houses" illustrates that it may be very difficult to determine the specific use of 
places by simply inspecting those sites. Nonetheless, all of the site types that 
constitute a settlement/mobility system are integral participants in the overall 
organization of that system, and they must be understood before the locations of 
other components of that system can be predicted. Another implication of these 
patterns of space use and reuse is that a large and important portion of the 
archaeological record may be relatively continuous across the landscape, difficult to 
discover using current survey methods owing to low density ofdiscarded materials, 
and very hard to talk about in terms ofany equivalency between perceived clusters 
of materials (sites) and past behavioral episodes. 

The reuse of places through time also raises questions about the practice of 
equating clusters of materials with sites, at least insofar as sites are automatically 
interpreted episodically and as having locations that are predictable on the basis of 
their proximity to important resources. Moreover, site size as a functionally discrim
inating factor may be skewed by the reuse or lack of reuse of structures or of the 
places where previous structures had been. In the residential camps ofthe northern 
Ute, for example, menstruating women were required to build a new menstrual hut 
each month; these were similar to family shelters in size and functional characteris
tics, having internal hearths and activity areas, and they did not occupy areas where 
previous menstrual huts had been built (Smith 1974). Ifa hypothetical northern Ute 
residential camp were occupied by an extended family including eight adult 
females, half of whom were pregnant at any given time, approximately 68 new 
menstrual huts would be constructed each year. Ifeach old hut structure remained 
visible for 50 years, as some taphonomic studies indicate might be possible, and if 
the camps were continuously occupied over these years, this single Ute camp would 
accrue 3400 menstrual hut locations. What would normally be classed as a very large 
site may actually be the remains of multiple reoccupations ofa single location by a 
relatively small group. 

An exciting account by John Wesley Powell, an ethnographer who worked 

with the southern Numa (Ute) for two decades beginning in the 186Os, illustrates 

the consequences ofreuse ofthe same general area, but not ofthe exact spots where 

structures had previously been built, at residential camps. 


1I5 



EBERT AND KOHLER 

It is very rare that a site for a camp is occupied a second time and though they all go again 
year after year to camp near the same spring or small stream they invariably seek a new 
site for their bivouacs each time. When they leave a camp their bivouacs are not 
destroyed and so on coming to a customary camping place of the Utes, it gives the 
appearance ofhaving been occupied by a very large tribe, and persons are easily led to 
suppose that thousands have been encamped there when in fact perhaps a small tribe ofa 
dozen families have been the only persons who have occupied the ground for many years 
IFowler and Fowler 1971:52]. 

The nature ofsite patterning and the appearance and visibility ofarchaeologi
cal sites are seldom determined solely by the activities carried out during a single 
occupational episode. The archaeological record is instead created by the repetitive 
superposition of materials resulting from adjustments of human systems to their 
landscape through mobility. All components of these systems must be located, 
studied, and understood through the explanatory process before any can be success
fully predicted. 

TECHNOLOGICAL STRATEGIES, DISCARD BEHAVIOR, AND 
THE ARCHAEOLOGICAL RECORD 

Analyzing the differences and similarities among and within collections of 
cultural materials that are found at places-that is, assemblage variability -is often 
thought of as something to be done in the future, after the cultural resource 
manager's work has ensured the protection ofsignificant sites. Unfortunately, this 
cannot be the case in any program directed toward predicting the locations or other 
characteristics of sites and resources. In order to understand the workings of past 
systems and the mechanisms behind the spatial organization ofactivities, we must 
be able to tell the parts ofsystems from one another. In this section we will suggest 
that the component parts of human systems can be identified on the basis of the 
tools and other materials discarded, combined with information about the organiza
tion of technology. 

Modeling Technological Organization 

Ongoing cultural systems occupy a set of functionally and spatially differen
tiated places. If we study these places simply by grouping together sites that are 
similar, we cannot hope to understand the system as a coherent whole. In order to 
understand past systems we must find a way to group together the different parts ofa 
Jingle cultural system or type ofadaptation. Such parts of the cultural system may 
occur in the form ofclumped distributions ofartifacts and features resulting from a 
single or from multiple occupations. Assemblages of artifacts resulting from differ
ent functional activities and formed at the same or different times may overlap 
wholly or partially in space. In other circumstances artifactual materials may be 
relatively sparsely and continuously scattered over large areas as a result ofexten
sive foraging. 

116 



THEORETICAL BASIS AND DATA-COLLECTION METHODS 

On the organizational level, it is clear that the archaeological record is not 
directly or simply equivalent to activity areas or sets. It is accretional rather than 
episodic, whether it is of a continuous nature or concentrated into clusters. It is 
necessary to sort out the overlapping, accretional sets of artifacts and features 
before functions and roles in the organizational system can be assigned to what we 
see in the archaeological record and before we can approach any sort of locational 
predictions. A consideration of intersite and intrasite assemblage variability is a 
necessary starting point. 

Assemblage variability can be predicted through reference to the model of 
subsistence, settlement, and mobility detailed above. It should again be empha
sized that models are heuristic theoretical constructs that permit us to consider the 
range of strategies that human groups might follow and to predict the expected 
results of these strategies. Models allow prediction of consequences; if these 
predictions are confirmed, this tends to validate the usefulness of the model. 
Consequences are predicted from the model through the use of middle-range 
theory (Figure 4.1). 

Curated vs Expedient Technology 

As an example of a middle-range theoretical concept with great potential for 
tying together the dynamic organization of past human systems and the static 
contemporary archaeological record, consider the distinction between curated and 
expedient tools (Binford 1976, 1979). Expedient tools are those that are manufac
tured in the immediate context of their use when the circumstances that require 
them arise. Examples of expedient tools are rare in today's manufactured technol
ogy, but we all use bent coathangers to open locked automobile doors or convenient 
sticks to chase frightening dogs. In systemic terms, the use ofexpedient technology 
would be expected to be greatest in organizational systems geared toward an 
encounter strategy-that is, foraging systems. In the environments that favor such 
a strategy, there is an equal chance of coming across a wide variety of resources; 
there is no need for the participants in such a system to even attempt to predict 
what they will find. Other things (such as material availability) being equal, it might 
well be most efficient for these people to manufacture tools on the spot to meet 
specific situations as they are encountered. 

In curated technologies, on the other hand, the tools that are employed are 

planned to fit specific uses that have been anticipated (Binford 1976). This is an 

efficient strategy in environments where the occurrence ofresources is predictable, 

and in organizational systems that focus on specialized resources. Collecting strate

gies featuring a logistic organization ofmobility-dispatching ofspecial task groups 

to procure selected resources-are most likely to exhibit curated technologies. 


As in any modeling effort, of course, these two technological extremes are 

theoretical constructs. Actual technologies employed within a system can be 

expected to be a combination ofthe two. For instance, foraging people may produce 
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and use general-purpose curated tools in addition to manufacturing situational 
tools. It is probable that the participants in logistically organized systems will 
encounter unplanned situations that require the fabrication of expedient tools or 
the modification oftools with planned uses into tools with new uses. One character
istic ofcurated components ofa technology is that they are often the result ofstaged 
manufacture employed in the face of time stress (Torrence 1983). Time stress occurs 
when resources are clumped or concentrated in space (which requires a focus on 
specific resources to consumer needs) and in time (which requires highly efficient, 
specialized tools). Since collecting resources in such an environment must be done 
in short time periods, there is plenty of time to work on tools; high energy 
expenditures in tool design, manufacture, and maintenance assume technological 
efficiency. Typically, tools are manufactured and maintained in a staged manner, 
with stages taking place not only at residences but also at special-purpose locations 
occupied on the way to and from locations of time-stressed resource procurement. 
Staged manufacture, resource specialization or focalization, and the use ofspecial
purpose locations are characteristic of logistically organized groups. 

Foraging groups are characterized by relatively broad-spectrum resource 
bases-they are generalists in that they exploit a large number of resources, at 
relatively low levels, within a foraging radius even over short time periods. While 
specialists in simple environments must obtain most of their resources during very 
short time periods, this is not the case for foraging generalists, who obtain food 
slowly and constantly. In such a generalist scenario there is neither the need nor the 
opportunity for staged manufacture. Iftechnological components are curated, they 
are manufactured, maintained, and discarded at residential bases. Expedient por
tions of a foraging group's technology will be discarded continuously throughout 
the foraging radius. 

These crosscutting but definitely not independent middle-range dimensions 
ofvariability-collecting vs foraging, resource specialization vs generalization, and 
tool curation vs expediency-are important in a discussion ofpredictive modeling 
in that they have different implications in terms ofthe location ofthe manufacture, 
maintenance, and discard of tools and hence the formation of the archaeological 
record. Expedient tools are manufactured where they are needed, and they are also 
discarded there. In this strategy, the occurrence of expedient tools is isomorphic 
with the activities for which they were used, and the energy put into these objects is 
low; they exhibit little in the way of formalization or style. Most expedient tools 
probably do not look much like tools at all and are therefore either exempted from 
analysis by many archaeologists as "undiagnostic" or included in the category of 
debitage. 

Curated tools, on the other hand, are rarely either manufactured or discarded 
in the context of their immediate use. Tools intended for use during the mobile 
activities of special task groups are most likely to be manufactured at residential 
basecamps (Binford 1980) for anticipated uses away from those camps. Curated 
tools, designed to be used for some time, will be more durable than those made 
expediently for immediate discard, although this may not be morphologically 
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obvious. Characteristically, however, curated tools are of a compound or complex 
nature (Allchin 1966; Oswalt 1973), having hafted components or multiple parts. 
These characteristics help to ensure that a curated tool will not be "used up" at the 
locus of its use but rather will be brought back to the residential base for rejuvena
tion or other maintenance. Under such a curated technology, both manufacturing 
debris and broken portions ofcurated tools will be found at the residential site and 
not at the places where the tools were used. The only curated tools (as opposed to 
"site furniture," such as metates) that should be found at the place where they were 
used are those that were lost and not recovered, for instance, unrecovered projectile 
points. 

Expectations about the presence ofdiscarded tools and debris associated with 
tool manufacture in the archaeological record can be generated from the above 
assumptions. Under a foraging strategy, there are two situations in which discard 
should take place: at the residential basecamp and at the location. Manufacture and 
discard ofexpedient tools would be expected to take place at both ofthese loci, with 
the implements being discarded where they were used. Groups using a foraging 
strategy should exhibit major variations in mobility and group size and composition 
during the year or from year to year in response to short-term variations in the 
environment (Binford 1980). This leads to the expectation that the activities 
performed at foraging sites ofeither type could be quite diverse and could vary with 
time. Since over the long term, at least, campsites would not be chosen with regard 
to the placement ofprevious camps or locations, this diverse archaeological record, 
particularly those assemblages derived from locations, would tend to be relatively 
continuous over the landscape, given long-term use. Under a foraging strategy, 
variability in residential site assemblages is the result of differences in seasonal 
scheduling of activities and in duration of occupation. In such systems there is a 
pattern of increasing assemblage diversity with increasing site size, as noted by 
Yellen (1976). Among groups practicing a foraging strategy, therefore, the nonresi
dential use ofthe foraging radius leaves nonsite archaeological remains that are just as 
important for archaeologists attempting to predict the operation of these past 
systems as are the more clustered and visible materials that are usually called sites. 
This problem ofcontinuous distributions will be discussed at greater length later in 
this chapter. It is quite likely that some components of all human systems leave 
dispersed archaeological remains with low visibility, and these remains must be 
studied and understood before the mechanisms behind the placement ofactivities 
in systems can be explained and used to predict the locations of those activities 
accurately. The record left by expedient activities may be far more easily under
stood than that of the more logistically organized portions of past systems. 

Under a logistically organized system the nature of the intra- and interassem

blage variability can be expected to be very different from that predicted for 

foraging systems. Collectors use specially organized, highly mobile task groups to 

accommodate situations in which consumers are near one or more critical resources 

but distant from others. In addition to residential basecamps, these groups also 

utilize field camps, stations, caches, and other places for specific functions. Field 
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camps under such systems probably outnumber residential camps by as much as 4: 1 
Oudge 1973). Since these camps can be occupied for long periods and/or be the sites 
of intensive processing, they may become as large and visible, archaeologically, as 
residential bases (Binford 1980). As noted above, groups organized under a collect
ing strategy will be likely to employ a curated technology to some extent, given 
their high levels of mobility and activity planning. Discard of those curated tools 
that are employed primarily away from the residence rarely takes place at the locus 
oftheir use. Collecting strategies are based upon prediction or planning and should 
be expected to occur for the most part in the most predictable environments. This 
means that places where archaeologists today should best be able to predict the 
locations of sites on the basis ofresource distributions will harbor assemblages that 
are unlikely to reflect the activities that took place there, since they will have less 
functional correspondence with the "resources" that are used as independent 
variables in predicting them. 

The argument might be made that it is not necessary to know the functions of 
sites to be able to predict their occurrence-that using proxy indicators that can be 
measured in the environmental today and that "predict" the occurrence of sites 
empirically works just as well. This may be true in certain situations, but proxy 
indicators should not be expected to occur isomorphically with the reasons that 
activities took place at certain locations in the past in all cases. It is the mechanisms 
behind the placement ofactivities in space and their resulting archaeological record 
that must be understood in order to successfully predict the occurrence ofactivity 
loci. 

The Reuse of Places and Intra-Assemblage Variability 

Attempts to predict the occurrence of sites that result from the operation of 
logistically organized systems are further complicated because places are reused for 
different purposes, so that many different combinations ofactivities may take place 
at a single site. For instance, a place might be used as a residential base for several 
months and thus contain tool manufacturing and maintenance-related debris. Ifthe 
site were subsequently used as a field camp, the discarded materials from this 
second use may not faithfully represent activities that actually occurred there. A 
wide range oftechnological variability ofspecific and easily differentiated types can 
be expected in the archaeological record produced by a collecting-based systemic 
organization. Investment in such facilities as structures for shelter or storage, 
caching ofitems to be used later at the site, and other cultural "improvements" ofa 
place would also be expected at reused places under such a system. This means that 
differential site function in a logistically organized, collecting system might not be 
obviouf on the basis ofeither site size or site contents. Indeed, as Thomas (1983:80) 
points out, 

it is extremely difficult to distinguish field camps from base camps in the archaeological 
record. There are behavioral differences to be sure, but these differences are commonly 
subtle and off-the-cuff field designations should always be mistrusted. 
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Interassemblage Variability and Mobility 

The variability among assemblages at different sites that result from the 
operation of a single system-that is, interassemblage variability-is the result of the 
overlay ofan organized series ofevents. The nature ofassemblages that result when 
cultural events interact differentially with natural events has been discussed in 
terms of "grain size" by Binford (1980:17). Coarse-grained assemblages are the 
cumulative product of events spanning relatively large time periods, for instance 
several mon ths or a year. Fine-grained assemblages accumulate over a short period 
oftime. The finer the assemblage grain, the greater the probable content variability 
among assemblages, because there is less chance that the total range ofactivities that 
occur under that system will be found there. The main factor responsible for grain 
size is mobility, but this relationship is far from simple or linear. In a foraging group, 
residential mobility would be expected to be highest in the least diverse, least 
seasonal, and least predictable environments, resulting in an increase in inter
assemblage variability. Under logistic strategies, residential mobility goes down, so 
coarser-grained assemblages would be expected in residential sites; the more 
mobile logistic components would, however, be finer grained than the residential 
sites and would thus, as a class, exhibit more interassemblage variability. 

The Explanation of Intra- and Interassemblage Variability 

Two major expectations concerning the relationship between assemblage 
variability and differing degrees of residential vs logistic mobility have been dis
cussed above. One expectation is that under increasing logistic mobility the effects 
ofcuration and the reuse ofplaces will make it increasingly difficult to postulate the 
functions of sites or to predict their occurrence in terms of association with 
particular resources. The other expectation is that under increasing logistic mobil
ity there will be increased interassemblage variability, both between residential 
basecamps and special-task locations and among different special-task locations as 
well. The archaeological record in this latter case may appear as a series ofsites that 
are relatively uniform in size, visibility, and contents in terms of structures or 
facilities but contain assemblages that are strikingly different in terms ofthe formal 
attributes of their constituents or at least some of their constituents. 

One of the ways of explaining an archaeological record like that described 

above is in terms of separate technical or cultural traditions, an approach that has 

been dominant in American archaeology since the science's beginnings (Willey and 

Sabloff 1974). This approach, which has been referred to as the Kriegerian method 

(Binford and Sabloff 1982: 143), defines culture types as collections offormally similar 

properties or attributes of cultural materials that are spatially coherent. Data 

collected and interpreted using this approach pose serious problems for archaeolo

gists and cultural resource managers who wish to understand the operation ofpast 

human systems and the mechanisms behind the archaeological record, yet such an 

understanding is critical to successful prediction of the locations of archaeological 
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materials. A Kriegerian, culture-type approach to assemblage variability virtually 
assures that the differentiated components of systems will be treated as separate 
cultures or traditions, making it impossible to consider them as parts of an inte
grated whole. And since the components of a system do operate in an integrated 
manner, their locations are just as dependent upon the nature and locations of the 
other components as upon environmental or other factors. Successful prediction is 
necessarily based upon the recognition and sorting out of the complementary 
components ofsystems. Unfortunately, this is something that archaeologists cannot 
do at present, although attempts toward this goal will be discussed later in this 
chapter. 

Technological vs Ecosystems Organization 

The practice ofgrouping assemblages on the basis offormal similarity encour
ages an emphasis on empirical correlations between assemblages (site types or 
culture types) and environmental variables, a practice that is the hallmark of 
present-day prediction attempts. Mazel and Parkington (1981) suggest that a more 
productive approach might consist of regional studies of the interrelationships 
among tools, sets of tools, and resources. These interrelationships are controlled, 
they feel, primarily by the spatial patterning of resources (rather than simply by 
their location) and by the ways in which resource patterning compares with the 
spatial patterning of human mobility within a system. In other words, prediction 
might be based not only on an understanding ofhuman systems but on knowledge 
ofecosystems as well. Ecosystem variables include the patterning ofresources in time 
and space and such qualities as environmental diversity and equability. The effects 
of ecosystemic spatial and temporal structures on the predictive effort will be 
discussed later in this chapter. 

Selection of the cultural variables against which to compare ecosystem varia
bles may be one ofthe most difficult tasks presently before the archaeologist. It will 
require very different approaches to sampling, survey, and data collection, record
ing, and analysis than are used in cultural resources management today. The 
assemblages that constitute sites must be understood in their entirety
undiagnostic artifacts as well as diagnostic ones. One new approach, a nonsite or 
distributional archaeological survey method, was recently tested by the Bureau of 
Land Management in New Mexico. This project will be discussed in a later section 
of this chapter. 

From a systems perspective it is clear that, at least under certain types of 
mobility and technological organization, the contemporaneous technological "tra
ditions" often identified in the archaeological record are actually functionally 
different parts of the same system. Most of the archaeological record in anyone 
place may consist of the remains of different portions of an essentially similar 
system-remains that have been deposited over very long periods of time. The 
archaeological record is not directly explainable in terms of episodic behavior; 
rather, 
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a detailed consideration of the factors that differentially condition long-term range 

occupancy or positioning in macro-geographical terms is needed before we can realisti

cally begin to develop a comprehension of ... subsistence-settlement behavior. The 

latter is of course necessary to an understanding of archaeological site patterning 

[Binford 1980:19; emphasis original]. 


NATURAL FORMATION PROCESSES AND THE 
ARCHAEOLOGICAL RECORD 

The complex patterning ofcultural materials across space is a result ofhuman 
mobility, the spatial patterning ofdifferent economic activities, the redundancy in 
economic activities across the landscape, and differences in the locus of artifact 
discard vs that of artifact use. In most cases, this patterning of discarded material 
undergoes additional changes before it is discovered and interpreted by the 
archaeologist (Schiffer 1972, 1983). Processes affecting the deposition, accumulation, 
preservation, disturbance, and exposure ofthe materials that make up the archaeo
logical record have been much investigated in recent years, largely due to such 
interdisciplinary influences as the study of taphonomy of culturally utilized or 
modified organic and inorganic materials (Behrensmeyer and Hill 1980; Brain 1967a, 
1967b, 1969, 1981; Gifford 1977a, 1977b, 1980, 1981; Gifford and Behrensmeyer 1977) 
and geoarchaeology (Butzer 1977, 1982; Gladfelter 1977). 

Deposition: The Coincidence of Natural and Cultural Events 

Cultural materials enter the archaeological record through deposition, during 
which process they are buried or otherwise preserved. Although depositional 
processes may be cultural, in most cases they are natural, consisting of aeolian, 
fluvial, lacustrine, or residual aggradation. These natural processes of deposition 
mayor may not coincide with episodes of cultural discard. Materials discarded as 
the result ofan occupation or activity might lie on the surface for long periods (in 
fact, "forever") without being buried, or they may be quickly buried even as they 
are discarded. Materials buried in layers or "levels" are thus not necessarily or even 
not often expected to be the result ofsingle occupational episodes. The nature of 
the deposited archaeological record is controlled by the periodicity or "tempo" 
(Binford 1982: 16) ofoccupation or use ofa place and by the relationship between this 
occupational periodicity and the periodicity ofdepositional processes. If the perio
dicity ofdiscard is the same as the periodicity ofnatural occurrences~for instance, 
floods~that incorporate these the artifacts into sediments, then a regularly strati
fied archaeological record will result. Ifdiscard occurs more often than the natural 
encapsulating events, however, cultural materials resulting from multiple behav
ioral episodes-multiple activity sets, in Carr's (1984: 113) terms-will be incorpo
rated into the same geomorphic stratum. 

In situations such as the complete radius leapfrog pattern of residential 

mobility, for instance, in which certain logistic sites may be reoccupied or reused for 
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different activities within a short period of time, one might expect that episodes of 
discard would occur more frequently than episodes ofdeposition. This would result 
in single-layer assemblages, or what Carr (1984: 114) calls depositional sets, com
posed of materials from more than one occupation or function. The nature of the 
deposited archaeological record is determined not only by the organization of the 
cultural system but by interactions between the organizational system and deposi
tional processes. This poses another set of problems for the archaeologist, since 
"demonstrably associated things may never have occurred together as an organized 
body of material during any given occupation" (Binford 1982: 17-18). 

Postdepositional Processes 

Another set of processes affecting the ultimate nature of the archaeological 
record can be thought ofas postdepositional, occurring after the discard ofcultural 
materials. Generally, almost any process that disturbs or acts upon the surface ofthe 
earth and subsurface deposits also acts upon archaeological materials. Such biologi
cal processes as faunalturbation and floralturbation (Wood and Johnson 1978), 
caused by burrowing, trampling, and root-heave, can modifY the original distribu
tion ofcultural materials. Chemical and physical processes that affect the archaeo
logical record include freezing and thawing cycles; mass wasting (gravitational 
forces); the growth and wasting of salt crystalline structures; the swelling and 
shrinking of clays; volcanism and tectonism; disturbances caused by the action of 
gas, air, wind, and water; and pedogenesis. 

A somewhat different taxonomy of the postdepositional processes acting on 
the archaeological record is advanced by Foley, who presents five sets ofprocesses 
responsible for burial, movement, destruction, exposure, and "small-scale oscilla
tion" (1981 a: 167) ofarchaeological materials. Discarded artifacts enter the archaeo
logical record through burial by cultural or natural agencies; once assemblages are 
buried they may remain in place or they may be moved through stream action, 
sediment movement, faulting, or mass wasting. At the same time, certain materials 
mayor may not be destroyed by physical and chemical agencies while in or on the 
ground. Small-scale oscillation processes include animal burrowing, human disturb
ances, root action, and water or wind action; these forces may alter the position of 
components of the archaeological record slightly but presumably do not totally 
disarrange it. Exposure of the archaeological record to water or wind erosion, 
tectonic activity, or human disturbance may alter the distribution of the archaeo
logical materials as well as make them visible. 

Just as variations in the coincidence of episodes of discard vs episodes of 
deposition or burial can create either well-segregated assemblages or palimpsests 
(that is, artifact distributions resulting from the overlay ofmany separate behavioral 
episodes and the action of postdepositional processes), exposure and reburial can 
also introduce complexities in archaeological patterning. These processes are rarely 
simply gravitational; they usually include some lateral component and therefore are 
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influenced by small variations in topography. Exposure and redeposition are often 
highly localized; deposits from separate occupations may be mixed in one area while 
a few meters away they will be separately stratified. Controlling for the complexi
ties caused by differential deposition, exposure, and reburial ofartifacts may be one 
ofthe most difficult and yet necessary tasks facing the archaeologist. Whatever the 
scale at which patterning in the archaeological record is being analyzed, the 
microtopography and geomorphological activity of surfaces must be examined in 
more detail than that afforded by most generally available topographic or surface 
unit maps. 

The Scale of Depositional and Postdepositional Processes 

Natural depositional and postdepositional processes are not necessarily or even 
often controlled by the factors that caused prehistoric people to visit and use an 
area. Depositional and postdepositional processes are localized and patterned on a 
small scale. Rarely, then, will the actions and results of these natural processes be 
spatially congruent with activity areas or assumed sites. Instead, their effects serve 
to remove the archaeological record yet further from past behavior and the organi
zation of human systems. 

This is not to say that natural processes necessarily render the archaeological 
record useless or uninterpretable. It is common in contemporary archaeology to 
view postdepositional processes as "bad," as making the archaeological record 
unusable or ofdiminished research potential. This probably arises from the seem
ingly popular belief that postdepositional processes are random in their operation 
(Bowers et al. 1983; Kirkby and Kirkby 1976). Almost all modern survey forms have a 
space for an assessment of a site's integrity; if the site is disturbed, it is too often 
classed as being oflimited utility to science and therefore ofdiminished significance. 
Such an assessment ignores the fact that all archaeological materials, whether from 
"sealed" sites or lying on the surface, have been affected by natural processes. 
Depositional and postdepositional processes are not random in nature; in order to 
assess their effect on our data, however, we must study and understand these 
processes so that we can predict their distribution and impact. Any prediction ofthe 
occurrence of archaeological materials muII incorporate a full consideration of the 
effects of depositional and postdepositional processes as intervening factors 
between the operation of past human systems and the archaeological record. 

This is necessary because the effects ofpostdepositional processes on what we 

see as the archaeological record may be far greater than we intuitively recognize. 

They not only disarrange flakes and tools but in fact are almost totally responsible 

for most of what archaeologists actually see during surface survey. If the physical 

extent ofbehavioral events that result in discarded materials are ofthe same general 

range ofspatial scales as the depositional and postdepositional processes, then there 

is some chance that entire sites will be exposed to the archaeologist'S view. 

Unfortunately, it is almost inconceivable that this will be the case. The material 

record will almost certainly be acted upon by a series of partially overlapping 
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depositional and postdepositional processes of widely varying scales. These proc
esses will combine the products of behavioral episodes; blur or sharpen (and in fact 
probably often create) their apparent boundaries; and differentially affect the place
ment of artifacts, depending on their sizes and shapes. These effects are all
important, for they determine where we see sites and what these sites look like. 
They also may be responsible for the fact that we think we see "sites" at all in many 
places. These processes must surely be determinable and predictable. The natural 
processes that intervene between the archaeological record and our knowledge of 
the past must be understood before predictive modeling can become an operational 
tool for cultural resource management. This task is discussed and illustrated at 
length in Chapter 9 ofthis volume, which deals with remote sensing and predictive 
modeling. 

The Usefulness and Integrity of Surface Remains 

Recently Lewarch and O'Brien (1981) argued that surface assemblages can be 
used to answer archaeological questions because comparable processes affect the 
patterning ofartifacts in both surface and subsurface archaeological assemblages. A 
more realistic way to phrase this might be that archaeologists should be aware that 
natural and cultural processes can affect subsurface or "sealed" archaeological 
patterningjust as strongly as they affect surface materials, so no automatic assump
tions of total contextual integrity should be made for any observed archaeological 
patterning. 

There are important pragmatic reasons for developing methods to measure the 
patterning and content ofarchaeological surface remains and for using such data to 
answer archaeological questions. Ofthese, the most relevant to the present volume 
is that the depositional processes that seal and protect cultural materials after their 
discard usually render these materials invisible to the archaeologist, even when 
such sophisticated and often expensive techniques as underground radar, proton 
magnetometry, resistivity measurement, and the like are used to search for them. 
For practical purposes, most buried archaeological materials are unknown and ofno 
value to the archaeologist until they are exposed. Another reason for paying 
attention to surface assemblages is that the contexts in which stratified deposition 
and burial are most dependable and regular, and in which archaeologists most often 
look for and find buried materials, may be the result of only very limited or 
specialized portions of the cultural systems. For instance, while cave sites contain 
well-segregated and well-preserved cultural strata, such sites might have been 
occupied only when the shelter they afforded was necessary, or they may have been 
used only for a specific set of purposes. Most of the components of the cultural 
system may have involved the use ofopen situations that would be more likely to be 
buried and reexposed, or perhaps not buried at all. Thus, in the archaeological 
record these components would be represented only by surface assemblages. 

Possibly the best reason for using surface archaeological assemblages, however, 
is that such data can be collected quickly, accurately, and cost-effectively, and they 
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yield a high return in the form of information that can be used to test models of 
human systems organization. In order for us to use this information, however, it is 
imperative that surface archaeological data be discovered, measured, and analyzed 
in ways that are consistent with their nature and with the nature of the organiza
tional processes that we wish to explain, as documented in the final section of this 
chapter. 

Natural Processes and "Independent Environmental Variables" 

The importance to predictive modeling of an understanding of postdeposi
tional processes becomes clear if we consider the "independent variables" fre
quently discussed by archaeologists involved in locational predictive modeling. 
These independent variables are the noncultural aspects of the total environment 
that correlate with site locations. Under an empirical framework these variables are 
used to "predict" (project) site locations. Commonly used independent variables 
include soil association, slope, elevation and/or variation in elevation, topographic 
aspect, vegetation, distance to water sources and their nature, and various specific 
landform associations (Chapter 9). It is almost always explicitly acknowledged that 
these independent variables themselves may have no causal relationship with the 
placement ofsites; they are simply considered to be indicators. In many instances, 
variables may be chosen primarily because they can be taken conveniently and 
quickly from topographic maps so that fieldwork is not required; some ofthe pitfalls 
of this approach will be discussed in Chapter 9. 

In addition, trying to generalize about where prehistoric people lived on the 
basis of where we find their discarded materials circumvents the explanatory 
framework outlined above by equating the archaeological record with past behavior 
without taking intervening processes into account. Correlating environmental 
characteristics with the archaeological record must begin with a consideration ofthe 
natural processes that determine how we see the archaeological record. Every one of 
the independent variables used in empirical, correlative projections could be a 
successful predictor because it has relevance to natural depositional and postdeposi
tional processes (and thus to the visibility of archaeological materials) rather than 
for any cultural reasons. 

For example, archaeological materials might be found on ridge tops, in sand 

dunes, or near water sources because that is where they are exposed and visible 

today. Soil associations are taxa ofdifferent types ofsoils, and these differences are 

based largely upon varying parent materials and the time that the soil has had to 

develop, both ofwhich may affect the geomorphic processes that cover or uncover 

artifacts. Vegetation is an obvious factor in reducing or enhancing archaeological 

visibility. Erosion takes place at accelerated rates on steep slopes. And any archaeol

ogist who has tried to survey the north side of a hill in the early morning or late 

afternoon knows that the light there is poor; things can simply be seen better on 

south slopes. There is not a single independent variable used in current predictive 
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modeling attempts that might not have more to do with depositional and postdepo
sitional processes than with anything that prehistoric people thought or did. 

Predictive modeling based on correlations with these variables may actually be 
predicting where we see sites and may have very little to do with how people 
behaved or how their systems worked. This is not to say that the archaeological 
record has no systemic, behavioral determinants; previous sections of this chapter 
have emphasized that it does. The point is that natural processes are very important 
in determining many aspects of the nature of the archaeological record and how we, 
as archaeologists, can deal with it. They must be thoroughly understood before 
predictive modeling can become either a management or a research tool. Ways of 
measuring, understanding, and even predicting the effects and distribution of 
natural depositional and postdepositional processes will be discussed more exhaus
tively in Chapter 9. 

ECOSYSTEMS VARIABLES AND ARCHAEOLOGICAL 
EXPLANATION AND MODELING 

As defined in the first section ofthis chapter, archaeological explanation is the 
process of combining middle-and upper-range archaeological and anthropological 
theory with ecosystems theory to form models from which predictions are drawn. 
This process begins at the systems level, and archaeological models connect sys
temic human organization with predictions about the archaeological record. 

Human systems obviously exist within ecosystems-they are subsets or com
ponents ofecosystems. Ultimately, the nature and predictability ofhuman systems 
and their products will be related at least in part to the natural ecosystem. This is an 
explicit assumption in all predictive modeling or projective attempts known to the 
authors ofthis chapter. In fact, the almost universal approach for such attempts is to 
compare the distribution of archaeological materials with "environmental varia
bles" that are suspected of having been important to past people: the availability 
or lack of water, shelter, firewood, food species, lookouts, south-facing slopes, etc. 

This section will discuss the use ofecosystem variables rather than particularis
tic environmental resources in the process ofarchaeological explanation. Ecosystem 
variables have considerable explanatory power when incorporated into models of 
change in human systems in response to ecosystem properties; they also have 
implications for the ultimate "predictability" of locations of cultural resources in 
different ecosystemic settings. In keeping with the principle ofcongruence in levels 
ofsystems being compared, it is important to examine the global characteristics of 
the structure ofthe ecosystem in order to predict something about the structure of 
the human organizational system inhabiting it (Figure 4.4). On a lower level, the 
spatial and temporal distribution of that environmental structure is important for 
predicting the spatial and temporal distribution ofthe human system exploiting it. 
At a still lower-order level in both systems, it is important to be able to characterize 
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the distribution of particular resources in order to predict the location of specific 
prehistoric activities and their archaeological manifestations. The extent to which 
this is possible, however, will depend on higher-order characteristics of both 
systems. 

Human Systems Within Ecosystems 

Ecosystems are composed ofindividuals enmeshed in populations, interacting 
with other populations in communities. Ellen (1982:74) has provided us with a useful 
modern definition of the ecosystem as 

a relatively stable set oforganic relationships in which energy, material, and information 
are in continuous circulation, and in which all processes are seen in terms of their 
system-wide repercussions. Specific changes, which may theoretically begin anywhere in 
the system, trigger adjustment and re-adaptation among the other elements .... Syrremic 
changes take place slowly through conjoint evolution that is biological, chemical, and 
physical. 

The ecosystem composed ofthese interacting communities is another example 
ofa general living system and likewise exhibits a mixture ofpredetermined behavior 
and free systems dynamics, as discussed earlier in this chapter and in Buechner 
(1971:45). The species composition ofparticular locations in a forest, for example, is 
always changing in response to fire or other perturbations, although species compo
sition and dominance in the larger forest may remain relatively stable. Species 
composition in seral (i.e., successional) communities varies according to both 
random and predetermined processes (Buechner 1971:52-53). 

On an abstract systems level, a number ofrelationships between ecosystemic 
characteristics and aspects of settlement systems have been demonstrated or 
suggested. Binford (1980) remarked upon the increasing importance ofboth logistic 
mobility (collecting) and storage among hunter-gatherers in environments with 
increasing seasonality. He notes that foragers, who practice little storage or logistic 
collecting, tend to move from the center ofone resource area to the center of the 
next. Kelly (1983) has argued that the resource "accessibility" (the amount of time 
and effort required to extract resources from an environment) ofplants can roughly 
be estimated by dividing the net above-ground primary productivity ofan environ
ment by its primary (plant) biomass; animal accessibility is roughly measured by 
dividing secondary biomass by primary bioIJ.?ass. (Net primary productivity is the 
rate of increase over some unit of time in biomass, usually measured in calories.) 
Kelly finds that as resource accessibility measured in this way decreases, residential 
mobility increases. Low resource accessibility and high residential mobility are, in 
turn, correlated with short distances between sequential residential bases, as is 
typical for foragers in the tropical rainforest. 
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Some Factors Affecting the Predictability and Location ofHuman Use ofSpace 

An appreciation of mobility is vital to our understanding of how the archaeo
logical record is formed. The causes and consequences of mobility are only part of 
what we need to know, however, in order to predict the locations and characteris
tics of past human behavior. In particular, we need to consider the middle and 
lowest levels in the systems of hierarchy shown in Figure 4.4, both for ecosystems 
and cultural systems. The middle level for ecosystems consists of information about 
the spatial and temporal structure ofthe ecosystem in some region ofinterest. The 
lowest level consists ofinformation about how the distributions ofspecific resources 
make up the patches and about specific environmental features (soils, landforms, 
etc.) of the landscape. 

Ofthe many kinds afknowledge that might improve our ability to understand 
settlement systems and to estimate how well site locations may be predicted, three 
dimensions ofvariability are most important: the temporal and spatial variability in 
resource availability and the degree ofeconomic intensification ofthe people exploit
ing those resources. We will first define these three dimensions of variability and 
then explore the effects ofeach variable on settlement systems; each variable will 
first be discussed as if it were possible to hold the other two constant. Finally, we 
will give some concrete examples of how these three independent dimensions of 
variability can be used to characterize various settlement systems and environ
ments in terms of the likely success of the prediction of settlement locations. 

Spatial heterogeneity in the landscape is called patchiness, a term that is not 
readily quantifiable but refers to significant spatial discontinuities in the distribu
tion of populations or communities. Intuitively, it is the opposite ofhomogeneity; 
although all ecosystems are patchy at some scale, the relative homogeneity of the 
tropical rainforest, for example, distinguishes it from the relative patchiness of a 
semiarid landscape. Patchiness encompasses aspects of environmental variability 
that are measurable, including the size and size distribution of patch types, the 
relative differences between patches and their surroundings, and so forth (Winter
halder 1980: 153). 

Three terms are especially useful for describing the temporal distribution of 

resources (Colwell 1974; Winterhalder 1980:162-163). Constancy is a measure of the 

degree to which a resource is continually available. Rainfall has a high constancy in 

tropical rainforests but a low constancy in most areas of the North American 

Southwest. Contingency is a measure of the degree to which the availability of a 

particular resource can be accurately predicted based on the season, without the 

need for monitoring that resource. In many areas of the Pacific Northwest, anad

romous fish runs have high-contingency predictability even though they are not 

constant. Perfect temporal predictability for a resource can be due to perfect con

stancy, perfect contingency, or a combination ofthe two. For example, Bella Coola, 

British Columbia, has moderately predictable rainfall patterns owing to relatively 

high constancy coupled with relatively low contingency. Acapulco, Mexico, has 

equally predictable rainfall as a result of low constancy coupled with high contin

gency (Colwell 1974: 1151). 
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Intensification has at least two manifestations. It may refer to the process of 
expending increasing amounts oftime or energy to realize the same level ofreturns, 
or it may describe the process through which the same amount ofoutput is obtained 
from less and less land-either through increased time or labor inputs or through 
more efficient technology. Intensification appears to be closely related to a number 
offactors: increasing involvement ofgroups beyond the family in the regulation of 
production (Sahlins 1972: 101-140), increasing population, increasing population 
density, approach to a current carrying capacity, and increasingly complex socio
political organization (Harris 1977), to name a few. Harris's position (1977:70) that 
increasing population and increasing population pressure on resources ~esults in 
intensification of land and labor, which in turn causes increasing sociopolitical 
complexity, may be too unilinear, but the general correlation of this system of 
variables is clear. 

Boserup (1965), Binford (1983: 195-232), and many others have discussed factors 
that may be seen either as the causes of intensification or as its symptoms: 
increased population size and packing, decreased mobility, the beginnings of 
serious agriculture, increased sociopolitical complexity, increased importance of 
exchange, the rise of urbanism, and so forth. Intensification is used here simply as 
the name for this large system of covarying variables, organized along the lines 
proposed in Table 4.1. Under certain circumstances intensification may involve the 
adoption of agriculture (Binford 1983:205) or the development of industrialism 
(Wilkinson 1973). 

Some ofthe following discussion ofthe effects ofspatial and temporal distribu
tion of resources and degree of intensification on human settlement systems is 
exploratory, and we know of little empirical proof for some of the relationships 
suggested. This is a starting point for further work in this direction and serves as a 
qualification to simple empirical correlations of the locations ofsites with environ
mental variables. 

TABLE 4.1. 


Selected correlates of intensification 


Degree ofIntmrification 

Lorv ~ ~ High 
Carualor 
Extenrive Intenrive 

Correlater Domertication Domertication 

Modal group size small (\8-120) moderate large large 

Generic site types 1-2 5 or more many many 

Residential mobility high (15-50 moderate to low low low 
moves per year) 

Investment in facilities low moderate high very high 

Storage very little; food seasonal seasonal long-term 
gathered daily 

,. All information on foraging groups and generic site-type information on collecting groups from Binford (1980) 
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Intensification. What is the importance ofintensification for our ability to predict 
where sites might be located in space? What implications might it have for the value 
of the concept of the "site"? The least intensified hunter-gatherer economies, 
people practicing a foraging way of life, should exhibit high residential mobility, 
practice little storage, gather or hunt food almost daily, and conduct much of their 
hunting on an encounter basis. The Dobe !Kung and the Central Kalahari San 
(Tanaka 1976) provide good examples of foragers. 

Although all human systems may well exhibit some foraging subsistence, and 
thus mobility, behavior, the purest examples offoraging should be found in tropical 
areas where there is relatively little seasonal pulse in the availability of resources. 
Ignoring for a moment the effects of such ecosystemic factors, the following 
observations about foraging systems in general can be made: 

l. In comparison with logistically organized hunters and gatherers (collec

tors), foragers should exhibit low population densities and expend relatively 

little energy in food transport and processing for storage. 


2. The tendency for foragers to move themselves to food and water, rather 

than vice versa, suggests that distributions ofsuch resources may in general be 

good predictors of residential bases (if these can be distinguished in the 

archaeological record). As a cautionary note, however, see comments by Foley 

cited earlier in this chapter. Yellen (1976:52) also observes that the !Kung San 

in the northern Kalahari-whose site locations are heavily constrained by the 

availability ofwater-generally locate their residential bases at least one-half 

kilometer, and often much farther, from a water source so as not to disturb the 

animals that also make use of the water. 


3. Unless the environment is very homogeneous, or unless there is a single 

resource that is overridingly critical (such as water), however, the residential 

bases of sequential foragers may be located with respect to different suites of 

resources, since residential bases are used for a short time. 


4. The low population density of foragers suggests that there may be a low 

tendency toward reuse ofresidential bases (what Binford [1980:7] calls redun

dancy in the occupation ofparticular places) except where there are significant 

topographic or other constraints in the physical environment. 


5. Given long-term use ofan area these last two observations may mean that 

all favorable resource locations will be occupied. But the small group sizes, 

short duration of occupation, and low rates of residential reoccupation will 

lead to low archaeological visibility, low artifact density, and little bounded

ness in space, making application ofthe "site" concept relatively difficult and 

arbitrary. Groups practicing foraging also conduct activities away from their 

residential bases, and activities at these "locations" (Binford 1980:9) can be 

expected to leave only very low densities of archaeological materials that do 

not correspond to established notions of sites. 


The logistically organized subsistence-settlement system ofcollectors repre

sents an intensification compared to foraging. A landscape in which foraging is 
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possible should be able to support more collectors than foragers owing to the 
collectors' increased efficiency in exploiting spatially disjunct but temporally con
current resources and in overriding temporal disjunctions ofresources with storage. 
The implications of this particular intensification for hunter-gatherers have been 
explored earlier (see Table 4.1) and include greater reuse of some places in the 
landscape, but not necessarily for the same purposes; greater degree ofdisjunction 
between those places and any single "critical" resource; and a wider variety ofsite 
types, which can be expected to differ dramatically in their locational determinants. 

Active management of plant and animal resources-including 
domestication-entails an additional intensification of the hunter-gatherer way of 
life. In environments where both collecting and agriculture are feasible, a particular 
landscape should be able to support more agriculturalists than collectors, since the 
former more effectively exploit the potential net primary productivity and over
come temporal discontinuities in resource availability. Although there are some 
climates in which storage is difficult, most domesticators of plants and animals 
practice more storage than hunter-gatherer groups. Increased storage may lead to 
increased investment in facilities and increased residential sedentism (Hitchcock 
and Ebert 1984). 

Although agriculturalists decrease their residential mobility in comparison 
with most hunter-gatherer groups, their logistic mobility is not necessarily 
decreased; in fact, owing to the heavily altered nature of the foraging radius 
surrounding agriculturalist settlements (Kohler and Matthews 1988), logistic mobil
ity may be more frequent, and encompass a wider radius, than among groups with a 
more mobile residential base. Among these groups, however, logistic procurement 
as a means for coping with resource shortages is increasingly supplemented by 
exchange networks involving subsistence and/or sumptuary items. (This is not to 
imply that such networks cannot be important to nonagriculturalists in certain 
circumstances, as is amply demonstrated by some Archaic period groups in eastern 
North America or by the trade network in the Pacific Northwest centered on The 
Dalles.) With increasing sedentism, trips away from the residential base are increas
ingly likely to emphasize interaction with other groups, rather than direct resource 
collection from the natural environment, as their primary goal. 

In general, the effects of increasing intensification in the absence ofchanging 
ecosystems variables can be summarized as follows: 

1. residential mobility tends to decrease; 

2. environmental perturbation in the vicinity of residential sites tends to 
increase; the original environmental communities are replaced by communi
ties at a less mature stage, with higher net primary productivity; 

3. logistic mobility and its supplement or surrogate-exchange-tend to 
Increase. 

Given the increasing importance ofexchange relationships as a supplement to 
logistic mobility for providing access to resources outside the foraging radius, the 
location of other groups-and other components of the settlement systems of a 
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single group-becomes an increasingly important consideration in the location of 
residential sites. The significant disruption in the foraging radius surrounding the 
residential sites of agriculturalists and the possible investment in facilities within 
this radius (irrigation systems, for example) result in considerable pressure to keep 
residential sites outside the foraging radii of other residential sites. On the other 
hand, special economic, social, or political ties with other groups may dictate that 
inter-residential distances not be too great. 

One implication of these changes for the pisibility ofthe archaeological record is 
that intensification should lead to increasing visibility for residential bases because 
ofdecreased seasonality of occupation, increased longevity of occupation, increased 
investment in storage and dwelling facilities, and increased alteration ofthe natural 
environment. 

Implications ofintensification for the visibility ofsite types other than residen
ces are more complicated. For locations within the foraging and field radius of the 
residential base that have relatively stable resources, such as arable soils, location 
reuse may be routine, eventually resulting in high site visibility. Within their 
foraging or field radius, agriculturalists or intensified hunter-gatherers invest more 
in facilities and revisit these facilities more frequently than do groups that regularly 
move their residential bases long distances; this may help to explain the relatively 
high visibility of "fieldhouse" sites in the American Southwest. Locations where 
some nonrenewable or slowly renewable resource such as wood is exploited, 
however, may be used in a way that is not substantially different from or more 
visible than the way that foragers use locations away from their residential bases. 

To summarize the effects of intensification for where sites will be located, 
residential sites should increasingly represent a compromise location (Figure 4.5). 
Either they should be located not too far from any of the resources that will be 
needed regularly during the increasingly long period that such sites are occupied, or 
they should be located near some important subset of these resources and count on 
kinship ties, trade, or usufruct privileges to obtain the remainder. These predic
tions refer to individual residential sites, since the total set offorager residential bases 
on a given landscape may be responding to as many different environmental factors 
as the total set ofcollector or agriculturalist residential bases. Within the economi
cally acceptable zone of possible residential base locations, considerations ofcomfort 
are not insignificant for a site that may be occupied for several years, and the 
locations of the residential bases ofother groups become an increasingly important 
consideration as well. 

The definition ofwhat is a suitable zone for residential sites-both economi

cally and from the perspective ofcomfort-may become broader under intensifica

tion. The increasingly complex technology that accompanies intensification per

mits intensive use of areas that are unsuitable for occupation by people with a 

simpler technology. The development ofirrigation, for example, makes agriculture 

possible in places where it could not be practiced without irrigation. Variables 

determining residential base location cannot be assumed to be identical for groups 

at different levels of intensification. 
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Intensification -
Number of relevant independent 
variables affecting location; 
independent site basis 

Proportion of the relevant 
independent variables that 
are environmental 

Figure 4.5. Suggested effects of increasing intensification on the location of residential sites. 

Finally, site types other than residences may be located for very specific, 
single-resource considerations (for instance, clay or chert quarries), or they may 
represent compromises among several variables that are weighted rather differently 
than they are for residences, as is probably 'the case with fieldhouses. 

Next, let us summarize the effects ofintensification on the predictability ofsite 
location (that is, how strong the association between selected environmental 
variables and archaeological materials should be). The increased population packing 
under which intensification is expected to take place may mean that a smaller 
number of the places in the landscape that fulfill the requirements for use or 
settlement will remain unused; in a fully packed landscape, all suitable locations 
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may be used. This should make prediction easier in the limited sense that it should 
lower the frequency of wrong predictions about where sites are (Figure 4.6). 
Perhaps more important, residential bases for collectors or agriculturalists should all 
have similar environmental determinants within a particular settlement system, 
whereas forager residential bases within a single settlement system may have quite 
different determinants. The prediction that a single set ofenvironmental determi
nants will apply to all residential bases for agriculturalists within a single settlement 
system is weakened, however, by the tendency for exchange to allow communities 
to occupy locations with access to complementary rather than redundant resources. 

The implications tend to complicate inferentiallocational modeling. Forager 
residential sites cause problems because they may be responding to different suites 

1 

Intensification 

Concentration and visibility 

Strength of association with 
a single set of independent 
variables (= predictability) 

Figurf' 4.6. Suggested effects of increasing intensification on the concentration and, hence, 
visibility ofarchaeological materials at residential sites and locations within the foraging radius where 
nonexhaustible resources are exploited and on the strength ofassociation of each of these site types 

with a single set of independent variables. 
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of environmental variables and because they fit the concept of "site" poorly. 
Residential bases in more intensified adaptations are less subject to these particular 
problems, but predictions about their locations also have complicating factors. 
Locations of these sites represent a response to an increasing number ofvariables, an 
increasing proportion of which (the locations of other contemporaneous sites, for 
example) cannot normally be used for prediction. This discussion makes clear the 
theoretical basis for Kohler and Parker's (1986) insistence on modeling different 
adaptation types in one area through time, but in order to do this we must be able to 
"sort out" the overlapping archaeological records. 

Spatial Heterogeneity. Let us now briefly consider the effects ofincreasing spatial 
heterogeneity-patchiness-while ignoring intensification and temporal predict
ability. The aspects ofspatial heterogeneity that have the most important implica
tions for where sites will be located and how visible and predictable they will be are 
the degree to which the critical, nonsubstitutable resource patches overlap, the 
extent to which each resource type is concentrated, and the distance between 
patches ofsubstitutable resources. First, we suggest that the strength ofassociation 
between the distribution of archaeological materials and the distribution of a 
particular resource type (and therefore the predictability of those archaeological 
materials) should increase as resource patches 

l. become more concentrated in space, so that equivalent resource-type 
patches are increasingly distant from one another; and 

2. overlap more in space with other nonequivalent (nonsubstitutable) 
resource-type patches. 

These proposed relationships are in accordance with common sense. The 
occurrence in a single location of more than one critical, nonsubstitutable resource 
(say fuel, large game, and roots) increases the likelihood of use, and reuse, for that 
location. If equivalent resource types (for example, carbohydrate resources with 
similar processing requirements and storage characteristics) are fairly continuous 
across the landscape, the strength of association between archaeological materials 
and anyone ofthose resource types should be low. Equivalently, ifpatch size is very 
large, or if patches are close together, predictive success will tend to be low. It is 
important to remember that resources include things other than food; fuel is 
probably universally needed, but other "amenities," such as well-drained sedi
ments deep enough to enable construction of a pithouse, may be peculiar to 
particular adaptations. We do not necessarily know the identity of these food or 
nonfood resources, however. 

The visibility of archaeological materials, and to some extent the ease with 
which the concept of "site" may be applied, should increase under the same 
circumstances in which predictability increases. The same environmental circum
stances that serve to bind environmental features and archaeological materials 
closely together should also serve to concentrate those materials into sites. It should 
be noted, however, that sites, even in these systems, are not the remains ofdiscrete 
episodes of behavior. Because concentrated materials are easier to find than 
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dispersed materials (Wandsnider and Ebert 1984), concentration increases visibility 
ofclusters. We do not advocate the use ofthe concept of"sites" without recourse to 
the entire explanatory modeling process and explicit recognition of the different 
meanings that the term site might have. 

Where there is considerable spatial overlap among critical nonsubstitutable 
resources, a relatively small number of independent variables should adequately 
predict the presence or absence ofarchaeological materials. That is, where there is 
strong spatial correlation among the potentially important environmental variables, 
a few may successfully stand for many. Where spatial overlap among resources is 
low, a larger number ofproxy environmental variables may be required for predic
tion. The general relationships suggested here between aspects of the spatial 
structure of critical resources and aspects of the predictive modeling process are 
graphically summarized in Figure 4.7. 

Temporal Predictability. What, finally, are the effects of increasing constancy 
and contingency in the temporal distribution ofvarious resources on the predictive 
process? Remembering that constancy and contingency can be summed to create a 
measure of temporal predictability, we propose that archaeological materials will be 
relatively concentrated, visible, and predictable in places where resources have 
either high constancy or high contingency; archaeological materials tend to be 
spatially predictable where resources are temporally predictable (Figure 4.8). (This 
prediction ignores concurrent variability in the spatial structure of resources; 
obviously, spatial concentration or dispersion of resources, as outlined above, also 
affects these relationships.) Places where both constancy and contingency in the 
temporal distribution ofresources are low will not favor concentrated, repetitive, or 
long-term use and in general should not be associated with residential site types. 
High constancy of resource availability should favor low residential mobility, while 
high contingency should favor regular seasonal reuse. The coastal salt marsh/sea 
island/estuarine systems of Georgia and the Calusa area of southwest Florida are 
examples of environments with high constancy in the resources critical to human 
survival (Marrinan 1975). Most noncoastal North American environments expe
rience greater seasonal pulses in temperature or precipitation, reducing the con
stancy of most critical biotic resources. The large rivers with their runs of anadro
mous fish and the root-gathering areas of the Columbia Plateau provide good 
examples of high-contingency environments. 

The Interaction of Intemification, Spatial Heterogeneity, and Temporal Predictability 

Finally, how do these three dimensions of variability-economic intensifica

tion, spatial heterogeneity, and temporal predictability-tend to interact? This is 

the important question for predictive modeling, since it is artificial to discuss these 

dimensions as ifthey were totally independent ofone another. It seems obvious that 

certain kinds ofspatial and temporal variability in resources require some intensifi

cation practices-particularly storage-before the resources can be exploited at all. 

Arctic adaptations to resources with low constancy, only moderate contingency, 
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Figure 4.7. Suggested effects ofthe spatial characteristics ofcritical environmental resources on 
locational modeling. 
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Concentration and visibility 

Strength of association between 
locations of archaeological materials 
and critical environmental variables 

Figure 4.8. Suggested effects of the temporal characteristics ofcritical environmental resources 
on locations of archaeological materials. 

and large distances between critical resources are good examples of this. Other 
combinations of environmental factors allow either a forager way of life or more 
intensified economies to thrive; under these conditions we might expect some 
historical tendency for the replacement of foragers by collectors and perhaps 
agriculturalists following the competitive exclusion principle (Bettinger and Baum
hoff 1982; Kohler 1976). Relatively low constancy coupled with high resource 
productivity and relatively little spatial overlap in critical resources has seemed to 
favor intensification in many temperate portions ofNorth America. This intensifi
cation involves increased population, increased packing, decreased residential 
mobility, increased storage, and even production ofstorable foods. Still other kinds 
of spatial and temporal variability discourage or select against intensification. 
Foragers in the tropical rainforest exploit resources that have high constancy and 
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high spatial overlap in the critical resources but low resource accessibility and little 
spatial variability. These environmental factors leading to high residential mobility, 
in conjunction with the prevalence of tropical diseases and pests, keep populations 
below the foraging capacity of these environments. 

Implications for Inductive Empirical Models 

We have suggested that various economic and ecosystemic factors affect (a) 
the number of relevant independent (determinant) environmental variables 
needed for accurate predictive locational modeling; (b) the extent to which factors 
in the natural environment, by themselves, will be adequate predictors oflocation; 
(c) the strength of the association between various predictor variables and the 
location ofarchaeological materials; and (d) the concentration and visibility of these 
materials. Let us now explore the implications of these suggestions for the induc
tive, empirical modeling of site location commonly practiced today. 

First, there is no reason to believe that locations for all site types produced by 
all subsistence-settlement systems in all environments are equally predictable. 
Other things being equal, predictability (strength of association with critical 
environmental factors) should be relatively high in landscapes where equivalent 
resource-type patches are concentrated and isolated, have high overlap with other 
nonequivalent resource types, and have high temporal predictability. For residen
tial site locations, accuracy of prediction (which is equivalent to the strength of 
association with relevant independent variables) should increase in more intensified 
economies. But the location of residential sites in such economies becomes an 
increasingly multivariate problem, and the independent variables affecting location 
increasingly include locations of other residential sites-information not typically 
available to or easily utilized by inferential predictive models. 

Other problems for inferential predictive models involve the differential con
centration and visibility of various site types in areas where the resources differ in 
spatial concentration, overlap, and temporal predictability, and in economies at 
differing levels of intensity. Residential bases become increasingly concentrated 
and visible under the same conditions that promote predictability, as reviewed 
above. Other site types mayor may not become more visible under intensification, 
depending on their function and location in relation to a residential base. Other 
things being equal, we assume that site types other than residential bases will be 
underrepresented in samples from most modern and all older surveys. 

Taking these points into consideration, it is unlikely that inferential predictive 
models will perform well in areas where resources are not concentrated, overlap
ping, and temporally predictable, or where residential sites have low visibility (such 
as those of foragers) or high locational dependence upon factors of the social 
environment. On the other hand, we can expect inferential predictive models to 
perform relatively well when the opposite conditions hold. 
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One point ofthis discussion is that we cannot expect inferential approaches to 
be equally successful in all circumstances, and even for all kinds of archaeological 
manifestations within a single settlement system. Nor is inferential prediction likely 
to be completely successful in most applications, both because ofthe complications 
outlined in this section and because of a certain indeterminancy in all living systems, 
including settlement systems. Another important point is that archaeologists need 
to begin to characterize the environments in which they work in terms of opera
tionalized, consistent, ecosystemic factors, such as temporal constancy and contin
gency and degree of spatial concentration and overlap of resources, instead of by 
simple reference to the presence or absence of particular resources at particular 
points on the landscape. Admittedly, this will be difficult for even modern environ
ments, let alone for paleoenvironments that differ from those oftoday, but we hope 
that this section has pointed out the necessity for such characterizations in under
standing how settlement systems are structured and, therefore, how their position
ing on the landscape might be predicted. 

DISTRIBUTIONAL ARCHAEOLOGY 

Approaches to Congruence Between Theory and Method 

So far in this chapter we have discussed the effects on the archaeological record 
ofdifferences in the organization ofhuman systems, ofa number ofdepositional and 
postdepositional processes, and ofgeneral ecosystemic (rather than single environ
mental) variables. We have tried to show the implications of these different 
determinants of the archaeological record for modeling and prediction. Some forms 
of organization and some temporal and spatial attributes ofecosystems lead to the 
formation ofan archaeological record that is relatively more visible and predictable 
than records formed under other organizational and ecosystemic principles. We 
have suggested that the least visible and least predictable archaeological record is 
created by foraging activities-either foraging components ofgenerally logistically 
organized systems or human systems whose subsistence activities are wholly 
organized around this mobility/settlement strategy. 

What this means is that an expectably large proportion of the archaeological 
record left anywhere by all past peoples will consist of relatively continuous, 
low-density, low-visibility remains. Such an archaeological record cannot be dealt 
with using site-centered discovery and measurement methods; in fact, it may not 
even be detectable via traditional survey. In addition, the clustered materials that 
result from intensive reuse ofcircumscribed places (the things we think of as sites) 
are superimposed on this more continuous, lower-density record. In order to sort 
them out, to distinguish occupational and functional episodes from one another, we 
must record artifacts and features as a continuous phenomenon. 

If in fact at least part of the archaeological record is continuous, and the 

ethnographic ("theoretical") as well as methodological arguments presented 
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throughout this chapter support that it is, then the meaningfulness of predictive 
modeling based on a "site" vs "not site" concept is called into serious doubt. One 
example of why this might be the case will be considered briefly here. In certain 
chapters of this volume it is argued that it is not enough simply to show that the 
locations ofsites are highly correlated with the locations ofsupposed independent 
environmental variables; one must also show that "nonsites" (by which the author 
means places that are not sites or areas that do not contain sites) are less strongly or 
are negatively correlated with these same variables in order to allow "prediction" 
using such a variable. 

How are such "not-sites" to be found? Unfortunately, the author continues, it 
is too expensive to look for them, but fortunately, according to him, we don't have 
to. Archaeological sites, he contends, are rare phenomena that only occur "about 1 
percent of the time." Therefore, if one randomly chooses points at places where 
sites haven't been located through actual survey, it is to be expected that only lout 
of 100 points will actually be sites by chance, and the rest will be "not-sites." This 
argument is sometimes broadened further: in one geographic information system 
study Ebert knows of, the randomly selected "not-site" sample consists ofareas 2 mi 
on a side, only 1 percent of which are supposed to contain sites by chance. 

But just where would one have had to undertake a survey in order to think that 
sites only occur 1percent ofthe time? Some people reply to this point by admitting, 
"Yes, you'll find archaeological materials everywhere you look, but not necessarily 
sites." And this is the real point: How are sites to be distinguished from isolated occurrences 
or nonsites or not-sites? By assuming we know that they are only "really" sites 1 percent 
of the time? By using different (explicit or implicit) defmitions ofsites vs whatever 
else in each survey, or even within a single survey? 

Elsewhere Ebert (1986) has argued, at length, that one ofthe biggest problems 
that archaeology, particularly cultural resource management -directed archaeology, 
has is reliance on an unworkable, insupportable "site" concept. There are, thank
fully, theoretically as well as practically valid alternatives to "site" approaches. 
These approaches are soundly based in archaeological literature and practice and 
are drawing increasing interest from both the archaeological and managerial com
munities. We would like, therefore, to conclude this chapter by offering an example 
of a methodological direction designed to record the continuous archaeological 
record. We believe that many such methodological innovations, critically informed 
by both general and middle-range theoretical concepts, will be needed before we 
can learn to predict characteristics of the archaeological record and locations of 
cultural resources accurately. 

Background: Nonsite and Off-Site Archaeology 

Recognition of the complexities of the formation of the archaeological record 
coupled with dissatisfaction with most traditional means of recording this record 
has led a number ofarchaeologists working in different parts of the world and with 
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different problem orientations to recommend new ways ofapproaching the spatial 
patterning ofsurface assemblages. One of the most promising ofthese involves what 
amounts to a reconsideration ofthe basic unit ofarchaeological analysis, which until 
this time has explicitly or implicitly been the site. David Hurst Thomas was one of 
the first to express dissatisfaction with the site concept in the literature, calling for a 
"nonsite sampling" (1975:61) approach. Certain sorts ofdepositional situations and 
certain problem orientations, he argued, make a site sampling approach not only 
"inessential, but even slightly irrelevant" (1975:62), and he suggested an alterna
tive survey method in which individual artifacts, features, and other cultural items 
form the minimal operational units. This approach, used during Thomas's Reese 
River Ecological Project, was designed to test archaeologically the consequences of 
Julian Steward's model of ethnographic settlement patterns of the Great Basin 
Shoshoneans (Steward 1938). If Steward's model could be shown to describe the 
prehistoric case accurately, Thomas reasoned, then the contention ofsome anthro
pologists that historically observed Shoshonean behavior was due to acculturation 
in the wake of European contact would be disproved. 

In order to study the ways in which "members of a single hunter-gatherer 
society moved themselves across the landscape, in a stable yet flexible pattern of 
transhumance" (1975:64), Thomas compared the cultural debris left by these people 
in each of a number of"micro environments" or sampling strata in the Reese River 
Valley in Nevada. Locations and characteristics of individual artifacts were 
recorded, and artifact-density statistics were used to analyze some aspects of the 
prehistoric systems represented. Although the relationship between these observa
tions and the human behavior that created the data was not explicitly defined, 
Thomas's work remains a provocative illustration ofmethods ofdata collection and 
analysis that are not totally dependent on the site as an analytical unit. 

Bettinger (1977a, 1977b) employed Thomas's methods ofdensity analysis in a 
similar inquiry into the correspondence between ethnohistorically observed behav
ior and the patterning ofsurface assemblages in eastern California's Inyo and Mono 
valleys. Although both Thomas and Bettinger advanced sound theoretical reasons 
for their nonsite approaches, it is likely that the nature ofthe observed archaeologi
cal surface record in their study areas was more than a little responsible for shaping 
their research designs. In much of the arid and semiarid American West, surface 
archaeological remains consist oflarge expanses ofsparsely distribu ted artifacts and 
features that can only be sorted into discrete sites by means ofarbitrary boundary
setting criteria. 

Another environment that is archaeologically similar to the American West is 
the arid belt of East Africa extending southward from Egypt through the Rift 
Valley. At approximately the same time that Thomas and Bettinger were working 
in the Great Basin, archaeologists in Africa were beginning to develop their own 
methods of measuring diffuse artifact distributions. Faced with the sparse and 
probably disturbed artifactual evidence from the Acheulean in Kenya and Tanzania, 
Glynn Isaac and his colleagues approached the archaeological record from a consid
eration of natural depositional and preservation processes (Bunn et al. 1980; Isaac 
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1966, 1967, 1978; Isaac and Harris 1978). These studies were oriented toward 
assessing the patterning ofartifacts within sites and on occupation floors believed at 
the time to be the consequence of single behavioral episodes. Isaac was also 
concerned with nonsite distributions of cultural items, however-the "scatter 
between the patches" (Isaac and Harris 1975) that makes up a large proportion of 
the total number of cultural items discovered in large areas of arid East Africa. 

As with the American nonsite strategies, sample quadrats were defined along 
the eastern shore of Lake Turkana, and the locations of individual artifacts and 
features within these sample areas were recorded. Isaac (1981) argues that the 
density and patterning ofvarious artifact types are related to prehistoric mobility 
patterns analogous with those of present-day hunter-gatherers. Going a step 
further toward the reconciliation ofnonsite and site-oriented archaeology, Isaac and 
his colleagues have more recently suggested what must be seen as yet another 
alternative unit of analysis, the "mini-site" (Isaac et al. 1981: 105). Although the 
term may be unfortunate, the implication that the remains ofmany past behavioral 
events or series of events might consist of very small or diffuse assemblages is 
worthy of consideration. 

Perhaps the most systematically developed approach to understanding the 
meaning ofarchaeological surface assemblages employing the artifact as an analyti
cal unit is Robert Foley's "off-site archaeology" (Foley 1980:39-40). This methodol
ogy was the result ofFoley's attempts to compare site locations and the distribu
tions ofresources in a catchment area or "home range" around a site (Foley 1977). 
Starting with the assumption that resource usage is distance dependent, Foley 
proposed a model in which a study area would be gridded into squares and the total 
relative resource productivity for each area would be calculated on the basis of 
detailed ecological field studies. Next, given the location ofa site ofinterest, isocals 
or areas with consistent extractive values for that site would be drawn. All those 
areas in which the availability/cost ratio for resources was positive would be 
considered to be likely candidates for the home range for that site (Foley 1977:178). 

Operationalizing such an explicit economic model would, ofcourse, req uire a 
detailed knowledge not only of all relevant prehistoric ecological parameters but 
also of the locations in space of all sites or localities participating in the cultural 
system of interest. In interpreting the preliminary results ofarchaeological survey 
undertaken in the Amboseli Basin in Kenya, Foley recognized that artifacts seemed 
to be "distributed ubiquitously across the landscape. In contrast to this, demon
strable primary stratified sites are extremely rare" (1980:39). This was due, he felt, 
to at least two broad classes ofprocesses: those arising from the patterning ofactual 
human behavior in the past, and those created by postdiscard taphonomic, deposi
tional, and postdepositional forces working upon the discarded artifacts. Later 
consideration ofthe formation stages for the archaeological record led Foley to draw 
a number of inferences upon which the necessity for and methodology of off-site 
archaeology were to be based (Foley 1981c:31): 

l. Sites are nodes in a continuous distribution of archaeological materials. 
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2. Home-range behavior provides the theoretical underpinning for continu
ous archaeological regional distributions. 

3. The processes ofcontinued occupancy, leading to accumulation ofmate
rials, and postdepositional mechanics compound the continuous distribution, 
as well as increasing its complexity. 

4. The artifact, the basic unit of an archaeological distribution, can and 
should be used as the unit of regional analysis. 

The methodology employed by Foley in his Amboseli survey was developed to 
ensure the collection of data-artifact locations and the characteristics of these 
artifacts-on items occurring continuously but not uniformly across the landscape. 
The study area was sampled using methods tested by plant ecologists who have 
"the same problem of integrating small analytical units or data objects (plants, 
artefacts) with large survey areas" (Foley 1981c:34). The sample areas encompassed 
0.05 percent of the total study area. 

Two basic classes ofdata were collected in the sample units. First, the natural 
and particularly the preservational and depositional environments were recorded. 
Sediments were classified, and the natural processes acting on them (erosion, 
compaction, topographic effects, vegetation cover, and animal or recent human 
activity) were noted. Next, artifacts were recorded in terms of raw material, size, 
artifact or flake type, platform, cortex, and condition; taxonomies for pottery and 
associated bone were also devised. In addition to the surface survey, a number of 
experiments designed to test the short-term effects ofrainfall, erosion, compaction, 
and other taphonomic processes were undertaken. The exact locations ofartifacts 
within the sample units were apparently not recorded-a very significant omission 
that, coupled with small sample unit size (5 by 50 m), precludes any but the grossest 
density-based spatial analyses. 

Data on the occurrence ofartifacts in the sample units were extrapolated to the 
entire study area, and density contours were drawn. Other contour maps also 
extrapolated from the sampled areas to the total study area depicted densities ofraw 
materials and artifact types, proportion of cores to other artifact types, artifact 
length and width, occurrence of retouch and edge damage, and other artifact 
characteristics. Foley's analysis of his Amboseli data, like his earlier work (1977), 
proceeded from a goal ofexamining humanly important aspects ofthe environment. 
He attempts to do this by formulating models that predict the areas ofmost intense 
use by past groups with pastoralist and hunting-gathering adaptive strategies and 
then testing these predictions using artifact density data. 

These pioneering efforts to arrive at congruence between theoretical ideas 
about the formation of the archaeological record and methods of discovering, 
measuring, and analyzing cultural resources inspired two recent experiments with 
adapting nonsite or "distributional" archaeological survey to cultural resource 
management. These experiments are discussed below. 
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Distributional Archaeology: Paths Toward 
Theoretical/Methodological Congruence 

In order to apply the theory-based explanatory framework examined earlier in 
this chapter to the archaeological record, it is absolutely essential that there be a 
congruence between theory and method. Such approaches as nonsite or off-site 
archaeology, in which the artifact is the unit ofdiscovery and analysis, are certainly 
a step in the right direction when we are attempting to deal with continuous aspects 
of the archaeological record, as discussed above. There are shortcomings in these 
approaches, however. One of the chief problems with recent artifact-oriented 
approaches has to do with sampling. If it is the patterning in the continuous 
distribution ofarchaeological materials that we must measure, then the best way to 
do this is by choosing a relatively large "window" through which to look-by 
surveying for, discovering, measuring, analyzing, and interpreting archaeological 
materials over relatively large, contiguous sample units. 

The remainder of this section will describe what one of the authors and his 
colleagues (Ebert et a1. 1983) have referred to as distributional archaeology. Distribu
tional archaeology is a nonsite-oriented approach that yields data that are congru
ent with the theoretical concepts of mobility and artifact discard presented above. 
Distributional archaeology has been carried out in two different governmental 
contexts as this volume goes to press. In 1983 the Bureau of Reclamation and the 
National Park Service funded a distributional survey at and around Fontenelle 
Reservoir in southwestern Wyoming, and the Bureau of Land Management Las 
Cruces (New Mexico) District recently conducted a distributional survey near EI 
Paso in conjunction with the Navajo-Hopi Land Exchange. 

Unfortunately, no detailed accounts ofthese surveys have yet been published, 
although a number ofpapers and reports are available (Ebert 1983a; Ebert et a1. 1983; 
Larralde 1984; Wand snider and Ebert 1983, 1984; Wand snider and Larralde 1984). 
These papers have been compiled in a report edited by Drager and Ireland (1986). 
This section will not provide an exhaustive discussion of this methodology but 
rather will summarize some of the main points. Distributional archaeology is by no 
means fully perfected, and experimentation with similar approaches should be 
encouraged. 

Distributional archaeology was conceived with several major objectives in 
mind. It is oriented toward the relatively complete and continuous survey of 
archaeological materials-artifacts and features-over large contiguous areas. 
Large areas relative to the scales of the archaeological patterning must be surveyed, 
and their contents analyzed, ifwe hope to sort out overlapping distributions in the 
continuous archaeological record. The distributional archaeology methodology 
calls for discovery of artifacts and features through intensive surface survey, 
recording of the location ofeach artifact or feature as a point in space, and consistent 
in-field coding ofartifact attributes; All artifacts, including nondiagnostic tools and 
debitage, are recorded. 
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The Seedskadee Project 

Survey Derign 

The Bureau ofReclamationINa tiona I Park Service survey around the Fonte
nelle Reservoir was called the Seedskadee Project (Figure 4.9). This survey was 
designed as an experiment to test systematic survey methods for recording the 
continuous archaeological record. The survey design was directed by two major 
propositions: (a) units of analysis and discovery structure the ways in which 
archaeologists think about the nature ofthe archaeological record and, in fact, what 
is found during fieldwork (Binford and Sabloff 1982); and (b) very little is known 
about what the archaeological record means or what it looks like. For these reasons, 
the units of analysis employed during the survey had to be units with little or no 
meaning already attached. Individual artifacts were chosen as the units ofdiscovery 
and mapping; attributes ofartifacts were chosen as the units ofdata recording. The 
discovery and recording methods used were carefully designed to minimize biases 
in what was recognized as an artifact, what data were considered to be appropriate 
to record, and how those data were recorded. 

Figure 4.9. Location ofthe Seedskadee Project, a distributional (nonsite) archaeological survey 
undertaken by the National Park Service and the Bureau of Reclamation in southwestern Wyoming. 
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A simple random sample of25 500 by 500 m sample units was surveyed during 
the Seedskadee Project (Ebert 1983a). The sample was not stratified by environ
mental zones because the zonation present was thought to represent differential 
surface geomorphological processes rather than past natural conditions. Responsi
bility for data recovery was delegated to three separate crews. A five-member 
discovery crew was responsible for finding and flagging artifacts and for maintaining 
even ground coverage in precisely controlled 5 m transect intervals. The data
recording crew consisted of three individuals who numbered the pinflags marking 
artifacts and recorded artifact attribute data in a format designed for easy computer 
input after the fieldwork phase of the project was completed. The two-person 
mapping crew was responsible for provenience control of artifacts. most of which 
were mapped individually using an electronic distance measuring (EOM) device 
and a prism. In areas where artifact density was very high, mapping of individual 
items was abandoned, and 1 m grids became the provenience unit. 

When additional artifacts were found by the recording crew. they were flagged 
separately. The distributions of these later finds often resembled the results of 
traditional site surveys in that they tended to be far more clustered than the 
distributions marked by the discovery crew. As a rule, highly visible artifact 
concentrations received more attention than interlying areas, as is the case with 
traditional survey methods. The items found by the recording crew often doubled 
or tripled the number of artifacts recorded in a sample unit. 

General Results of the Seedskadee Distributional Survey 

The end product ofthese survey procedures is a data base that consists ofsome 
170,000 coded attributes, predominately locational data and lithics descriptors from 
17,000 artifacts. Analysis of the Seedskadee data base, emphasizing the search for 
spatial patterns among attributes, is presently proceeding along lines that will be 
discussed below. Some preliminary impressions gained from the Seedskadee exper
iment, however, have immediate implications concerning the appropriateness of 
the approach and the nature of the contributions that it can make to predictive 
attempts: 

1. There were prehistoric artifacts in all environmental zones. They 
occurred in differing (but usually unexpectedly high) densities and in many differ
ent kinds of distributions that appear to vary in both spatial configuration and 
content. It seems that the kinds ofdistributions encountered at Seedskadee would 
confound the usual methods of doing predictive modeling (i.e., defining environ
mental parameters for site location) because the data base is gradational in distribu
tion and density, rather than made up of discretely bounded "sites." 

2. The harder one looks, the more one finds. Although this is a simple 
observation, its repercussions for management of archaeological resources are 
profound, since RFPs generally emphasize acres surveyed rather than cultural 
resources located per dollar spent. The perception that archaeologists have of the 
archaeological record is a direct function of the context of discovery: survey 
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interval; time spent on sweeps, on flagging concentrations, or on recording con
tents of grid squares; and external and internal crew goals and conditions. 

It was also observed that surface and subsurface are relative, dynamic terms. This 
point is easily illustrated in areas like dunes, where the acts of discovery, mapping, 
and data recording change the surface archaeology: artifacts are buried and uncov
ered through scuffiing and trampling during the course of the survey itself. 
Noncollection survey is often (probably always) destructive of the archaeological 
record. Not only does the survey have a direct impact on the location of artifacts, it 
is likely that indirect impacts, such as alteration of the soil's surface and of 
vegetation, will affect the rates and nature oflocal natural processes in the future. 

3. Error, variability, and sources of bias in method and results must be 
evaluated and explained. To address such problems, two control experiments were 
included in the project to help in the evaluation of data reliability. In the first, a 
sample unit was seeded with "pseudofacts": nails and washers painted to approxi
mate the color of the ground and natural lithic materials occurring in the area. Some 
of these items were distributed in clusters or "sites," while others were placed 
individually as "isolated occurrences." These were flagged and recorded by the 
discovery crew, which yielded information about accuracy of the discovery proce
dures. Approximately 55 percent of the pseudofacts were recovered by the discov
ery crew at a 5 m transect spacing, with an additionallO percent being found by the 
follow-up analysis crew. More interesting, however, were the proportions ofclus
tered vs isolated pseudofacts found. The discovery crew located 68 percent of the 
clustered artifacts but only 16 percent ofthe isolated items (for the analysis crew the 
figures were 12 and 6 percent, respectively; Wandsnider and Ebert 1984). 

In a second methodological experiment, a purposefully manufactured lithic 
assemblage was independently coded by the three principal data recorders. There 
was considerable inconsistency among coders even though they inspected the 
assemblage at the same time under the same conditions. It is possible to control for 
such inconsistencies iftheir extent is known, however, and procedures for doing so 
are discussed at length by Larralde (1984). 

4. With a systematically organized, multicomponent survey team such as the 

three-part Seedskadee crew, portions of the crew can complete their individual 

tasks at their own speed and under ideal conditions, and this greatly increases the 

yield of actual product (in terms of information) per person-hour worked. In a 

period of approximately seven lO-person weeks, some 170,000 attributes were 

recorded. This is the information equivalent of 2-3000 of the most detailed site 

recording forms in use in the United States. Although the amount of ground 

covered during this time (625 ha or 1544.35 acres) is less than for most traditional, 

site-oriented surveys, the information yield is high. The information-yield argu

ment is very important when considering the cost-effectiveness of any in-field 

data-collection program. 


The question might be asked, of course, just what the real "information 

equivalence" is between 170,000 artifact attributes and the data contained on 2-3000 
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detailed site forms. In order to answer this, what those data consist of must be 
explicitly considered. Distributional archaeological data consist of known point
locations and characteristics ofthe physical materials that make up the archaeologi
cal record. Site data in almost all cases consist of hastily formed opinions about 
abstract boundaries ofsupposed past occupations, guesses as to how many artifacts 
might be found within those boundaries if one were to count them, a list of 
diagnostic materials found during a walk around the "site," and the surveyors' 
enumeration of the cultures that occupied the area in the past and what the 
members of those cultures were doing there (camping, chipping stone, hunting, 
etc.). We would suggest that in most cases "information equivalence" isn't even 
the right framework for such a discussion. The difference is information vs abstrac
tions. 

5. Even though finding sites is not the point ofa distributional survey, the 
results of spatial clustering routines run on the Seedskadee data suggest that the 
distributional survey discovered more "sites" than recent traditional surveys in the 
immediate project area. This is true even if allowance is made for the intensity of 
survey. The Seedskadee survey was 3-6 times as intensive as 15-30 m transect 
interval surveys done recently in the area (Reynolds 1983); our first impression is 
that the Seedskadee distributional survey located from 10 to more than 50 times as 
many sites as the traditional surveys did. This means either that linear or sinusoidal 
intensity-to-yield models ofsurface survey results such as that presented by Judge 
(1981) are unwarranted or that we did not reach the hypothetical falloff point even 
at a 5 m transect interval. Are even smaller transect intervals necessary in certain 
situations? 

6. Field observation during the Seedskadee Project revealed that the scale of 
patterning of the natural processes that affect the visibility, preservation, and 
integrity ofthe archaeological record are ofa very local nature. These processes are 
controlled by local topography and other small-scale factors and thus are often 
smaller in scale than culturally caused clusters of artifacts. As discussed above, it is 
necessary to factor out the effects of natural depositional and postdepositional 
processes before one can decide what cultural patterning looks like. This means 
that extremely localized, small-scale geomorphological mapping and process mea
surements over time may be absolutely necessary before any predictive modeling of 
artifact or site distributions can be done. 

The Navajo-Hopi Land Exchange Project 

Another example ofa distributional archaeological survey in which the site is 
not the explicit unit of either recording or analysis is the Navajo-Hopi Land 
Exchange Project survey, conducted by the Bureau ofLand Management just west 
of EI Paso. This survey is much larger in scale than the Seedskadee Project and 
represents several refinements on the methods used in the earlier survey. 
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The Navajo-Hopi Land Exchange (NHLE) survey was conducted in three 
adjacent survey areas, which together comprise some 16,000 acres (25 mi2) ofmesa 
top and breaks. Much of the area is covered by a thin sand mantle exhibiting 
coppice dunes and blowouts. Previous site-oriented research in the study area 
recorded sites with adobe pueblo structures as weJl as many scatters of lithic and 
ceramic materials and isolates. The adobe pueblos are typically not visible unless 
they have been disturbed by natural or cultural processes, although their associated 
middens have high artifact densities and thus high visibility. 

Phase I of the NHLE survey was designed primarily to fulfill management 
needs. I ts goal was to determine, through a relatively low intensity transect survey, 
which areas contain dense concentrations of resources, particularly structure
associated resources, and should therefore be excluded from the land exchange and 
preserved. phase I was also expected to identify areas in which the nature of the 
archaeological remains did not warrant automatic exclusion but did require further 
survey, study, and possible excavation prior to the land exchange. 

During phase I, 400 by 400 m and 800 by 800 m sample units (totaling more than 
60 km2) were surveyed at 25 m and 50 m transect intervals. All artifacts and features 
occurring within 1 m on each side ofthe surveyors were tallied for each transect, and 
densities ofmaterials were calculated along each transect. These density data were 
analyzed using a clustering techniq ue in which areas were examined on the basis of 
whether they contained portable and/or nonportable containers, portable and/or 
nonportable implements, and low- and/or high-volume processing facilities. Pre
dictions were then made as to which areas should contain structural remains. An 
independent, structure-oriented discovery survey was carried out, and the phase I 
density analysis was found to have been very successful at predicting which areas 
would contain subsurface structures. 

Two other classes of areas were also isolated during the Phase I survey: those 
with very low densities ofcultural resources and those with moderate densities of 
artifacts and features but without associated structural remains. These areas are the 
subject ofphase II, an intensive survey similar to that described for the Seedskadee 
Project (Camilli et at. 1988). In this phase 13 400 by 400 m units and five 800 by 800 m 
units were studied using a 5 m transect interval. Individual cultural items (artifacts, 
features) were the unit of discovery, mapping, and analysis. 

Certain cultural resources, including unifaces, bifaces, and rimsherds, were 
collected during this phase, and some of the areas with surface features, such as 
firecracked rock and hearths, and some scatters with no features were excavated. 
Generally, however, artifact and feature analysis carried out during the course of 
Phase II was done in the field. The Phase II in-field coding taxonomy was directed 
toward not only the identification of formal tools or diagnostic materials, but 
especially toward identification of lithic production strategies. 
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Artifact Coding and Analysis 

We need to touch briefly upon a very important subject-what data need to be 
coded when artifacts are used as the units of discovery and analysis. It is often 
suggested that all archaeological research takes place in unique situations and that 
each researcher's problems are different, and therefore that no hard-and-fast rules 
can be formulated as to the field methods and analyses archaeologists should use. It 
may be that any area containing cultural resources is unique on a very specific 
level-just as the distribution ofmolecules in Maxwell's glass ofwater was unique. 
We would suggest, however, that it is not the unique aspects of the archaeological 
record that are of interest, but rather those aspects that can be compared and 
contrasted from place to place-the general attributes of archaeological materials. 

The practice of separating assemblages on the basis of formal attributes of 
diagnostic artifacts and labeling each ofthese as a different culture type or tradition 
defeats any attempt to recognize the differentiated portions of human organiza
tional systems and thus precludes successful explanation, modeling, and prediction. 
Methods must be found for recognizing different systemic components and their 
overlap. Although some possible directions for this will be discussed below, we do 
not, unfortunately, know at present which general attributes of archaeological 
items are important in explanation. 

It is possible, however, to describe a general direction that might be followed 
in determining how to code attributes ofarchaeological materials. A human system 
is composed of, among other things, a series of places where things are done. The 
key word here is min, and this chapter began with a discussion of the ways in which 
events at each place in the series are important to the operation ofthe entire system. 
Another set ofcomponents in a human system is technological items, which are also 
used in a serial way. Items used at places are sometimes discarded and at other times 
are modified there and used for other functions. Still other times, items are curated 
and taken away to be used at one or probably more different locations. Attributes 
that provide possible clues to the serial nature oftechnological strategies are, then, 
ofmajor importance in understanding the components ofsystems. Such attributes 
include not only formal tool designations but also data on the nature of what most 
researchers class as debitage-utilized and unutilized parts oftools, and debris from 
lithic reduction, modification, and manufacturing. 

Analyzing Data from Distributional Archaeological Surveys 

It is necessary to establish linkages between the archaeological record and the 
organization ofthe past human systems that created this record before we can make 
successful predictions about the locations of cultural resources or about their 
meaning, usefulness, or significance in archaeological terms. Previous sections of 
this chapter have worked downward through the explanatory framework of 
archaeology presented in Figure 4.1, beginning with higher-level, theoretical ideas 
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about the nature ofhuman settlement/mobility systems and middle-range theoret
ical ideas about technological strategies, discard behavior, and the natural forma
tion processes that also affect the archaeological record. In this section, archaeologi
cal method has been considered and suggestions have been made about ways to 
discover and measure the archaeological record that are congruent with this 
theoretical framework-nonsite or distributional surveys yielding high-resolution 
spatial and attribute data collected from artifacts and features, rather than from 
sites. Given such data, however, what should we do with them? 

This is not an easy question to answer, for it is one of the areas in which the 
most concentrated archaeological research has yet to be done. During the past 
decade, however, there has been some experimentation in the spatial and content 
analysis of assemblages, primarily intrasite analyses attempting to isolate activity 
areas within sites. Intrasite analysis is not exactly the same thing as what we will 
ultimately want to do with distributional archaeological data, although the intrasite 
analysis literature should suggest some ways in which archaeological data must be 
analyzed before we can understand patterning in the archaeological record pro
duced by the action of past systems. 

Carr (1981, 1984) suggests that prior to intra site assemblage analysis it is 
necessary to differentiate carefully between activity sets (archaeological materials 
used together in space and time in the past) and depositional sets (those materials 
that aggregate in the archaeological record), since disjunctions between these two 
entities result in clusters of tools or implements that are not automatically equiva
lent to activity areas. Associations in the archaeological record may be the result of 
implements having been used together, but they can just as well be a result of 
overlap of activities through time or of natural depositional and postdepositional 
processes that cause polythetic, overlapping depositional sets (Carr 1984:120). The 
archaeologist faced with comprehending the intrasite archaeological record must, 
according to Carr, use these depositional sets to define (a) the spatial limits of 
activity areas and (b) the organization of artifact types into tool kits. These have 
been the goals of a number of archaeologists using various methods of intrasite 
analysis. 

Wandsnider and Larralde (1984) break down contemporary intrasite archaeo
logical assemblage analysis methods into three basic types. The first of these was 
developed by Robert Whallon at the University of Michigan, who became one of 
the pioneers of intrasite spatial analysis with the development of his dimensional 
analysis of variance (Whallon 1973) and comparison of its results with nearest 
neighbor analysis (Whallon 1974). Whallon's more recent work (1984) uses a more 
comprehensive spatial method called "unconstrained clustering." Unconstrained 
clustering identifies areas within sites that have similar assemblages by (a) con
structing density maps for each artifact type, (b) calculating the relative proportion 
that each artifact type contributes to the assemblage at points across the site, (c) 
identifying similar assemblage types, (d) mapping the cluster members and examin
ing their distribution, and (e) reconstructing the activities that occurred on the site 
in light of spatial patterns identified ethnoarchaeologically. Carr (1984) has criti
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cized Whallon's unconstrained clustering method because it assumes that activity 
sets are the result ofsingle episodes offunctionally similar behavior (i.e., they are 
monothetic [Carr 1984: 136-137}), that tools are always discarded expediently, that 
no disturbing postdepositional processes occur, and that activity areas do not 
overlap but have sharp borders. These assumptions are probably unfounded in 
most if not all cases of human behavior and archaeological record formation. 

Carr (1981,1984) proposes new techniques that he feels overcome some of the 
problems with Whallon's and other spatial analysis approaches; these techniques 
describe the distribution of each artifact type within the site. Although Carr's 
process is too complex to be described in detail here (see Carr 1981), he uses point 
distributions rather than grid cell counts and employs digital filtering, Fourier 
analysis, spectral analysis, and histogram equalization, techniques in common use in 
the processing of imaged remote sensor data. Such technological means may hold 
great promise for archaeological pattern recognition. 

A third class of approaches to intrasite spatial organization is exemplified by 
the work of Kintigh and Ammerman (1982) and Simek and Larick (1983). Kintigh 
and Ammerman's heuristic approach to spatial analysis combines "the sophistica
tion of intuitive approaches with the information processing capacity and system
atic benefits of quantitative treatments" (1982:31). This method divides artifacts 
into types and subjects the distributions of each type across space to a k-means 
nonhierarchical divisive cluster analysis. The archaeologist, using internalized 
knowledge about the scales and nature of archaeological formation processes, 
decides intuitively upon a cutoff point for the number of clusters of each type 
formed and then recombines the clusters of different types into a series ofoverlap
ping clusters that presumably represent activity areas. 

While all three approaches to intrasite spatial analysis hold promise, they are 
all also directed toward specific reconstruction of the things that went on within 
sites. Before these methods can be applied to the continuous archaeological record 
across landscapes, the scale of application must be increased far beyond that 
discussed by these authors. Wandsnider and Larralde (1984) have also pointed out 
that each of these three approaches solves only some of the problems of spatial 
analysis: Kintigh and Ammerman and Simek and Larick only identify spatial 
clusters; Carr describes and compares the spatial organization of artifacts; and 
Whallon describes and compares assemblage content. Wand snider and Larralde call 
for methods that permit the description and comparison of assemblages both in 
terms ofcontent and in terms ofspatial organization or structure, and they suggest 
a five-part method building upon archaeological theory as well as inductive statisti
cal procedures: 

1. Development of an artifact taxonomy. This could proceed in several ways: 
along deductive lines, based on ethnographic and ethnoarchaeological information; 
on the basis of experiments in lithic manufacture that identify the stages ofartifact 
production and sequential use; on the basis ofinformation about the mechanics of 
artifact function (edge angles, etc.); or through purely statistical and inductive 
clustering algorithms. 
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2. The identification of spatial units. Directed at defining the boundaries of 
assemblages, this stage of analysis might be based on interactive, heuristic tech
niques, such as those suggested by Kintigh and Ammerman (1982) and Simek and 
Larick (1983), which incorporate not only behavioral knowledge but also informa
tion on depositional and postdepositional processes. Perhaps the best way to define 
small-scale patterning in natural formation processes is through the use of remote 
sensor data, since these data could be machine processed at the same time as 
distributional information on clusters. 

Other sources ofinformation to be incorporated at this stage may come from a 
consideration ofthe characteristic shapes and sizes ofthe spatial patterns ofhuman 
behavior. During fieldwork with the Nunamiut Eskimo, Binford (1978) identified a 
number of different zones of activities and artifact discard, including drop zones, 
toss zones, hearth-centered activity areas, and structure or tent scatters. Recogni
tion of these patterns within overlapping distributions might be accomplished 
mechanically by varying grid frame sizes during analysis or by constructing shape
recognition filters. The larger zone types might be appropriate for discerning the 
boundaries of assemblages. 

3. Content description and analysis. Once assemblages have been defined, their 
contents might be described on the basis ofthe taxonomy or taxonomies devised in 
stage 1, by means ofsuch techniques as principal components analysis, which is used 
to compare the composition ofdifferent assemblages. Recently, Kohler and Blinman 
(1987) have proposed using multiple linear regression to estimate the absolute and 
relative contributions ofseveral different periods ofuse and deposition to the total 
archaeological deposits at ceramic-containing sites in the Dolores River Valley in 
Colorado. Their technique is similar to Stahle and Dunn's (1982) use of multiple 
linear regression to estimate the contributions ofvarious stages ofbifacial reduction 
in a mixed collection. Both ofthese applications are aspatial, but they contribute to 
an understanding of the composition of mixed collections in terms of predefined 
constituents and might be used to sort out overlapping activity sets. 

4. Structural description and analysis. While stage 3 is directed toward describ
ing the contents of assemblages, stage 4 provides a description of the spatial 
organization within assemblages. This is where the smaller-scale "zones" character
istic ofhuman activity might be recognized within the overall assemblage composi
tion through digital filtering. It might also be possible to use small, simple clusters 
of materials that seem to result from single discrete activity episodes to design 
"filters" to pass through larger, denser, and probably more composite artifact 
distributions. Smaller, single-occupation dusters might be expected to exhibit 
more central distributional tendencies and higher correlations between artifact 
types in space than the larger, more composite distributions. Other filters might 
consist of sample frames of varying size that could be passed through complex 
distributions in the manner of Whallon's dimensional analysis of variance (1973, 
1974). Wandsnider and Larralde (1984) also suggest that the spatial organization of 
the different principal components might be inspected. 
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5. Pattern dissection would constitute the last stage in distributional spatial 
analysis, according to Wandsnider and Larralde (1984). Larger and more complex 
assemblages (i.e., things found together-depositional sets in Carr's terminology) 
are undoubtedly the result of the complete or partial overlapping of many behav
ioral episodes. It may be possible to separate these episodes from one another, and 
certainly this is a necessary step in comprehending the complex systemic mecha
nisms that resulted in the archaeological record at any place. 

It is quite possible that some of the procedures suggested by Wandsnider and 
Larralde (1984) might be implemented in different orders or as combined steps 
rather than separately. Some of them may also be unnecessary -for instance, stage 
2, in which the boundaries of assemblages are sought. We may never really see 
bounded assemblages in the continuous, overlapping archaeological record but 
rather may be looking at portions ofthese through the "windows" provided by our 
sample units, by our survey area boundaries, or by natural surface processes. 

The Solution: Dedicated Research Using Distributional Data 

It is clear from the foregoing that two general things can be said for archaeolog
ical spatial analysis. The first is that archaeologists do not quite know how to do it 
yet, at least in ways that are congruent with the higher-level and middle-range 
theoretical ideas that we have about the formation processes of the archaeological 
record. The second is that spatial analyses directed toward understanding the 
complex, composite archaeological record will probably combine modern tech
niques such as digital image processing-some ofwhich are just now being devel
oped to the point that they will be useful to archaeology -and deductive reasoning 
in a complex interactive process. This process will draw upon both archaeological 
and ecosystemic theory to arrive at successful archaeological explanation and thus 
prediction. Such archaeological analysis is presently a goal rather than reality, a goal 
toward which both management and archaeological interests should be energeti
cally directed. 

SUMMARY 

This chapter has been concerned with the method and theory of using 
anthropological explanation to predict things about the organization ofpast human 
systems as well as about the archaeological record. The explanatory process illus
trated in Figure 4.1 involves the advancing of models that are used as the basis of 
prediction. While at first it might seem overblown to introduce anthropological 
explanation into a discussion of "practical" archaeological prediction, it has been 
argued and illustrated here that it is only in the context of explanation and 
explanatory modeling that archaeologists and managers can hope to make truly 
successful predictions of the locations and other characteristics of the materials that 
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make up the archaeological record. This is so because the things that determine the 
locations of the materials that make up the archaeological record are not static, 
unchanging properties of the environment that can be measured easily from 
topographic or environmental maps. 

The archaeological record is not the same thing, or even the same kind of 
thing, as the way that past individuals dealt- with their environment and the 
locations at which they dropped artifacts. The data that archaeologists collect, 
analyze, and attach significance to are the product oflong-term use of the land
scape. Large numbers ofpeople, organized in different ways, have serially located 
their activities across this landscape, manufacturing and differentially discarding 
artifacts in ways that changed as the landscapes changed with paleoclimatic flux, 
and as the mobility and technological strategies within their cultural systems 
changed. 

This chapter has advanced a general model ofhuman subsistence and mobility 
strategies that vary along a continuum ofintensification from a generalist,foraging 
strategy through a specialized, collecting organization. This model is not intended to 
represent the "whole truth" about past systems. Nonetheless, it provides a basis 
for making predictions, and if these predictions prove to be consistent with the 
observations about the archaeological record, this would tend to support the 
usefulness of the model. If the predictions made on the basis of this model are not 
supported by observations of the archaeological record, then an alternative model 
or models should be devised. This may be one of the most important problems 
currently facing archaeologists today-to arrive at and attempt to confirm models 
concerning the operation of past systems. This task lends significance to the 
discovery and conservation ofarchaeological materials, and it is therefore the reason 
why cultural resources should be managed and preserved. 

Before archaeological data can be called upon to support or negate any 
explanatory model, however, the archaeologist must take into account the things 
that alter or otherwise affect the ways that we see the materials that past human 
systems discarded. These factors are also illustrated in Figure 4.1 at the beginning of 
this chapter. 

There are two basic types of things that happen to the objects that human 

systems culturally modify and then discard or abandon. The first ofthese lies in the 

realm of natural processes, which incorporate discarded materials into the earth's 

surface and subsurface deposits and which act to preserve, rearrange, or destroy 

these materials. Natural processes also make archaeological material visible to 

archaeologists and managers, so that we know they are there and need to be 

conserved and studied. 


The other factor affecting archaeological materials is that they are discovered, 

measured, analyzed, and interpreted by archaeologists. This is the realm ofarchaeo

logical methodology. It has been suggested in this chapter that, in order to be 

successful at discovering those things we need to know about the archaeological 

record in order to be able to predict its locations and characteristics (and thus its 
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significance in management terms), archaeological methods must be compatible 
with the theories we have about the ways in which materials were discarded by past 
human systems. It has also been argued that this is not presently, at least very often, 
the case, and that we may need to alter significantly the ways in which we deal with 
the archaeological record today as archaeologists and managers. 

Another very important area of archaeological methodology concerns the 
natural phenomena that we measure and compare with the distribution ofarchaeo
logical materials as they presently exist. These variables must be chosen in accord
ance with our ideas about the organization ofpast human systems if they are to be 
useful in predicting the characteristics ofthe archaeological record. The things that 
biologists, ecologists, and the people who make topographic maps have measured 
may not be the best variables to use ifwe wish to elucidate the organization ofpast 
systems; we have discussed the alternative of using ecosystemic variables in 
archaeological explanation rather than relying on specific resources, species, land
forms, or other convenient proxy "indicators." In order to use ecosystemic varia
bles in our modeling and predictions, we may have to do most of the measurement 
work ourselves. 

Many archaeologists may disagree with the models of past systems organiza
tion that have been advanced in this chapter and with our suggestions about the 
relationships between these models and ecosystems variables and about the conse
quences of these relationships for the archaeological record. That is good, for it 
gives us all something to think about and to try to build upon and to alter so that it 
"fits" the archaeological record that we discover and deal with. There are few 
archaeologists, however, who will argue that we do not need to model past systems 
organization to predict the locations and nature ofthe archaeological record that we 
are all concerned with conserving. 

This chapter, therefore, should not be thought of as advancing any particular 
model or models that will best typify what human systems were like in the past, or 
how they were related to the world in general. The theme ofthis chapter is instead 
that it will not be easy to model the ways that the archaeological record came about 
or to predict where archaeological materials in general, or specific sorts ofsignificant 
archaeological materials, will be found. Claims that predictive modeling is easy or 
that a particular model is highly successful should be carefully examined in light of 
this chapter. Does the model in question consider past systems organization? Are 
empirical "predictive models" ofgeneral utility not only in predicting the locations 
of archaeological materials but in explaining the systemic mechanisms behind 
them? If not, they are likely not to be generally successful and applicable, for 
mechanisms must be elucidated before their consequences can be determined. 

Weare presently at a very crucial point in archaeological science and in the 
practice ofcultural resource management. Management requires that we be able to 
predict the locations and significance of archaeological resources, and archaeology 
must discover how to do this. Fulfilling this goal will require concentrated and 
dedicated research that may not, at all times, appear to be totally directed toward 
the pursuit of simply identifying and conserving sites. Management must be 
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patient and supportive ofthe genuine pursuit ofarchaeological explanation, for it is 
only through explanation that we can understand anytbing about the past through 
the archaeological record. Archaeological prediction is a new frontier, and all aspects 
of it must be justified and proven in explanatory terms. 

We would first like to thank LuAnn Wand snider, Eileen Camilli, Bryan Marozas, Signa Larralde, 
Lewis Binford, Michael Schiffer, Rob Foley, Jim Hester, Frank McManamon, Robert Dunnell, and 
Max Ayer. Discussions and correspondence with these and other professionals over the past few years 
have helped shape our thinking on the subject of predictive modeling and the organization of past 
human behavior. Dan Martin, Jim Judge, Lynne Sebastian, and Chris Kincaid were instrumental in 
bringing this volume to fruition, and we thank them as well. Most ofall, the senior author adds that 
Lynne and June-e1 have dealt with horribly complex sentences (they increase in complexity as the 
thoughts they express do), non sequiturs, and worst ofall, bizarre references. To the technical editing 
team more than to any others we owe the sequentiality and readability of this chapter. 

The senior author participated in a symposium at the 1984 meeting of the Society for American 
Archaeology in Portland in which he delivered, with LuAnn Wandsnider and Signa Larralde, a paper 
entitled "Predictive Modeling: Current Abuses of the Archaeological Record and Prospects for 
Explanation." This symposium was chaired by Barry Holt, who should also be thanked. It was shortly 
after that meeting that the contract resulting in our participation in this volume was awarded. The 
papers in that symposium were perceptive, for their day, but they portrayed archaeological predictive 
modeling as a panacea for the manager-a means by which survey and excavation could be avoided. 

This same author was gratified to see that at the 1988 meeting of the Society for American 
Archaeology in Phoenix, papers focusing on predictive modeling were no longer heralding this 
technique as a cure-all for archaeological survey obligations. Both government-employed managers 
and university researchers have now accepted "predictive modeling" for what it should be: a research 
tool through which we can test our ideas about the past against the data provided by the archaeological 
record. In a very real sense, predictive modeling doesn't predict the archaeological record-the 
archaeological record predicts what we learn through predictive modeling. Predictive modeling allows 
us to refine our ideas, and the computer methods we have for expressing them, in light of what 
archaeologists have found and continue to find on and in the earth. 

Nothing better points out the value and applications of predictive modeling than this logical 
progression within the last few years. As pointed out in our chapter, modeling is an interactive 
procedure by which archaeologists and managers learn about what it is they want to know about the 
past, and how this is expressed and verified (or perhaps not) by the archaeological record. It is in a very 
real sense an embodiment of the process of archaeological science. In archaeology, the process of 
science cannot be separated from the process ofmanagement. The two are inherently related. In light 
of this assertion, we would also like to acknowledge the efforts ofall those "archaeological managers" 
who have shown interest in archaeological predictive modeling, whatever their rationales and goals. 
They are the people to whom this chapter is dedicated, and to whom it is directed. We express the 
hope that we can work alongside them in years to come in refining the complex and exciting methods 
we'll all want and need to perfect in order to arrive at meaningful depictions of past human behavior 
and the value of our knowledge of these in the present. 

The junior author would also like to acknowledge the support of the School ofAmerican Research 
in Santa Fe, where he was residing and working when he made the changes in the text in response to 
the review comments. 
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ChapterS 

AN OVERVIEW OF STATISTICAL METHOD AND 
THEORY FOR QUANTITATIVE MODEL BUILDING 

Martin R. Rose and Jeffrey H. Altschul 

This chapter focuses on some of the conceptual aspects of building quantita
tive predictive modelf>. The discussion is aimed primarily at correlative models, 
although many of the topics addressed will also apply to other types ofmodels. It 
must be emphasized that the aim is not a "cookbook" of statistical procedures 
involved in producing a predictive model. There are many textbooks devoted to 
univariate, bivariate, and multivariate statistics; some even emphasize specific 
predictive modeling techniques, such as multiple and logistic regression and dis
criminant function analysis. For the most part, the reader will be referred to these 
textbooks for detailed discussions of the nuts and bolts of specific procedures, 
although it is impossible to avoid including some formulas and detailed discussions 
in this chapter. Statistical techniques, especially multivariate ones, are not simple 
procedures. Some may be relatively easy to understand from a conceptual stand
point, but many of the assumptions and intricacies of the procedures are not 
amenable to a cursory examination. If statistical techniques are going to be used to 
build a predictive model, the researcher must be willing to invest the time to learn 
how to do it correctly. 

This chapter begins by defining the problem that predictive modeling 
attempts to address-namely, the distribution ofsites in space. Specifically, predic
tions about site locations in a region are generated on the basis of observed 
associations between a set ofindependent predictor variables and site locations in a 
sample of locations in that region. This information about the attributes of site 
location in the sample is used to "predict" site location attributes for an area not 
included in the original sample but for which observations for the same set of 
independent variables have been made. . 

Once the nature of the problem has been defined, we will consider the nature 
ofvariables, scales, and distributions appropriate to different discrete and continu
ous random variables. Variables should be designed to measure certain theoretical 
aspects of the phenomena of interest, and further, each variable ideally should 
reflect only one dimension of variability. The different scales of measurement 
commonly employed in statistics will be briefly reviewed so that the limitations 
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they place on potential analytical procedures can be noted. Finally, different types 
of discrete and continuous probability distributions will be examined, and the 
implications ofthese distributions for parametric vs non parametric statistics will be 
outlined. 

Statistical description and inference in the model-building process are exam
ined in the third major section of the chapter. Two distinct statistical parts to the 
model-building process are recognized. The first is the definition and measurement 
of the associations among one or more independent variables and of their relation
ships to site location. The second concerns generalizing from these sample-based 
associations to the larger population. Some general univariate descriptive statistics 
and bivariate and multivariate tests of association will be described. We will 
highlight some of the concepts involved in the use of inferential statistics and 
emphasize the probability-based nature ofthese statistics and their dependence on 
some type of probabilistic sampling scheme. 

A large part of the chapter is devoted to the topics of defining differences 
among groups and producing some type ofclassification of these groups. The first 
objective of the analytical procedure is to take two or more known groups defined 
on the basis of a set of independent variables and then determine which of the 
variables provides the most important discrimination between or among groups. 
The second goal is to capitalize mathematically on the group differences and 
produce a function or set offunctions that allow the classification ofunknown cases 
into the most likely group. The importance of"cleaning up the data" is discussed as 
a necessary early step in predictive modeling. This process helps to provide a set of 
variables that can be used to distinguish site distributions from nonsites or different 
types of sites from one another. The requirement for homogeneous groups is 
described, and factors that work against homogeneity, such as temporal and 
functional variability in sites, the difficulty of defining site classes using cultural 
resource management data, and the inherent heterogeneity of nonsite points, are 
discussed. Attention is given to appropriate methods for defining site classes and 
reducing heterogeneity in data sets using the techniques of cluster analysis and 
principal components/factor analyses. Finally, three of the more popular tech
niques for assigning cases to groups in predictive models-general linear regression, 
logistic regression, and discriminant function analysis-are described. 

The subject of the final section ofthe chapter is the validation and generaliza
tion of predictive models. Three different perspectives are suggested for model 
validation: the use of independent data, split-sample validation procedures, and 
the use of synthetic (simulated) multivariate data sets. Model generalization using 
computer-generated contour maps is discussed briefly. 
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MODELING SITE LOCATION 

The Problem 

Predictive modeling is based on the assumptions that human behavior is 
patterned and that the outcomes ofthe decisions that people make about where and 
where not to live are also patterned. Most forms ofspatial analysis also assume that 
the patterns in settlement behavior can be discerned by studying the locations of 
sites. Scientists studying modern patterns ofsettlement can examine all the compo
nents of the system, but archaeologists are restricted to the patterns that can be 
discerned from partial, and often biased, data. Predictive modeling further assumes 
that patterns oflocational behavior in a particular region can be perceived through 
statistical analyses of samples drawn from the archaeological record, and that the 
resulting patterns can be generalized to the larger area. 

From a quantitative standpoint, predictive modeling is a process that permits 
us to determine the long-term relative frequency, or probability, that any particu
lar location within a region contains a site. For the purposes ofthis discussion we will 
sidestep the problem of varying site sizes and will assume that a location, defined 
here as some areal unit (e.g., hectare, acre, square kilometer, etc.) contains either 
one site or no sites. 

A diagram can be used to illustrate this situation. In Figure 5.1 the space within 
the borders ofthe rectangle represents the region in question-the area covered by 
a national forest, for example, or by a coal-lease tract. The dots in the diagram 
represent site locations. If our purpose is to determine the probability that a 
location of specified size will contain a site, one approach would be to divide the 
region into units of the specified size, survey each unit, and then tabulate the 
results. For example, we might divide the space in Figure 5.1 into 500 units, each 
representing some specified area. Ifwe were to inventory the entire space and find 
that 10 units contained sites, we could calculate a proportion of 10/500 or 0.02 sites 
per unit. With no other information available we might take this proportion to be 
the probability of finding a site in a unit selected by chance. 

This example highlights two important points about predictive modeling. 

First, how is the probability ofan event determined! Ifit were necessary to survey 

an entire region in order to determine the probability offinding a site in a location, 

there would be no need for predictive modeling. Fortunately this is not the case. In 

explaining why this is so, we must introduce the concept of a random experiment. 

Put simply, a random experiment involves certain actions conducted under speci

fied conditions that has as its outcome one (and only one) ofa set ofpossible results 

(usually termed simple results). Before the experiment is conducted we have no way of 

predicting which simple result will occur. 


Returning to our hypothetical archaeological survey, we can construct a 

random experiment in which every time a unit is surveyed there are two possible 

simple results: "yes," a site is present, and "no," a site is not present. Ifwe are 
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Figure 5.1. Diagram of a region (dots represent site locations). 

interested in those cases in which sites are found, we can divide the number oftimes 
that "yes" results occur(E) by the total number oftrials (N); the result is the relative 
frequency (in N trials) of sites per areal unit. This fraction is often denoted in 
statistical texts as r.f. (E). 

Ifwe were to conduct a random experiment and record the results ofeach trial, 
we would see that r.f. (E) varies as the number of trials increases. Table 5.1 is a 
record of such a series of trials. After the first trial, r.f. (E) is either 0 (ifE does not 
occur) or 1 (ifE does occur). After the second trial, r.f. (E) can be 0 (ifE does not 
occur in either trial), 0.5 (if E occurs in one trial), or 1 (if E occurs in both trials). 
This process can be repeated N times and graphed as shown in Figure 5.2. Over 
many trials the graph may look like that shown in Figure 5.3 (constructed from data 
given in Table 5.2). 

Figure 5.3 illustrates a fundamental principle of probability theory. As N 
increases, r.f. (E) becomes closer and closer to a certain value, usually calledp. Thus, 
when N is small, r.f. (E) varies widely between 0 and 1, but as N increases, r.f. (E) 
converges on p. Statisticians refer to this phenomenon by various terms, such as 
"the statistical regularity of chance phenomenon" or "the stability of relative 
frequencies" (Derman et at. 1973:13). 

Regardless of what this phenomenon is called, it lies at the heart of much of 
probability theory. Returning to the original question of assigning a probability 
that a location will contain a site, one can see an immediate application of this 
principle. If we assume that the relative frequency with which a location will be 
found to contain a site becomes more and more stable as the number of surveyed 
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TABLE 5.1. 


Record of simple results and r.f. (E) 


Trial 1234567 8 9 10 


Result E not E not E E not E not E E E not E not E 

r.f. (E) 1.0 0.5 0.33 0.5 0.4 0.33 0.43 0.5 0.44 0.4 

r. f. (E) 
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Figure 5.2. Relative frequency ofE. 
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TABLE S.2. 

Record of how the relative frequency r.f. (E) of the composite result E varies with the number 
N of trials 

Trial Trial Trial Trial 

I 1.0000 30 0.3333 300 0.3567 1700 0.3912 
2 0.5000 35 0.3143 350 0.3514 1800 0.3961 
3 0.3333 40 0.3250 400 0.3625 1000 0.3974 
4 0.5000 45 0.2889 450 0.3689 2000 0.3985 
5 0.4000 50 0.2800 500 0.3760 2500 0.4032 
6 0.5000 55 0.2727 550 0.3927 3000 0.4003 
7 0.4286 60 0.3167 600 0.4000 3500 0.3986 
8 0.5000 65 0.3231 650 0.3985 4000 0.3973 
9 0.4444 70 0.3143 700 0.3929 4500 0.3953 

10 0.5000 75 0.3067 750 0.3947 5000 0.3956 
11 0.4545 80 0.3125 800 0.4025 5500 0.3958 
12 0.5000 85 0.3529 850 0.4059 6000 0.3978 
13 0.4615 90 0.3778 000 0.4078 6500 0.3983 
14 0.4286 95 0.3789 950 0.4084 7000 0.3994 
15 0.5000 100 0.3000 1000 0.4060 7500 0.4019 
16 0.3750 120 0.5000 1100 0.3973 8000 0.4000 
17 0.3529 140 0.3786 1200 1.3917 8500 0.4016 
18 0.3889 160 0.3625 1300 0.3938 9000 0.4016 
19 0.3684 180 0.3667 1400 0.3893 9500 0.3994 
20 0.3500 200 0.3700 1500 0.3880 10000 0.4001 
25 0.3600 250 0.3680 1600 0.3919 

Derman et a1. 1973:Table 3.1 
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units increases, then it follows that we only need to survey that proportion of the 
region that is large enough to yield reliable and accurate estimates. Determining 
how large the proportion should be, how the units should be selected, and a variety 
of other questions all fall under the rubric of sampling and will be discussed in 
greater detail in Chapter 6. 

The second point that our archaeological example highlights is the practical 
use ofprobability statements. How useful is it for a land manager or an archaeologist 
to know that the probability of finding a site in one unit is 0.02? In most cases the 
answer is "probably, not very." Instead ofbeing interested in the absolute or marginal 
probability of site occurrence, one is usually interested in the probability of site 
occurrence under specified conditions. For instance, the statements "the probabil
ity ofsite occurrence is 0.0001 in areas with slopes greater than 30°," "the probabil
ity ofsite occurrence in the pinon-juniper zone is 0.15," and "the probability ofsite 
occurrence in the pinon-juniper zone and in areas with less than 300 slopes is 0.37" 
are all much more useful than the general statement that the relative frequency of 
site occurrence is 0.02. 

The probability that one event occurs, based on the information that another 
or others have occurred, is termed the conditionalprobability. One of the easiest ways 
to conceptualize conditional probabilities is to use a Venn diagram. In Figure 5.4, 
the space within the diagram again represents a specific region; the stipled area 
represencs the collection ofall site locations. This area is often referred to as the cpent 
set. It is important to remember that the space within the diagram represents a 
collection of simple results and does not necessarily imply conciguous land areas. 

Figure 5.4. Venn diagram showing distribution ofsites (shaded area) within pii1on-juniper(PJ) 
and desert shrub C~S) zones. 
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The region has further been partitioned between pinon-juniper areas, which cover 
one-fourth of the region when aggregated, and desert shrub areas, which cover the 
remainder of the space. 

Let us assume that the probability of finding a site in a location of specified 
dimensions in the region is 0.15. That is, the entire stipled area in Figure 5,4 covers 
15 percent of the sample space. Most of the stipled area lies in the pinon-juniper 
partition. Ifwe knew a priori that the survey area was in the pinon-juniper zone, we 
would want to reassess the probability of finding a site. In the latter situation the 
sample space would not be the entire diagram but only the partition referring to the 
pinon-juniper zone (Figure 5,4). Thus, a simple result of finding a site will occur in 
event set B (a site location) if and only if it is also in event set A (pinon-juniper 
zone). Stated another way, the outcome can only occur ifit belongs to the intersection 
of event sets A and B (denoted AnB); that is, it will occur only if the surveyed 
location is in event sets B and A. 

The rules ofprobability calculus are followed to determine conditional proba
bilities. The conditional probability of B occurring given that A has occurred 
(designated by p{BIAJ) is defined by the equation 

peA n B)
PCB IA) = 

peA) 

where p(AnB) is the probability that both A and B occur. Thus, the conditional 
probability ofB given A equals the probability ofbothA andB occurring divided by 
the marginal probability ofA. 

In our archaeological survey we may have found the following relative fre
quencles: 

Site Occurrence 

Vegetation Yes (B) No 
Pinon-juniper (A) 25/400 75/400 
Desert shrub 51400 295/400 

Here, p(AnB) = 25/400, peA) = 100/400, and p(BIA) = (25/400)/(100/400), or 0.25. 
Thus, if we know a priori that the survey area is in the pinon-juniper zone we can 
assign a probability of0.25, not 0.15, to finding a site. 

In a similar manner, the conditional probability of finding a site in a location 
given slope, distance to water, or another characteristic could be determined. 
Further, we could determine the conditional probability of site occurrence given 
several conditions simultaneously. Indeed, this is what much ofpredictive modeling 
is about. 

In the following sections of this chapter, complex statistical techniques are 
introduced that may appear overwhelming to the nonstatistician. These readers 
should remember that what most ofthese techniques are trying to do is to partition 
space in such a way that the conditional probability offinding a site is as close to 1as 
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possible for areas likely to contain sites and as close to 0 as possible for areas where 
sites are probably absent. 

Probability theory and calculus lie at the heart of the quantitative aspects of 
predictive modeling. These subjects have been only briefly discussed in this 
section. We urge the interested reader and potential predictive modeler to read one 
or more of the many texts on these subjects (e.g., Derman et al. 1973; Hayes and 
Winkler 1971; see also Thomas 1976 for anthropological examples). 

The Conceptual Model 

The approach advocated here for building a predictive model is conservative 
and comprehensive. The basic approach involves defining several groups, such as 
sites and nonsites (see Chapter 4 for a discussion ofthe problems ofsuch definitions) 
or sites from temporally distinct periods, and selecting a set of independent 
variables as the potential determinants of site location. For each case (e.g., each 
recorded site and nonsite location) in each group, measurements are recorded for 
each of the independent variables, and then some set ofmathematical techniques is 
used to ascertain how different the groups are from each other. 

Multivariate statistical techniques are particularly useful in looking at the 
differences among groups because they simultaneously assess the importance of a 
large number ofvariables and can usually be used to calculate the probability ofsite 
occurrence given particular values for the independent variables. While the availa
ble procedures differ in a number ofcharacteristics, the usual result is a mathemati
cal function or functions that delineate the importance ofeach variable in defining 
the groups. If the groups can be separated successfully using these variables, 
classification functions can be derived that enable us to place cases of unknown 
group affiliation into the most likely group. 

Once the groups have been defined and the classification functions have been 
derived for the sample locations, the next step is to generalize this information 
about the probabilities of group membership to the whole population of interest. 
This is normally done by obtaining data for the same independent variables for 
locations that were not in the original sample and then using those values in the 
classification function. In this way a prediction can be made about the probable 
group membership ofeach of the measured points in the larger population. Often 
this is done in a systematic manner that allows the researcher to create a contour or 
trend surface probability map of the study region. 

One problem with the use of these statistical techniques in predictive model
ing is that those who use them often do not realize that the use of statistical 
techniques requires certain assumptions about the data, and that when the assump
tions are not met the results of the modeling procedure can be invalid or only 
approximate. Or, if these limitations are recognized, they are only given scant 
attention. We argue that the data must be examined using univariate and bivariate 
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statistics before being subjected to more complex multivariate forms ofanalysis. It is 
important that the assumptions associated with a particular predictive modeling 
technique be identified and that the raw data be evaluated to determine if these 
assumptions are met. 

The first step in building any predictive model should be focused on the 
variables themselves, especially how they are measured (the scale) and whether this 
level of measurement is adequate for the modeling technique being considered. 
Also, it is important to identify the types of distributions that the discrete and 
continuous random variables possess. Most multivariate techniques are based on 
interval and ratio scales ofmeasurement (described below) and assume that varia
bles follow a normal, or Gaussian, distribution. The next section of this chapter 
reviews some of the different probability distributions that a researcher can use to 
make probabilistic statements about the values of particular variables. Once the 
distributions of the variables are known and departures from normality assessed, 
the researcher can decide whether to use normalizing transformations on the 
variables or to pursue alternative analytical strategies. 

The next step in model building is to examine the relationships between pairs 
of variables using different bivariate measures of association. Bivariate analyses 
allow the researcher to evaluate the covariance ofindividual predictor variables and 
to provide the foundation on which more advanced multivariate procedures are 
based. If there are problems with the data on a univariate or bivariate level of 
analysis, there will be problems with more complex analyses. If the steps of 
univariate, bivariate, and multivariate analyses are all made part of the predictive 
modeling process, not only will the soundness of the final predictive model be 
increased, but any weaknesses present in the model probably will have been 
identified. 

Finally, the topic ofsampling procedures must be considered. Most predictive 
modeling techniques are based on the assumption ofrandom sampling, and it is this 
assumption that permits probabilistic generalizations to be made. Estimates of 
population parameters are computed differently for different types of sampling 
procedures, and researchers often fail to take this factor into account. This is an 
important point, for in constructing predictive models we should be concerned not 
only with the resultant prediction but also with the amount oferror associated with 
this prediction. 

V ARIABLES AND SCALES 

Those who have constructed archaeological predictive models have tended to 
concentrate on the sophisticated multivariate statistical models rather than on the 
basic data. This is unfortunate, because the basic data constitute the building 
blocks ofthe models, and they should be thoroughly investigated in the initial steps 
ofmodel construction. The most cogent reason for a thorough evaluation ofthe data 
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is that the most frequently used predictive modeling techniques, such as multiple 
and logistic regression and discriminant function analysis, are parametric statistical 
techniques. That is, they rely on assumptions about the distribution ofthe variables 
being analyzed. Single variables usually are assumed to be normally distributed, 
pairs of variables are assumed to have bivariate normal distributions, and sets of 
variables are expected to possess multivariate normal distributions. These assump
tions have sometimes been ignored by archaeologists developing predictive models. 
In contrast, nonparametric techniques do not require distributional assumptions. 

Variables 

For our purposes we will define a variable as a measurable entity that is free to 
assume any of a prescribed set of values. The data used in modeling are the 
measured values themselves. A variable that can theoretically assume any of an 
infinitely large and uncountable range of values between two given values is a 
continuous variable; adiscrete variable can assume a finite range ofvalues, i.e., it can have 
as many values as there are whole numbers. In predictive modeling, elevation, 
slope, and cardinal orientation in degrees are examples of continuous variables, 
while site presence (yes or no) in a sample unit is a discrete variable. 

Measurement is the process of assigning a class or score to an observed 
phenomenon according to some set of rules. What is not always clear, however, is 
that measurement does not consist only ofprocesses involving numbers. Phenom
ena can also be classified into types or ranked relative to one another. An important 
aspect ofmeasurement, especially in a management endeavor, is that the observa
tions be made using an operationally defined process that yields reproducible 
outcomes that are as valid as possible. This is especially crucial in predictive 
modeling because we may be considering changes through space and time where 
some concepts, especially nontrivial ones, may not be readily amenable to mea
surement or for which no established measurement rules exist. For example, how is 
the efficiency of site location measured? A simple distance measure could be 
misleading ifslope was not taken into consideration, or ifthe spatial distribution of 
the resource itself was not quantified, since different levels ofenergy expenditure! 
return could be involved. Efficiency would probably need to be a problem-specific 
measure, with different rules for measurement being developed in each particular 
application. 

The rules we use to assign a name or number to a phenomenon determine the 
level of measurement, with different rules being associated with different levels of 
measurement. The level ofmeasurement ofa variable determines which methods 
can be used to analyze it and, ultimately, influences the kinds ofinferences that can 
be drawn from studying its distribution. The level of measurement also strongly 
influences the type of map that can be used to portray the variable's spatial 
structure. Stevens (1946) identified the following four basic levels ofmeasurement: 
nominal, ordinal, interval, and ratio. Each level is more rigorously defined than its 
predecessor, and each contains more information. 
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The lowest level in Stevens's scheme is the nominal scale. Values are assigned 
to distinct categories that label or name the phenomenon. The only requirements 
are that the categories be inclusive-that is, all objects must belong to a category
and that they be mutually exclusive-that is, no object can belong to more than one 
category. Variables measured on a nominal scale are thus considered to be discrete. 
For example, ifan area is divided into quadrats the archaeologist may be interested 
in whether each quadrat surveyed contains or does not contain a site. Each quadrat 
possesses one of these properties, but not both. The nominal scale makes no 
assumptions about the ordering of or distance between the categories. A nominal 
scale places limitations on how the variable can be used in statistical operations and 
cartographic manipulations. In certain situations, however, the values can be 
counted to form frequency distributions and, if they are spatially referenced, 
mathematical operations can be performed on their coordinates. 

An ordinal level ofmeasurement exists when there is an implied relationship 
between the classes and they can be ranked (ordered) consistently according to 
some criterion. Ordinal scales are arymmetric and transitive. By asymmetric we mean if 
category A is greater than category B, then B cannot be greater than A. By 
transitive we mean that if A is greater than Band B is greater than C, then A is 
greater than C. Variables measured on an ordinal scale are considered to be discrete. 
In conducting a hypothetical survey, assume the density ofsagebrush in 100 by 100 
m quadrats was recorded on an ordinal scale using the following five categories: I 
(none), 2 (a few plants), 3 (moderate coverage), 4 (dense coverage), and 5 (total 
coverage with almost no surface visibility). The asymmetric and transitive charac
teristics of the ordinal scale can be illustrated using the sagebrush cover ranking. 
For example, the ranking 2 indicates greater coverage than ranking 1, and I can 
never indicate greater coverage than 2; thus the scale is asymmetric. The scale is 
transitive because ranking 2 indicates greater coverage than I, 3 indicates a greater 
relative cover density than 2, therefore ranking 3 also is greater than ranking 1. 

If the categories are ordered and the distances between them are defined using 
fixed and equal units, the level ofmeasurement is interval. The interval scale lacks a 
zero point; it can be used to measure differences, therefore, but not absolute 
magnitude. For example, 80°F is not twice as hot as 4QOF because 0 on the 
Fahrenheit scale is an arbitrary point. To take an archaeological dating example, it 
would be absurd to say that AD 975 is twice as old as 1950 (Thomas 1976:27). Only 
when zero points are established by the phenomena themselves can comparisons 
such as "twice as" have any meaning. Variables measured on an interval scale are 
considered to be continuous. 

A ratio scale has the properties of an interval scale but also possesses an 
inherent zero point. The defining property ofsuch scales is that any two measure
ments bear the same ratio to each other irrespective ofthe unit ofmeasurement. For 
example, if the distance from point A to point B is I mi or approximately 1609.34 m, 
and the distance from B to point C is 2 mi or about 3218.68 m, the ratio ofAB to BC 
distances is 1:2 in both cases. Interval and ratio data are usually treated together 
because they frequently can be manipulated arithmetically and statistically in the 
same ways. 
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Although data may have been collected at one level, it is possible and often 
convenient to convert them into a lower level for analysis or graphic presentation. 
What is generally not permitted, however, is to treat data collected at a lower scale 
as if they had been measured at a higher scale. For example, it is easy to convert 
interval and ratio data into ordinal data, but it is not advisable to sum ordinal scores. 
If one had obtained cover values for sagebrush in terms of area per square meter, 
they could easily be converted to an ordinal scale of measurement by establishing 
cutpoints on the original scale. For example, zero coverage could be assigned a 
ranking of 1, values lying between 0.1 and 0.2 could be assigned a rank of 2, values of 
0.3 could be given a ranking of 3, values of 0.4 to 0.7 could be assigned rank 4, and 0.8 
to 1.0 could be given rank 5. 

In addition to the property of the level of measurement, most variables also 
have the property ofdimensionality. In an archaeological predictive model we want 
the independent predictor variables to be measures of dimensions that are theoreti
cally related to site location, but not to one another (in a correlation sense). Ideally, 
a variable is a measure of only one theoretical dimension; when a model includes 
more than one variable, each one should represent a different theoretical dimen
sion. For example, access to resources may be one dimension in a model, and 
variables measuring this dimension might include arable land, vegetation types, 
and elevation. The distribution of vegetation types, however, can be correlated 
with elevation, and when this is the case in a particular region, it would not be 
advisable to include both variables in the analysis. 

Hybrid variables, representing linear combinations ofseveral other variables, 
can also be effective predictors if they are not correlated with other independent 
variables in the same model. Ifthey are uncorrelated with other predictors a hybrid 
variable still only represents one dimension ofvariability in a geometric-statistical 
sense. A basic problem in predictive modeling, and in most aspects of the social 
sciences, is that one cannot measure a theoretical dimension directly. We can never 
be completely sure, therefore, that a variable designed to measure one phenomenon 
is not also measuring part ofanother dimension at the same time or, for that matter, 
measuring nothing at all. 

When an analysis contains variables that measure the same dimension, there is 
the possibility that the independent predictor variables will be significantly inter
correlated (multicollinearity) and a statistical model will be produced that has little 
predictive value because too many variables are correlated with each other instead 
of with site location. Careful attention to variable selection is a must in predictive 
modeling, and a shotgun approach, where as many variables as possible are used in 
the hope that patterns will appear, should be avoided. ifit is suspected that there 
are correlations among some ofthe variables, such statistical techniques as principal 
components or factor analysis can be used to reduce the information contained in 
many variables to a few composite variables, or some ofthe original variables can be 
deleted from the analysis. These techniques, which should be fully understood 
before they are used, are discussed later in this chapter. 

185 



ROSE AND ALTSCHUL 

Finally, the variables that we choose to represent the theoretical dimensions in 
the model must be measured using relevant scales ofmeasurement. For example, 
distances to important resources might be measured in meters and areas ofarable 
land might be measured in hectares or square kilometers. The scale ofmeasurement 
chosen for a variable will be based on several factors, including theoretical consider
ations and the precision with which the variable realistically can be measured. 

An important class ofvariables is nondimensional and has values independent 
of the units of measurement involved. The term nondimensional is used here to 
mean unitless. It does not mean that the variable is measuring an unimportant or 
non-theoretical dimension ofvariability in the data. This is an important distinction 
to maintain. For example, the variable distance to water is often measured on an 
interval scale in meters. If the values of this variable were converted to x-scores, or 
standard normal variates, then the variable would be nondimensional. Nondimen
sional variables are particularly useful in comparisons between sets ofvariables or in 
scaling modeling experiments. For instance, it might be extremely difficult to 
compare the variables distance to water measured in meters (whose scores may 
range from 0 to the tens ofthousands) with slope measured in percent grade (whose 
scores vary between 0 and 100). Such a comparison could be facilitated, however, by 
converting both variables' original scores to "nondimensional" x-scores. 

Most of the variables currently being used in predictive models can be read 
from existing maps, such as USGS 7.5- or IS-minute quadrangles, or can be 
retrieved in machine-readable form from some type of geographic information 
system. Map-based variables are convenient because the investigator can measure 
variables for points that were not visited in the field. While this is an important 
consideration, it also implicitly assumes that the level ofresolution ofthe map from 
which the information is extracted is sufficient to distinguish critical states of 
variables. The validity ofthis assumption should be evaluated in each case in light of 
what is expected from the model. For predictions ofa general nature this assump
tion may be justified, but as finer and finer predictions are attempted (e.g., "this 
location will [or will not] contain a site") the quality ofthe environmental data upon 
which the prediction rests should itself become the subject of investigation. 

Types of Distributions 

Within a predictive model, values of variables have specific distributions. 
These distributions are produced by rules that assign a numerical value to each 
outcome ofan experiment. Where each outcome ofan experiment is represented by 
exactly one numerical value, the rules are called random variable, (also called chance or 
stochastic variables). Because of the difference between discrete and continuous 
variables, two different types ofmathematical models are necessary to describe and 
analyze the random variables. Discrete random variables are described by the 
probability mass function and continuous random variables are described by the 
probability density function. 
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Probability Masr Function 

The probability mass function (Derman et al. 1973) of a discrete random 
variable has the same information about the probability model for X as does a table 
of probabilities of the simple events X = xh X = X2, and so on, where Xl, x2, ... are 
the possible values or outcomes ofX. We denote the probability mass function for X 
by px(t); if no confusion with probability mass functions ofother random variables 
will occur, the X subscript is dropped and we write pet). The probability mass 
function of X assigns to every number the probability of the event X = t. For each 
value of X (x h X2, .•. ), the probability mass functionpx(t) evaluated att = x h X2, X3, 
... equals a positive number; for all numbers t that cannot be assumed by X,Px(t) = 
O. The sum ofthe nonzero probability values ofp(t) is 1.0. The mass function thus 
gives us the same information provided by a table ofprobabilities of simple events. 
The function can be represented on a bar graph that displays probability on the y 
axis while the x axis is used to represent t = Xl, x2, ..., etc. (Figure 5.5a). The 
probability mass function is useful as a way of quickly gaining a meaningful idea 
about the probability characteristics of a discrete random variable. 

Probability Density Function 

For continuous random variables, the function analogous to the probability 
mass function is the probability density function. To define the density function ofa 
random variable X we use the symboIJx(t), or when no confusion would result,ft't). 
The density function ofa random variable X may be given a graphical representa
tion, such as the curve shown in Figure 5.5b. In this instance the area under the 
graph between the numbers a and b represents the probability ofan event (a::S; x::S; 
b). The area under the graph ofJ(t) over the entire horizontal axis is always equal to 
1, since the probability is 1 that X is equal to some real number. From a density 
function, some qualitative conclusions about the variation ofthe random variableX 
over repeated independent and identical trials can be drawn. Ifthe density function 
is nonzero over a line segment from Xl tox2 and zero elsewhere (Figure 5.6), then no 
values outside the rangexl tox2 may occur. Ifthe density function is constant over" 
the interval from x 1tox2, then all subintervals ofequal length (11 andl2) are equally 
likely to occur. To take yet another example, if the density function is such that 
most of the area beneath the graph is concentrated in a very narrow range, then 
repeated experiments on X tend to yield values of the random variable X mostly 
within the range of numbers where the area is concentrated (Figure 5.7). These 
simple geometric arguments for calculating the exact probability that a continuous 
random variable X lies in the interval ofnumbers between and including a and bare 
rarely applicable, since density functions normally do not come in the form of 
rectangles or triangles. To obtain exact answers one must use integral calculus, 
which provides techniques and formulas for finding areas under curves. These 
calculations can be quite complex, but tables of probabilities have already been 
calculated for the types of distributions that most archaeologists will need to 
consider. 

187 



i 
I 
I 
I 
I 
I 

I 

~/I-? ~/2~ 

I 
I 
I 
I 
I 
I 
If(f) I t(f) 

f 

ROSE AND ALTSCHUL 

p(t) 

A 

I 11111111 .. • -t 


B 

a 
----~~~~~------------~--~f

b 


Figure 5.5. Two probability functions. (A) A mass function. (B) A density function. The shaded 
area is equal to the probability that X lies between a and h. 

f(f) 

Figure 5.6. Constant density between X 1 and X2 implies equal probability for the intervals 1I 
and 12, both of equal length. 
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Figure 5.7. A highly centralized density function. 

Descriptive Properties of Distributions 

For many purposes it is either unnecessary or impossible to obtain all the 
information contained in the distribution; rather, several descriptive properties 
that summarize the most important aspects of a distribution mayor must suffice. 
Two of the most frequently used types of information about a distribution are its 
location and its dispersion. If two density functions have the same graphical shape 
but concentrate at two different points (xoandxl) on thex axis, the relocation of the 
graph from xo to x I represents the only difference between the distributions (Figure 
5.8). A descriptive measure that changes values whenever the distribution changes 
location is a measure of the location of the distribution. On the other hand, a 
measure ofdispersion, or variation, describes how strongly a distribution concen
trates about a central value. The measure ofdispersion is large when the spread of 
variates about a central value is large, and it is small when the spread is negligible, 
becoming zero when all of the probability is at a single point. 

The measure oflocation ofa random variable X is commonly referred to as the 
mean ofthe distribution. Other common measures described in most statistics texts 
are the median, mode, and various quartiJef. The most common measure ofdispersion 
is the variance or its square root, the ftandard deviation. The mean ofa random variable 
X is sometimes referred to as the first moment ofa distribution and the variance as the 
second moment. A generalization of this concept leads to the expected value of the 
random variable (X - ct, r- 1,2,3, ..., which is called the rth moment about the 
point c of the distribution ofx. When c is the mean the moments are called central 
moments. 

The other two moments that we will be concerned with are skewness and kurtosis. 
Skewness measures the asymmetry of a distribution, and kurtosis provides a 
measure ofhow peaked it is. The importance of these moments is that they playa 
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Figure 5.8. Two densities differing in location. 

role in approximating the distribution of a random variable. Sometimes the 
moments of a distribution are known but the distribution itself is unknown, and 
mathematical techniques have to be used to identify the distribution that possesses 
those moments. After the distribution has been identified we can then calculate the 
probabilities of events of interest to us. Formulas for calculating all of these 
moments are commonly available in basic statistics texts. 

There are certain probability distributions that arise quite frequently in many 
different contexts. Below we will briefly describe some discrete and continuous 
distributions that are frequently encountered in predictive modeling. 

Discrete Distributions 

When a discrete random variable has two possible outcomes we have a Bernoulli 
trial (Derman et al. 1973). If, for instance, a site can be present or absent, a student 
can pass or fail, or a stock can go up or down, there are two possible outcomes. One is 
frequently called a success, the other a failure; the assignment of these terms for 
possible outcomes is arbitrary. We can define a random variable associated with 
every Bernoulli trial as follows: if the outcome w is a success, X(w) = 1; if the 
outcome w is a failure, X(w) = O. IfP is the probability of success, then I-p is the 
probability offailure. A random variable having this probability mass function for 
some probability p is said to be a Bernoulli random variable, and the resulting 
distribution is a Bernoulli distribution. The mass function varies with the changing 
values of p, the parameter of the distribution. If p can be determined for the 
distribution, this distribution is said to be completely specified. 

When we are interested in n independent trials of a random experiment that 
gives a Bernoulli random variable and distribution, we consider the random variable 
Z that records the number ofsuccesses in n trials. The random variable can assume 
any of the values 0, 1,2,3, ... , n. Ifn = 3 there will be eight outcomes: (SSS), (SSF), 
(SFS), (FSS), (FFS), (FSF), (SFF), and (FFF), where S denotes a success and F a 
failure. Corresponding to these outcomes are the following values ofZ: 3,2,2,2, 1, 
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I, I, O. To find the appropriate probability model for Z, we find probabilities for the 
simple events of the composite random experiment made up of the three trials, 
where each trial is coded as an S (success) or an F (failure). The probability mass 
function that can be used with the parametersp andn (wherep is the probability of 
success on each ofn repeated Bernoulli trials) is termed the binomial and is given as 

pz (k) = ( ;) Pk (l-pf-k 

This equation is used to calculate the number ofcombinations of n objects taken kat 
a time. This equals n!l[(n-k)!k!], where! denotes factorial. Ifn is a positive integer, 
then the product of the integers from I to n is called "n factorial" and is denoted by 
n!. For example, 4! .. 4 x 3 x 2 x 1. Knowledge of both nand p determines the 
probabilities given in the above equation. 

The Bernoulli distribution is a special case of the binomial distribution where n 
= I. The binomial distribution assumes a fixed number of trials, with the probability 
of success being the same for each trial and all trials being independent of and not 
affected by the outcome ofthe others. As an example ofthe binomial distribution, a 
mapped area is divided into eight quadrats or subregions of area a. If there are n 
subregions, the probability ofany point being in a specified region is IIn, or 118 .. 
0.125 in our example. Conversely, the probability of that point not being in the 
specified region isq = I-p, or 0.875. Using the equation shown above we can calculate 
the probabilities of there being k points in a quadrat given a total of n points and a 
probability ofp for anyone point being allocated to a quadrat. For example, say we 
wanted to know the probability ofthere being three points in a quadrat given a total 
of six points and a probability of0.125. The probability will be p(3) = [6!/(6-3)!3!] x 
0.1253 x 0.8753 = 0.16. In a similar manner we can calculate the probabilities associated 
with any other number of points. 

In many instances these binomial probabilities are not used because they are 

laborious to calculate and, for most applications, the Poisson distribution described 

below gives a more readily calculated approximation ofthe probabilities obtained in 

an independent random process. The Poisson distribution can be used to approxi

mate binomial probabilities when, considering the parameters nand p of the 

binomial distribution, n is "large" andp is "small." This works quite well even for 

modest values ofn, say as small as 20 or 30. 


Two distributions, the geometric and Pascal, that can be obtained via the 

binomial distribution are discussed briefly below. The relationships between the 

geometric, Pascal, and binomial distributions are described in most intermediate to 

advanced probability textbooks (e.g., Harris 1966). These different distributions 

are simply used to answer different types of questions. 


When the conditions ofthe independent binomial trials are satisfied, but when 

one is interested in the number oftrials required to obtain the first success instead of 

the number of successes in n trials, the geometric distribution is required. The 

probability mass function for this discrete random variable is 
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For the first success to appear on the xth trial with a probability ofp, there must first 
bex-I failures, each with probability I-p. For example, based on prior knowledge let 
us assume that the probability ofa site being present in a quadrat is 0.125. Ifthe site 
being present is a success then the probability ofa failure is 1-0.125, or 0.875, as in the 
previous example. Ifone were interested in the probability that the first site would 
be found in the fifth quadrat surveyed, the formula above would be employed to 
yield p(x) - 0.8754 X 0.125, or 0.0733. 

The Pascal distribution is also based on the condition ofthe independent trials 
being satisfied, but unlike the geometric or binomial distribution, the interest is in 
the number of trials required to obtain a given number of successes (r). The 
probability mass function for this discrete random variable is given as 

p(x) = _pf-r(X-I) pr (I 
r-l 

because if the rlh success occurs on the xth trial with probability p, then there must 
be r-I successes in the first x-I trials. This probability function is thus the product of 
the binomial distribution for r-I successes in x-I trials and the probability for success 
on the xlh trial, p. When r is I, the formula. reduces to that of the geometric 
distribution. 

A sample calculation with the Pascal distribution might make the formula 
presented above less formidable. Assume that from prior research the probability of 
finding a site (a success) in anyone quadrat in a survey area is 0.5. A manager is 
interested in the probability that the fifth site located will appear by the time the 
tenth quadrat is surveyed, or in the language of the previous paragraph, that the 
fifth success will appear on the tenth trial. Values to be used in the formula for the 
Pascal distribution include r "" 5, x - 10, and p = 0.5. The combination notation 
reduces to the number of combinations of9 (x-I) objects taken 4 (r-I) at a time, or 
9!/5!4! = 362,88012,880 = 126. The remainder of the formula is 0.5~ x 0.55, or 0.0010. 
Then, the probability that the fifth site located will occur by the tenth quadrat 
surveyed will be 126 x 0.0010 = 0.126. 

Closely related to a binomial random variable, a Poisson random variable 
represents the number ofoccurrences of some outcome, not in a given number of 
trials but in an interval of time or an area of space. The wide variety of random 
phenomena giving rise to random variables having this distribution is astonishing. 
I t has been used in control engineering, agriculture, biology, and medicine, to name 
but a few areas ofstudy. A recent archaeological application is presented by Rogge 
and Lincoln (1984). 

The utility of the Poisson distribution can be demonstrated with the same 
example used above for the binomial distribution. In many practical applications the 
quadrat is a relatively small area, implying that k is large and p is therefore small. 
The probability that a quadrat includes a point may be small, but the number of 
points n is usually large so that the productNp, the expectation offinding one point 
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in one area, is relatively constant. Ifthis expectation is called lambda (A), the Poisson 
distribution is given as 

p(x) = , k = 0, I, 2, ... 
x! 

wheree is the natural constant approximately equal to the number 2.71828. For the 
present example, A = 6/8 = 0.75 since there were six sites in eight quadrats. The 
quantity e(-A) would be 2.71828-0

.
75 = 0.4723. Using these values in the Poisson 

formula, the predicted probabilities for an independent random process where n = 6, 
k = 8) andp = 0.125 can be calculated. For example, the probabilities of there being 
three, four, or six points in a quadrat are 0.20, 0.04, and 0.00, respectively. 

Probabilities based on the binomial distribution do not apply when we sample 
without replacement because the probability ofa success is not constant from one 
trial to another. The appropriate probabilities in this situation are based on the 
hypergeometric distribution, given as 

(Nt) (~1) 

(~) 

Assume a random sample ofsize n is drawn without replacement from a population 
of N units and that there are k successes and n-k failures, with p denoting the 
probability ofsuccess and q, or I-p, denoting failure. Let's say a prior inventory of 
part ofa region showed 50 percent of the quadrats contained a site. The remainder 
of the area, some 300 quadrats, was not surveyed. An archaeologist samples five of 
the quadrats and finds that two contain sites and three do not. Does this result 
follow from what was already known about the region? The equation given above 
can be followed using N = 300, n = 5, P= 0.50, and k = 2 to yield a probability that 
0.3146 ofthe 5 units, or 1.573 units, will contain a site. Thus the observation that two 
units contain sites fits the theoretical observed frequency reasonably well. 

Finally, for the binomial probability law to be valid, all possible ou tcomes ofa 

probabilistic phenomenon can only be classified as either successes or failures. 

When there are more than two categories ofclassification, the multinomial distribu

tion applies. More formally, if a probabilistic phenomenon has k possible ou tcomes 

with probabilities p l> P2, P3, ...,Ph if the probabilities are constant for every trial, 

and ifall trials are independent, the multinomial distribution gives the probability 

of Xl outcomes of the first kind, X2 outcomes of the second kind, through xk 

outcomes ofthe kth kind in n trials. The multinomial distribution could be used in a 

situation where there were three specific types ofsites instead ofjust a site (or type) 

that could be present or absent. Blalock (1972: 171) notes that a difficulty with the 

use ofthe multinomial distribution is the problem ofunambiguously specifying a set 

of outcomes more unusual than the one obtained. 
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We have mentioned some discrete distributions that frequently arise. When 
one of these distributions is chosen to model a random variable for which we have 
observations, the decision generally has either a theoretical or an empirical basis. 
That is, either the selected probability distribution is a logical consequence of the 
properties of the phenomenon that are already known to the archaeologist or the 
probabilities derived from the distribution correspond to the relative frequencies 
obtained from repeated observations of the phenomenon. In some situations a 
particular probability distribution may be chosen for both reasons. 

Many ofthe distributions outlined above assume that outcomes are independ
ent ofeach other, and tests can be devised to determine whether the observed point 
patterns correspond to independent random processes. These processes are usually 
mathematically simple and elegant, and they form a useful starting point for spatial 
analysis. Most geographical applications of models of independent processes are 
made in order to reject the null hypothesis of independence and randomness in 
favor of an alternative that specifies some form of spatial dependence (Unwin 
1981:60). In order for a clustering of points to be produced, the probability of any 
quadrat receiving a point cannot be the same for all quadrats. A number of 
distributions that incorporate spatial dependence exist. Thomas (1977:20-23) notes 
that spatial analysts have had considerable success in fitting observed frequency 
arrays based on clustered distributions. 

One such clustered distribution is the negative binomial, where the probabil
ity of placement increases lineally with the number of points already in a quadrat, 
leading fairly directly to a clustered point pattern (Draper and Lawrence 
1970:99-101). At anyone time then, the probabilities of cells receiving a point are 
not equal, but are directly related to the existing distribution. The probability that 
a specified quadrat will contain exactly x points is given by 

1 ~k(k +xx - 1)
p(x) = \. x = 0, 1, 2, ...(t;p) 

where X = kp, 0 2 = kp (1 +p), therefore p = Xk. 

The probabilities predicted by the above equation only depend on the two 
parameters lambda (X) and k, where lambda is the point density andk measures the 
degree of clustering. The value of k falls between zero and infinity, though as k 
approaches zero the distribution converges on a clustered logarithmic distribution 
(Bliss and Fisher 1953), and as kapproaches infinity the clustering disappears and the 
negative binomial tends to the Poisson distribution described above. The variance/ 
mean ratio of the negative binomial distribution is always greater than one regard
less of the values oflambda and k. Most typically the values of k are not positive 
integers, and the negative binomial probabilities can be obtained by solving a 
density function which is an approximation to the formula given above. The 
approximation is 
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where R == p(I+;). 

Dacey (1968:51-70) describes how the negative binomial distribution can be 
deduced from different propositions about how the clustered patterns are gener
ated, though for quadrat analyses the most important processes are termed general
lZed and compound. The mathematical characterization of these processes is beyond 
the scope of the present discussion, but it can be noted that the formula for the 
negative binomial presented above assumes a generalized process that results from 
some basic affinity among the points in a cluster. For the assumptions of the 
generalized distribution to hold, one must be reasonably sure that the points and 
study area are fairly homogeneous in nature. 

Compound processes result from a heterogeneity in the numerical population 
ofpoints under investigation. For example, let us assume that we were interested in 
the adoption ofa particular architectural construction method among the Anasazi in 
the southeastern Colorado Plateau region. If the prehistoric population density 
varied significantly over the study area we might observe a clustering in the 
"adopters" of the construction method not because of short-distance social con
tacts among the population, but because there were high population densities in 
lowland areas and low densities in upland regions. The clustering would thus be the 
result ofthe lambda parameter (A) varying over the area, and not the result ofa real 
contagion process. Because the two sets ofassumptions associated with the general 
and the compound processes can lead to the same predicted frequency distribution, 
the design of a quadrat sampling procedure must specify which model is more 
appropriate. 

In order to fit the negative binomial distribution to a set ofdata the parameters 
lambda (A) and k must be known. Ideally it would be nice if enough were known 
about the probability model to specify the parameters from a priori information. 
Realistically this is almost never the case, and one is forced to use some statistical 
estimation procedure in lieu of theoretical knowledge. Two of the most common 
methods for estimating the two parameters ofthe negative binomial are the method 
of moments and maximum likelihood estimation. An explanation of these two 
procedures is left to a text such as Thomas (1977:21-23), which provides a cogent 
discussion ofthe relevant material and examples. It should be mentioned, however, 
that the maximum likelihood approach is fairly complex since it involves maximiz
ing the value of a likelihood function. 

An alternative that is appropriate in some spatial modeling situations is the 

Neyman Type A distribution (Ripley 1981: 106-107), which involves random place

ment of a series of initial points from which other points spread randomly. This 
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probability model can be derived as a compound model resulting from the mixture 
of two Poisson processes (Rogers 1974). 

Wood (1971) has suggested that the negative binomial and Neyman Type A 
distributions are applicable to prehistoric settlement processes in which clusters of 
sites are generated by a "contagion" process. Plant ecologists and geographers have 
used models of this type to describe patterns in which each occurrence of the 
phenomenon in question increases the probability ofadditional occurrences nearby 
(Cliff and Ord 1973; King 1969:45). Clusters of points are Poisson distributed, and 
each cluster contains one or more points that follow some distribution. If the 
distribution ofpoints making up a cluster is logarithmic, the overall distribu tion is a 
negative binomial; ifthe points in a cluster are Poisson distributed, a Neyman Type 
A distribution is yielded (Cliff and Ord 1973; Hodder and Orton 1976). It is assumed 
that the clusters are spaced far enough apart that a quadrat will not contain more 
than one cluster, but this will depend on the spatial dispersion within a cluster, the 
distance between clusters, and quadrat size. 

Both of the independent and dependent processes described above lead to 
probability distributions. The actual observed distribution patterns can then be 
compared with those predicted by the model, allowing for an evaluation of the 
likelihood of the observed distribution. One point to be kept in mind when 
evaluating probability models in most geographical applications, like the negative 
binomial and Neyman Type A distributions described above, is that the parameters 
are estimated from the data. Hence, it is likely that the predictive frequencies from 
many of these a priori models will reasonably fit the observed data. 

Continuous Probability Distributions 

The continuous distributions described in this section are the normal, lognormal, 
t, exponential, gamma, and Weibull distributions. Like discrete probability distribu
tions, continuous distributions are represented in a parametric form, meaning that 
the general shape of the distribution is given by mathematical equations in which 
certain constants are left unspecified. For example, in the Bernoulli distribution 
previously described thep was left unspecified. In the normal distribution described 
below the mean and variance are left unspecified. When we know the values ofthese 
parameters the probability distribution is completely specified, and the probability 
of any event can be calculated. Put simply, we can determine graphically and 
numerically the properties of the distribution. 

Many of the statistical procedures discussed later in this chapter assume a 
normal (Gaussian) or at least a quasi-normal (approximately normal) distribution. 
The general properties of this well-known distribution-the familiar bell-shaped 
curve-are that it is symmetric, is asymptotic at both ends, has maximum height at 
the mean, has areas under the curve that represent probabilities ofevents, and that 
the distribution ofmeans of repeated samples will tend to be normally distributed. 
Unfortunately, many researchers fail to determine (even using the most simple, 
basic descriptive statistics) how well their data meet the assumptions of normality. 
This can lead to serious deficiencies at more advanced levels of analysis. 
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Several techniques can be used to judge whether a set of data possesses a 
normal distribution. A chi-square goodness-of-fit test is one technique that can be 
used to test whether a sample is from a normally distributed population; however, 
the test is not capable ofidentifying some departures from normality. For example, 
the sample data might possess noticeable skew but the test would not reject the null 
hypothesis ofno significant difference between the distributions. Alternative tests 
that can detect nonnormal skewness and kurtosis are described below. 

To apply the chi-square test the sample data are grouped into classes to form a 
frequency distribution and the sample mean and standard deviation are calculated. 
A normal distribution with these parameters is fitted and expected frequencies for 
each class are obtained. Snedecor and Cochran (1967:70-72) discuss the relevant 
computations. The chi-square statistic is computed as the sum of (observed
expected)2/expected for each class. Ifthe data come from a normal distribution, the 
observed values from the sample will tend to follow the values expected on the 
assumption of normality and the computed chi-square is small. If the data come 
from some other distribution, the observed and expected values in each class will 
tend to agree poorly and the computed chi-square value becomes large. A large 
chi-square value causes rejection of the hypothesis of normality. As a test for 
goodness offit, the most serious limitation ofthe chi-square test is the requirement 
for a large sample. As a rule for using the chi-square distribution, each class interval 
should have an expected frequency ofat least 5. Unless the sample is large, only the 
most frequent class intervals will retain their integrity. The intervals with small 
frequencies would have to be combined before computing the test statistic, and in 
doing this, information is lost. When the sample is very small the chi-square test 
cannot be used at all. 

An alternative goodness-of-fit test is the Kolmogorov-Smirnov (KS) one

sample test. This test approaches the normality question by comparing the 

observed cumulative frequency distribution of the sample to that expected from 

the population specified by the null hypothesis. The test statistic obtained is the 

maximum deviation between the observed and the expected distributions. The 

specifics of this test are described in Lapin (1978:640-644). The KS test is more 

efficient than the chi-square test for small samples; that is, for a fixed sample size the 

KS test is more powerful because it provides a higher probability ofrejecting a false 

null hypothesis. A disadvantage of the KS test is that it does not allow the 

population parameters-the mean and standard deviation-to be estimated from 

the sample as in the chi-square test. Instead, the population parameters must be 

specified in advance. 


Tests are also available that allow the researcher to evaluate whether sample 

data with particular values ofskewness and kurtosis could have come from a normal 

population. Skewness coefficients for random samples of normally distributed 

populations have a mean ofzero and a standard deviation of(6In)~. The skewness 

coefficient for sample data can be compared with this value, or two or three times 

this value, depending on the chosen significance level. For example, ifthe skewness 

coefficient exceeds twice this value (+ or -), the null hypothesis of a normal 
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distribution is rejected at the 0.05 level of significance. This test for skewness is 
accurate enough when the sample size is greater than 150. For smaller sample sizes, 
the one-tailed 5 percent and 1 percent significance levels, computed from more 
accurate approximations, are presented by Snedecor and Cochran (1978:552, Table 
A6). 

Kurtosis can be tested for departures from normality in a manner similar to 
skewness. Normal distributions possess a kurtosis of3. When kurtosis is computed, 
however, the value of 3 is frequently subtracted during the computation so that 
distributions with positive kurtosis are peaked and those with negative kurtosis are 
flattened. When computed this way and when very large samples are from a normal 
distribution, kurtosis is normally distributed with a mean of 0 and a standard 
deviation of(24/n)~. Sample kurtosis values that exceed the standard deviation, or 
exceed it by two or three times depending on the significance level, will lead to 
rejection of the null hypothesis that the sample data are from a normal distribution. 
Unfortunately, the distribution of kurtosis does not approach the normal distribu
tion closely until the sample size exceeds 1000. For sample sizes between 200 and 
1000 more accurate approximations of the 5 percent and 1 percent significance levels 
are presented by Snedecor and Cochran (1978:552, Table A7). For small sample 
sizes, tables of significance levels of kurtosis are not readily available. 

The use of the concept of a normal distribution to describe many random 
phenomena can be theoretically justified by assuming that these phenomena arise 
from the summation of many statistically independent and identically distributed 
random causes. We can theorize that a random variable is approximately normally 
distributed if we can conceive ofit as being equal to the sum of a large number of 
independent realizations of the same random variable X. 

The lognormal distribution is the product ofmany independent realizations of 
random variables with approximately equal distributions. A nonnegative random 
variable Z is said to have a lognormal distribution when r = 10gZ has a normal 
distribution. 

Another continuous distribution that is in many respects similar to the normal 
distribution is the t-distribution. This distribution is also symmetric and has 
maximum height at the mean, but its shape depends on a parameter called degrees of 
freedom that is largely related to sample size. The t-distribution is commonly used in 
the construction of confidence intervals related to small samples. 

The problems of small samples (those with fewer than ca. 90 cases) and of 
distributions that are continuous but nonnormal have received little attention in 
predictive modeling. A fair amount ofapplied statistical research in disciplines other 
than anthropology has been directed toward examining the distribution character
istics ofsmall samples from a variety ofdistributions (e.g., Wallis et al. 1974). Many 
of these investigations have been instigated by the stark realization that the 
distributions ofvariables employed in many models are not quasi-normal. Since an 
argument can be made from both theoretical and data-oriented perspectives that 
many archaeological and environmental phenomena are not randomly distributed, 
some of these distributions are described below. 

198 



OVERVIEW OF STATISTICAL METHOD AND THEORY 

In the simplest terms, an exponential distribution has the general shape of a 
reversed "J" and approximates a great many populations where the observations 
involve items whose status changes through time (or space). This distribution has 
been used to characterize the expected use life ofequipment, for example, and the 
arrival of cars at a toll booth. 

When the distribution of a continuous random variable is considerably 
skewed, the gamma or Weibull distributions may be useful. The gamma distribu
tion can be used to analyze a system in which the proper functioning of a certain 
component is essential to the proper functioning of the system as a whole. In order 
to in.crease reliability (that is, to increase the length of time before failure), the 
system may be designed with r-\ spare components that can be used if the critical 
component fails. When that component fails, one of the r-2 other components takes 
over. This process can continue until all r components fail, at which time the entire 
system fails. Assuming that the system can fail only if the critical component fails, 
the lifetime ofthe entire system is the sum ofthe lifetimes ofther components (X \, 
X2, X3, ..., X r ). If each of the lifetimes has the same exponential distribution and 
the same parameters, and if all of the lifetimes are statistically independent, then 
the gamma probability density function is appropriate. Weibull distributions 
(Derman et al. 1973:378-390) have also been found to provide good probability 
models for describing the length of life of certain phenomena. 

The exponential, gamma, and Weibull distributions are three classes ofdistri
butions that have been used by investigators in many fields to find distributions 
that explain or describe the variation in nonnegative random variables. Examples of 
such phenomena include the lifetimes ofindividuals, travel times, and the lifetimes 
ofbiological or even social systems. These distributions provide a reasonable fit to 
the distributions ofmany ofthese random variables, but in other cases the fit is not 
as close as desired or may even be unsatisfactory. 

Statistical Implications ofProbability Distributions 

The types of probability distributions that variables assume partially deter
mine which statistical tests can be used to analyze those variables. Statistical tests 
can be divided into two general families: classical or parametric tests, which are 
usually applied to data measured on an interval or ratio scale, and distribution-free 
or nonparametric tests, which can be applied to data measured on nominal, ordinal, 
interval, or ratio scales. 

Parametric tests are generally more powerful and more widely applied than 
nonparametric tests in predictive modeling contexts, but it is important to note 
that most parametric tests make certain assumptions about the populations from 
which the samples are drawn. These assumptions may not always be met, and the 
data should always be examined to determine whether these assumptions apply. If 
they do not apply, the extent of the violations should be assessed. The most 
frequent assumption made about the background population is that it is approxi
mately normally distributed. The smaller the sample, the more important it is that 
this requirement be met. 
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Ifthe normality or quasi-normality ofthe background population is questiona
ble, then a distribution-free or nonparametric test might be required. This is 
especially true if the variables being tested are derived from small samples. Non
parametric tests constitute a large family oftechniques that permit one to cope with 
frequently unrealistic and limiting assumptions. Another advantage of nonpara
metric statistical tests is that the theory is sometimes easier to follow. They can also 
facilitate more efficient data-collection procedures if it is expected that the back
ground population is nonnormally distributed. As Thomas (1976:263) notes, how
ever, whatever the virtues ofthe nonparametric approach, it remains a second-best 
substitute for tests based on normality theory. These tests also tend to ignore much 
sample information that is addressed by their parametric counterparts and there
fore may be less efficient. Another handicap is that there are so many nonparametric 
tests to choose from that the researcher must pay more attention to the added 
question of efficiency, that is, which test is the most powerful in a particular 
situation. Additionally, in terms of complex modeling situations many of the 
nonparametric statistics are not as developed or as applicable as their parametric 
counterparts. 

The other basic distinction in statistical analysis classifies procedures as univar
iate, bivariate, or multivariate. While most predictive modeling situations are 
multivariate, a strong argument needs to be made for using univariate and bivariate 
procedures as a necessary and logical precedent to the use ofmultiv;uiate processes. 
Ifresearchers devoted more effort to examining the distributional characteristics of 
the variables and the relationships among variables, they could determine whether 
the basic assumptions ofmore advanced tests were being met and decide whether 
some variables should be rejected or reexpressed before the variables are incorpo
rated into sophisticated models. 

STATISTICAL DESCRIPTION AND INFERENCE 
IN THE MODEL-BUILDING PROCESS 

In the process ofbuilding a statistical model we attempt to define and measure 
the characteristics of individual variables and then to examine relationships 
between pairs and among sets ofvariables that affect site location. The characteris
tics of the individual variables and the measures ofassociation are then generalized 
to a population. A large battery ofunivariate, bivariate, and multivariate statistics 
can be employed in the process of generating predictive models of site location. 
Univariate statistics are generally used to elucidate the various characteristics of 
probability distributions associated with particular archaeological and environmen
tal variables. Such descriptive statistics as the mean, median, variance or standard 
deviation, skewness, and kurtosis, coupled with such graphic displays as histograms 
and cumulative probability function curves, permit us to determine whether the 
variates are distributed in a somewhat normal fashion. As described above, this 
assessment ofthe distribution is critical because normality is a fundamental assump
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tion ofmost parametric statistical tests. Ifthe variates are nonnormally distributed, 
statistics and graphic procedures can aid us in determining an appropriate normaliz
ing transformation. Alternatively, one of the other distributions described above 
may provide a good fit to the observed data. 

Exploratory data analysis (Tukey 1977), which emphasizes the use of visual 
displays, can help to describe the univariate, bivariate, or multivariate distributions 
ofvariables. As Hartwig and Dearing (1979) note, the basic philosophy underlying 
exploratory data analysis is one ofsearching a data set using a number ofalternative 
techniques in order to maximize what can be learned. They feel that a potential 
problem may arise when data analysis is equated with statistics, that is, when. 
numerical summaries of the data are used to the exclusion of other methods of 
analysis. 

In contrast to a traditional statistical approach, exploratory data analysis does 
not impose a hypothesis ofsome pattern on the data; it lets the pattern emerge from 
the data. It also emphasizes the reexpression of variables that are not normally 
distributed or might be expressed better on a different scale. Data can be reex
pressed by any transformation as long as the discovered patterns can be related back 
to the original data. 

At the most elementary level, traditional descriptive statistics aid in the 
detection ofoutliers, values that by their very label indicate something outside the 
range of the main body ofvariates, something that is anomalous. Sometimes these 
values may lie three, four, or even more standard deviations from the mean. The 
detection ofoutliers and decisions on how to deal with them at the beginning stages 
of quantitative analysis are essential because of the pathological effect that these 
values can have on the final results. Although rules have been proposed for rejecting 
outliers, automatic rejection is not always advisable. It is possible that the outlier 
provides information that other variates cannot because it arises from an unusual 
combination ofcircumstances. From a managerial perspective, the identification of 
outliers is important because they represent something that does not follow the 
norm and that requires further investigation. 

One of the most fundamental concepts of the exploratory approach is a 

breakdown ofthe data into smooth and rough components. The underlying structure 

of a set of observations is smooth when a straight line depicts the relationship 

between two variables or a curve depicts the distribution of a single variable. 

Smoothness represents regularity in the data. When the smooth data are extracted 

from a data set, what remains are the deviations or residuals, the differences 

between the smooth and the actual data, which are called the rough data. The most 

desirable situation is a rough data set that contains no additional patterns or 

structure. 


Exploratory data analysis, like some traditional univariate statistical analyses, 

places a premium on analysis of single variables in an attempt to understand the 

central tendency, variability, and shape of the distribution for each variable. 

Techniques employed include the stem-and-leaf display, box-and-whisker plot, 
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and resistant number summaries. A stem-and-Ieaf display is a cross between a 
rank-ordered list and a histogram. To create a stem-and-Ieaf display each observed 
value is separated into its first digit and remaining digits. Each number that occurs 
one or more times as a first digit in the data set is listed vertically in ascending order, 
and a vertical line known as the stem is drawn to the right of this column of 
numbers. The remaining digits are listed horizontally in ascending order from left 
to right in the same row as the first digit to which they belong, creating leaves. This 
results in a histogram that retains and ranks all of the observed values while losing 
none of the data. When the observed values have many digits, rounding the 
numbers to a few digits may simplifY the display. Furthermore, these displays can 
be stretched or condensed by subdividing each row into two or more divisions or by 
combining two or more adjacent rows. 

This description of the stem-and-Ieaf diagram is included as an example ofhow 
exploratory data analysis attempts to extract information from a data set. On a 
univariate level, exploratory data analysis identifies and describes major character
istics ofdistributions using measures oflocation and spread that have the property 
ofresistance. The term rerirtance means that these measures are not highly sensitive 
to departures from the normal distribution and thus they are suitable indicators of 
location and spread for a wide variety of distributions (Hartwig and Dearing 
1979: 19). The exploratory data analysis approach also uses several summary statis
tics, rather than just one or two, to summarize information about a distribution. A 
box-and-whisker plot can be used in addition to numeric summary measures to 
portray the major characteristics ofa distribution. These plots provide detail when 
it is often needed the most-when the tails ofa distribution contain extremely large 
or small values. Tukey (1977) provides a detailed discussion of these measures and 
plotting procedures (see also Clark 1982 for a cogent discussion of archaeological 
applications ). 

Traditional bivariate statistics include many procedures appropriate to the 
four different levels of measurement. Because they indicate how one variable is 
related to another, matrices of bivariate statistics frequently provide a starting 
point for multivariate procedures that, in turn, evaluate relationships between and 
among a large number of variables. At the nominal and ordinal levels of measure
ment we employ non para metric tests like chi-square, gamma, lambda, Kendall's 
taua and taub, rank-order correlation, sign tests, and the like. Parametric bivariate 
tests include analysis of variance, differences of means, and Pearson's r and are 
chosen according to the level of measurement. Outliers can also be detected with 
bivariate statistics and graphic techniques, but if we are using parametric bivariate 
techniques on non normally distributed variables, problems with the reliability of 
results and predictions will begin to appear. 

When examining bivariate relationships, the researcher may be faced with the 
problem that both variables being considered are strongly affected by a third. One 
way of examining this problem is by cross-tabulation, which is a joint frequency 
distribution of cases according to two or more classificatory variables. The joint 
frequency distributions can be analyzed with a variety of statistics to determine 
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whether or not the variables are independent. The statistics describe the degree to 
which the values of one variable predict or vary with those of another. The 
relationship between two variables can also be calculated while controlling for the 
effects of a third. Examining a bivariate relationship while controlling for a third 
variable can frequently be a problem with archaeological data bases that contain a 
limited number of cases, however, because each addition of a category to each 
variable in the relationship exerts a drain on the average cell frequencies in a 
cross-tabulation. A very large sample is needed to generate relatively simple 
controls. 

Partial correlation is another technique that provides a researcher with a 
measure of association describing the relationship between two variables while 
adjusting for the effects of one or more additional variables. Conceptually it is 
analogous to cross-tabulation with control variables, but in this situation the 
control is statistical rather than literal. Partial correlation is based on the simplifying 
assumption that the relationships among variables are linear and that the effect of 
the control variable is linear throughout its range. Once the relationships among the 
independent, dependent, and control variables are determined, it is possible to 
predict the values ofthe dependent variable using the independent variable, while 
controlling for the influence of the other variable(s). The advantage of including 
partial correlation as one of the steps in building predictive models is that this 
procedure can help to detect spurious relationships-that is, those relationships 
between two variables A andB that are solely the result of variable A varying with 
some other variable C, which may actually be the true predictor ofvariable B. When 
variable C is controlled for, variable B may no longer vary with A, and the spurious 
relationship will have been detected. 

Exploratory data analysis also provides techniques for looking at the relation
ships between pairs of variables. Important factors that are considered with this 
approach include the shape, strength, and direction of the relationship. Scatter
plots, traces, and smoothers, such as the Tukey line (similar to a regression line), are 
used to examine pairs of variables for nonlinearity not removed by reexpression 
during the univariate stage ofanalysis. Ifnonlinearity is apparent and not due to just 
a few deviant values, some linearizing transformation on the independent and/or 
dependent variable is required. As in the univariate approach, the analysis does not 
stop with an examination of the smooth data set. The importance ofsubjecting the 
rough data to the same careful examination given to the observed values is 
emphasized. Hartwig and Dearing (1979) provide convenient summaries ofexplora
tory data analysis approaches to examining bivariate relationships. 

The use of techniques such as those outlined ;bove before constructing 

complex multivariate predictive models is necessary for several reasons. First, these 

techniques assist us in determining which variables meet the distributional assump

tions of the parametric statistical techniques that we prefer to use. If the variables 

do not meet the criteria for parametric statistics, nonparametric alternatives may be 

appropriate. Second, these techniques define the relationships between pairs of 

variables, and third, they make it possible for us to determine, and untangle, the 
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complex relationships that can exist among several variables. Ultimately, all ofthese 
techniques help us to identify a set ofindependent variables that are related to site 
location; just as important, they show us how the set of predictor variables are 
related to one another. 

Establishing a relationship between one or more interval- or ratio-level inde
pendent variables and one or more interval- or ratio-level dependent variables can 
range from being a relatively simple procedure to being a complex one. At the 
simplest level, bivariate regression can be employed, and when more than one 
independent variable is involved, a multiple regression scheme of one form or 
another can be used. Ifthe independent variables are intercorrelated, a modification 
to the normal approach may be required. A principal components analysis can be 
used to create a new set of orthogonal (uncorrelated) variables that are linear 
combinations of the original ones (Harris 1975:163-167). Or, in multiple regression 
situations, ridge regression or latent root regression may represent a viable alterna
tive (Gunst and Mason 1984). When there is a set ofdependent variables in addition 
to the set of independent variables, canonical regression with the original variables 
or with the principal components ofeach data set is required (Harris 1975: 132-146). 
Some of these techniques and their underlying assumptions are described more 
fully later in this chapter. 

DEFINING SITE CLASSES 

Earlier we defined the process ofconstructing quantitative predictive models 
as consisting ofgroup discrimination and classification. The former involves taking 
two or more predefined groups and producing a mathematical function that de
scribes the use ofa set ofindependent variables to separate these groups. Classifica
tion, on the other hand, involves capitalizing on any group differences that might be 
present in order to develop an algorithm for classifying other elements of the 
population into the most appropriate group. To be successful at discrimination and 
classification requires choosing and understanding the distributions ofappropriate 
variables, as we have discussed, and ensuring that the groups we are using are 
relatively homogeneous. Several problems can affect our ability to form homogene
ous groups; of these, we will discuss temporal and functional variability, the 
definition of site classes using cultural resource management data, and the use of 
nonsite locations as a group in predictive models. 

Temporal and Functional Variability 

In areas where the temporal dimension is long enough to incorporate adapta
tional changes, we must be able to control for these temporal and functional factors 
before we can make realistic predictions. For modeling purposes, we assume that 
contemporaneous sites are distributed over the landscape according to various 
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social, economic, and environmental factors, and that these factors determine the 
locations and types ofsites found. Thus, different site types may be associated with 
different configurations of environmental and social variables, and these relation
ships may change through time. 

The problem of determining site function is compounded when a region has 
been occupied for an extended period of time, possibly by more than one cultural 
tradition involving more than one economic pattern. In these instances the associa
tions between site types and environmental features may change through time. 
During one period basecamps may be found near floodplains while during another 
they may be found on ridge crests. In addition to controlling for functionally 
distinct site types we must also control for temporal variability in sites and possibly 
in the environment. 

The importance ofdelineating temporal and functional aspects ofsites and the 
environment has long been recognized by the archaeological community. In early 
settlement-pattern studies this was accomplished by taking large surface collec
tions from each site and relating them to the results of intensive excavations of 
samples ofeach site type (see MacNeish 1964 and Sanders et al. 1979 for examples of 
this approach). In cultural resource management, however, archaeologists are not 
usually in a position to examine settlement data in this way. Surface collections tend 
to be small, and test excavations are usually not directed at linking surface materials 
to subsurface remains. This situation thus calls for a different approach. 

Defining Site Types with Cultural Resource Management Data 

Archaeologists developing predictive models with cultural resource manage
ment data have not always successfully dealt with questions of temporal and 
functional variability. Often little attention is devoted to this problem, and model
ers lump all sites together in an analysis (Grady 1980; Larralde and Chandler 1981). 
There are two major reasons for the failure to develop usable site classes in 
predictive modeling. The first is that many predictive models are generated from 
small samples. Scholtz (1981) developed the Sparta Mine predictive models of 
prehistoric and historical site locations on the basis 007 and 31 sites, respectively. If 
we develop models on the basis of small samples that represent our only cultural 
resource knowledge of the area, then we may not know enough about the area to 
evaluate the accuracy and precision ofthe model. Even if the data are derived from 
probabilistic sampling techniques, it is important to remember that unless the 
sampling fraction is large enough, say above 20 percent, we have not sampled a 
significant proportion ofthe population (Cowgill 1975). Ifwe have reason to believe 
that the survey area is similar to surrounding areas, then site location data from 
those regions can be used to augment the data base when developing a predictive 
model. As discussed in Chapter 7, the poor use ofexisting data has hampered the 
use of predictive modeling in archaeology. 
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The second reason that site classes are sometimes poorly deVeloped in predic
tive models is a reflection ofa general trend in cultural resource management. The 
determination of temporal and functional attributes from surface collections of 
artifacts usually requires fairly large samples. Even when artifacts are numerous it 
still may be difficult to define site classes, and in the case ofminimal artifact scatters, 
this problem is exacerbated because even if every artifact Were collected and 
analyzed the sample might not be sufficient to yield a temporal or functional 
designation for the site. Given the growing trend among some federal agencies to 
limit the number ofartifacts collected in the field, archaeologists often are forced to 
do in-field analyses. It is not surprising that many surveys result in a disproportion
ate number of undated sites. 

In the absence of artifact data that could be used to assess site function, 
archaeologists have often used the number of artifact types as a measure of 
occupational intensity, which in turn is used as a proxy for function. One problem in 
using this approach is that collection and vandalism can seriously skew surface 
assemblages of sites. Often, therefore, sites with less assemblage diversity than 
expected have simply been heavily collected. Another problem with this approach, 
even ifa site has not been heavily collected, is related to sample size. If 100 artifacts 
representing 27 types are recovered at one site, while at another there are 70 
artifacts with 20 types represented, can it be said that the first site has a more 
diverse collection simply because there are more types? And can this be taken one 
step further to say that the first site represents greater occupational intensity than 
the second? In many cases we need to know whether the collection from the first 
site contains more types than we would expect given its sample size. Several 
procedures have been used in an attempt to answer this question. 

The first procedure is applicable when the number of artifact classes repre
sented can be determined from in-field analysis. Kintigh (1984) devised a method for 
measuring assemblage diversity by simulating the composition ofa large number of 
theoretical samples drawn from a range of total artifact classes for a given sample 
size. To compare the diversity of two sites one looks not at the assemblages 
themselves but at the expected diversity for each site sample given its size. With 
this procedure one can group sites objectively into classes that may have theoretical 
significance using some form ofclustering technique (Everitt 1974). Sites with less 
diversity than is expected may be limited activity loci, while sites with expected or 
greater than expected diversity may represent occupational loci. 

A second approach to site classification based on cultural resource manage
ment data is to use an empirical Bayesian technique (Carter and Rolph 1974; 
Chernoff 1982; Efron and Morris 1973, 1975, 1977). In this case one uses a pooled 
estimate of the population's proportion to obtain more reliable estimates for 
individual sites. This technique has the advantage of retaining information from 
sites with large collections that provide the most reliable estimates. In cultural 
resource management situations, artifacts from all sites in a subregion could be used 
to develop a pooled estimator (weight) that could then be used to recalculate the 
proportions of various artifact classes in each site in a larger region. These refined 
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estimates could then be put into a clustering algorithm that could be used to obtain 
objective site classes. 

Heterogeneity of Sites and Nonsites 

In many predictive modeling situations archaeologists have adopted the con
cept of a binary response variable; often locations are classified as either sites or 
nonsites. This approach may make it difficult to ope rationalize some discrimination 
and classification procedures. It may be possible to derive a numerical function that 
defines how these two groups are separated, but cases in the site group may be 
widely dispersed around the group centroid (intuitively the "center" ofa group of 
points) because of temporal and functional variability. This degree of dispersion 
may lead to a high percentage ofmisclassifications. Additionally, from a managerial 
perspective, information on different types ofsites and their distributions through 
time may be not only important but required-cultural resource managers would 
undoubtedly have different strategies for managing small lithic scatters and large 
Pueblo III sites. 

Additional problems can result from the use ofa binary response variable when 
one of the groups represents non site locations. In such cases, nonsite locations 
generally are used as a control group, permitting the researcher to identify patterns 
in the environmental contexts of sites that form the other group. It is not clear 
whether the importance placed on nonsites is justified (see Chapters 7 and 8 for an 
alternative view), and this grouping of all nonsites may cause statistical problems 
when the nonsite category is heterogeneous. The members of this group may not 
necessarily have relationships among themselves, yet most classification techniques 
assume that there is less variability within than between groups. The problem is 
that we may be trying to distinguish one group (sites) from another group (non
sites) that consists of a random assortment of elements of the population. Essen
tially, the site group may be a subset of the non site group, and cases that actually 
belong in the site group may be placed in the nonsite group because the latter 
represents the variation of the entire data set. Only those cases located near the 
center of the site group may actually be classified as sites. Because the nonsite group 
may be heterogeneous, a large number of cases may be required in order to 
represent the dimensions ofenvironmental variability accurately. Ifthe sample size 
of the nonsite group is small, the chance that the environment will be badly 
represented is increased, as is the possibility that the centroid of the nonsite group 
may vary from one analysis to another. Our predictions as to whether a location will 
be a site or a nonsite may therefore change from one analysis to another. 

The results ofa recent predictive model for the Fort Carson Military Reserva

tion provide a useful example ofthese problems (Altschul and Rose 1986). During a 

30 percent simple random sample survey of the base, 98 prehistoric sites were 

recorded (Alexander et al. 1982). In the course ofconstructing a predictive model we 

decided to test the notion that sites and nonsites would form relatively homogene

ous and distinct groups based on their "environmental" composition. Each 250 by 
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250 m quadrat that contained a site was scored on eight environmental variables, as 
were an equal number of randomly selected nonsite quadrats. A Pearson product
moment correlation coefficient, a bivariate technique for normally distributed data, 
was computed between each case and every other case. The resulting matrix was 
analyzed through an agglomerative hierarchical clustering algorithm (see below). 

Our expectation was that groups of sites, ideally recognizable as site classes, 
would form and would be statistically differentiated from either one group of 
nonsites or several groups of nonsites, each representing a separate environmental 
zone. The results were enlightening. As expected, several groups were easily 
distinguished. What was not expected, however, was that each group was com
posed ofnearly. equal numbers ofsites and nonsites. The results suggested that, as a 
group, sites were not distinguishable from nonsites. The analysis forced us to 
reexamine our approach, and we concluded that one confounding factor was that 
Fort Carson itself probably was not a useful analytical unit. The base was then 
subdivided into three major drainage basins and the analysis was repeated, with 
much better results. 

We do not mean to imply that all predictive models using a site/nonsite binary 
response variable are inaccurate or lead to invalid predictive models. Indeed, this 
approach may be dictated by sample size considerations because the statistical 
characterization ofmultiple groups requires that each is adequately represented by 
a sufficient number of entities. We simply suggest that this aspect of predictive 
modeling needs more critical evaluation and that when sample size is sufficient 
there is a need for a response variable with multiple categories. 

Defining Site Classes and Reducing Heterogeneity 

Multivariate parametric techniques, such as cluster analysis and principal 
components or factor analysis, provide the means to define classes of phenomena 
(groups) and reduce the amount ofvariability present in a data set. The technique 
ofcluster analysis is mentioned briefly first because some clustering techniques can 
be used with variables measured with scales ranging from nominal to ratio. Principal 
components and factor analyses, on the other hand, require sets of independent 
variables measured on interval or ratio scales. Cluster analysis will place sites into 
relatively homogeneous groups; principal components and factor analyses are 
valuable techniques for handling the problem of multicollinearity within a set of 
independent predictor variables. 

Cluster Analysis 

Cluster analysis refers to a set of techniques that can be used to subdivide a 
data set into constituent groups. Some methods group caw on the basis ofobserva
tions made on a set of variables (Q-mode) while others group '!'aNableJ (R-mode). 
Our interest in this context is in Q-mode analysis. Ideal data for cluster analysis 
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would yield clusters so obvious that in situations with relatively small numbers of 
sites the groups could be visually determined. In practice, however, the situation is 
not so simple, and as a result there has been a proliferation ofclustering techniques. 

Most clustering techniques begin with the calculation ofa matrix ofsimilarities 
or distances between entities. Similarity coefficients have been widely discussed in 
the literature (Sokal and Sneath 1963), where they are sometimes called measures of 
association. A similarity coefficient measures the association between two cases 
(such as sites) given the values on a set ofvariables common to both. Values of the 
coefficients normally range from 0 to I, with 0 implying no similarity and 1 
designating perfect agreement, but values ofdifferent similarity coefficients applied 
to the same data may vary widely in comparison with one another. One ofthe most 
common situations in which these coefficients are used is with variables of the 
binary response, presence/absence type. 

A very large number of similarity coefficients have been proposed, primarily 
because of uncertainties about how negative matches should be incorporated and 
whether matched pairs of variables should be eq ually weighted or carry twice the 
weight of unmatched pairs or, alternatively, whether unmatched pairs should carry 
twice the weight ofmatched pairs. That is, ifwe have two binary response variables 
coded + and -, a two-way association table has the following four possible cells: + on 
one variable and + on the other, + on one and - on the other, - on one and + on the 
other, and finally, - on both variables. This last combination of two negative 
matches lies at the heart of the problem. Some coefficients exclude negative 
matches while others give higher weightings to matched pairs. Different similarity 
coefficients may have very different values on the same set ofdata for these reasons. 

Some coefficients have been devised specifically for use with data measured on 
interval and ratio scales (e.g., the correlation coefficient), and Gower (1971) has 
defined a general similarity coefficient that can be used for data measured on any 
scale. Gower's similarity coefficient can also be used when the data set contains 
variables measured on different scales. 

Distance measures can also be used as the object ofcluster analysis. A distance 
measure is a numerical function d(x,y) ofpairs ofpoints ofa set. This function is said 
to be metric for the set if it satisfies the following three conditions: 

1. d(x,y) > 0; d(x,y) =0 if x =y 
2. d(x,y) = d(y,x) 
3. d(x,z) + d(y,z) > d(x,y) 

The last condition is the one that separates distance measures from similarity 
coefficients; it is referred to as the metric inequality or' the triangular inequality. 
Most distance functions can be transformed into similarity measures, but the 
reverse process is much more difficult because the triangle inequality must be 
satisfied. One of the most widely used distance measures is the Euclidean distance 
(Everitt 1974:56), but it may be unsatisfactory when used on raw d;ita since it is 
strongly affected by the scale of a variable. Other common distance measures 
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include the absolute or city-block metric (Carmichael and Sneath 19(9) and that of 
Mahalanobis (1936). 

Many clustering algorithms are available, but only agglomerative hierarchical 
clustering and partitioning techniques are discussed here. The basic procedure for 
most agglomerative hierarchical clustering techniques involves calculating a sim
ilarity or distance matrix between entities. The end product is a dendrogram 
showing the successive fusion of cases, culminating with all the cases in a group. 
The differences among the various hierarchical clustering methods lie in the 
procedures used at each particular step to fuse cases or groups ofcases that are the 
most similar or the closest to each other. Different methods use different means of 
defining the distance or similarity between a case and a group or between two 
groups. 

Partitioning techniques differ from hierarchical techniques in that they permit 
relocation ofentities, thus allowing poor initial partitions to be corrected at a later 
stage. Most partitioning methods are formulated to partition a set ofcases in a way 
tha t optimizes some predefined criterion, such as the trace (sum of the elements of 
the main diagonal) of the pooled within-group sums-of-squares-cross-products 
(SSCP) matrix (see discussion ofdiscriminant function analysis below). Most of the 
methods assume that the investigator knows in advance how many groups there 
are, although some do permit the number to be-changed during an analysis. For 
example, if we had 100 sites and we had reason to suspect that there were five 
temporally or functionally distinct site types, we could specify that the sites were to 
be partitioned into five groups. Other methods require an initial specification ofthe 
cluster configuration, or what the membership ofthe clusters will be like, based on 
prior knowledge. 

Many different methods have been proposed for initiating clusters, which is 
normally the first step in a partitioning type ofcluster analysis. Each case is then put 
in the cluster whose centroid is closest to the location ofthat case. For example, the 
i-means clustering program in the BMDP package (Dixon 1981) uses the Euclidean 
distance to measure the distance between each case and the center ofeach cluster. 
Relocation of cases to another group takes place in an attempt to optimize some 
clustering criterion-e.g., to minimize the variability within a group or to maximize 
the variance between groups. Regardless of the particular clustering technique 
used, the objective ofapplying these techniques in predictive modeling is to define 
clusters of sites that might have temporal and/or functional designations. 

Principal Components and Factor Analyses 

In many predictive modeling situations, measurements are made on a set of 
independent interval- and ratio-scale variables for each case, such as a quadrat. 
Usually these variables measure some aspect ofenvironmental variability. Ideally, 
each variable represents just one dimension of variability, and this is one of the 
assumptions of such statistical procedures as multiple regression, logistic regres
sion, and discriminant function analysis. Unfortunately, variables are not always 
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uncorrelated with one another, meaning that one variable's values may be partially 
a function of another variable. PrincipaL components analysis is a data-transformation 
technique that can be employed to create a new set of variables that are linear 
combinations of the original variables (Daultrey 1976; Harris 1975; Morrison 1976). 
The original data are transformed so that the same amount of variability is described 
using the same number of variables but in such a way that 

1. the first axis (linear combination of the original variables) accounts for as 

much of the total variance as possible; 


2. the second axis accounts for as much of the remaining variance as possible 

while being un correlated with the first; and 


3. the third axis accounts for as much of the remaining variance as possible 

while being uncorrelated with the first two, and so on. 


When significant correlations are present among a set of variables, normally a 
few large axes account for a substantial percentage of the total variance while a 
larger number of variables account for smaller amounts of variance. The small axes 
accounting for only small amounts of variance are normally discarded from further 
analysis. Thus, the investigator has transformed an initial data set of p correlated 
variables into a data set of Tn uncorrelated variables that explain most of the 
variance, with m normally being much smaller than p. 

The creation of this new set of variables, or principal components, has several 
advantages. The first is that the variables are not correlated with one another-that 
is, each one measures a separate dimension ofvariability. This is one way of meeting 
the predictive modeling assumption that no significant linear relationships exist 
among the independent variables. The second advantage ofprincipal components is 
that a large amount ofvariance in the original data set is explained by a smaller set of 
variables, introducing a parsimony that is normally desirable in any scientific 
analysis. By examining the relationships between the original variables and the 
principal components it is frequently possible to interpret the meaning of the 
principal components in terms of the original variables. The focus of interest when 
principal components analysis is used as a data transformation technique, however, 
is on the scores exhibited by the individual cases on the principal components. Each 
case, such as a site, will have a score on each of the principal components defining 
some aspect ofvariability among the original variables. These scores can be used in 
subsequent statistical analyses in lieu of the values for the original variables. 

As many principal components are needed as there are variables in order to 
reproduce the intercorrelations among all of the original variables. If the principal 
components accounting for relatively small amounts of variance are eliminated, a 
more parsimonious description of the original data has been obtained, but it has 
been obtained at the expense of possibly losing the ability to reproduce the 
intercorrelations among the original variables. It should also be noted that principal 
components analysis makes use ofall the information about every variable, though 
it may be that some of the variation in a case's scores on a given variable is unique 
and attributable to things that have nothing to do with other variables in the set. 
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When this unique variance is eliminated from the analysis we might be able to 
provide a better explanation of the relationships among the variables. 

In principal components analysis the new linear combinations ofvariables that 
are produced are un correlated with one another, and each successive principal 
component accounts for less variance than its predecessors. If the investigator 
suspects that the true factors determining the structure of the data are all of about 
equal importance, then the technique of factor analysis may be more appropriate 
than principal components analysis. It must be mentioned, however, that many 
authors regard principal components analysis as a form of factor analysis and 
frequently use it as a first step in such a study. 

The term factor analysis refers to a family of techniques that correct for one or 
more of the shortcomings of principal components analysis. Common to all factor 
models is the explicit separation of unique variance from variance held in common 
among variables and the assumption that the observed correlations among variables 
are generated by a smaller set of "latent" variables. Depending on one's precon
ceptions about the nature of the underlying variables, each variable's communality 
(percent variance held in common with other variables) may have to be specified in 
advance. By employing factor analysis instead of principal components analysis, a 
researcher gains the ability to reproduce the original pattern of intercorrelations 
among variables from a relatively small number of factors. What is lost is the 
straightforward relationship ofa case's scores on the original variables and its scores 
on the various factors. 

Another loss in almost all forms of factor analysis is the uniqueness of the 
solution. A given factor structure simply represents a description of the original 
intercorrelations. Unless additional constraints are imposed, the correlation pattern 
can be described by any other frame of reference employing the same number of 
factors (Harris 1975:26). Most factor analysis methods employ some type ofarbitrary 
constraint to obtain a preliminary factor structure and then rotate the frame of 
reference until a factor solution is found that comes close to some prespecified set of 
criteria. In many predictive modeling situations in which we simply desire a 
straightforward transformation of the data into a new set ofuncorrelated variables, 
principal components analysis adequately accomplishes this task. More sophisti
cated types offactor analysis are usually appropriate when a researcher is interested 
in obtaining a better explanation of the relationships among a set of variables. 
Whatever the case, factor analysis is a complex form of multivariate statistics that 
should be used cautiously and with understanding. 

MODELING TECHNIQUES 

Predictive modeling takes place in steps, and we have presented a number of 
steps that should precede the use ofcomplex multivariate modeling techniques. We 
have emphasized that the researcher should choose variables that are theoretically 
relevant and that represent different dimensions of the model. Most modeling 
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techniques make certain assumptions about how the variables are measured and 
how they are distributed. Thus, the steps using univariate, bivariate, and multivar
iate techniques to understand variable distributions and relationships are impor
tant, especially ifsome variables need to be reexpressed to meet the assumptions of 
the multivariate techniques. In addition, groups must be carefully defined so that 
subsequent multivariate manipulations produce realistic classifications. Three 
parametric multivariate modeling techniques-general linear regression, logistic 
regression, and discriminant function analysis, are described below. 

General Linear Regression 

Regression models are frequently used in predictive modeling situations when 
there is a dependence relationship between the dependent variable and one or more 
independent variables. Ifit is assumed that a relationship exists between a depend
ent variable r andk explanatory variablesXI,X2,X3, ... Xk, the relationship can be 
expressed as 

f j = b0 + b IXi I + ... + bkXik + e; 

for i = I, 2, 3, ..., N, where e is an error term. A set of N observations is 
simultaneously obtained for the X's and r's; the remaining problem then is to 
estimate the b's. This equation asserts that a given value(s) ofX can be multiplied 
by the estimated regression coefficient and added to an error term e to derive the 
corresponding r value. The error term represents the discrepancy between the 
actual value of r and that obtained fromXb. The better the model fit the smaller the 
c. The error term is incorporated in the model for three basic reasons. First, some 
factors may not be amenable to quantification or others may not be included 
because they have only a slight effect Qohnston 1972: 10). Second, a basic and 
unpredictable element of randomness is present in the r variable that can only be 
adequately handled by a random variable term. Third, there may be errors in the 
observation or measurement procedure. 

Assumptions 

The paramount assumption is that oflinearity, which states that the regres

sion equation should be linear in the unknown parameters. From a simple perspec

tive this assumption can be checked by plotting one variable against another or by 

specifically testing for linearity. Direct examination of the residuals resulting from 

fitting a predictive model to a set of data can help to detect violations of this 

assumption. For example, the pattern of residuals may indicate that new terms 

should be added to an equation or that reexpression ofthe currently included terms 

would be helpful. If the relationship between a pair of variables is found to be 

nonlinear, it may be possible to make this relationship intrinsically linear through 

transformation. 
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Two other assumptions concern the independent variables. The first assump
tion is that the values of the explanatory or independent variables can be measured 
without error, which means that the act ofsampling is the sole source ofvariation in 
the independent variables. The second assumption is that the values of the 
independent variables are fixed or nonstochastic. This is not the case for most 
independent variables used in predictive modeling, which are usually random. If 
the original assumption is replaced by the less restrictive assumption that the values 
are stochastic, most of the results ofapplying this technique (i.e., significance tests, 
confidence intervals, and so forth) will be valid, provided that the independent 
variables have a distribution function that does not involve the variance and that 
their distributions are independent of the error terms Oohnston 1972:267). 

The assumptions incorporated into general linear regression also include the 
zero mean assumption, the constant variance assumption, and the independent 
error terms assumption. The zero mean assumption can be expressed as E(ei) '" 0, 
which means that the expected value Ofei, the mean of the probability distribution 
ofpossible values ofej, is zero. The constant variance or homoscedastic assumption is 
expressed E(e;2) = Var(ei) =S2. When this assumption is not met, there is a constant 
form oferror as a function ofthe independent variables. For example, the error may 
increase'; as the values ofa variable in the equation increase. The independent error 
terms assumption, expressed E(eij) = 0 for i ¥- j, simply means that autocorrelation is 
not a problem. This assumption need not be met simply to obtain estimates of b, 
but it is an important assumption when tests depending on assumed normality 
(e.g., t- orF -tests) are to be run or when confidence intervals are to be run based on 
the tor F distributions. An additional assumption about fi is that the values of this 
variable will be normally distributed. 

Finally, general linear regression techniques assume that the number of cases 
exceeds the number ofvariables and that multicollinearity (significant correlations 
among the predictor variables) is not a problem. Violation of either of these 
assumptions leads to a reduced rank dispersion or correlation matrix for the data 
(Cooley and Lohnes 1971:58-59; Tatsuoka 1971:130-135). 

General linear regression, with all ofits variations, is a very powerful statistical 
tool. Its strength in any given application for predictive modeling, however, 
depends on the assumptions that are fulfilled for that particular application. Some of 
the assumptions are more crucial than others, but it is desirable to know what 
consequences to expect when particular assumptions are not fulfilled, how to 
determine whether an assumption is satisfied, and what alternative methods to 
employ when the classical technique is inappropriate. 

Violations ofSome Assumptions 

One of the most important assumptions of this technique is that no linear 
dependence exists among the explanatory variables. The least-squares estimator b 
requires the inversion ofX'X, which is impossible if the rank ofX, and hence the 
rank ofX 'X, is less than the number ofvariables. X is the data matrix, where each 
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row represents the observations on all of the variables for one case and each column 
represents the observations ofone variable for all of the cases. Thus any element of 
the X matrix represents the value of one variable for one case. The (prime)J 

indicates the transpose of the array that precedes it, i.e., the elements of the rows 
and columns are interchanged. Any beginning text on matrix algebra can be 
consulted for a more extensive explanation ofthese concepts. While this is a case of 
extreme multicollinearity that exists when some of the variables are perfectly 
correlated, a less extreme but still serious case arises when some ofthe variables are 
highly but not perfectly correlated. 

Johnston (1972: 160) has outlined some ofthe adverse consequences ofcollinear
ity, noting for example that estimation precision decreases. so that it becomes 
difficult, if not impossible, to disentangle the influence of predictor variables. 
Individual estimates may be greatly in error and highly correlated with one another, 
and the variances of the coefficients will be large. A second adverse effect is that a 
variable may be incorrectly dropped from an analysis because its coefficient does not 
differ significantly from zero. It may be that the variable in question has no 
predictive power not because it is unrelated to the phenomenon being modeled but 
because it is highly correlated with another variable in the equation. Finally, under 
conditions of collinearity, estimates of coefficients become very sensitive to the 
particular data set, so that the addition of a few new observations produces large 
shifts in the coefficients. 

One way around the multicollinearity problem is to do a principal components 
analysis on the set of independent variables (see previous discussion). When 
multicollinearity is a problem, a set of principal components that is smaller than the 
original set of variables will represent most of the variance. The scores on the 
eigenvectors can then be used as predictors. This represents a parsimeny desirable 
in many scientific endeavors, whereby a reduced set ofvariables can represent the 
dominant patterns of covariation present in a data set. This solution also has a 
practical quality in addition to solving the collinearity problem-fewer degrees of 
freedom are used by the predictor variables. 

Another crucial assumption of the linear regression model is that of zero 

covariance of the residuals. For a model with normally distributed residuals, this 

assumption implies that they are independent. In an ordinary least-squares context 

there are three main consequences of autocorrelated residuals. First, unbiased 

estimates of the coefficients may be obtained, but their error terms may be large 

compared with those achieved by alternative estimation techniques. Second, the 

variances of the coefficients may be underestimated, and the normal procedures for 

calculating the t- andF-tests may no longer be valid. Third, the predictions will be 

inefficient because their sampling variances will be large. 


Regression models are probably some of the most widely used models in 

archaeological research. Most archaeologists are familiar with normal-theory 

regression models based on the general linear model and its attendant assumptions, 

including the one that requires continuous variables. Researchers may be less 

familiar with models in which the dependent response variable or one or more ofthe 
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explanatory variables are categorical, or with models in which the explanatory 
variables are a mixture of categorical and continuously distributed values. Such 
mixtures of categorical and continuous data often constitute the independent 
variables used in predictive models. It would be desirable, but also very unrealistic, 
for all independent variables used in a predictive model to be measured on an 
interval or ratio scale. More often than not, however, nominal and ordinal variables 
are theoretically as important as those measured at higher levels. Because nominal 
and ordinal variables are sometimes difficult to integrate with interval and ratio 
measurements, the former may be relegated to positions of lesser importance. 
Archaeologists commonly employ tests ofassociation between nominal and ordinal 
variables; however, they rarely go one step further and use these distributions as 
the independent variable( s) to predict probabilities ofgroup membership for a case. 
Multivariate logistic models offer a means of doing this. 

Logistic Regression 

The simplest categorized response variable is random, with only two possible 
outcomes-for example, the presence or absence of archaeological sites. Classic 
linear regression models will not work as a predictive mechanism using such 
variables. Ifwe code the two possible outcomes ofthe categorized response variable 
as I and 0, representing the presence and absence, respectively, ofa site in a sample 
unit, and then try to use such a response variable in a classic linear regression model 
with two explanatory variables XiI, Xi2, in the general linear regression equation 
given above, we will face two major problems. 

The first problem is a violation ofthe constant error variance assumption. This 
is because the error term e can have one of two possible values 

ej = I -(b 0 + b IXii + b2X'i2) 

ifT i = I, and 

ej = -(b 0 + b IXn + b2X'i2) 

ifT;=O. 

Because the values of the response variable are binomially distributed, the two 
possible values ofej occur with probabilities ofp; and I-Pi. The error variance is not 
constant but depends instead on the values of the independent explanatory varia
bles. If ordinary least-squares estimation is used, the estimators of the b's are 
unbiased, but they are not the best minimum variance estimators of all linear 
unbiased estimators. 

The second major problem concerns the predicted values that are generated if 
the normal regression model is used. Ti can only have the values I and 0, and the 
expected value of Tj, E(T j), is a simple weighted average of the two possible 
values. The weights are given by the probabilities of the possible values. This is 
shown as 
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ECT i) = [l x Pi] + [0 x (I-Pi)] = Pi 

where Pi is the probability that Ti = I. From this equation, 

ECT i) = b0 + b IXil + b2Xi2 
The problem is that the predicted values Ti are interpreted as probabilities. 

They can take values between - infinity and + infinity and hence are unbounded, 
whereas probabilities are supposed to lie between 1 and O. The predictions may 
therefore lie outside the range of probability and will be inconsistent with a 
probabilistic interpretation. From a modeling perspective, then, use of the normal 
linear regression model to analyze a categorized response variable causes problems. 
The linear logit model outlined below offers one possible solution to these prob
lems. 

The Logistic Model 

A probabilistic interpretation of the regression model can be made only ifPi 
falls between 0 and I. A simple model that can be used to provide a probabilistic 
interpretation is 

These equations, which are nonlinear, can be rewritten as 

Pi 

I - Pi 

A linear model can then be achieved by a logistic transformation Pi such that 

Pi 


1 - Pi 


If we let Li equal the terms to the left of the equals sign we have a linear logistic 
model. Predictions from the linear logistic model can be written as 

i i = b0 + b lXn + b2Xi2 
While the predicted values can fall in the range from - infinity to + infinity, the 
predicted probabilities fall in the range from 0 to l. 

A least-squares estimation to solve for the parameters of the equation is 
accomplished by first replacing the probabilities to the left of the equals sign with 
observed relative frequencies, which are derived by grouping the observations into 
k sets. The model can then be written as 
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J;. 
L=loge ~ 

I - 1) 

Even with this model the error variances are still not constant across the} sets. 
Ordinary least-squares estimations of the b's can, however, be replaced by a set of 
weighted least-squares estimations. The weights are ofthe formn}1)(I-1)), and they 
imply that as the number ofcases in a set (n}) increases, more weight is given to !..hat 
set. Given n}, as1) approaches Oor I, less weight is given to these equations sinceL} is 
very sensitive to small cJ::anges in m1) and thus takes large negative or positive 
values. If1) is eitherO or I,L} becomes infinitely large and cannot be accommodated; 
thus, it is excluded. Some researchers feel that this exclusion is a waste ofinforma
tion and advocate another form of weights so that the variables can be included. 
Solving a modified system of simultaneous equations (because of the weights), 
known as the normal equations, produces the required weighted least-squares 
estimations. Descriptions ofthe operations involved in solving the system ofnormal 
equations can be found in most textbooks on matrix algebra. 

Testing the Fit of a Model 

The fit ofa particular model can be determined using a test statistic based on 
the ~eighted differences between the observed f}, based on relative frequencies, 
and L}, the predicted value. The test statistic 

I(£. - EJ2 W·} ") ") 1 

follows a chi-square distribution with degrees of freedom equal to the number of 
sets minus the number ofparameters estimated. If the test statistic is greater than 
the value shown on the table of chi-square values, the null hypothesis of no 
significant difference between the predicted and observed values is rejected, with 
the implication that the model does not represent the observed variation. Ifthe test 
statistic yields a value that is lower than the critical chi-square value, the null 
hypothesis is accepted, with the implication that there is agreement between the 
predicted and observed logits. 

In matrix notation the normal equation can be written as 

(X'U- I X)b =X'U-1f 
This equation can be solved for the b's as 

b = (X'U-1Xr l = X'U-1f 
This also makes it easy to see how additional explanatory variables can be incorpo
rated; all that is required is an additional column in the X matrix. The test statistic 
previously described is given in matrix terms as 

Cf -Xb)'U- 1 (f -Xb) 
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Standard errors also provide a means to determine whether a parameter is 
significant. Standard errors are given by the square roots ofthe diagonal elements of 
the equation solved for the b's, above. 

The validity ofadding an additional explanatory variable c, or a set ofvariables, 
can be tested by considering the standard errors or the test statistic proposed by 
Grizzle et al. (1969), given as 

b'c'[c(X'U- 1X)CT I cb 
Under the null hypothesis, this test statistic has degrees of freedom equal to the 
number of rows of c. The null hypothesis tested by this statistic is that the 
additional parameter( s) is zero. Ifonly one additional variable is added, c will be a 
vector of the form 

C=[OIOIOII] 

The coefficient associated with c will be cb = [0,0,0, I] times a column vector with 
elements [b 0, bh b2, b3J. 

To this point only a dichotomous response variable, such as the presence or 
absence of a site, has been considered. There are many more cases in which the 
archaeologist is faced with a categorized response variable with more than two 
possible outcomes. Such a variable is termed apolychotomous variable, and it probably 
more accurately represents situations that will be encountered in practice. An 
example of a variable with a multiple response category would be one with 
categories representing Pueblo I, Pueblo II, and Pueblo III sites. The linear logistic 
model can be extended to cover these cases, but its derivation is complex. We feel 
that this derivation is beyond the scope of this volume and refer the reader to 
Wrigley (1976) for a readable discussion of some of the math involved. Ifmore than 
one explanatory variable is to be included in the extended model, all that is involved 
is the addition of an extra two columns in the matrix of observations, x. If the 
response variable has more than three outcomes an extra linear logistic equation is 
added to the pair ofequations required for the three-outcome example. The other 
matrices-X, V-I, I, and b-and vectors are also increased in size. 

Maximum Likelihood Estimates 

Wrigley (1976:27) notes that the problem with least-squares parameter estima
tion is that regrouping of the data set must be done for each model, which is quite a 
laborious procedure. The solution to this drawback is provided by maximum 
likelihood estimation. Determining the maximum of the log likelihood and the 
extension of this maximum to a multiple response category case requires a numeri
cal optimization computer program. The logistic regression program PLR in BMDP 
is based on such a maximum likelihood estimation procedure. The B; are estimated 
as the values that maximize the likelihood function using the method proposed by 
Jennich and Moore (1975). 
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Discriminant Function Analysis 

Discriminant analysis is a broad term that refers to several closely related 
activities that can be divided into the processes of (a) defining the differences 
between groups and (b) classifying the cases into the groups. Groups are defined on 
the basis ofa set ofvariables, and the variables with the most discriminating power 
are identified. For example, the groups could be different types of sites defined on 
the basis ofa number ofenvironmental and archaeological variables. The next step 
is to derive mathematical rules that can be used to classify the cases into the defined 
groups. Several different classification procedures exist, but all employ the concept 
ofcomparing a case's position with the centroids ofthe various groups to locate the 
closest centroid. 

In the following section the general aspects of discriminant function analysis 
are outlined. Examples are drawn from a recent predictive modeling study of Fort 
Carson Military Reservation, Colorado (Altschul and Rose 1986). Fort Carson 
presented an interesting problem common to many CRM projects because it was 
not created with archaeology in mind and, therefore, its boundaries do not coincide 
with natural or cultural units. The area lies within the Arkansas River drainage. 
While several small drainages cut through the reservation, none are captured 
entirely within the base. After conducting several reservation-wide analyses we 
focused our attention on two large drainages, Turkey Creek and Red Creek. A 
predictive model developed for Turkey Creek successfully discriminated site loca
tions from nonsites by classifying 82.4 percent of the sites correctly using a jackknife 
procedure (discussed below). All ofthe II sites classified as non sites are located on or 
near Booth Mountain, a seemingly inhospitable uplift between Turkey Creek and 
Booth Gulch. 

The Booth Mountain sites appear to be small, transient camps, perhaps 
indicating that this area was favored for certain resources. Such an explanation, 
while plausible, was difficult to accept given the present archaeological knowledge 
of the area. A separate predictive model was therefore developed for Booth Moun
tain in an attempt to distinguish between site and nonsite locations. The site group 
was composed of 17 locations, while the nonsite group consisted of 21 locations 
selected by a two-stage random sampling design. Because ofthe relatively small size 
of the analysis, Booth Mountain provides the opportunity to follow the discriminant 
procedure from beginning to end. 

The means and standard deviations for variables used to characterize the sites 
and nonsites are presented in Table 5.3. As a group, sites are distinguished by being 
closer to the nearest water source, having a more southerly exposure, and com
manding a wider view. The standard deviations of these variables are also smaller 
than those of their nonsite counterparts, indicating less variability about the 
average value-what would be expected ifpeople were keying in on specific aspects 
of the environment when making locational decisions. 
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TABLE 5.3. 

Means and standard deviations of variables for Booth Mountain nonsites, sites, and both groups 
combined 

Namiter (n=21) Siter Combined 

Means 

VARIABLE 
RELIEF 99.04762 112.94118 105.26316 
ASPECT 142.71429 189.47059 163.63158 
DSTWTR .17619 .11029 .14671 
DSTRNK2 4.26381 4.65382 4.43829 
ELVWAT 52.38095 61.76471 56.57895 
VIEW 127.85714 187.17647 154.39474 

Standard Deviations 

VARIABLE 
RELIEF 39.23070 33.12188 36.64162 
ASPECT 56.63934 48.45632 53.15818 
DSTWTR .14693 .07861 .12141 
DSTRNK2 1.67176 1.83153 1.74458 
ELVWAT 33.00072 47.10166 39.88804 
VIEW 115.26677 69.65292 97.66056 

A Humptions 

The model on which the most common approaches to discriminant function 
analysis are based has a number of underlying assumptions. When the data do not 
satisfy the assumptions, the statistical results will not be an accurate reflection of 
the real world. First, the number of groups, the dependent variable, must be 
greater than or equal to two. In the Booth Mountain example we are attempting to 
discriminate between two groups, sites and nonsites. Second, there must be at least 
two cases per group. Realistically, there should be a large number ofcases per group 
(>25) so that the sample statistics will accurately reflect the processes operating at 
the population level. Because the Booth Mountain model was primarily an explora
tory attempt to see if patterns in site location could be discerned at a level that 
would warrant further work, we felt justified in relaxing this rule of thumb; for 
Booth Mountain there are 17 sites and 21 nonsites. Third, there should not be more 
discriminating variables than the total number of cases minus two. In the Booth 
Mountain example there are six variables: relief, aspect, distance to water, distance 
along the river to the nearest rank 2 stream, elevation above water, and view (see 
Altschul and Rose 1986 for operational definitions of these variables). Realistically, 
again, there should be many more cases than variables, say 10 times as many. 
Finally, the discriminating variables should be measured at the interval or ratio 
level of measurement. If categorical variables were used, especially those coded 0 
and 1, multicollinearity would be a problem. All of the variables used in the Booth 
Mountain study are measured on at least an interval scale. 
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Three additional assumptions have to do with the logical and mathematical 
relationships among variables. The first ofthese is the assumption that multicollin
earity, in the form ofeither linear combinations of variables or perfectly correlated 
variables, does not occur in the data. For example, if variables A through E were 
being considered for inclusion in an analysis, the sum of variables Band D, the 
product ofvariables A and B, or the average of variables B, C, D, and E are linear 
combinations that cannot be employed along with the original variables. This 
makes intuitive sense because variables that are linear combinations do not contain 
any information beyond what is offered by the individual variables. For similar 
reasons, when two variables are perfectly correlated, both cannot be used. If 
multicollinearity is a problem, some classification functions based on the concept of 
distance may be hard to define, and probabilistic interpretations associated with 
group membership may be difficult to formulate. If the variables are not signifi
cantly intercorrelated and they possess normal distributions, probabilities ofgroup 
membership can be assigned. If significant multicollinearity exists, it may be 
necessary to drop a variable(s) from the analysis, create a hybrid variable that is 
based on several others, or use a data-reduction technique such as principal 
components analysis to express the original variables as uncorrelated linear combi
nations of one another. 

Discriminant function analysis also assume~ that the population covariance 
matrices for each group are approximately equal. The covariance between two 
variables is an un standardized measure ofhow they vary together. Thus this measure 
can take on any range ofvalues and is not, like the correlation coefficient, restricted 
to a particular range, e.g., between +1.0 and -1.0. The covariance matrix arises from 
the pair-wise arrangement of covariances into a table of rows and columns. The 
covariance matrix for the sample nonsite locations on Booth Mountain is shown in 
Table 5.4. The matrix has a row and a column for each variable, and the intersection 
of a row and a column contains the covariance for that pair of variables. Only the 
main diagonal and the lower left portion of the matrix are shown because the upper 
right portion is a mirror image of the lower left. For example, in Table 5.4 the 
covariance between aspect (row 2) and relief (column I) is 213.7143, and the 
covariance between view (row 6) and elevation above water (column 5) is 687.8571. 
The covariance ofa variable with itself is its variance; therefore, the diagonal from 
the upper-left corner to the lower-right corner contains the variances. The diagonal 
in Table 5.4 contains the variances ofthe six variables, with reliefhaving a variance 
ofI539.048, aspect a variance of3208.014, and so on for the remaining variables. Ifwe 
have two or more groups, a covariance matrix can be computed from the cases in 
each group. The covariance matrix for the Booth Mountain sample ofsite locations 
is given in Table 5.5. Two or more covariance matrices are considered equal when 
the elements at similar positions in each matrix are not significantly different. 

It is clear from an examination ofTables 5.4 and 5.5 that the group covariance 
matrices are unequal. Unequal group covariance matrices lead to canonical discrim
inant functions (discussed below) that may not yield maximum group separation 
and may result in unrealistic probabilities of group membership. Some of the error 
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TABLE 5.4. 


Covariance matrix for Booth Mountain nonsite group 


REUEF ASPECT DST1PTR DSTRNK2 ELVWAT VIEW 

RELIEF 1539.048 

ASPECT 213.7143 3208.014 

DSTWTR -1.248810 4.958357 .2158726E-01 

DSTRNK2 -4.606190 67.73639 .1034365 2.794780 

ELVWAT -157.6190 711.7143 2.094524 9.950476 1089.048 

VIEW 92.85714 -771.3929 -.5785714 -20.61768 687.8571 13286.43 

TABLE 5.5. 


Covariance matrix for Booth Mountain site group 


REUEF ASPECT DST1PTR DSTRNK2 ELVWAT VIEW 

RELIEF 1097.059 

ASPECT -535.2206 2348.015 

DSTWTR .4897059 -.8567096 .6179596E-02 

DSTRNK2 -32.25882 62.16465 .2590993E-02 3.354502 

ELVWAT 263.2353 -1030.257 3.202574 -16.55092 2218.566 

VIEW 261.3235 -612.7757 1.460570 -27.32134 1138.732 4851.529 

results from the calculation of the within-groups covariance matrix, which is 
supposed to be an estimate ofthe common equal group covariance matrices in the 
population. One way ofcoping with the problem of unequal covariance matrices is 
quadratic discrimination, which bases the probability ofgroup membership on the 
individual group covariance matrices. Quadratic procedures require larger sample 
sizes because more terms are added to the equation, and thus could be difficult to 
use in predictive modeling situations, where samples are frequently small. In the 
case of the Booth Mountain data (with group sizes of 17 and 21) quadratic discrimi
nation would be inappropriate (and therefore is not discussed further here). In this 
case a linear discriminant function like the canonical discriminant function dis
cussed below is a better approach, although we still have to accept some degree of 
error in the within-groups covariance matrix. Fortunately, this assumption has 
received considerable theoretical and applied scrutiny, most of which points to the 
fact that this assumption can be relaxed. 

A final assumption is that each group represents a population with a multivar
iate normal distribution on the discriminating variables. A multivariate normal 
distribution exists when each variable has a normal distribution when the values of 
the other variables are held constant. This assumption makes it possible to compute 
meaningful tests of significance and probabilities of group membership. This 
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normality assumption is required by most of the popular computer packages, such 
as SPSS (Nie et al. 1975) and BMDP. However, it should be noted that discriminant 
analysis can be performed using other parametric distributions (though not with 
SPSS or BMDP), and that nonparametric discriminant techniques that do not 
assume a normal distribution could possibly be employed. Nonparametric discrimi
nant analysis computer programs and discriminant analysis procedures based on 
other parametric distributions are not as widely available as their normal theory 
counterparts. 

Canonical Discriminant Functions 

A discriminant function is a linear combination of discriminating variables 
formed to satisfy certain conditions (Klecka 1980: 15). The form of the discriminant 
function in summation notation is 

Ikm = uo + U\Xtkm + u2X2km + ... + upXpkm 

wherelkm is the score on the discriminant function for casem in thek'h group,Xkm is 
the value on the discriminating variable Xi for themth case in the kth group, andui is 
the coefficient of the function derived according to certain characteristics. 

The maximum number ofunique functions that can be derived in an analysis is 
equal to either one less than the number ofgroups or to the number ofdiscriminat
ing variables, whichever is less. If there are three groups, we can derive two 
discriminant functions; if there are only two groups, as in the Booth Mountain 
example, then only one discriminant function can be derived. 

Coefficients (u's) for the first function are derived in such a way that the group 
means on the function are as different as possible-in other words, so that group 
differences are maximized. Coefficients for the second function are derived such 
that the differences among group means are maximized under the additional 
constraint that these coefficients are uncorrelated with those of the first function. 
Additional functions continue to be derived so that group differences are maximized 
and the coefficients are uncorrelated with those of the previous functions. 

Many multivariate statistics texts discuss the mathematical aspects ofdiscrim
inant function analysis; particularly useful and readable examples are Cooley and 
Lohnes (1971), Harris (1975), Morrison (1976), and Tatsuoka (1971). We will simply 
review in the most general fashion some fundamental principles underlying the 
derivation ofcanonical discriminant functions. The first requirement is to assess the 
degree ofdifferences among the data cases. This is done with the sums-of-squares
cross-products matrix (SSCP), where the value ofa particular element (tij) is given 
as 

where g is the number ofgroups, nk is the cases in group k, n. is the total number of 
cases in all groups,Xikm is the value ofvariable i for the mth case in the kth group,Xik. 

224 



OVERVIEW OF STATISTICAL METHOD AND THEORY 

is the mean for variable i for all the cases in the kth group, and Xj •• is the mean for 
variable i for all the cases in all the groups. 

The first set ofvalues in parentheses is the amount by which the value ofa case 
deviates from the grand mean ofvariable i. The second set ofvalues in parentheses 
is the same information but for variable). Each element ofthe diagonal in the SSCP 
matrix is simply the sum of squared deviations from the grand mean, since when i 
equals) the two terms are the same. If i does not equal) the result is the sum of a 
deviation on one variable multiplied by the deviation on the other. This is a way to 
measure the covariation (correlation) between two variables, since it tells us how 
the magnitude and direction of a deviation on one variable correspond to those on 
another. The covariance matrix, the subject of much discussion in discriminant 
function analysis, is produced from the SSCP matrix by dividing each element by 
(n.-I). The covariance matrix for the Booth Mountain analysis is shown in Table 5.6. 
This particular covariance matrix is called a total covariance matrix, since it is based 
on the cases from both the site and the nonsite groups. A covariance matrix can be 
calculated for each group ifonly the cases assigned to that group are used (see the 
individual group covariance matrices presented in Tables 5.4 and 5.5). 

TABLE 5.6. 

Total covariance matrix based on all Booth Mountain cases, both nonsites and sites 

RELIEF ASPECT DSTWTR DSTRNK2 ELVWAT VIEW 

RELIEF 1355.334 

ASPECT 49.01849 3304.509 

DSTWTR -.6957326 1.527404 . 1 544362E-0 1 

DSTRNK2 -15.06373 68.12651 .5050638E-01 2.999910 

ELVWAT 61.73542 50.59744 2.360064 -.8492532 1570.413 

VIEW 372.4609 22.28450 -.6736664 -17.08498 1005.576 10173.27 

Another simple operation on the SSCP matrix converts it to a correlation 
matrix. Because the correlation coefficient is standardized to vary between +1.0 and 
-1.0, it is easier to understand as a measure ofassociation between two variables than 
the covariance matrix. The elements of the SSCP matrix are converted to correla
tions by dividing each element by the square root of the product of the two diagonal 
elements falling in the same row and column. A similar operation can be used to 
convert the covariance matrix to a correlation matrix. 

When the groups under consideration are distinct, the variability within the 
groups will be less than that between the groups. The degree ofvariability within 
each group is measured by a matrix called the within-group sums-of-squares-cross
products matrix (W), which is very similar to the SSCP. Unlike the SSCP, the 
deviations are measured from the mean of the group to which a case belongs. 
Elements of Ware defined as 
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As with the SSCP matrix, the elements ofW can be converted to a within-group 
covariance matrix by dividing each by (n. -g). The within-groups covariance matrix 
for the Booth Mountain analysis is given in Table 5.7. The W matrix can also be 
converted to a within-groups correlation matrix. The within groups correlation 
matrix for Booth Mountain is presented in Table 5.8. Each correlation measures the 
pair-wise correlation ofvariables within the groups and will usually differ from the 
total correlation, which is affected by group differences. Ifthe data cases come from 
group populations with similar covariance structures, the within-groups correla
tions will provide a better estimate of the relationships between variables than the 
total correlations. 

TABLE 5.7. 


Booth Mountain within-group covariance matrix 


RELIEF ASPECT DSTWTR DSTRNK2 ELVWAT VIEW 

2 3 4 5 6 

RELIEF 2 1342.60815 

ASPECT -119.14566 2825.79225 

DSTWTR 4 -.47614 2.37388 .01474 

DSTRNK2 5 -16.89625 65.26006 .05862 3.04355 

ELVWAT 6 29.42733 -62.49533 2.58699 -1.82792 1591.05587 

VIEW 8 167.73109 -700.89636 .32771 -23.59708 888.24580 9537.58450 

TABLE 5.8. 


Booth Mountain within-group correlation matrix 


RELIEF ASPECT DSTWTR DSTRNK2 ELVWAT VIEW 

2 3 4 5 6 8 

RELIEF 2 1.00000 

ASPECT -.06117 1.00000 

DSTWTR 4 -.10703 .36783 1.00000 

DSTRNK2 5 -.26432 .70370 .27675 1.00000 

ELVWAT 6 .02013 -.02947 .53421 -.02627 1.00000 

VIEW 8 .04687 -.13501 .02764 -.13850 .22802 1.00000 

If the centers ofthe groups are in the same location, the elements ofthe SSCP 
matrix will equal the elements of the W matrix. If the centers of the groups are 
different, the elements of the SSCP matrix will be larger than the elements ofW. 
The difference between the SSCP and W matrices is measured by the between
groups sums-of-squares-cross-products matrix (B). The Wand B matrices contain 
all the information about the relationships within the groups and between them. 
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The following set ofsimultaneous equations is solved for the values ofbpi and v. 

~ bt;Vi = A~ WliVi 

~ b2ivi = A~ W2f"i 

~ bpiVi = A~ wpiv; 

Lambda (A) is called the eigenvalue, the V's are a set ofp coefficients, and the b's and 
w's are previously defined quantities calculated from the sample data. The equa
tions are solved subject to the constraint that the sum of the squared values of the 
v's must equal l. Cach unique nontrivial solution, with its lambda and set ofv's, 
corresponds to one canonical discriminant function. The v's cannot be interpreted 
because the solution to the equations places no restriction on the origin or mea
surement units used for the discriminant space. Also, the scores produced for each 
case have no meaning. The discriminant space yields maximum separation between 
groups, but the groups can be anywhere in the space. 

The u's of the first equation are given as follows: 

p 
-~ uixi" 
;=1 

Using the u's gives discriminant scores (fs) for the cases that are in standard form, 
but the coefficients are regarded as unstandardized because the original data are not 
standardized. The unstandardized discriminant function coefficients from the first 
(and only) discriminant function calculated for the Booth Mountain analysis are 
given in Table 5.9. To calculate a score for any case for this discriminant function the 
actual data values for aspect, distance to water, and elevation above water would be 
multiplied by their respective coefficients and summed, along with the constant 
value. The scores for all the cases will then have a mean ofo and a standard deviation 
of 1.0. The score for a case shows where it is on the axis defined by the function. 
Employing the u's instead of the v's does not change the amount of discrimination 
nor the relationship among groups. It does, however, move the origin of the 
discriminant function axes to coincide with the grand centroid, the point where all 

TABLE 5.9. 


Booth Mountain unstandardized discriminant function coefficients 


Functi'l1l1 

ASPECT .1819108E -01 

DSTWTR -9.021173 

ELVWAT .1901548E -01 

(CONSTANT) -2.729011 
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the discriminating variables have their average values over all cases. This relocation 
makes it possible to see how a group centroid or an individual case is located relative 
to the center of the system. The adjusted coefficients also produce discriminant 
scores measured in standard deviation units. Thus, if a case had a score of +2.9 we 
would know that it was distant from the center. 

While the unstandardized coefficients tell us the absolute contribution of a 
variable in figuring the discriminant score, standardized coefficients must be used if 
we wish to determine the relative importance of a variable. The above equation 
would have yielded standardized coefficients ifthe original data had been in x-score 
form. Standardized coefficients (e's) can also be computed from the unstandardized 
coefficients (u's) by 

.. 
c'=u' tt

I t ~ - g n. 

where lPjj is the sum ofsquares for the variable i, n is the total number ofcases, and g 
is the number ofgroups. The standardized discriminant function coefficients for the 
Booth Mountain example are given in Table 5.10. 

The larger the magnitude of the standardized coefficient, disregarding the 
sign, the greater a particular variable's contributiQn to the discriminant score. From 
Table 5.10 we can see that aspect and distance to water are weighted about the same 
and are more important than elevation above water in discriminating between sites 
and nonsites. Scores from standardized coefficients can be computed by multiplying 
them by the data in x-score form, but scores are usually computed from the raw data 
values and the unstandardized coefficients, while the standardized coefficients are 
used to assess the relative importance ofa variable. The limitation on this standard
ized coefficient is that if two variables are highly correlated they will share the same 
discriminating information and, hence, will share the contribution to the calculation 
of the score. For this reason the standardized coefficients for the two correlated 
variables may be smaller than they would be ifonly one of the variables was used. 
The individual variable coefficients might also be large but have opposite signs, so 
that the can tribution ofone is cancelled by the contribu tion ofthe other. Structure 
coefficients, discussed later, are not affected by relationships with other variables. 

TABLE 5.10. 


Booth Mountain standardized discriminant function coefficients 


Function 1 

ASPECT .96700 

DSTWTR -1.09522 

ELVWAT .75849 
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After the discriminant functions are computed they can be interpreted by 
considering (a) the relative positions of data cases and group centroids and (b) the 
relationships between the individual variables and discriminant functions. As pre
viously described, the discriminant scores are computed by taking the original 
value for a case on each variable and multiplying it by the coefficient for that 
variable-then the products are added along with the constant term. The constant 
adjusts for the means, so the mean discriminant score will be zero over all cases. The 
unstandardized coefficients represent the amount ofchange in a case's position on 
that function if its score on the corresponding variable changed by one unit. 
Case-by-case inspection of a large number ofcases usually is not that informative, 
though it may help in delineating outliers. Instead, it is more informative to focus on 
the group centroids, which are calculated by using the group means in the formulas. 
Sometimes it is easier to visualize the group centroids by plotting the data cases. 

When there are two groups, such as sites and nonsites, there is only one 
discriminant function for which data can be plotted. In this situation the data cases 
can be arranged along a straight line to show what part of the function is "occu
pied." A better strategy is to construct a histogram for each group, with the 
continuum divided into intervals ofstandard deviation units, such as 0.10, 0.15, 0.20, 
0.25, ..., or whatever seems reasonable. Visual inspection of the histograms allows 
us to assess the density and distribution of each group and the relative group 
locations. The histograms for the nonsite and site groups are shown in Figures 5.9 
and 5.10, respectively. The "stacked" histogram for both groups is shown in Figure 
5.11. These histograms indicate that nonsite locations are more scattered than 
locations in the site group, with respect to the canonical discriminant function. The 
center of the nonsite group is at -0.726, while the center ofthe 8i te group is at 0.897. 

The locations of the group centroids and data cases can be plotted in an x,y 
coordinate system when there are two discriminant functions. A three-dimensional 
plot could also be prepared for a three-function situation, but four or more cannot 
be represented. In the latter situation, however, the first two functions are the most 
powerful discriminators, and a plot based on these two alone could be very 
informative. Two-dimensional plots are helpful when there is little overlap among 
the groups. Ifthe groups are less distinct, and especially if there are a large number 
ofcases, the plot may be difficult to interpret. In such a situation a plot ofonly the 
centroids or separate plots for each group may be more helpful. 

The similarity between the discriminant function and a single variable can be 

assessed by computing the product-moment correlation between the two. These 

correlations are called structure coefficient). When the value of the coefficient is near 

zero, the variable and the function have little in common. When the value of the 

coefficient is very large, near +1.0 or -1.0, the function and the variable are highly 

correlated. The coefficients make it possible to "name" a discriminant function by 

noting the variables with which it is most highly correlated. The function can then 

be named after the characteristic(s) defined by the particular variable(s). For 

example, in a predictive modeling situation the first discriminant function might 

represent a configuration of variables depicting the relationship between site 

location and distance to water. 
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Figure 5.9. Histogram of discriminant function scores for Booth Mountain nonsite locations. 
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Figure 5.11. Histogram ofcanonical discriminant function scores for both nonsite and site locations, Booth Mountain. 

These structure coefficients are more accurately called total structure coefficients 
since they portray the information carried by the discriminant functions that is 
useful in discriminating between groups. Ifwe want to know how the functions are 
related to variables within the groups, however, pooled within-groups correlations 
are required. Known as witbin-groups structure coefficients, these are calculated as 

p 
~ r'ikCkj = 

k=l 

where s'ij is the within-groups structure coefficient for variable i and function j, r'ik is 
tbe pooled witbin-groups correlation between variables j and k, and ckj is the standardized 
discriminant function coefficient for variable k on function j. The pooled within
groups correlations between the Booth Mountain canonical discriminant function 
and the variables are given in Table 5.11. 

It is possible for a variable to have a low standardized coefficient in a discrimi
nant function but a relatively large total structure coefficient because the structure 
coefficients are bivariate correlations that are not affected by relationships with 
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TABLE 5.11. 

Pooled within-group correlations between the canonical discriminant function and the 
discriminating variables 

Function 1 

ASPECT .54179 

DSTRNK2 .35745 

DSTWTR -.33434 

ELVWAT .14491 

RELIEF .07335 

VIEW .01212 

other variables. It is also possible for two variables to have large standardized 
coefficients ofopposite signs but small structure coefficients; when the discriminant 
function scores are calculated these variables tend to cancel each other out. For 
these reasons structure coefficients are a better indicator of the meaning of a 
discriminant function than are the standardized coefficients. 

When the number of groups and variables is large there will be a number of 
discriminant functions, not all of which will be nontrivial or statistically significant 
(Klecka 1980:34). In an effort to determine how many discriminant functions to 
retain we can look at the solutions of the functions. When each discriminant 
function is solved, an eigenvalue CA) and a set of coefficients are produced. The 
eigenvalues will be positive or zero; the larger the lambda, the more the groups will 
be separated on that function. The eigenvalue associated with the discriminant 
function derived in the Booth Mountain example is 0.69. We can also determine the 
total discriminating power for each discriminant function by converting the eigen
values to relative percentages. Each eigenvalue is divided by the sum of all the 
eigenvalues and multiplied by 100. These relative magnitudes make it easier to see 
the discriminating power of each function. In our example, only one discriminant 
function can be derived so it represents 100 percent of the discriminating power. 

A third way to judge the utility ofa discriminant function is by examining the 
canonical correlation between the groups and the function. The canonical correla
tion coefficient describes the relationship between two separate sets of interval
level variables. It ranges from 0 to +1, with zero indicating no association between 
the groups and the discriminant function and larger numbers representing increas
ing degrees ofassociation. The canonical correlation in our Booth Mountain exam
ple is 0.64. The canonical correlation (r*) is related to the eigenvalue by 

r * 'V±i 

I + Ai 

where i denotes the i th discriminant function. 

Another means ofevaluating the utility of the discriminant functions is to test 
the statistical significance ofdiscriminating information not already accounted for 
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by the earlier functions. This can be done using wilks's lambda, a multivariate 
measure of group differences over several variables. Starting with no functions, 
Wilks's lambda is calculated as each is derived. In the Booth Mountain analysis, 
Wilks's lambda associated with the first discriminant function is 0.592. Lambda is an 
inverse measure of the discriminating power of the variables that have not been 
removed by the discriminating functions; the larger the value, the smaller the 
amount of information remaining. 

Wilks's lambda is actually more useful as an intermediate statistic than as an 
end product because the results can also be converted into a test of significance. 
This is easily accomplished by converting lambda to an approximation ofeither the 
chi-square or F distribution. Chi-square, the easier ofthe two to calculate, is based 
on the following formula: 

xl: -[no  0:9-1] logeAk 

with (P-k)(g-k-l) degrees offreedom. The chi-square value can be compared with 
standard tables to determine the significance level. Many computer programs print 
the exact significance level. The chi-square value associated with the Booth Moun
tain Wilks's lambda of0.592 is 18.058, with 3 degrees offreedom and a probability of 
0.0004. Thus, the group differences will be significant before any discriminant 
functions have been derived (that is, when k = 0). After the first function has been 
derived, a check is made to see ifany remaining discrimination is significant. Ifit is, a 
second function is derived and the test is made again. This process is continued 
until Wilks's lambda is not significant. Ofcourse, in this example only one function 
can be derived. 

The point must be made that assessments ofstatistical significance are appro

priate only when the data are derived from a sample with a probabilistic basis (see 

Chapter 6). Generally, simple random sampling is assumed since the derivation of 

tests for other sampling situations is more complex. When the cases have been 

procured by some procedure other than simple random sampling, tests should be 

interpreted conservatively. 


Classification 

Earlier the purpose of discriminant function analysis was divided into two 

parts, derivation ofthe discriminant functions and classification. By classification we 

mean the process of identifying the likely group membership of a case when the 

only information known is the case's values on the discriminating variables. Classifi

cation procedures can use either the discriminating variables or the canonical 

discriminant functions. Klecka (1980:42) notes that in the first instance a discrimi

nant analysis is not even performed. Classification functions are derived using the 

theory ofmaximum group differences and tests are not made for the significance of 

the discrimination or the dimensionality ofthe discriminant space. When canonical 
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discriminant functions are derived first and classification is based on these func
tions, a more thorough analysis can be performed. 

Fisher (1936) first suggested that classification should be based on a linear 
combination of the discriminating variables. His linear combination was based on 
maximizing differences between groups and minimizing variation within groups. 
Traditional classification functions are based on the pooled within-groups covar
iance matrix and the centroids of the discriminating variables. They have the form 

bk = bkO + bklXI + bkzX2 + ..• + bkpXp 

where bk is the score for group k and the b's are coefficients that need to be derived. 
There is always a separate equation for each group; if there are four groups, each 
case will have four scores. Fisher's linear discriminant functions for the Booth 
Mountain nonsite and site groups are given in Table 5.12. A particular case is 
classified into the group with the highest score. A straightforward application ofthis 
classification procedure results in the correct group placement (nonsites/sites) of 
86.8 percent ofthe 38 locations. Ofthe nonsites, 90.5 percent (190f21) are correctly 
classified, while 82.4 percent (14 of 17) of the sites are correctly classified. 

Another means ofclassification is to measure the distances from the individual 
case to each group centroid and to assign the case to the closest group. Mahalanobis 
(1963) proposes a generalized distance measure that circumvents the problems of 
intercorrelations among variables that do not have the same units of measurement 
or standard deviations. The generalized distance measure is given as 

D2 (X IGAJ = (n. - g) 

where D2 (XiGk) is the squared distance from case X to the centroid ofgroup k. The 
case is then classified into the group with the smallest D2 value. The formula given 
above assumes equal group covariance matrices, but Tatsuoka (1971:222) gives a 
modified form of the equation for unequal group covariance matrices. D2 has the 
properties of the chi-square statistic with p degrees of freedom. Thus, the distance 
is measured in chi-square units, and if each group comes from a population with a 
multivariate normal distribution, most of the cases will be clustered near the 
centroid. The density of cases decreases farther away from the centroid. 

TABLE 5.12. 

Classification functions for the Booth Mountain nonsite and site groups (Fisher's linear 
discriminant functions) 

Nonsiter Sitts 

VARIABLE 
3 ASPECT .05504 .08457 
4 DSTWTR -4.29467 -18.94006 
6ELVWAT .04207 .07294 

CONSTANT -5.26727 -9.99673 
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These distances can be converted into probabilities of group membership if 
the assumption of multivariate normality is met (Nie et al. 1975:445). Assigning a 
case to the group with the highest score is then equivalent to assigning a case to the 
group for which the probability of group membership is highest. Thus far it has 
been assumed that each group is treated equally. A Bayesian adjustment of the 
probability of group membership, however, is often desirable (see below). 

The canonical discrimination functions can be used for classification in place of 
the original discriminating variables. Klecka (1980:47) notes that when there are a 
large number of cases to be classified, the canonical functions make the task easier; 
in the first case distances for p variables must be computed, while the second case 
requires only computation ofq discriminant functions. The classifications based on 
the canonical functions will usually be the same as those using the original discrimi
nating variables. One exception to this is when the group covariance matrices are 
not equal because the canonical discriminant functions use the within-groups SSCP 
matrix, which is the weighted average of the individual SSCP matrices. Tatsuoka 
(1971:232-233) notes that the two classification procedures yield closely similar 
results and that the canonical procedure can be used unless the differences among 
the group covariance matrices are drastic. The two procedures may also give 
different results when one or more canonical discriminant functions are dropped 
because they are not statistically significant. In this instance, the canonical results 
should be more accurate than classification based on the original variables because 
the effect of idiosyncratic sample variability is reduced. 

Classification ofthe cases in the Booth Mountain analysis is presented in Table 
5.13. In addition to the actual group membership and discriminant scores computed 
from the canonical discriminant function, several probability values are presented 
for the highest and second-highest probability groups. p(XIG) is the probability 
that a case that far from the center of the indicated group (0 = nonsites, I = sites) 
would actually belong to it, while peG! X) is the probability that the particular case is 
a member ofthe indicated group. For example, the first case in Table 5.13, a nonsite, 
is correctly placed in group 0 (nonsites). The probability that a location that far from 
the nonsite group centroid actually belongs in the nonsite category is 0.5098, while 
the probability that the location is a member of the nonsite group is 0.9275. The 
probability that the location is a member of the second highest probability group, 
the site group, which in this case is the only other group, is 0.0725. The probabilities 
of group membership of the other cases can be considered in a similar manner. 
Incorrecr group classifications of cases are denoted with asterisks (***) following 
the actual group listing. 

To this point all groups have been considered as if they were ofequal size. In 

some situations this may be unrealistic, as when 90 percent ofthe locations belong in 

group A and only 10 percent belong in group B. We do not need to do a discriminant 

analysis to know that in this situation there is a high probability that any given case 

will belong to group A, and that we would only want to place a case in group B if 

there was a strong reason for doing so. In the Booth Mountain analysis there are a 

total of 38 locations, 21 nonsites and 17 sites. Thus, if a location was randomly 
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TABLE 5.13. 

Booth Mountain discriminant scores and probabilities of group membership. P(X IG) is the 
probability that a case that far from the group centroid belongs to the group, while peG IX) is 
the probability that the case belongs to the indicated 

Case 
Sequence Diuriminant 
Number ScorN 

0 0 .5098 .9275 .0725 -1.3855 
2 0*** .2717 .9499 0 .0SOI 1.9963 

0 0 .5296 .6125 .3875 -J.J971 
4 0 0 .8591 .8540 .1460 -.9039 
5 0 0 .8342 .7574 .2426 -.5169 
6 0 0 .3674 .S037 .4963 .1752 
7 0 0 .0215 .9946 .0054 -3.0261 
8 0 0 .0636 .9889 .0111 -2.5811 
9 0 0 .4097 .5349 .4651 .0982 

10 0 0 .8054 .8674 .1326 -.9726 
11 0 0 .8198 .7518 .2482 -.4984 
12 0 0 .5614 .6307 .3693 -.1456 
13 0 0 .7836 .8726 .1274 -1.0009 
14 0 0 .0933 .9853 .0147 -2.4046 
15 0 0 .3933 .5231 1 .4769 .\273 
16 0*** I .8188 .8219 0 .1781 1.1262 
17 0 0 .9822 .8088 .1912 -.7040 
18 0 0 .6979 .8917 .1083 -1.1145 
19 0 0 .9874 .8104 .1896 -.7105 
20 0 0 .7443 .8816 .1184 -1.0524 
21 0 0 .3S02 .9523 I .0471 -1.6604 
22 .2537 .9531 0 .0469 2.0387 
23 .8256 .8198 0 .1802 1.1175 
24 .9776 .7691 0 .2309 .9253 
25 1 .7330 .8470 0 .1530 1.2383 
26 1 *** 0 .9422 .8314 1 .1686 -.7987 
27 .8001 .6784 0 .3216 .6439 
29 .6893 .8589 0 .1411 1.2970 
30 .3372 .9379 0 .0621 1.8569 

31 .8378 .8161 0 .1839 1.1019 

32 .4595 .9136 0 .0864 1.6368 
33 1 .6100 .5816 0 .4184 .3871 

34 1 *** 0 .5140 .6032 .3968 -.0737 

35 .5822 .5657 0 .4343 .3471 
36 .7523 .8415 0 .1585 1.2128 
37 1 .9089 .7254 0 .2746 .7827 
38 I .5398 .8959 0 .1041 1.5104 
39 I *** 0 .4506 .5630 .4370 .0281 

* *" incorrect classification 

Note: Case 28 is a historical site that was not included in the analysis. 


236 



OVERVIEW OF STATISTICAL METHOD AND THEORY 

selected it would have a slightly higher chance (0.54 vs 0.46) of being placed in the 
nonsite group simply because there are more nonsites than sites. This problem can 
be solved by adjusting the posterior probability ofgroup membership to account for 
the prior knowledge that we have about group membership. Prior knowledge can 
be regarded as any information about the populations that does not result from the 
current research but that permits us to formulate hypothesized probabilities of 
group membership for a randomly selected case (Cooley and Lohnes 1971:263). 
Classification decisions involving a priori probabilities of group membership are 
examples of Bayesian logic. Adjustment of a classification function to take prior 
probabilities into account may improve prediction accuracy and help to minimize 
the cost ofmaking errors. Ifgroups are weB separated, the use ofprior probabilities 
is unlikely to affect the results of the classification; use ofthese probabilities is most 
effective when group separation is weak. 

Classification boundary lines can be superimposed on one- and two
dimensional plots of the cases. These lines partition the measurement space into 
group territories within which individual cases are classified. When discrimination 
is weak, many cases may fall outside their group's territory and will be misclassified. 
If there is only one function, the dividing point between the two groups is one-half 
the sum of the discriminant scores for the two group centroids. With two functions 
we solve for D2(xjGj) ~ D2(xjGk), which results in the equation for a straight line 
when the group covariance matrices are equal. With unequal covariances the 
boundary in the two-function case will be a curve around the group with the smaller 
dispersion (Van de Geer 1971:263-265). In the single-function case the dividing 
point will be closer to the group with the smaBer variance. 

A final consideration in discriminant analysis involves selecting the variables to 
be included in the discriminant function. It is possible to use the entire set of 
independent variables, regardless of the discriminating power of each. This 
approach may be appropriate for theoretical reasons ifpriorities cannot be placed on 
specific variables. In other situations, theory may not provide a strong enough 
reason for specifying the exact list of discriminating variables. Theoretical knowl
edge may merely suggest potential discriminating variables, or the investigation 
may be exploratory and the discovery of discriminating variables may be a prime 
objective of the research. In these situations some variables may not produce good 
group separation because the group means are too similar. Alternatively, two or 
more variables may possess similar discriminating information and hence be 
redundant. 

A stepwise selection procedure can be used to select the most powerful 

discrimina ting variables. There are two means ofdoing this: forward selection begins 

by selecting the single variable that produces the greatest univariate discrimina

tion. The first variable is then paired with each of the remaining variables, one at a 

time, to find the pair offering the greatest group discrimination. The first and 

second variables are then combined with each variable in turn to form a triplet. This 

process continues until all possible variables have been selected or until those 

remaining do not contribute significant discrimination. Output from a stepwise 
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selection procedure, used in the Booth Mountain example, is shown in Table 5.14. It 
will be considered in more detail below. 

In the backward re/ection procedure all variables are used at the beginning, and 
the one with the weakest discriminating power is eliminated at each step. Forward 
and backward selection procedures can also be combined. Generally this involves a 
forward selection procedure, in which each step begins with a review of the 
remaining variables in the equation. When a variable no longer makes a significant 
contribution, it is deleted; it may, however, be selected again at a later step. The 
order in which variables are selected does not always coincide with their relative 
importance. Because ofintercorrelations, certain variables may be prevented from 
entering the calculations. 

Before a variable is tested on a selection criterion many computer programs 
require it to pass certain minimal conditions to ensure accuracy and to determine 
that the change in discrimination exceeds a specified level. Accuracy is assessed by 
means ofa tolerance test; change in discrimination is evaluated by partial F ratios. 
The tolerance of a variable not in an bquation is one minus the squared multiple 
correlation between that variable and the other variables already in the equation. 
When the variable being tested is highly correlated with those already in the 
equation, its tolerance will be very small or near zero and inclusion ofthis variable in 
the computation of the inverse of the W matrix would cause inaccuracies. In Table 
5.14 the tolerances are given for the variables not in the analysis after a particular 
step. For example, after the variable "aspect" is entered in step 1, the variable 
"river distance to rank 2 stream" (dstrnk2) has a tolerance of0.50, indicating that it 
is somewhat correlated with aspect. On the other hand, elevation above water 
(elvwat) has a tolerance of0.99, indicating that ofthe remaining variables not in the 
equation, it is the least correlated with aspect. 

F-to-enter and F-to-remove are partial multivariate F statistics. F-to-enter does 
just what the name implies: it tests the significance ofthe additional discrimination 
that will be provided by a variable being considered for inclusion in the model. A 
small F value indicates that the variable will not offer much additional discriminat
ing power. In Table 5.14, with no variables in the analysis, aspect has the highest 
F-to-enter, 7.2682; hence it is entered at step 1. Of the variables not in the analysis 
after step 1, distance to water (dstwtr) has the highest F -to-enter (6.5958), and it is 
the variable entered at step 2, followed in a similar manner by elevation above water 
(e1vwat) at 6tep 3. After step 3 none of the variables meet the minimum F -to-enter 
value of4.0 used in the analysis. F -to-remove tests the significance ofthe decrease in 
discrimination that will occur should the variable in question be removed from 
those already selected. It is used to determine if there are any variables that no 
longer make a significant contribution to the discrimination. The variable with the 
greatest F-to-remove statistic makes the greatest contribution to discrimination. 
The second-largest F -to-remove value indicates the second most important varia
ble, and so on. Of the variables included in the analysis at step 3, aspect has the 
largest F -to-remove (14.7298) and is deemed the most important variable, followed 
by dstwtr (13.0481) and e1vwat (6.1746). 
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TABLE 5.14. 


Stepwise output from Booth Mountain discriminant function analysis 


V ARIABLES NOT IN THE ANALYSIS AFTER STEP 0 

Variable Tolerance Minimum Tolerance F to Enter Wi/h'! Lambda 

RELIEF 1.0000000 1.0000000 1.3507 .96384 
ASPECT 1.0000000 1.0000000 7.2682 .83202 
DSTWTR 1.0000000 1.0000000 2.7678 .92861 
DSTRNK2 1.0000000 1.0000000 .4695 .98713 
ELVWAT 1.0000000 1.0000000 .5199 .98576 
VIEW 1.0000000 1.0000000 3.4661 .91218 

************************************************************************ 

AT STEP 1, ASPECT WAS INCLUDED IN THE ANALYSIS 

Significance 
Degree. ojFreetkim Between Groups 

Wilks's Lambda 0.8320205 36.0 
Equivalent F 7.268164 36.0 .0106 

V ARIABLES IN THE ANALYSIS AFTER STEP I 

Variable Tolerance F To Rl!'I'1WVe 

ASPECT 1.0000000 7.2682 

V ARIABLES NOT IN THE ANALYSIS AFTER STEP 1 

Variable Tolerance Minimum Tolerance F To Enter Wilt.'. Lambda 

RELIEF .9962583 .9962583 1.4300 .79936 
DSTWTR .8646998 .8646998 6.5958 .70009 
DSTRNK2 .5048064 .5048064 2.3535 .779(fJ 
ELVWAT .9991313 .9991313 .5188 .81987 
VIEW .9817724 .9817724 4.0816 .74513 

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP 1 
(EACH F STATISTIC HAS I AND 36.0 DEGREES OF FREEDOM) 

GROUP 0 

GROUP 
7.2682 

.0106 

************************************************************************ 

AT STEP 2, DSTWTR WAS INCLUDED IN THE ANALYSIS 

Significance 
Degrm oJFreetkim Between Groups 

Wilks's Lambda 0.7000884 2 1 36.0 
Equivalent F 7.496845 2 35.0 .0020 

VARIABLES IN THE ANALYSIS AFTER STEP 2 

Variable Tolerance F To Remove Wi/h's Lambda 

ASPECT .8646998 11.4245 .92861 
DSTWTR .8646998 6.5958 .83202 

239 



ROSE AND ALTSCHUL 

TABLE 5.14. Continued 

V ARIABLES NOT IN THE ANALYSIS AFTER STEP 2 

Variable Tolerance Minimum Tolerance F To Enter Wi/k'r Lambda 

RELIEF .9879944 .8575272 .7627 .68473 
DSTRNK2 .5044356 .4723641 1.7544 .66574 
ELVWAT .6555658 .5673605 6.1746 .59249 
VIEW .9748621 .8436076 4.1148 .62451 

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP 2 
(EACH F STATISTIC HAS 2 AND 35.0 DEGREES OF FREEDOM) 

GROUP 0 

GROUP 
7.4968 

.0020 

************************************************************************ 

AT STEP 3, ELVWAT WAS INCLUDED IN THE ANALYSIS 

Significance 
Degrees o/Fret/Iom Between Groups 

Wilks's Lambda .5924894 3 I 36.0 
Equivalent F 7.794996 3 34.0 .0004 

V ARIABLES IN THE ANALYSIS AFTER STEP 3 

Variable Tolerance F To RemOl'( Wilks's Lambda 

ASPECT .7932439 14.7298 .84917 
DSTWTR .5673605 13.0481 .81987 
ELVWAT .6555658 6.1746 .70009 

VARIABLES NOT IN THE ANALYSIS AFTER STEP 3 

Variable Tolerance Minimum Tolerance F To Enter Wi/kr'r Lambda 

RELIEF .9801711 .5583875 .3522 .58623 
DSTRNK2 .5040043 .4538064 1.2885 .57023 
VIEW .9279786 .5651945 \.8992 .56025 

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP 3 
(EACH F STATISTIC HAS 3 AND 34.0 DEGREES OF FREEDOM) 

GROUP 0 

GROUP 
7.7950 

.0004 

MAXIMUM STEP REACHED 

*********************************************************************-** 

SUMMARY TABLE 
Action 

Step Entered Removed Variablts In Wilks'r Lambda Significance 

1 
2 
3 

ASPECT 
DSTWTR 
ELVWAT 

I 
2 

.832021 

.700088 

.592489 

.0106 

.0020 

.0004 
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All of the stepwise procedures described here need to employ some type of 
stopping criterion to determine when maximum group separation has been parsi~ 
moniously achieved. Wilks's lambda is one popular criterion that takes into account 
the variability both within and between the groups. For example, in the summary 
table in Table 5.14 wilks's lambda changes from 0.83 to 0.70 to 0.59 from step 1 to 
step 3. Ifa stopping criterion of0.59 had been chosen, no additional variables would 
enter the analysis because their associated lambda values are less than the min~ 
imum. Lambda can also be converted into an overall multivariate F ~ratio; in this 
situation the largest F value would be selected. The overall F values after steps 1,2, 
and 3 are, respectively, 7.2682, 7.4968, and 7.7950 (Table 5.14). Alternatively, the 
partial F ~to~enter can be employed. Any ofthe three tests will yield the same result. 

Rao's V (Rao 1952:257), a generalized distance measure ofthe separation of the 
group centroids, can be used as a stopping criterion. A variable selected with this 
criterion may actually increase the within~group variance while adding to the 
overall group separation. The V statistic is calculated as 

p' p' g 
V - (n. ~ g) I I aij I 1Ij (Xji' - Xi"XXji' - Xj") 

i=I j=I i-I 

and it measures the distance from each group centroid to the grand centroid 
weighted by the group size. That is, larger groups are more important than smaller 
ones in calculating the grand centroid. P' is the number of variables entered, 
including the current one. With large samples the distribution ofV approximates 
that of chi-square with p'(g-I) degrees of freedom. The change in Vowing to the 
addition or deletion ofvariables can also be tested for statistical significance because 
it has a chi-square distribution with degrees offreedom equal to (g-I) times the 
number of variables added or deleted. A variable should not be included if the 
change is not significant or ifit is negative, indicating a decrease in group separa
tion. 

Other statistics based on the Mahalanobis squared distance between group 
centroids can be used to choose the variable that generates the greatest separation 
for the groups that are closest at that step. D2, which gives equal weight to each pair 
ofgroups, is one ofthe statistics that can be used to measure group separation. The 
differences between two groups can also be tested with an F statistic, which gives 
greater weight to comparisons between large groups. 

(n. - g - p' + 1) nj1lj 
F-

p'(n. - g)( nj - 1Ij) 

Another criterion minimizes the residual variance: 
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The average residual variance between groups can be obtained by dividingR by the 
number of pairs, or pairs can be weighted if some are given greater importance 
(Dixon 1973:243). R considers all pairs and hence tends to promote an equal 
separation of the groups. 

MODEL VALIDATION AND GENERALIZATION 

Validation 

For predictive modeling purposes the best guide as to how well the statistical 
operations of multiple regression, logistic regression, and discriminant function 
analysis work is their performance on independent data. The accuracy and precision 
of sample-based predictions can be tested on independent data, on part of the 
sample that was excluded from the model-building process, or on internal criteria 
(see Chapters 7 and 8). In the validation procedure the coefficients ofthe calibration 
equation (model) are applied to independent data, and predicted values are gener
ated that can be checked against actual values. The actual and predicted values can 
be compared on several levels of measurement and with a variety of statistical 
techniques, depending on the particular model. Kohler and Parker (1986) note that 
many ofthe predictive models presen ted in the archaeological literature during the 
past several years have not been validated and that there is little agreement about 
the "best" or "most correct" manner in which to undertake verification. When 
tried on fresh data, many procedures fail dismally. Failure ofa predictive model may 
result from incorrect specification of the model, from the inclusion of too many 
parameters, or from sampling problems. 

There are two levels of validation, simple and double. Simple validation 
involves testing a procedure on data different from those used to choose its 
coefficients. Double validation consists oftesting the procedure (i.e., the particular 
equation) on data different not only from those used to choose its numerical 
coefficients but from those used to guide the choice ofits form as well. By the form of 
the procedure we mean such questions as which variables of a total set enter an 
equation, whether the original or transformed variables are employed, whether 
products or ratios are used, and so on. Simple validation is more common since the 
double approach is usually prohibitively expensive in terms of time, money, and 
other considerations. To achieve as full a validation as possible, whether simple or 
double, the validation data should reflect the full range ofvariability expected in the 
final application. 

Mosteller and Tukey (1977:37) note that when a predictive model is tested on 
the data that produced it overestimation ofits performance is almost certain. This 
occurs because the optimization process that selects coefficients capitalizes on any 
and all idiosyncracies of a particular data set. As a result, the model will generally 
perform better for the data used in its development than for almost any other data 
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that will be encountered in practice. The strongest validation ofa predictive model 
requires the utilization of data that were not included in its development. 

Double Validation (Independent Data Procedures) 

Double validation involves totally new data, possibly those gathered by 
another investigator after the form and coefficients of the procedure were deter
mined. The most rigorous double-validation procedure involves additional field 
survey. Predictions can be generated for unsurveyed areas using some type of 
generalization procedure (reviewed below). The values of the independent varia
bles must be obtained and then applied to the coefficients of the model (such as a 
classification function), and predicted values for the unsurveyed area must be 
generated. After the additional field survey is performed, the accuracy and preci
sion of the predicted values of the dependent variable( s) can be assessed with the 
data values. If the goodness of fit between the predicted and observed values is 
poor, the original model may need to be reevaluated and the cause of the discrep
ancy determined. 

Simple Validation (Split-Sample Procedures) 

Whether a predictive modeler is stuck with simple validation or just content 
with it, the ease with which computers can handle repeated tasks makes several 
approaches feasible. Some validation techniques have been used more than others, 
and additional techniques remain to be explored. The basic idea is to divide the 
complete sample data set into subsets by some rational criterion or criteria and then 
to use one part to build the predictive model and the other to validate it. There is no 
best or unique answer to the question of how to subdivide a data set; several 
possibilities are outlined below. 

In what some call the classical, half-and-half, or split-sample approach, the data 
are divided into two sets. One part is used to calibrate or build the model and the 
other is used for validation; sometimes, the two sets are interchanged and the 
process is repeated. It is possible to obtain a great deal ofinformation about a body 
of data using a half-and-half approach, but many researchers do not have large 
enough samples to be able to do this and maintain any semblance of quality. 
Another problem is that the data cases may need to be randomized before splitting 
them into two sets to avoid trends or particular configurations among variables that 
may relate to the manner in which the original data were obtained. 

Snee (1977) has considered the problem of choosing the one-half subset for 

model building and discusses the DUPLEX algorithm ofR. W. Kennard. Basically, 

this algorithm tries to guarantee that the properties of the determinant of the 

covariance matrices are similar for the model calibration and verification sets. Snee 

also recommends that the data set not be split in half unless the total sample size is 

greater than 2p+25, where p is the number of parameters in the model. 
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McCarthy (1976) suggests the use ofmore than one method ofhalving the data 
to obtain additional information. Instead of dividing the data into two parts, 
suppose it was divided into 10 parts. The model could then be calibrated on nine 
parts and verified on the tenth, and the process could be repeated nine times, 
verifying on a different part each time. By doing this, all of the data are used to 
assess the quality ofwhat is to be gained by calibrating on a body ofdata nine-tenths 
of the total sample size. These procedures come closer than others to helping us to 
determine what level of performance can be expected from a predictive model. 

Taking the process of multiple subsample validation to its logical end, one 
could calibrate the model on all but one case and then validate on the remaining 
case. This process is then repeated for every case. This selection procedure, 
referred to here as a jackknife test, but also called PRESS, was proposed by Allen 
(1971). It is in some respects a combination of all possible regressions, residual 
analyses, and validation techniques. Ifit were actually necessary to go through the 
computational process each time, this calibration-validation scheme could be pro
hibitive. Fortunately, it is often possible to calculate, either exactly or to a reason
able approximation, the effect ofdropping an individual case or a small subset ofthe 
data. Draper and Smith (1981 :326-327) feel that the PRESS method is advantageous 
because it provides detailed information abour the stability of the model parameters 
over the sample space and because it can aid in defining influential data points. 

Many statistical packages now calculate statistics that define the influence of 
individual cases. For example, one ofthe regression programs in the BMDP package 
calculates the residual that would be obtained if the case were omitted from the 
computation of the equation; the predicted value that would be obtained if the case 
were omitted; the Mahalanobis distance, which is the distance of the case from the 
mean of all cases used to estimate the regression equation; and Cook's distance 
(Cook 1979:15-18, 1979:169-174), a measure of the change in the coefficients of the 
regression that would occur if the case were omitted from the computations of the 
coefficient. 

The results ofa jackknife classification ofthe Booth Mountain nonsites (Group 
A) and sites (Group B) are given in Table 5.15. Incorrect classifications are noted by 
the letter of the group the case was placed in. The jackknifed Mahalanobis D2 from 
the group centroid and the posterior probability PC.xjG) that the case eX) is a 
member of the indicated group (G) are also given. It should be noted that the 
probabilities are close, but not identical, to those presented in Table 5.13, which are 
not based on a jackknife classification. The jackknifed classification results are more 
conservative and realistic, especially for small sample sizes. Jackknife classification 
results are also more like the results that would be achieved with a set ofindepend
ent data. Overall, 76.3 percent of the cases were classified correctly in the jackknife 
classification. Individually, 76.2 percent of the nonsites and 76.5 percent of the sites 
were classified correctly. 

In the jackknife classification, four sites were misclassified as nonsites. Two of 
these, 5Pe746 and 5Pe749, were apparently misclassified because they are located 230 
and 240 m, respectively, from the nearest water source. They are located near each 
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TABLE 5.15. 


Jackknife classification of locations from Booth Mountain; nonsites are group A, sites are group B 


Jackknifed Mabalanobir Dl from and 
Incorrect Porterior Probability for 

Classificatiom Group A Group B 

GROUP A 
CASE 

I 21.7 .892 25.6 .108 
2 B 19.7 .003 8.1 .997 
3 1.3 .592 1.7 .408 
4 .4 .846 3.5 .154 
5 2.5 .726 4.1 .274 
6 B 2.0 .471 1.4 .529 
7 13.9 .998 25.8 .002 
8 5.8 .991 15.0 .009 
9 B 2.0 .500 1.7 .500 

IO 1.9 .854 5.1 .146 
11 .8 .739 2.6 .261 
12 1.3 .609 1.9 .391 
13 3.4 .853 6.6 .147 
14 3.3 .986 11.6 .014 
15 B 1.5 .499 1.2 .501 
16 B 8.4 .084 3.3 .916 
17 1.0 .796 3.4 .204 
18 1.2 .883 4.9 .117 
19 2.1 .789 4.4 .211 
20 1.2 .872 4.8 .128 
21 1.1 .950 6,7 ,050 

GROUPB 
CASE 
22 8,2 .049 1.9 ,951 
23 3,6 .190 .4 ,810 
24 4.2 ,256 1.7 .744 
25 4.3 ,163 .7 ,837 
26 A 1.3 .891 5,2 .109 
27 2,5 ,340 .9 ,660 
29 6.4 .161 2.7 ,839 
30 7.6 ,067 2.0 ,933 
31 5.3 ,208 2.3 .792 
32 9.1 ,100 4.3 .900 
33 3.8 .484 3,3 ,516 
34 A 2.3 .669 3.4 ,331 
35 A 17.2 ,785 19,5 .215 
36 4.7 .172 1.2 ,828 
37 2,3 ,283 .2 .717 
38 4,9 ,110 ,4 ,890 
39 A 1.3 .594 1.7 .406 

Note: Case 28 is a histOrical site that was not included in the analysis. 
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other and in association with several other sites that seem to date to the protohis~ 
toric period. 5Pe749 is a small lithic scatter that could be associated with 5Pe750, a 
large stone circle that is located about 200 m to the west, or with 5Pe746, which is 
located about 250 m to the north. The latter site consists of three standing wickiups 
and a small amount of scattered lithic artifacts. On the site form for 5Pe746 the 
distance to water is listed as 400 m, although the distance measured from the 
7.5-minute quadrangle is only 230 m. Even so, the site is substantially farther from 
water than most others, which is surprising given the evidence ofhabitation. 5Pe746 
is a good example of the fact that even when predictive models work, there is always 
the chance that an anomalous site will be misclassified. 

The remaining two misclassified sites, 5Pe366 and 5Pe741, are both small 
rockshelters. Their misclassification points out the difficulty in predicting rockshel~ 
ter sites. Clearly, more research is needed in the development of variables that can 
measure a locality's "rockshelter potential." 

Even with all ofthe benefits noted above, simple validation is weaker, by some 
unknown amount, than it might initially appear to be. This is because the validation 
sample is often much more like the calibration sample than the target population to 
which one wishes to generalize. Frequently the calibration and validation data sets 
are obtained in the same sampling process. In most archaeological predictive 
modeling cases this appears to be the rule rather than the exception (see Chapter 7). 

Simple Validation (Procedures with Simulated Data Sets) 

Many predictive modeling studies use reclassification ofthe cases on which the 
procedure was developed as a measure of discriminatory effectiveness. Simple 
reclassification of the original cases will be biased and the efficacy of the technique 
inflated (this is known as upward bias). Many times, though, sample sizes are small, 
and too few cases can be withheld and used as verification data. One way to 
determine the bias involved is with simulated data. Frank et al. (1965) suggest two 
validation procedures that involve simulation. The first approach involves creating 
a synthetic random data set that bears no resemblance to the actual data on which 
the classification functions are based. The random data set can be designed to match 
the actual data set in terms of sample size, the number 01 groups, and variables. 
When the synthetic cases are classified by the function, any discriminatory power 
found can be interpreted as bias. 

The second approach uses the original raw data. The cases in the original data 
matrix are randomized and then randomly assigned to groups, and then a discrimi~ 
nant analysis is performed. This process is repeated a number of times, and the 
results are averaged and used to assess the amount ofbias present. In this approach 
the covariance matrices of the simulations will be similar to those of the original 
analysis. Berry (1984:843-853) has recently employed both of these techniques in a 
discussion of sampling and predictive modeling on federal lands in the western 
United States. 
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The validation procedures described above can be used with multiple regres
sion and its many variants, with logistic regression, and with discriminant function 
analysis. Some are now standard options on computerized statistical analysis pack
ages, such as BMDP, SAS, and SPSS, or they can be created easily by using sampling 
procedures to select the data to be withheld. These validation procedures, espe
cially those applicable to smaller samples, need to be explored and exploited further 
because the "acid test" ofany prediction scheme is its performance on independent 
data. Kohler and Parker (1986) hypothesize that the lack of validation in many 
predictive models occurs because it was not specified in a contractual obligation. 
This could be a healthy sign if agencies intend to have validation done by another 
party. Alternatively, it may indicate that the importance ofvalidation has not been 
recognized as an essential ingredient of predictive modeling by the sponsoring 
agencIes. 

Generalization 

Once a predictive model has been established and validated, the next step is to 
generalize the results to the target population. Essentially, in this process the 
results of a sample-based statistical procedure are employed to make inferences 
about a population. The predictions are based on what occurred at a sample of 
points or in a sample of quadrats, e.g., whether a site was or was not present or 
whether a site ofa specific functional and temporal category was found. To be useful 
as a management tool these generalizations must be summarized; frequently this is 
done cartographically. While there is no limit to the data that can be represented on 
a map, the extrapolation of point or quadrat information to larger areas is not a 
simple task (see Chapter 10). 

In order for the results of the sample-based procedure to be generalized to a 
larger area, it must be possible to extract the values for the independent or 
predictor variable from existing maps, whether manually or via some type of 
automated geographic system. This is not a trivial matter, because the lack of 
preexisting maps or ofinformation that can be converted to a maplike format is the 
most commonly encountered problem in generating model-based predictions. The 
scale ofresolution of the generalizations that can be produced is determined by the 
quality of the existing information. If one of the discriminating variables in a 
predictive model is only available on a section-by-section basis, generalizations can 
only be produced on that scale. Alternatively, ifthe required information exists at a 
very fine level ofresolution for an area, it may be possible to make inferences at that 
scale. A final problem with secondary information extracted from maps is that maps 
are also simplifications ofreality; the mere existence ofthe data is not an indication 
of their quality. The chances are that point or even quadrat values extracted from a 
map are probably themselves interpolated values, whether the variable is elevation) 
soil type, or vegetation. The quality of the data extracted from maps affects all 
aspects of the predictive model. If the data are of poor quality, then predictions 
derived from them will likely be poor. Means ofassessing the quality ofpreexisting 
data and of compensating for variability in quality are discussed in Chapter 7. 
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Maps showing the distributions of such environmental variables as soil types, 
vegetation communities, slope, elevation, and the like are frequently combined in 
composite overlays that mayor may not be associated with site locations. For 
example, a particular type of site may be found on southwest exposures ofcertain 
soil types in pinon-juniper forest within a specified elevation interval. Unless these 
sets of data are manipulated in a rigorous, objective manner (e.g., a game-theory 
approach), composite overlays merely indicate that certain types ofsites tend to be 
associated with particular configurations of environmental variables without pro
viding any specifics as to the nature of that association (see Chapters 3 and 4). 

Multiple regression, logistic regression, and discriminant function analyses 
make composite overlays a more valuable managerial tool. These procedures 
provide objective delineations of the environmental variables that influence site 
location, and these results can replace traditional intuitive projections. Rather than 
just representing the intersection of numerous information sets, these procedures 
permit weights to be assigned to particular mappable variables that may be 
important determinants of site location. This capability then allows the researcher 
to associate probabilities with particular environmental features. 

The process by which the predictive model information is portrayed carto
graphically is crucial to the interpretations that can be made. Unless the sample on 
which the predictive model is based is systematic, which would be most unfortu
nate from a sampling perspective, the values of the variable to be displayed (usually 
called z) in an x,y coordinate system are not neatly spaced on a regular grid pattern. 
Most samples procured in predictive modeling endeavors consist of data points or 
quadrats scattered irregularly over a region. Most mapping packages and graphic 
display procedures, however, require that a regular grid be created from irregularly 
spaced data. The basis for most generalization operations will be a grid ofvalues that 
is a numerical representation defined by two x andy coordinates ofthe surface to be 
displayed. In predictive modeling these values might be the probability that a site is 
present. 

The phenomena to be mapped, the z values, can be portrayed in several 
different ways. Linear interpolations can be made between grid nodes to locate the 
points where a specific contour line will cross the edge of a grid cell. The grid can 
also be drawn in perspective, with each grid node vertically offset by an amount 
proportional to the z value. This operation results in a block diagram and does not 
require interpolation. Unfortunately, it is more difficult to extract quantitative 
information from a block diagram than from a contour map. (See Chapters 8 and \0 
for detailed discussions of mapping the results of predictive models.) 

The predictive model for Booth Mountain, described above in the context of 
discriminant function analysis, can be presented as a contour map (Figure 5.12) 
generated with the SURF ACE II GRAPHICS SYSTEM (Sampson 1978). SURF ACE 
II is a software system for creating displays ofspatially distributed data. The Booth 
Mountain map used only the 38 nonsite/site locations employed in the discriminant 
function model. For each location, easting and northing UTM coordinates were 
used for x and y scales. The third value was the cell's posterior probability of 
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Figure 5.12. Posterior probability of site presence, Booth Mountain. 
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belonging to the site grouping (Table 5.15). The SURFACE program then inter
polated between known points to create a generalized probability map, with 
probability scores ranging potentially from 0.0 to 1.0. The contour interval plotted 
was 0.1. 

The Booth Mountain region was not as rigorously tested in the Fort Carson 
survey as the two major drainage basins, Red Creek and Turkey Creek (Altschul 
and Rose 1986). Because its importance was initially underestimated, only small 
portions of the mountain were surveyed. Furthermore, because the survey loca
tions were not selected through a probabilistic sample design, it is difficult to 
generalize the results. Instead of generalizing the discriminant function model to 
the entire mountain, we felt only a portion of the area could be reliably modeled. 
The area modeled is a rectangular region encompassing the middle ofthe mountain, 
specifically between UTM nor things 4256000 and 4259500 and eastings 13510000 and 
13514500. About 50 percent of this area had been surveyed. 

The areas of highest site probability on Booth Mountain lie on the southern 
and western slopes. Sites are found along small drainages that flow into Booth Gulch 
instead of directly into Turkey Creek. The entire eastern half ofBooth Mountain 
appears to have been deliberately avoided by the prehistoric occupants. The only 
sites in the east are on the lower slopes ofthe mountain directly overlooking Turkey 
Creek (on Figure 5.12 this is the small high-probability zone located at about UTM 
northing 4257000 and easting 13514000). These sites tend to date to the Late 
Prehistoric period or earlier. In contrast, most sites on the western and southern 
slopes appear to date to the Protohistoric period. Therefore, it seems questionable 
whether the sites on the eastern slopes are culturally related to those located on the 
southern and western slopes. 

We can only speculate about the reasons for the intensive occupation ofBooth 
Mountain. It would have provided a relatively safe refuge for small groups for short 
periods of time. There is also no question that during the latter half of the 
nineteenth century bands ofIndians were intermittently seeking such protection. 
One possibility is that the interior slopes of Booth Mountain were selected for 
occupation because of their inaccessibility. 

The Booth Mountain predictive model remains to be tested with independent 
data, but it would seem that areas with p values greater than 0.5 have reasonably 
good chances ofcontaining sites. Areas with p values less than 0.5 would still need to 
be treated cautiously until the model is tested, nor should the model be extended to 
other parts of Booth Mountain in the absence of additional survey data. 

CONCLUSIONS 

The topics discussed in this chapter cover a wide range ofmaterial, but they 
indicate that the construction of predictive models is a multistep process. The 
procedure that has been advocated emphasizes an understanding of the nature of 
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the basic data on which the predictive models are based. Controlling for temporal 
and functional variability in the data is critical because of the effects of such 
variability on the resolution ofthe predictive model. The basic data used in models 
are the measurements for variables that have theoretical importance but each of 
which represents only one dimension of variability. It was emphasized that the 
scales of these measurements must be congruent with the assumptions of the 
statistical model that will be employed. Distribution of the values is also important. 
Descriptive statistics can be used to determine if the variables are normally 
distributed; if they are not) alternative probability distributions can be used to 
determine the nature ofthe differences. Finally, bivariate statistical techniques can 
be employed to examine relationships between pairs of variables prior to their 
incorporation into a predictive modeL 

After this discussion ofthe basic data used in modeling) three different types of 
predictive models were discussed. These models are applicable to many different 
types ofdependent and independent variables. Multiple regression is normally used 
when both the dependent and independent variables are measured on interval and 
ratio scales. When the dependent variable is categorical and the independent 
variables are measured on any scale (from nominal to ratio) logistic regression 
provides an acceptable alternative. Ifall of the independent variables are measured 
on an interval or ratio scale) however) discriminant function analysis may be more 
effective. 

Regardless of the statistical procedure used to produce a predictive model, 
verification of the results is an important part of the modeling process. Several 
different procedures have been described that are applicable in different situations. 
Finally) some inherent problems in producing a graphic display to portray the 
results are discussed. Although the graphic example used provides a relatively 
simple model when compared with the results obtained from geographic informa
tion systems) it does highlight the steps involved in computing these models, which 
are often lost in the inner workings of the computer. 

In addition to the people mentioned in the acknowledgments for Chapter 3. Marrin Rose would 
like to thank his coworkers at Statistical Research, Inc., under whose auspices this chapter was 
written. The comments, queries, and clarifications made by June-el Piper, Lynne Sebastian, Mike 
Garratt, Dan Martin, Jim Judge, Ken Kvamme, and the other volume authors and reviewers of the 
draft chapter and its subsequent revisions were particularly helpful. The authors greatly appreciate all 
of their time and effort, without which the current status of the manuscript would have been 
impossible. 
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Chapter 6 


COLLECTING NEW DATA FOR THE 
PURPOSE OF MODEL DEVELOPMENT 

Jeffrey H. Altschul and Christopher L. Nagle 

In Chapter 3 it was suggested that the first step in model building is to identify 
both shorc- and long-term objectivC's, Subsequently, existing data pertaining (0 site 
location-archaeological records and reports, ethnographic information, historical 
and cthnohistoric accounts, and macro- and microenvironmenul data - can be 
collected to mcc( these objectives. An l'valu:Hion of the existing data (a topic 
discussed in detail in Chapter 7) will often reveal data gaps, which must then be 
filled through the collection ofnew data before the mode ling process can continue. 

If the data gaps are relatively minor, the), can often be filled through limited 
surveys targeted to specific model requirements. Funding for research-oriented 
projects is limitcd, however, especially in cultural resource management contexts. 
An alternative source of data {Q fill specific gaps is (he results of the inventory 
surveys that are routinely conducted on relatively small parcels orland to fulfill legal 
requirements. Fieldwork on these surveys is oriented toward meeting compliance 
criteria and not toward research, and as a result data from inventory surveys have 
often not been incorporated into regional plans, sllch as statewide comprehensive 
plans or regional predictive models. Given that most predictive models based on 
existing data need independent data against which to validate the model, the failure 
to utilize inventory survey results is nO{ only an unfortunate decision but also in the 
long run an extremely expensive one. 

Even with the inclusion of some new data there is a limit to the predicti\'c 
power ofa model based on existing data. As discussed in greater detail in C hapter 7, 
these models arc primarily limited by the quality and representativeness of the 
existing data base . \Vhen the data are of uneven quality or arc biascd in favor of 
cenain resources or areas, the degree to which the resulting model can be general
;zt"d is greatly rest ricted, and the use of more powerful modt"ling [t"chniques is 
generally unwarranted. In such situations it may be prudent to start fresh and 
collect data that can be used to obtain the designated modeling objectives. 
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PLANNING FOR FIELDWORK 

\Vhile individual research projects will have their own specific goals, all 
projects designed to gather data (0 be used in predictive models of site location 
must share three crilical objectives. First, these projects must evaluate the range of 
variability in the na(Ure of sites and site locations. Cenain parameters of the 
phenomena being modeled must be determined, suc h as the number of sitt: typt·s 
(including how the term fiff should be defined), the covariarion between sire 
locations and cnvironmencal J{[ribures, and the potential relationship among sites. 
Since these fearures arc determined by generalizing rhe results of sample data to a 
larger area, the sample must be derived in an unbiascd fashion, or at least the nature 
of the bias must be known in order (Q obtain usable estimates. 

A second objee<ive (or all projects designed to gather data (or predictive 
modeling should bt' (Q make eenain that all Umagnet" sites arc found. From a 
predictive modeling standpoint, a magnet site can be defmed as one whose location 
alYects the location o( other sites. While it rna)' be argued rhat all sires alYecr rhe 
location ofat least one other sice (i.e., the site one moves to is related to che slte one 
has just left), for the purposes of chis discussion the termmdgTf(/ r;u will be resrricted 
to sites that affect settlement on a regional scale. In the absence ofdata about such 
sites, the model might yield a high percentage of wrong predictions, For instance, 
the location of a Hohokam agricultural hamlet \1,'as probably conditioned not only 
by environmental factors but also by the distance to the regional center with which 
it \1,'as affiliated. In these situations. predictive models based solely on environmen
tal (actors have not been particularly useful. 

Magnet sites can not only exert a pull on other sites bur can also repel them. 
The location of a regional center oftcn appears to have been adjusted partly on the 
basis of the Hpulls" and upushes ll of neighboring centers. As the above example 
indicates, magnet sites can be major centers like Spiro, Moundville, Cahokia, and 
Snaketown. But it is not just big, complex sites that act as magnets, nor are sllch 
sites confined solely to complex societies. The Archaic and \Voodland periods in the 
western Ouachita Mountains of eastern Oklahoma provide an example of hunter
gatherer settlement systems affected by magnet sites. These setrlemenr systems 
were charactcrized by an extremely stablc pattern of winter basecamps in the river 
valleys and specialized activity camps dispersed throughout the region in the 
summer. \Vhile the special-activity camps were occupied on a temporary basis) 
many of the wintcr basecamps were occupied morc-or-Iess continually for thou
sands o(years (Altschul 1984). Further, evidence suggests that the locations o(many 
special-activity sitcs covary with the locadon of the basecamps. Thus, while it 
would be possible to make generalized areal predic{ions of site location for [his 
region, it would bc useless to const ruct a point-specific predictive model without 
knowing the locations of the wintcr basecamps. 

~....1agnct sites arc culture-specific and thus change through time . One of the 
most commonly cited examples is Tt'otihuacan, a large precolumbian ci ty located in 
the BasinofNlexico in a northeastern subvalley of the same name. Teorinuacan has 
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figured predominandy in discussions ofsampling and survey srrarcgL(,s in archaeol
ogy for nearly two decades (Flannery 1976; Mayer-Oakes and Nash 1964; Schiffer e[ 
31. 1978). Time and time again it has been pointed our that if one implemented a lO 
or 20 percent simple or stratifIed random sampl4c' survcy design for the Teotihuacan 
VJlley, there is a good chance that the entire city would be' missed. 

Knowledge ofrhc location ofTeorihuacan is critical to an understanding of 
settlement patterns in the Tcorihuacan Valley, and indeed in [he larger Basin of 
Mexico, from about l50 Be until aboul AD 750. It is not at all cleaT, howevcr, that 
info:"rr'ation about the city's location would be necessary for predicting settlement 
in the Tcorihuacan Valley before 150 Be. Prior (0 the rapid growth of the city, 
settlement in this pan of the Basin of Nlexico was characterized by sitts located 
primarily in the Patlachique Range overlooking [he valley floor (Sanders 
1965:92- 93). In contrast, the city ofTeotihuacan was located near freshwater springs 
on the valley floor. Inclusion of the city's IOCl,tion in a prl·dicti\'(.: model of pre
Christian era settlement in the region might well lead to inaccurate predicrions. 

An alternative explanation for the lack ofevidence for early occupation of the 
area that was subsequently encompassed by the city ofTcotihuacan is that such 
evidence was destroyed or buried by later construction, an 3lternativc that brings 
us to the third objective. In order [0 gather dar a intended for lise in predictive 
modding, we muS{ determine how behavior becomes part of the archaeological 
rtxord and how postdepositional processes afTect our ability to discover sites and to 

interpret [hem (Chapter 4), While many archaeologists have become increasingly 
intC'rested in depositional and postdepositional processes, only rarely are these 
factors explicitly considered in sllrvey dC'sign. Too often cultural resource manage
meO!: surveys make use ofstandardized field techniques rhat do not rake the specilic 
slrua[ion into account. Thus, archaeologists ofren u~e pedestrian surface survey in 
all portions of a [argl..'t arl~a, including heavily aUu\'ia[ed valleys and highly dissected 
bluff~. In the easrern woodlands of the United States, survey techniques often 
include transects of systematic shovel te~ts, but the interval between tests and the 
size and depth of the tests arc: often specified in the contract rarher than being 
chosen with regard to geomorphic conditions or to the size and nature of the 
expected sites. 

Even with the most appropriate rechniques, however, it is highly unlikely that 
all sites in a survey traer will be found. If the probability of discovc:ry for every site 
were equal and independent of all others, then at leaS[ the resulting p~\rametcr 
estimates would nOt be biasl:d. But discovery probabilities are not equal. Smaller 
sites cover less surface area than larger ones and thus have !l'ss chance of being 
found. Special-activity sites in general have fewer remains than more permanent 
ones and therc:fort- are less likely [0 be found. 

The problems cired above have to do with visibility; thus, for sites thar exhibit 
some surface manifestations the main objective is [Q equalize or at least conrrol for 
differing discovery probabilities. A vt.'ry ditTcrent problem exists, however, for ~ites 
thar exhibit no surfact.' expression. Sites that have been buried by natur:ll proceSSl'S, 
such as river alluviation, mud flows, or shifting sands, or components [hat are 
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masked by later occupations are (he most difficult [Q predict. Archaeologists have 
generally dealt with (his problem by ignoring it. Lip service is usually paid (0 (he 
QUltl:'Tnar)' geology of an area, but rardy is the study of geomorphic land surfaces 
made an integral pan ofa predictive modeling project's research dt'sign. Without 
such studies, howe\'cr, it is virtually impossible [0 conS[fuc[ accurate: predictive 
models. 

SURVEY STRATEGIES 

In order [0 create a predictive model, a survey design mllst be developed that 
will provide su fficient data ro (alculate esri marl~S on various aspt'cts ofsi res and sire 
locations, allow the identification of all or of a high proportion of magnet sites, and 
allow us TO assess the e'Teets of depositional and postdepositional processes. By 
nature, such a design must be multifaceted since eaeh ofthese objectives can best be 
met through a different survey strategy. For example, parameter estimates rely on 
some type of probabilistic sampling foundation, \\,hilc discovery of magnet sites or 
paleo land surfaces is best done by purposely selecting areas forcxamination. rn the 
following sections, appropriate surv(7 strategies to meet each of the three objec
tives arc discussed. 

Probabilistic Selection 

One of the main goals of a reconnaissance survey program is to obtain reliable 
estimates on a variety of site attributes in a region from only studying a pon.ion of 
that region. Usually, statistical inferences are drawn concerning site density, the 
proportion of different site types, the covariation between site locations and 
environmental attributes, and so on. These arc basically ideographic or descriptive 
observations about [he population. The problem, then, is how to select a sample of 
cases from which descriptive observations about the population can be inferred 
with a reasonable degree of confidence. 

Nluch of probability sampling theory is concerned with this issue. It is impor
tant to point out that thc..·re is nothing in probability theory that guarantees the 
"correctness" of sample estimates. Rather, the advantage of using probability 
theory to select samples is that it allows us to control thl~ bias in the selection 
procedure. As Cowgill notes, "the advantage of probability sampling is not that it 
very often enables us w be sure about the population, but that it helps us ... rOK1IOw 

when' rl'f Nand in relation to various inferences" (1975:262, emphasis original). 

The literature on sampling in archaeology written during the last two decades 
is voluminous (Hodder and Orton 1976; Mueller, cd. 1975; Nance 1983; Orton 1980; 
S. Plog 1976, 1978; S. Plog et al. 1978; Redman 1974; Sanders e( al. 1979). I( is not our 
purpose here to review this literature or to reSCUe the basic principles ofsampling. 
Instead, we wish (0 introduce some of the issues rhat should be considered in the 
design of a probabilistic sample survey. 
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In predictive modeling the primary objects of interest arc sites (however 
defined) and their locations. In the abstract W(.~ might consider all the ~ites in a 
region as the popuLuion of interest. Sampling then would consist of selecting a 
num ber of these sires for observation. (n reality, ofcourse, if we knew where all [he 
sites wefe located we would have no need for a predictive model of site location. 

In practice W(' do nor know where all the sirt's aTC or even what proportion of 
rht.:' total number ofSitc50 has previously been recorded. The most co mmon approach 
in this situltion is to Lise the region as the frame ofreference. The region can [hen be 
divided into a nllmber of smaller units such that all portions of tht: region arc 
situated in one and only onl' unir. These areas then become: the sampling units. 

The use of spatial units as samples from which ro make inferences about 
culrural phenomena h3s led to a certain amount of confusion among archaeologists 
(Mueller 1975) that only recently has begun to be resolved (Nance 1983; S. Plog et 31. 
1978). At issue is the differencc.~ between clement and duster sampling. Simply put, 
clement sampling requires that each element of the population be considered a 
distinct sampling unit. If the sampling unit is a specified area, and if our intcrest 
focuses on attributes of those unit s, thell we are conducting clement sampling. 
Common l'xampl es in archaeology include estimates of rhe: mean number of sites 
per grid unit or of the proportion of a site type per grid unit. Here we are 
conducting clement: sampling because the clements ofinterest are the grid units,Il01 

the sites themsdves. In contrast, ifour intcre!:>t focuses on making inferences about 
arrributes of si tes found in rhe grid units then we arc: engaged in a form ofcluster 
sampling. The most common use of cluster sampling in predictive modeling is in 
point-specific models (e.g., Kvamme 1983; Larralde and Cha ndler 1981; Reed and 
Chandler 19M). In these models, all sites found in the various grid units 3re 
combined into one group whose environmental attributes arc co mparc:d with the 
attributes of a group of nonsite locations; the.: resuir s are then generalized to the 
survey ul11verst'. 

The failure to distinguish between cluster and dement sampling leads not just 
to co nfusion but to miscakuiation of basic statisrics. The most common error is to 

calculate parameter estimates as if the cluster sa mple d:Ha had been collected by 
element sampling. In general this will lead to underesrimation ofthe sampling error. 
The obvious solution is to bl.~ clear about the typt: ofsample one is working with and 
then to usc..' the correct equations to calculate th(~ estimates. llnfortunardy. we 
usually design survt'ys with a multitude ofobjectives. During analy sis ofthe sun'ey 
results, then, the object of inteft:st , or the sampling element, varies, as does its 
relationship to the sampling unit. Although we will havc some idea of the tyPf",s of 
sa mpling elements in which we \\,ill be interested before the survey and analysis arc 
carried out, we cannot foresee all the possible units of interest. This is one of the 
main reasons why flexible, multistep :\ampling designs arc well stl ited to archaeolog
ical research. 

The first ta sk in designing a survc.;y is to subdivide the region inra sa mpling 
units and then ro select a specilied number of these units to survey. The immediate 
question.':. to anS\l.'er arc what size and shape should the.: units be and how many do 
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we need to sUTvey. The critical factor in determining the precision ofan es tim ate is 
the absolutl: n um ber of units sur veyed . in a 100,000 Ila regio n, fo r example, g iven a 
known population variance, a sample of lOGO units, each 10 ha in si ze , will yield an 
est imate of sire density that is {wicc as p:-ecise as that derived from a sample o f250 
uni ts , each 40 ha in size . This does not mean , howe ver, that the best formula fo r 
selec ting sample uni ts is simply to divide the region into very small u nits; logistical 
cost and lm.:ational errors escalate as unit size dec reases . 

\Ve have been discussing these issue.!! prim arily from t he pcrspct:t ivc of 
clement sampling. In the si te-density example g iven above, all the sampling units 
cnter into the comput a tion of the standard e rror, If our int e rest shifts from 
attributes of sampling unit s to attributes of sites, then the c.:ffecrive number o f 
sampling unit s shifts from the lOtdl numbe r of units surveyed to the number that 
contained the clement ofimerest ( in this case, sitt's), Thus, if we had surveyed 250 
40 ha units and found a total of 30 sites di ~t ributed among 20 of those units, the 
clTective number of sample cle:ments would not be 250 ( the number of units 
surveyed), nor would it be 30 (t he number of sitcs) . The effective number of 
elements would be 20, the nurnbt'r of sa mpling units (h at contained sites. Statisti
cians have suggested rh :H, as a rule of thumb, 30 or more such units are nee ded 
before varian ce est imat es and confidence intervals can be co mputed (e .g" Cochran 
1977; Dixon and Leach 1978; see ,Iso Nance 198):)40). A pern sal of the predictive 
modeling literature in archaeo logy indicates that this condition is rarely met . 

T he sile and shape ofrhe sam pic unit has been the subject of much disc ussion 
within archaeology Undoe <t al. 1975; ~·tueller 1974; S. Plog 1976; S. Plog et al. 1978; 
Sanders et.1. 1979; Schi · . r and Wei" 1982; Schifrer ct al. 1978). Two types ofsa mple 
units arc commo n in archaeology, sq uan: quadra ts and rectangula r transect s. There 
have been experiments with other typt':s of units, such as circles (e.g., Goodyear 
1975), bur these are no t generally used. i\'fu ch of the discussion surrounding 
whether to llse quadrats or transects conce rns the so- called edge effect. In survey s, 
all sites found in the sample units are usually reco rded. This includes sites that a rc 
contained wholly within the unit as well as those that are only partially loca ted in 
the unit. T hus, whe n a unit is surveyed the crew aCHlaily surveys an area that is 
somewhat large r than the unir it self. H ow largd This depends on the average size of 
the site. \\le will illustrate this problem with an example: drawn from a similar 
discussion in S. Plog (,:t:11. ( 1978:399). Lt.·t us ass um e that all sites in:l region have a 
radius of5O m. Ifwe survey fOllr square qua d rats in that region (hat :ueO.25 kml and 
a re situated as in the upper pan o f Fig ure 6.1 , an area of I km z is examined. But 
because all sites whose centers are located within 50 m of any border will be 
recorded, the survey will actually cov e r 1.44 km 2. T o show the effec t ofsa mple unit 
size, assume that the sa me area had bee n surveyed in twO rectangula r quadrats, 
each or which was 0.50 km ' (the lower portion or Fignre 6.1). The surve ys cre ws 
would stili walk the sam e 1 km~ a.rea, but now they wou ld only reco rd sites in a 1.30 
km:! area. Fin:lll y, the edge cfl'c:c[ differs betwecn transects and quadrat s. In the case 
proposed above, a quadrat with 500 m lon g sides actually cov ers 0.25 km2 with a 
hypothetical COvt.'r:lge extending to an 0.36 km 2 area. In contrast, a transect 250 by 

262 



!ii1iillliiiliii!ililiiii~:;:;~~:::;. 


D 

I": 500 Meters 

Actually surveyed 
(I KM 2 ) 

Area covered 
(1.44 KM2) 

:::::::::::.-. 


I" : 

tID 

D 


500 Meters 

Actually surveyed 
( I KM 2 ) 

Area 
(1.30 

covered 
KM2) 

Figul"e.' 6.1. Edge ctlcct (or ~urvt·y unjc~ wirh di lTncn t ~ i7.c: s and ~ h dPt· S. 

~ 
~ 

o 
(") 

r 
r 
m 
(") 
--I 
7. 
Cl 
7. 
m 
::;:: 
o,. 
,.--I 
o ." 

'" .... 
(5 
o 
r '" o 
'" <: 

o'" r 
.., 
5: 
m 
Z 
--I 



ATLSCHUL AND "IAGLE 

1000 m also covers ,n art'a of0.25 km', bur rhe hypo(he(ical unir surveyed is 0.]85 
km~. Thus~ the edge effect is greater as the sizt, ofrhe sites increases, as the size of 
the sample unit decreases, and as the ratio of the length ro width of the sampk' units 
lnc rt'JSC$. 

The edge c.:ffecr is in large part the rcason why site density and the [Oral 
number of sir~s rend to be overestimared. For example, if a 10 by 10 km (1 00 km') 
area is sampled using 40 square quadrats, each 500 m on a side, the crews would 
actually walk 10 km 2 or 10 percent ofrhe survey universe. But if none of the units 
adjoined and all sires were 50 m in radius, then all sitt.'s in a 14.4 km2 arca should be 
found (i.e., 0.]6 km'x 40- 14.4 km'). S. Plog e( al. (1978:395-400) have analyzed rhis 
situation in some- depth. Their work, drawn from simularions ofsurvey results from 
rhe Valley ofOaxaca, indicares rhar rhe smaller (he sampling fracrion rhe gr~arer the 
problem ofovcn.·stimation. This is exactly what onC would expect. As the sampling 
fraction increases, t he likelihood ofselect ing contiguous survey units also incr<.~ases, 
and the larger the: number of contiguous units the smaller the edge eflecr. 

Once the edgt' eOt.-cr is understood, it can be compensatc:d for in the calcula
tion ofparametcr estimates. F. Plog (1981:32) has sugg~sted (hat rhe hypothetical 
area covered by a survt:y unit be used in calculating site density rather than the 
actual unit area. The hypothetical area coverc:d is found by determining the av(~ragc 
site size and increasing the effective area ofthe unit by the radius ofan average site. 
Thus, ifthe average site radius is 50 III then a 500 by 500 m unit would become a 600 
by 600 m unit, clTectively changing the area from 0.25 to 0,36 km'. Nance (1983:3 II ) 
has suggested using modal site size as a more appropriate measure because site size 
usually follows a high Iv skewed distriburion. 

As illustrated above) transects - with their greater edge effect-allow uS to 
cover larger art.:as than quadrats . Thus, we can expect that more sitcs will be found 
in a transect survey {han in a quadrat survey of the samt' amount ofland. As long as 
steps arc taken to compensate for the edge drecr, there arc several good reasons for 
using transects, especially when our objective is to construct an inductively based 
correlative model. Since the site is most often the subject of interest in these types 
ofpredictive models, and since the absolute number of sites is usually the determin
ing factor of the power of the model, a transect design is the best choice for 
obtaining data for corrc:lativc purposes. This is (,specially true when we divide the 
total number of sites among various site types and then try to modd tht, individual 
site types. Although in theory these models make the most st'nsc (i.e.) members of 
the individual groups all f('presem the same type of cultural behavior), in practice 
they arc rarely cre;w:d because the sample sizC's of the individual site classes are 
almost always (00 small. In addition, although the e\·idence is weak, most studies 
done on archaeological data have indicated that transects yield more precise 
esrima(es (han quadrats (see Judge e( al. 1975; S. Plog 1976; Sand~rs et al. 1979; cf. 
Mueller 19?4). Finally, from a logistical point ofvicw) transects arc generally easier 
to layout in thc fidd and arc less prone to Iocational errors than are quadrats 
(Schifl'.. r e( al. 1978) . 
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Tht' compari~on between survey unjrs, howl~\'cr, is nor all one-sided. Quadrats 
arc probably more useful in smdies of the relationship bc[w('t'n sires and rhe 
environment. Precisely because of the smaller edge effect and lower length-width 
ratio of chese units, it is easier to control for and characterize surrounding environ
mental features. Thus, when our interest shifts from obtaining data primarily on 
site location to obtaining data on how sires arc si tuated in f("'\arion [0 environmental 
features (as is rhe case for many explanatory models), then quadrats may be rhe 
appropriate choice of sampling unit type. 

The choice of size and shape for tht:' sampling units depend:- on what we are 
trying to estimate and on making our best guess about the underlying ~ite distribu
tion. Most discussions about this issue 3.ssume that the paramcrerofinteresr will be 
either s ite density or the [ot ;.d numbe-rof si tes (fudge et aJ. 1975; :Vlatson and Lipe 
1975; S. Plog 1976; S. Plog et ai. 1978; Sanders ct ai. 1979). In cases whert' this 
assumption is correct, the primary factors to consider in choosing a sampling unit 
have to do with how these units affec t tht' number of site:" discoveted. During parts 
of the predicti vc Inodcling process, however, we are concerned with more than just 
numbers of sites. \Ve must also determine the rciationship between sites and the 
surrounding environment and between sites and other sites of the samc site class 
and differcnt sitc classes. To study tht'se laner i s~ues we need grid units that are 
large enough to capture thest' pattcrns, lnd we need to survey enough of these grid 
units ~o that we C:In generalize the resulting patterns with sufficient confidence. 

The diverse objectives discussed above again strongly point up the need for a 
multistep survey strategy. For example, we might survey a large number of small 
grid units to obtain relatively precise estimates of site density and then usc a smaller 
number or large grid units to determine the spatial relationship between sites. 
Whatever the exact ~trategies chosen, it i~ important to remember that several 
types of information are requi red in order to predict sitc locations. Use ofa single, 
set strategy will probably mean th:1t a larger proportion of the sample universe mu st 
be surveyed in order to obtain the same degree of precision on a number of 
estimates as can be derived from a se ri{"s of sampling srrarcgies, each focust"d on a 
separ~Hc t:.lrget. 

On ce we have decided on a sampling unit, the next question to ask is how 
mallY of (hese units should we survey? Here again (he answer re volves around our 
bt.'s[ guess as to the underlying site distribution, In most cases sites will be rel atively 
rare phenomena, but wht'n we do find them there will otten be several close 
roger her. This, of cou rst', is anothe r way of sayi ng that sires are rare and clustered 
events (i':ance 198]; Rogge and Lincoln 1984; Schiffer C( ai. 1978). It is not su rpri sing. 
therefore, t ha t t he result so f almost every s. urvcy show t ha t the distribu tions ofsires 
per quadrat (of whatever size) are positively skewed. 

The r('Suitt-. of a BLrvt sample survey in the San Rafael Swell of east-cencral 

Utah can be used to illustrate a more or less typical situation (Tipps 1984). Figure 6.2 

presents a series of hi stog rams of site density for three nonconrigLlous su rvey areas. 

All show pOSitive skewing. Many qu adrats contain no sites and progressively fewer 


quadrars concain large r numbers of sites. 
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Let us 3ssume that the d;';;[riblHion of sites per ql,,!drat for each sampling 
population as J whole is also posi[J\'eiy skewed. The Cemrai Limit Theorem (Hayes 
and \\'inkler 1971:292) states that the distribution of sampling means for samples 
drawn from this population \vill still approximate normality; the average of the 
sam piing means \I.'ill eq ual the population means, and the standard deviation ofrhe 
sample means will equal a,'K if these are based on repeated random samples of 
sufficiently large size. Cochran (1977:42) suggests as a rule of thumb that sample size 
should be greater than 25G 12, where G I is Fisher's rnetsurc of skewness. Table 6.1 
ShO\\':5 [hat for the Ctah survey results ploned in Figun.: 6,2, only [he Circle ClifT 
region survey meets this criterion) \\'ith J. 10 percent sampling fraction. Only by 
combining the San Rafael S\\,Tll survey area with the Circle ClifTsurvey area was the 
researcher able ro obt::tin an adequate sample size for the San Rafael Swell. From an 
anthropological standpoint, this is a questionable practice at besr. 

Several archaeologists have noted that adherence ro Cochran's rule will usually 
require a vcrv large sample size (e.g., Thomas 1975:68-70). "lance (198]:]03) has 
suggested another method, based on ~v1onte Carlo simulation, in which a hypothet
ical population distribution is created on the basis of the sample data. Repeated 
sample selection from this population then allows for :1 thorough examination of 
skewness. 

Thc task of selecting an appropriate sample size from a skewed population 
distribution becomes even more difTICldt when the subject of interest shifts from 
the sample unit ro the site. In rhis case only those units thar contain sites arc of 
importance. Thus, it is not the toral number ofsample units but the rotal number of 
sample units mimI) the number of sample units without sites that will determine the 
size of the survey. The problem thcn is to estimate how many units will have ro be 
surveyed before an adequate number ofclusters is obtained. The work ofa number 
of archaeologist:'. and human geographers suggests that fitting ofdiscrete probabil
ity distributions to supposed settlement distribution~ may be a useful approach to 

this problem (e.g., Clarke 1977; Cliff and Ord 197]; Dace'\' 1964; Harvey 1967; 
Hodder 1977; Hodder and Orton 1976; Hudson 1969; King 1969; Wood 1971). For 

TABLE 6.1. 

Skewness .....alues and sample size ~' by sludy l,acl 

Ropiii(.- Sd7rlplt Si~, 
StIl J) Tra(( Sf.r.sJ1JtH f/;J/IU ( n > 25Gj}) .-/cllfld Silnrp'f Siu 
-----~ 

To[::.d 10 percent nmp lo!.· 
Ci rcle' Cli !ls :m u San Rafael Sw e- ll 1.!J7 >97 98 

Ci,dc ClilTs 
10 p~." n.' cm ~;Imp ) t' 0.82 >17 30 

S:m R:ilr.l:'l Swt' 11 
10 p r;- rccTl[ sJ rn pk 2.47 .::::' 153 6~ 

Whj[t' CJnyon 2.47 ~> 153 7 

.\ J ."iPtl'J IT O I" Tipps l~: 13 2 , T ~b le 35 
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example, Wood (1971), Hodder and Orton ( 1976), and Nance ( 1983) argue that, 
because sites are olcen Tart.: and clustered events, tht, partern of site densities in 
many regions can be described reasonably well by the negative binomi31 distribu
tion. The negative binomial is descrlbed by two parameters, the arithmetic meJn 
and a positive exponenT Ck; sec also Chapter 5). For a region abom [0 be surveyed, 
an archaeologist can arrive at an estim3te orJ ,'('rage site density by using t he results 
of surveys in nearby regions wilh similar environment s. The positive exponent, Ii, 
can be estimated in a variety of wa~' s (see Bliss 1953). Tht: usual approach in 
archaeology is first to arrive at some estimate of the sample variance 3nd chen to 

calculate k using the equation 

k ., X, / (,l - x) 

where x :md f2 are (he mean and variance ofrhe sample (Nann: 1983j \Vood 1971). 

Once the parameters are defined, the probabilit ies ofobtaining a certain number of 
sites per unit can be calculated in a straightforward manner using the probability 
generating function 

(k+x-I)! 
P(x) for x 0, I! 2, . 

x!(k-I)! 

°otherwise 

where R = p/q = (mlk + m). 

Nance (1983:334-335) has provided an example of how the negative binomial 
distribution can be used to determine how many units should b~ sUfveyed. Using 
sample cstimates fOf x and $2 from a simple random sample survey or31 quadnts in 
the Upper Hat Creek region of British Columbia, j\.'ance calculated the parameters 
of the negati,'e binomial distribution, x and k. For a given quadrat size, then, he 
could pft'dict the number of "empty" quadrats that would be surveyed, the 
number containing one site, the number containing two sites, and so on. He found 
that the negative binomial distribution fit the observed site disuibution vcry 
closely (Nance 1983:J35, Tables 8.8 and 8.9). This lit was expected since the 
predictions \\'('re being compared with the data from which they wcre deri ved, but 
the resul ts indica te the paten tial ort his and ot her pro babili ty di stribution functions 
for indicating approximately how many cmp[~' units are likely to be found fOf a 
given sample sizt'o By extension, if a reasonable estimatL' of the probability that a 
unit will not contain a sitL' can be calculated, we can also determine the number of 
units that would have to be surveycd in order to obtain a specific number o f units 
containing siecs. For exampk', if the probability of any s.urvey unit being empty is 
0.50, then in order to obtain 30 units that contain sites we would need to survey 

30 = 11 - (number of empty units) 

30:: ,j - (TI)( probability oran empty unit) 

30 ~ " - (n)(0.50) 

60 ~ n 
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Nance (198]:]]8) has pointed out that the magnitude of the empty unit 
problem is likely to var), widell' from region to region. The problem will be even 
worse when interest focu ses on specific site types as opposed [0 sites in genc:ral. At 
this point w(.:' have two (ho'ces. \Ve can either adopt very large sampling fractions or 
try (Q reduce the spatial heterogeneity exhibited by most site distributions. 

The primary means by which archaeologists have attempted to reduce hetcro
gent'ity in site distributions is through stratification of the sample universe. Often 
archaeologists divide a sample universe on the basis ofcriteria that the), believe: may 
have influenced site location or char they believe can serve as a proxy for such 
influence. Common criteria include soillypC, vegctation zonc, physiographic unit, 
or any combination of the above. In many instances thc resulting areas are simply 
viewed as separau.: sample universes. For examp!c-. Thomas (1975:65) divided the 
Reese River region into three unit s on the basis of biotic commlloicies, and the 
resulting subdivisions were viewed as sc:parate sample universes. In order to draw a 
10 perct'fl[ sample of the entire region, Thomas actually selected 10 percent of [he 
sample units in each sampling domain by means of a separatc simple random 
sampling procc·dure. 

The main advantage of this approach is that it ensures that all regions get 
proportionall~' equal coveragL·. Further, because simple random sampling was 
conducted in each region, parameter estimates can be computed for each Stratum 
using formulas designed for sllch sampling . Jfinrerest focuses on estimates for the 
entire sampling universe (i.e., the areas encompassed by all st rata combined), 
however, then computing these estimates is somewhat more involvcd. For cxam
pit·, to estimate the standard error of the sampiL- mean derived from a simple 
random sample, the following formula is used: 

SE f ~r-:-1-_-II/"',,'-, 

~ 
where SE is the standard error, s is the standard deviation of the sample,,, is the 
sample size, and /\' is the size of the population. The standard error of the sample 
mean derived from a stratiflcd random sample is calculated as 

when'SE is the st:mdard error of the stratified sample, tli is the number of cases 
chosen from Stratum i, fj is the standard deviation in Stratum i, tl is the total number 
of cases chosen, and N is the total number of cases in the population. 

The standard error is clearly casier to calculatc for simple random samples than 
for stratilit'd random samples. The temptation is to make the assumption that the 
variability within and between straCa is approximately the same and thus proceed 
with calculations as if the sample were a simple random onc. The problem with this 
approach is chat each variable being measured may bt· charat:terized by ditlerent 
levels of variabilit y in the st rata and different degrees of correia! ion wit h the criteria 
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used CO create the strata (Dixon and Leach 1978:17). The nct result for most 
variables is [hac the standard error, as computed by the simple random sample 
formu la, is overestimated. This is true even if the same sampling fraction is used for 
each HfliUm. 

The stratification approach described above is best sui tt.·d ro relatively large: 
areas for which our information about ~itc location is limited . Many BUTeau of land 
~tanagemcnt Class II coal lease inventories in the Rocky i'v1ountains fit this descr ip
tion. These management-defIned universes can cover well more than 100,000 acres 
and conta in portions ofs(;.>\'cral river basins. \Vhilc at the outset archat.:ologisrs, may 
not be in a position to define strata that covary with site distributions, they may be 
able to suggt'st that each major river basin could have cncompassed a separate 
settit-ment-subsistencc systC'm. Failure to divide the region into natural units could 
lead to oversampling in some rc.:.'gions and undersampling in others and thus to 
rather poor parameter estimates . 

An alternative to this rype ofstratification is systcma tic sampling. In the lattt'r 
dLosign, sur vey units arc scl(,~cted at st'r intervals, with tht" first unit usually being 
chosen by a random process. Several experiments with archaeological data have 
shown that systemaric sampling can lead to rdatively precise parameter estimates 
Oudgc e( al. 1975; S. Plog 1976; Sanders ct al. 1979). The main disadvlntagc of 
systematic sampling is that the approach is liable to miss patterns in the underlying 
distribution that exhibit periodicity. Statistically, a systematic s:lmpling design is 
somewhat more difficult to evaluate than a random design because bias can only be 
estimated (Cochran 1977; Read 1975). 

Discussions ofsam pit· s[ rat ification usually do not refer to definit ion ofseparate 
universes. Generally, stratification means subdividing a sample universe into two or 
more strata and then sc:iecting dif1erent proporrions of each stratum for observa
tion. \Vhen the population exhibits uneven spatial var iabilit}" as in [he case of 
clustered clemcnts, such as sites, an areal stratification scheme that samples tht· 
strata in proportion to th(Oir e;;,[imated variance wiil, ifdone correctly, te;ld to morc 
precise paramctcrcstimatcs than simple random sampling, systcmatic sampling, or 
stratified sampling with proportional allocation (Cochran 1977:99- 103). Let us 
J!)Sllme, for example, tha.t a region consists of (WO vegcration zone~, 100 kml of 
pinon-juniper forest and 100 km 2 ofsagebrush. Further, let the population valuc for 
site density in the pinon-juniper zone be four sites per square kilometer with 1 

variance ofthn.·c, ~tnd the sitt:.' density in the sagebrush zone be two sites per square 
kilometer wi th a varilnce of0.75. A 10 percent sample of the 200 km~ region using I 
km2 survey units would result in rlw survey of20 units. Under 3 simple random 
sampling approach, each unit selected has a50-SO chance ofbe-ing locl(eci in [he 
pinon-juniper forest and a 50-50 chance of being in the sagcbru~h zone. Csing a 
binomial distribution we can calculate [he probability of selecting a speciticd 
numbe r o f sampk' unlts in one of these zones as 
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where PCr) is the probability of selecting r su rvey units, N is the total number of 
survey units selecrcd)p is the probability of selecting a survey unit in the lone in 
que>tion, and q equals I-p. 

Table 6.2 lists the probabilities of selecting exactly 0, 1,2, ... 20 units in one of 
the vegetation zones. The most likely outcome is that of obtaining 10 survey units 
in each zone, which will occur approximately 17 percent ofthe time. The chances of 
obtaining distributions of9-ll, 8-12, or 7- 13 are relatively good, with the 7-13 
distribution occurring about 15 percent ofrhe rime. \Vhile it is trul.~ that oVI.:r many 
samples a relatively even split can be expected, for any onl.~ sample then:: is a fairly 
good chance that one zone will be overrepresented and the other underrepre
sented. Given the population values, a simple random sample will lead to rathcr 
imprecise estimates. That is, sample estimates of (he population values arc likely to 
fluctliHe very widely and thus to be associated with large standard errors. 

Sampling each zone proportionally will not greatly affect this situation. In ollr 
example, if we were to treat each zone equally, exactly 10 units in (.'ach would be 
surveyed. For the sagebrush zone this might be sufficient, but given the large 
variance in the pinon-juniper zone such an approach would still lead to rather 
imprecise estimates. In this situation what we rcally wanr to do is to survey more 
units in the pinon-juniper zone than in the sagebrush zon(·. Huw many more? That 

TABLE 6.2. 

Probability ofselecting", specified number ofsurvey units in particular zone under simple random 
sampling, p - 0.50 

.\'ltlffh(r 0fS:rr,f)' UnitJ St/wd Pr(lb,}bilz~r 

0 0.0C00J09 
0.00002 

2 0.0002 
0. 00 1 , 0.005 

5 0.015 
6 0.0:;7 
7 0.074 
8 0. 120 
9 0.100 

10 0. 176 
11 0.160 
12 0.120 
\3 0.074 

I' 0.037 
15 0.0 15 
16 0.005 
17 0.00 1 
18 0.0002 
19 0.00002 
20 O.OOJOOO9 
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depends on (h~ variance of the sample mean and the cost of taking the sample. 
Cochran ( 1977:96) defines one function for computing cost ., 

cost = C = (0 + ~ clflh 

where cb is the cost per unit in Stratum h, nh is the numbt'f of units observed in 
Scrarum h, and (v feprescr. ts an overhead cos(. In archaeology I costS per u nit would 
include stich itcms as recording time and (ravel time (often the lancr is reprcsclHcd 
mathematically as 

where 'h is the travel COSt per unit). The objective, then, is co minimize cost for a 
specified variance ofche s{[atum's sample mean Of to minimize the variance ofehe 
sample mean for a specified cost. 

Ifone is not in a position [0 csrimltc cost and is wining to assume that COSt per 
unit is the same in all strata, (hen determining optimum allocation reduees to the 
equation 

wherctlh equals the number ofcaSeS to be selected in Stratum h, 1J refers to the toral 
sample size, Nh equals the number of potential cases in Stratum h, and Sh is the 
variance of the sample mean in Stratum h (Cochran 1977:98). This allocation is often 
refc.:-rred to as Nt'}'man' j al/ocatioll (Neyman 1934). For our previous example, using 
0Jeyman's allocation we would obtain the following results: 

20( 100 x 3) 
16n pinon-juo'p(.'r 

(100 x 3) + ( 100 x 0.75) 

20(100 x 0.75) 
4 

(IOOX 3)+(IOOx 0.75) 

Tht., point here is that if sample size and sample fraction arc relatively smal1, 
tht:n use of prior knowledge about [he nat lire of the phcnomt:non to be modeled 
may be the best way to obtain the precise estimates needed for modding. The usc of 
such information in archaeological madding has been rather limited, perhaps 
becau se many archaeologists believe [hat they arc not in a position to ofrer even 
good guesses as to the lIndt~ rlying population v:l.iues. 

One appro:1Ch to circumvent this problem is to perform a pilot study. Fot 
instance, if we were conducting a 10 percent sample survey of a national forest for 
[he purposes ofestimating sit(· density, one strategy would be to select a 10 percent 
simple random sample of predefmed areal grid units. This approach, while perhaps 
meeting (he assumptions ofsampling theory, many times leads to very poor results. 
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Estimates arc ofte n nor very prec ist"1and one is left wirh the feeling that for all the 
rigor W~ have sti ll nor learned vcry much. A better approach might be [0 assume 
that sire locations covary with certain mappable features (c.'.g., soils or landforms) . 
This assu mption could be.' rested by some type of probing or purposive survcy (s ee 
nc:xt section) and / or by a relatively small, simple random sample survey. Based on 
the.: results of this survey, specific criteria could be defined that would lead to a 
useful snarificJrion of the region, 

If a small simple random >ample survey had been conducted, then the sample 
could be pOllilralifld; that is, each of the units surveyed during the pilo t simple 
random sample eould be reclassified into one of the newl}' defined strat a. Cochran 
( 1977:134) notes thaI poststratificarion is almost as precise as proport ional stratified 
sampling in providing parameter estimates as long as the samples in eaeh stratum 
arc reasonably large (say, more than 20) and the efYens of errors in the stratum 
weights can be ignored. Basically, care mu st be taken to ensu re that the fin al sample 
matches the population in important respects . If, for example, access to survey was 
denied on private land along rive r bottoms, the sampling frame might have 
excluded a high proportion ofa certain slte type. Simply giving added weight to the 
si r e~ of that typ(,~ that rPtrt included in the su rvey may nor improve the sample's 
estimate for the density o f that site type; indeed, it may make it worse (Dixon and 
Leach 1978:21). 

If we can justify poststratifying the sampling uni ve rse, then we can lise the 
variance estimates l'Or each strat urn [0 determine the optimal allocation ofcases for 
the second stratified rando~n sample. Chances are extremely good that even though 
the paramecl'r estimates ofthe st rat ified random sample would be based on a smaller 
number of cast."!'i ( that is, assuming that the pilot study and the stratified random 
sample suryey together covered to percent of the region) the gains made by 
stratifying the region wo uld still lead ( 0 ma rc precise estimates than those based on 
a single 10 percent simple random sample. 

As a final nott, w(' want to point out one more serious pro blem with using data 
derived from st rat ified random sam pling to develop predictive models. Generally, 
when a multivariate pattern-recognition model is deveiopt."d some type ofcommer
cial software is used . All stati stical software packages ofwhich we are aware assume 
si mple random samples- that is, the variance-covariance matrices arc computed as 
ifthc- data were obtained through a si mple random sampling procedure. Ifstratified 
random sampling was used inslead}then the matrices will be computed incorrectly. 
The statistical ramifications of(his error are nor wellllndersrood, although it is clt."ar 
that the variances will be OVcft.'stimated. Perhaps the best approach to this problem 
is to wrirl' a simple progrJOl to compute the matrices correc tly and then usc these 
matrices as input to the: desired algorithm . 

Purposive Selection 

One of[he main objectives ofcollecting new data for predictive modeling is to 


make certain that no magnet site is missed. Many such sites will have been recorded 
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prior [0 the surveyor will at least be known to local informants. In this situation all 
that need be done is to verify the site's location and the nature of irs surface 
assemblage and environmental context. In cases where there is reason (0 believe 
that not all magnet sites arc known, survey strategies that maximize the chances of 
finding sires in (his category must be designed. There arc twO options. \Vhcn thefe 
is evidence that imponanr ccnters were discributcd according to some predictable 
feature ofehe narurallandscapc, stich as at a regular interval along a major riveT or at 
the confluence of major watercourses, specific areas can be picked [0 survey. A 
second approach, which is especially useful in regions occupied by complex socie
ties, is [0 usc some type of remote sensing information. Because regional centers 
tend to be: the largest and most complex sites in a g iven area, they can often be 
detected on aerial photographs (see Chapter 9). Another technique that enables the 
archaeologist to cover extensive ground areas in shorr periods of time is aerial 
survey from a small.engine aircraft or a helicopter. In this regard, Rogge and 
Lincoln's comments concerning the Tucson Aqueduct surveys (described in Chap. 
ter J) are parriwlarly appropriate. 

Our Tucson Aq ueduct Clse indicl tes thlt wc did Icarn l grelt deal \l'ith cach nC\l' su rvcy 
but imp!i..:s that our predictivc models wt:r..: not parricubrly robmt. Neither did 
t..:Ollduct ing the SlI n't: ys eXlcdy "by rh e book" emurt: meaningful input int o our 
pLuming proct.'~s.. , , If Wl.' \l'cn: to start the T ucson Aqueduct ,~t:ries of surveys ovt.'T 

today with thl.' 20-20 vis ion of hindsight , \l't: might dt:c idt: [0 ..pend 3 few dl)'S with a 
helicopte r looking ior platfo rm mound~ a.nd do nothing morc untill routt: ""( 3'> sl'lcctcd 
11984,191. 

The (wo approaches arc not mutually exclusive. Indeed, in one of the most 
intensive archaeological sllrface surveys evcr conducted, Millon ( 1972: 11-12) had 
the entire: confines of the city of Tcorihuacan photogrammet ricaUy mapped to 
reveallow.lying mounds, which are often the remains ofarchitectural features. The 
maps wcre then used to guide subsequent fieldwork. 

Research designs can incorporate both purposive selection and probability 
sampling. During the Tucson Aqueduct surve),s, for example, had the Bureau of 
Reclamation conducted a helicopter survey and found t he three platform mounds, a 
stratified random sample surv~y could have been conducted. Three sampling strata 
consisting of arbitrary 10 by 10 km grids centered over cach platform mound and a 
fourth stratum represeming the remainder of the survey universe could have been 
defined, with the surveyors covering rdatively high sampling fra ctions in each 
Hohokam community stratum and a much lower fraction oCthe remaining region, 

Finally, it is important to poim out that even with the best of sample survey 
designs, magnet sites will ~till be missed. Some have argued that this is exactly why 
sample surv~ys and predictive models should not be used, In an absolute sense, 
these critics are right; present models make more mistakes (especially gross errors) 
[han anyone is willing to accept. But blind lOO·percent surveys are nor necessarily 
the answer, Complete invenrory surveys that have no theoretical foundation often 
end up adding little to our understanding of prehistory. Further, depending on the 
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field methods (i.e. , crcw spacing, recording technique, erc. ), "l00-percent" surveys 
(an easily mis~ all types of sites, incl uding m3gnet sit<.:s. In shon, regardless of 
whether rhe sampling fraction is 10 percent o r 100 percent, there is no substitut e:' for 
a well-thought-our su rvey design that is g rounded in some theoretical foundation, 

Depositional and Postdepositional Processes 

The flOJI class of data needed for the creation of J predictive model concerns 
the processes affecting site detection and site survivability. From a res('Jrch per
spec ti ve) it is important to be able (0 predict areas where sites probably \vere 
loc Jted but where evidence of past activities has been destroyed by natural 
processes, \Vhile nega t iv e- evidence may no t be ve ry helpful in subs tantiating 
hypotheses about settlement loca tion, proper geomorphic interpretat ion may be 
cri tical if we are to avoid incorrect rejection of a hypothesis because of the lack of 
cultural remains. From a man age ment perspective, it may be less critical to model 
site destrunion tha t has resulted from natural processes, but it is st.ill necessary to 

model locations ofsites that arc intact bur not visible on the su rface. Buried sites art· 
perhaps the land man:1ger's worst nightmare. O ften they are not found in [he course 
of usual cultural resou rce studies and are only detened after construction or 
development has begun. The mitigation of adverse effects on buried sites often 
ends tip cost ing much more than the expenses of the ;!rchaeology alone. 

To find buried si tes the first step is to detcct and trace palco land su rfaces 
suitable ror hahitation, This task properly ralls into the field or geomorphology, 
\Vhile archae010gists have worked with geornorphologists for many yea rs (e.g., 
Butzer 1971, 1982; D:lVidson and Shackley \976; Hassan 1979; Haynes 1968; Haynes 
and '~ 5I)g:r·,o 1966; Jacobsen Jnd Adams 1958; Marrin and Kkin 1984; Saucier 1974), 

this working rcbtionship by and large has not be("n transferred into the area of 
predictive modeling. Geomorph ic licldwork should ideally precede at least one 
stage of archaeological fieldwork. The..' results of the geomorphic analy ses arc often 
presemed as maps of paleo land surfaces that specify areas where buried sites are 
likely to be found. If sllch studies were carried out in conjunction with archaeologi
cal surveys, :H(";}S designated b~' the geomorphologist could be examined with 
subsurf~ICE.' tests. 

The issu(,: of subsurface testing on su rveys has recently received considerable 
"ttention (e,g., Krakker ot"1. 1983 ; Lightfoot 1986; :-'1c:-'1anamon 1984; Nance and 
Ball 1986; \V obst 1983). Most of this interest stems from research in forested areas 
where th e g round surface is obscured. In rhese situations visual inspection of the 
surface g reatly underestimates the numbe rs of sites :.md leads ro highly skewed 
loeational patterns. If the .'5e factors arc not taken into account, then statements 
about settlement patterns that implicitly assume that the observed sites are 
rl'presemativc of site locations in gene-ral are likely to be highly inaccu rate. 

Thus far most research on discovering buried sites has focused on sites that lic 


on or near the surface, The approac h that has gained widespread acce ptance in this 
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situation is [0 space small subsurflcc probes, usually in the form ofshovel pits or test 
pits, at a set interval along a survey transect. Nance and Ball (1986) have shown rhat 
the likelihood of discovering sites wilh subsurface tests varies directly with the 
arrifacr density and rhl' size orrhe si tes. Another key variable in determining site 
discovery potential is the intensity with which the fill of the [t.'st is inspected. The 
probability of si te discovery incn."ases dr3matically with a shift from visual inspec
tion ofthe f!ll to screening of the fill. and the probability increases still further as the 
size ofthe screen mesh decreases. Ir is wonh pointing out, howl-ver, that evcn with 
:1 small interval between subsu rface tests and screening through fine mesh, the 
likelihood of missing small. low-densi ty sites is usually vcrI' high. 

The problem of buried sites is not confined ro forested areas or regions where 
the ground surface is obscured. Geomorphic changes can l~ad to buried sites in areas 
wirh good surface visibility. For examplt·, in some desert areas of [he American 
Southwest. remains of the Hohokam culture (ca. AD 200- 1450) can be found on the 
surface. Pedesuian surface survey results usually correlate fairly well with intact 
subsllrface deposits of chis age. Remains of the preceding Archaic and Paleoindian 
periods, however, arc nO( generally found on the surface. Sites associated with these 
periods tcnd to be found in deep erosional cuts or as the result of modern land 
disturbance or construction. Thus, an interpretation ofncgari\·c results of pedcs
trian survey s in these regions as meaning that no I\rchaic or Paleoindian sites lie in 
the survey area itwolves an inaccurate and unjustifiable logical leap from the surface 
to [he subsu rface. 

The problem of buried sites is fairly widespread and will always have to be 
taken into account when designing surveys {Q build predictive models. One 
approach is to use the result s ofa geomorphic analysis as a means of stratifying the 
area. The paleo land surfaces identified could each be assigned a relative probability 
ofsite discovery. This probability could be based on previous researc h. the types of 
depositional environments represented, or a combination of these factors. Each 
stratum could then be divided into grid units and a number ofgrid units sdcctcd for 
survey through a random process. Optimum allocation of the number of grid units 
sC'iected in each stratum could be based on the relative probabilities previously 
defmed. Each grid unit could then be subdivided into smaller units. with a set 
nllmber of these units being selected for subsurface tests through either a random 
or a systematic pro<: c.: ss. 

The sampling scheme described above is referred {Q by stat isticians as t'Il'o-uage 

sampling or ,ub,ampling (Cochran 1977). Although the statistics can become rather 
involved, this type of survey design can lead to unbiased and precise parameter 
estimates. Parenthetically, if the design is· extended to sampling the subunits 
themselves, thcn i{ is referred to as /hrlC-Jlagt sampling or mId/is/age sampling. The 
Janer term is often misused by archaeologists to refer [0 sampling designs rhlt are 
carried out in sequen{ial steps (e.g., conduct a I percent simple random sample 
survey of a region [step II. stratify the region [srep 21. conduct J 10 percent 
stratified random sample su rvey of the region [step 31. and so on). Although the 
term Jnld/iu(lgf seems c.:ntrenched in {he archacoiogicalliterature, [0 avoid confusion 
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with other uses of the tl'rffi we refer to this typ" of sampling design as rrJllltii/(P 

throughout this volume. 

DATA COLLECTION IN CRM CONTEXTS 

The preceding discussion of su rvey st rateg ies was presented as though we 
already knew where we were going to su rvey, how we wcre going [Q survcy, and 
how we wefe going to record data. In pfacricc , these :lTC three ofrhe most imponant 
factors th~H 3rc invo lved in design in g l SUTVC)'. In an ideal setting, all three arc 

detcrminl"d on the basis of n'search objectives. Bur surveys condll([cd in cultural 

resource management contexts an: subjec t co a sn of unique consuaincs tha t oftcn 
g reatly res trict the ways that these threl" t'3cro rs can be integrated into the overall 
survey design. In (he followin g disclission we ("xamine the ways in which manage
ment needs hJ vt· shaped su rvey design Jnd ~valuatt.· the common responses ro thcse 

needs in terms of their usefulness for model building. These issues will be discllssed 

under three specific topics: su rvey universe, survey intensity, and data recording. 

Survey Universe 

Ideally, [he selection ofan area to su rv eyor from which sample units are to be 

selected is based on theor(,ticai propositions underlying thl' research design or 
topics. In theory, researchers want to scll'ct a survey universe that conforms to a 

cultural unit. In practice, however, at best we can only approxim::ne this situation. 
Cultural systems rarely have sha rp boundaries. Dl'fining where one system ends 

and another begins is usually impossible for ethnograp hers, to say nothing of thl' 

problem faced by archaeologists . Further, cultural systems change through time in 

nature and in size. Thus, a survey universe suitable for studying one culture mJ.Y be 
too large o r too ~mall for examining its predecessors and its successors. 

A common solution ro thi s dilemma is to selec t a region [hJ.t conforms to a 
nattlralunit, such as a drainage..· basin or an island, with rhe size and type of the 

natural unit selected depending on {he resea rch topic. At olle c,.·xrreme, SJ llders 
chose..' the entire Ba~' in of Mexico as rhe survey u!1i\'l'rsl: for J st ud y ofrhe origin of 

state- level socie ri c.$ in highland '\'texi co . The ensuing project lasted 15 years and 
involved about 50 lield months or actual ,urVl'Y (Sanders ot aJ. 1979:19), Ylo" 

projects are not nearly J.$ l3rgc..' as the Basin of .'vtexico survey, but in all caSeS the.: 

sdection of a survey universe is a compromise between two opposing criteria. On 
the one hand, we want a re..·gion thar is large enough so that we can reasonably argue 

ei t her tha t the remains of t he prehistoric settlcmen t systems t ha [ characterized the 

arca arc containt.'d within the survey universe or that all major components o ftho ')c 
systl'ms arl' ,H It'as t represented. On the other hand, we want the survey lIniverse to 
be as smail as pos$iblc') thl·rc.:by allowing us to maximize our 5un'ey efrort. 
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For su rv:!y.s conduCted in a cui rural resource management context, the survey 
u ni\rerse is mos t often defined not by archaeologists but by land mao3gers, who 
must take into account' nuoy fa ctors th:n have link to do with an·hal'oiogicli 
f(.'s earch. In some casl'S the su rvey uni verse will encompass one or marl' natllral 
u ni ts , but usually it will no£. It is appropriate, [heft_,fofc, to cons ide r the implica
tions rh:lt managcmenr-ddiol.'d SLlfV('Y universes have on building predictive 
model:;" 

To illustrate these issues ,,'e will usc the example of a Bureau of Land 
\ '1Jnagcmcnt cultural resource maoagemcnI pro.iect in the San Rafael Swell region 
of east-central Cllh that was mcntio ncd earlier. The San Rafael Swell is an 
elongated anticline approximately 110 km (50 mil long and 50 km (23 mi l wide, Since 
1979 the Bureau of Land ~'lanJgcl11cnt has sponsored six rna,ior survey project s in the 
region Cfable 6.3). All of these projects were designed as probabilistic sample 
s urveys of managem t.: nr-def,oed survey universes encompassing difi'(.renr portions 
of the swell. O f the more than 550,000 ha (ca. 1,360,000 acres) comprised by the San 
Rafael Swell, morl.' [han 10,000 ha (ca. 25,000 JcreSi 1.8 percent of the total area) wefe 

inven toried as pan of these seven projects. 

The mod('ling t.:florts carried out in conj uncrion with these .su rv..~ y projects 
mirror ~he general trends in predictive modding. The first locational analyses 
co nsist t.:d of univariate and bivariJtL' correlat ions bc[wcco site Iueation and specific 

TABLE 6 . .3. 

Estim3h:d dem,it}' of prehistoric sites in project ;ucas in alld ncar che S"n Rabel Swell 

,'";ur/htr of ,\,urrb..,. 01 ,11( 01" S IilM/UT JJ5{ ( 

~y. 4drdf Sn t SStJ'llfJ Prrbrflt)n, rt/ S:fl1 Cor~fIJ~'I U 
( a t rtf) ~#.dJr,J /s Slft~ t tY' ~/(.,Jr(lf Inf(r PlJi 

San Rl: r:l cl 3 \\'cll 
10 pe rccnt S) m l>ll." 16() os l ,lfi ::to ,SO 

Cl' ntf ai COli JlroJl:C 1 
\'luddy Pbnninc. L' ll i{ 
( I-bu ck 1979::1 ) I()) 22 2.27 Il :l 

C cntral COlll'rojl'(f 
Summcrvill(' Phllmns:; t "ni! 
(H:lll c\.: 1979J. ) 160 15 10 1.27 n , 

Southcrn Co:,ll'ruJl'u 
Hll n!inglO n PIJ.llnine; L"l1il 
( I-h urk 1mb) It<) 10 7 0,70 

C l!'n! r.l1CUll II , r r,A (t II 
{T homa.s ('1 31. 198 1) 100 ) I 7 0,22 ±O.17 

C e.n lr:l l Call H, ArclllI 
( Tho tIl :l~ ('{ :11. 1% 1) 160 II 101 9, 18 
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environmental variabl<.~ s (Hauck 1979a, I 979b ). Significant associations between site 
locations and environment were then combined into overlay models (Thomas ct al. 
1981). Finally, most recent attempts usc sophisticated multivariate discriminant 
function analysis and hierarchical clustering models (Tipps 1984). 

None of these models has been a very good predictor. This is not a result of 
glaring errors in the derivation ofrhc samples or the application ofrhe statistics. 
Instead, the poor accuracy ratc appears to result from '~tunnd \'ision." Each model 
was based on an inductive, panern-recognition approach that viewed the survey 
universe as the.: only region of interest. Even a casual glance at Table 6.3, howcvc.:r, 
indicatl"s that wide flucruations in mean sire density exist. This is probably also true 
of the sample variances, bur cxcepr for a few cases, these are nor published. These 
variations arc probably caused by settlement and subsistence practices that arc 
regional in scope. Thomas and his colleagues appeJr to recognize this situation and 
state rhat 

Th~ C(.'n rr31 Coal II Cb$S H Inventory wa.so dl'~igned lS a 10 pern'nt slmpk r::mdom 

\lmplc of three s:J.mpling uni\'l:rscs (Study Telets I, II, a.nd Art.::l 111 ). The notion 

undt.:rlying [his typt.: of Jppro:Ich is rh;!t rhl' 'SllrV1..'Y rl'St!lt, Oflht.: sampk'd pouion of t."adl 

t rJ.et Dn be gl'nt.:rJ.li7.~:d O\'t.:r thl.' cot ire tract. This method Ill;!)' lx· ll ~l'f\l l ior ('valua[ing 

sitc st:mil i\' ity in Trac ts I and II. But . . :\ rca III docs not appt.:ar 10 be .1 ~clf-comaincd 


cu ltural unit. Sell il:ment in this J.rl'J Sl'e tns to be direcily rdated [0 praetiel.'s in Ihe 

3.djoining regions . .. ,Trying to gcnt:nli7..l· (he resuirs of I he s;:ampkd pan ion orA fl.':dll 10 

I hl' l'ntirc [r:let is apt to b< mi.sJcadiog. \ bny of IhI:" eric iell Ii.::uures in t hl.' SCI Ilemt.:1l1 

sy ..t.:m dl.'arly wt.:re not included in tht.: sampling univcnc-. InsIc:Jd or dl'vclopinr; :J 


~t:l ti.s t ic;l.H)' \'.1lid modd th:H makes little loginl sense, it ~el"ms !;tr pn::ferabk· to en.:ate a.n 

i!HCrn311y con~ i s l t:nt modd of [he settlemcnt ~y$( l'm that em then bt.: uSl·d to cV:lluJ.t(." 


the .\ rC:1111 position of the system and thus to predict areas ofsitl' scn~it i\'ity IThomas et 

,I. 198 L199) . 


Thus, while a 10 percent simple random sample of Cent ral Coal II, Area III might 
yield a represenrative sample of rpalia/ ullitr for rhar area, it is quire possible rhar 
rcgional patterns in (he set tlemenr sysrem would go underected on rhe basis of this 
sample. Even though rhe parameter estimates mighr be reliable, predicrivc models 
based only on patterns discernible within the sampl(~ universe are, in rhis case, 
likely to yidd (li,appointing results. 

There is no eas), solution to this problem. To build useful predictive models 
the researcher must hJve reason to believe that the survey universe conforms to a 
cultural unit, or failing this, he or she must usc a defendable proxy, sllch as a natural 
uniL If we mUSt usc management-defined survey universes) then ir is crirical that 
the fl[ betwet~n an appropriate cultural or natural unit and the arbitrary universe be 
assessed. In addition, the resulting model must take into account the position of the 
resourCL'S in the survey area rdative ro the larger se ttlement-subsistence sysrem, 
and it mUH incorporate regional facrors atlecting settlement location. 

Designing a research straregy to accomplish this task may involve some 


restructuring ofmany cui[ural resource management programs. To use [he BLM as 

an examplc, one solution would be to subdivide each district into natural units. 
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Instead of building a model for each major coal lease project, archaeologists might 
build a predictive model (or each indiv idual nawra iuni ( within [he dist rict, with 
the model being periodically refmed as morc data become available. Thus, [he data 
from a large· coalleasc p roject might be bc(rcr used in several regional predictive 
models in stead ofone ad hoc, projl:ct-'Specific model. Such a program would require 
that each project ca rri l'd out within the district emphasize (h <.: collection ofcompJr
able data. \Vhile it is possible to combine probabilistic samples, [his requires 
considerable stat ist ical expertise. A much mon.' se rious problem is that of ensuring 
that {he entire sampling univ<':Tse is adequately covered. The usual government 
policy is not to su rvey privately owned land. (n m any areas private property covers 
much of the Hdesired" land, sllch as the bortomlands in a river valley or the 
elevJ ted, \\'dl-drained soils in a deltaic plain. ~any sites, including a high propor
tion of magnet si tes, will often be fou nd on private land. If we eliminate such areas 
from our sampling uni ve rse , our abilit-~r to predict sire location will be greatly 
hindered. 

Cert ai nl~' [here arc many problems involvcd in designing cultural re50u rce 
management projects that focus on culturally meaningflll study areas, but projects 
that emphasize development of ad hoc modds Cor arbitrary units are ckarly as 
rcsponsi ble for the poo r showing of these mode Is as allY thing ci:5t:" Un less th is focus 
changes so that the mod els can be rel ated to cultural phenomena, it is unlikely that 
the results will improve. 

Survey Intensity 

\Virhout d oub t the single most important fa ctor affecting the number of sites 
locat ed on a survey is rhe effort made to find them. Survey in tensity can be 
measured in terms of the ra t io of pl'fson-days CO sguan.' miles surveyed or on the 
bas is of the spacing between surveyors (fudge 1981; S. Plog et ai. 1978; SchitYer and 
\Vdls 1982). Regardless of rhe measure llsed , all studies [0 dare confirm Judge's 
(1981:128) statemen t that uthc more timl: spent in the field looking for sites, thc 
more sites will be found, II 

$, Plog et 31. (1978:39 1-393) examined the rdationship between survey inten
sity (as mC'asured by pl'rson-days per square mile surveyed) and c~t imates of site 
density using the results of 1"2 surveys conducted in the so uthwC"stern United 
Starc,.'s. They found a strong positive linear correlation betwl'cn the t wo variable:" 
which is [0 say that as survey intensity increased so did site dcn:\it~r. Pan of this 
relationship is a n .. sult of the time spent in recording si tes and making collections 
onc(' the sires are fou nd. Thus, we would cxp('C[ that as mort: sires are found more 
timt' must be spe nt in the field. S. Plog et al. (1978:393) arguc convincingly, 
however, rhat this is not the whole story , that indeed, ifon e con trol s for extra time 
spent reco rding sites, a strong positive relationship sti ll cxi5ts bet ween survey 
intensity and sire dens ity . In theory, a point of diminishing returns should be 
rcached beyond which incrc-a.!lcs in intensity do not result in proponional increases 
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in sire: density estimates; for the 12 survt'ys studied , hO\\.'CVCT, no evidence was 
found that indicated that such a point had been rcached (5. Plog d ai. 1978:393; sec 
also discussion in Chapter 4 of this volume),. 

SdC'crion ofan appropriate level ofsurvey intensity requires careful considera
tion of s~ \" cral factors. The major consideration al1ccring survey intensity should be 
(h(.~ 1~scarch objectives. Is. it neccss;u y to locate "311" resou rces, o r are we prlmarily 
inte res ted in specific types ofsi tes? For example, the Basin OfNkxico survey project 
disc lissed earli er was designed to recove r ";} varirty of data on where people had 
lived during the pre-Hispanic past in the survey lrel" (Sanders e r li. 1979:15). The 
surveys, rherefon:, focused on habitation sires and made no arrcmpr to identify 
more ephemeral, limited-activity loci. The selection of a flexible $lIrve~r interval of 
bctwcen 15 J nd 17 m (Sanders ct al. 1979:24) was lppropriace to these objectives. 

In cultural resource management contexts, surv cys arc rarely focused on a 
panicular type of site) and even surveys designed to ;lcquire data for a specific set of 
resea rch objectives are uncommon. Usually the stlrcd goal is to fmd "all" the 
resources, Such a hubric ideal can never be achieved, howcver, and what is really 
mc':mt by Hall" is some very high proportion of the recoverable resources. 

Selection of an adequate survey intensity also depends on th(~ nature of the 
resource bas(' and the prevailing natura l conditions . As discussed in Chapter 4, the 
latter din.'c tly influence ollr ability to detect archaeological material, J factor 
categorized by Sc hilTer and others as visibility (Schifkr and Gumerman 1977: 186- 187; 

Schiflc r .1 nd W,·lls 1982:349; Schiflcr e t al. 1978:6). In general, high vis ibilit y means 
that ifL'Ui tlirai rt:mains exis t o n the su rface an obst.'rver shou ld be able to see them. 
High-visibility areas gencr30ll y have sparse vegetarion, c.g., deserts, beaches, or 
plowed fields. Low-visibility areas have masked or ob~ cured su rfaces. Pedestrian 
sLlrface survr.:y techniques yield poor re sults in these arc'as and must br.: su pple
mented by subsurface investigations, such as shovel tests Ot test pits, or by 
techniques that e:-.pose the su rface, like raking or plowing. 

Cultural factors affecting thr.: likelihood of site detr.:ct ion include site SIze, site 
obtrusiveness, site distribmion, and surface anifact dr.:nsity. In gene ral, hrger sites 
have ;,l: better ch3ol1cL' of being found than smaller ones; sites with high surface
artifact densities are more likely to be seen than [h ose with spa rse or no surface 
expression ; and sitl's with obtrusive fr.:atures, such as mounds or masonry, arc r.:asier 
to find than sites bcking such fr.:3.tllres. \Vhile these geller;:iliz ~Hions may seem to be 
self-cvident, they have imporram implications for the. rnodd-building proccs:,. 
Prc viously it waS arglled that in order to constrl\([ 3. successful predictive modd we 
need (#) to ha \'c reliable t.' ~ timares of a number of paranll.'ll'fS associ:ncd with site 
location, (b) to locate 3011 o r mos t of the magnet sites, and (c) to assess the effec ts of 
depositional and postdepositional processes on site vis ibilit y. To discovL.' r magnet 
sites, large areas mu st be covL.' red, bu t often these areas. can be su r\'eyed at vcry low 
intensities withou r affecting the result. In con trast, accurate parameter es timation 
for less-obt ru s.ive sites fl'quires 3. much higher leveL of etlun per urL'a surveyed. 
Given these compr.:t ing requirements, seve ral archaeologists have recently Jdvo
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cated multistep surv!...'y designs in which different types of dara arc acquired at 
diOerent stJges (e.g., Doc ile 1976, 1977; Schiffer and Wells 1982; SchiOi:r et al. 1978). 

Since survey intensity directly affect s the rate of site discovery, one would 
think that this issue would weigh heavily in the evaluation of proposed survey 
strategies. [n practice, this is rarcl~' the case. Many scopes of work specify the 
interval between surveyors; the types of subsurface tests, if any, that will be 
conducted; and the information that is to be recorded on each sirl'. The rationale for 
providing these fixed specifications appears to be that this will ensure that all 
contrac[Qrs bid on the same work. \\'hilc thc objective is understandable, it is 
imponanr [hat t he land-managing agencies realize the effects ofthi~ decision on the 
model-building process. When these as pects of the survey methodology ate pre
specified, sun'cy intensity becomes a parameter rather than a variable. Thus, what 
is probably the single most import an t factor affecting the power ofany predictive 
model is being arbitrarily set by the managing agencies for reasons that have little to 
do with archaeology. 

3The point is that selection of the survey intensity is a critical and integral Stl P 
in the model-building process. The choice should be based on fieldwork and su bject 
to testing and refinemen t, as well as to changc..~s when the research objectives 
change. One contribution that the managing agencies can make to the accuracy rate 
of predictive models is to allow survey intensity to be set on the basis ofarchaeologi
cal considerations rather than procurement procedures. 

Data Recording 

In the preceding section we dis(ussed some of the factors atlecting the number 
an d types of sites discovered. Yet we side-stepped perhaps the most important 
issue-what is a sire! To a large extent, site definition is actually an issue of dat a 
recording . That is, we need to define consi!l'tent and replicable cri teria by which 
space ca n be partitioned into those areas that we want [0 cal! sites and those that we 
do nOL Traditionally, this issue has not been problematic. Arch aeologists tended to 

focus on large si tes with discrete boundaries, such as masonry pueblos or earthen 
mounds. In the last decade, however, so me researchers have focused on loc i where 
c\'idenn~ ofcultural acti vit y is more ephemeral, such 3S isolated finds or low-density 
artifact scatrers, and it has become clear that these ph("nomena can be quite 
important to Ollr underst anding of (he prehistory ofa region (e.g., Doeile 1976, 1m; 
Goodyear 1975; Teague and Crown 1983; T homJs 1975). 

This awareness of the continuous aspects of the archaeological record has kd a 
number of archaeologists to question the utility of the site concept (Dunnell and 
Dancey 1983; Ebert et al. 1984; ThomJs 1975; see Jiso the discussion by Ebert and 
Kohler in C hapter 4). These investigators have rightly pointed out that sites do not 
behave; rather, peop le behave, and th<" se behaviors have a spatial dimension that in 
no way correlates with discrete boundaries on a one-to-one basis. Th(~ problem of 
site definition is directly analogous to the ucommunity boundaryH issue, which has 
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been extensively debated in social anthropology for the p"" 50 yC'ars (Bell and 
Newby 1974; Galc,ki 1972; Goodenollgh 1966; Leach 1961), The central point orthis 
issue is that anthropologists have taken the village or settlement as their unit of 
analysis even though they recognize that people living in a villagt: may work ourside 
the village, may own land outside the village, may navel our ... idc the village, and 
may have relationships \\'irh people living in othl'f villages. The basic qu(;"srion, 
then , is Jt what point does the researcher St'[ boundarics for the analysi$ and treat 
the resulting unit as an objt.'cr of scienr ific inquiry? \Vhilc no absolute answer h~lS 
emerged, most anthropologists have lIsed a spatial aggregate (whether it be a 
village, (Own, or c ity block) as the unit of an::t1ysis. They argue (a t least implic itly ) 
that the people within this unit ~He more similar to CJch other [han they are to 
people li\'ing outside the unit and l or thal they have more relationships with car.:h 
other than rhey do with outsiders, In archaeology , Chang (1967, 1968) ha, put 
forward similar arguments in favor of using the settlement, defined ·as a single 
component, as the unit of analysi s. As many critics of C hang's approach han.' 
poimed out (Binford 1968; Clarkl' 1968:648), howevlT, componcIits can only be 
defined after the asseml:-lagc has been analyzed. 

\Vhile it may be obviolls at the time of J. survey that J mile-long Iirhic ~ca[[cr 
represents multiple occupations, one still ha s to de;,1 with the problem of recording 
it. Should an anempt be madc to define discrete loci ~lS scparate: si tcs, or should thl' 
entire area be labeled onl' site? Furrhcr, if the anifacr S(3[[('r extends beyond the 
survey unit, shou ld the cntire scuter be recorded or only the portion within rhe 
unit? On the last poinr mos t archaeologists would agree that if pan of a site is 
located in a sample unir, tilt: entire site should be recorded. In practicl') however, 
there arc insrances, such as coastal :;,hcll middens and lirhic quarry sites, rhat can 
easily exrcnd into two or morc sam pIt: unirs and for which ;lilY boundary is 
somewhar arbitrary. 

There is no easy \va)' ro ansWer rhese questions in the abstract. i\'tany agen cic~ 

and insriulrions have rricd to resoln: rhem by adopring arbitrary crireria, such as a 
minimum of five flakes per 5 m 2, for sire definition. This practice is nor wirhom irs 
problems, and ir has importanr implicarions for model building. For example, 
consider two areas) onc in which five flak es were found in a 5 m' a re3 and anorher in 
which four flakes were discovered in an area ofrhe same size. t : nder the arbirrary 
deflOirion given abovc) the first area would be recorded as a sire and the second as 
containing four isolated find s. During rhe devdopme nt of J predictive model, 
isobtcd finds are u~ually either ignored or given the sa me \I.'l'ight as si res. For rhe 
example above, this would result in a model that would either incorporate five sires) 
four of which are in exa({ ly the same l'nvironmcnr, or one si te, wirh rhe area 
containing [he four isolated finds being conSidered a nonsi rc. Does this make scnSl 
10 rerm s of human behavior? !vlosr likely it does not. 

The decisions as to ""har will be designated as a site and how rhar phenomenon 
will be recordl'd m uS t therefo re be based on the issues being address{'d, In the case 
ofrhe Basin of\-Icxico survey discusscd above, interest focused on the developmclH 

ofcomplex socieries, and rhe survey crews concentrared on finding habirarion sires 
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(Sanders et 31. 1979). Tn contoS[, in rhe Reest· Rive r survey Thomas (1975) was 
interestcd in st.,trlemenr ;:md subsistence patterns of Great Basin hunrcrs-and
ga(hcrers, and the basic un it of analysis shifrt'd from the site to the artifact. 

\Vhile the definit ion of a si te, or morc precisely of the uniT of analy sis, mList 
Il{'cessa rily be related to t he.: research question being addressed, it is :lIsa critical that 
resources be rl~corded in a repli cable and cOI1:sistent fashion. Idea lly, we should be 
able to record resou rces in a way that is indcpl·ndelH a fhow a "sitell is define-d . For 
many state and federal agenc ies [he Sill' itself is litt le more rh:m a bookkeeping 
device for maimaining accurate records. For thest: purposes an arbitrary definition 
will suffice . Th e problem, then, is to find a way (0 till out site records for agencies 
using onc ddinition, while retaining the capability to manipulate the dat a ac cording 
to any of a numbe r of other definitions. 

O ne approach to this problem is to view archaeological data as a se ries of 
hierarchically arranged dimensions. The scale at which data are colkcted will 
dete rmine in wh ar \\.. ay :; they can be used in subsequent analyse s. Dara collected at 
more specir,c Icveb can lIs ually be ::l.ggregated to express inform ation at a higher 
level, but the reve rse is nor [rue . For cXlmple, data on artifacts can be grouped to 

pro\'ide charac (crisrics of feat ures or sl (e~ (stich as cOll n ts ofdifferent ;trti fac t types), 
but information collect ed at the site level cannm be used to dc:rivc informacion 
about artifacts or fe3ture:, found within ::.i tes. 

In view of the ongoing dl·bate about (h e deslt3bility of condu cc ing Hsitcless" 
archaeology (Dunnell and Dancey 198]; Ebert e[ al. 1984; C hapt e r40f this volume) 
within the context of predictive modeling, it may be worrh'\vhilc to explore the 
possibility of colkccing field d::l.ta in several hierarchical le\'els , with the dara being 
organized in sllch a way rh3r relationship!:' betwl'cn leve ls are easi ly recovcrable. 
That is, data could bt· collccted at the level s or(a) the survey units, (h) the sites 
(however one might dtoo~e to define rhem), () the diffe rent activity :\reas or 
tearu res wit hin sites, 3nd (d) individual artifac ts, \\' het her from particular fearll res or 
as isolated entitics. ld('n tifi cation ofth e su rvey unit in which sit es are found, the si te 
in whi ch features occu r, and rhe features with which artifact s are associ:H(~d ( lise of 
poiulfrI to different levels in the hierarchy) would permit data fro m more specific 
k'vels to be aggregated at combined in orde r ro provide variables containing 
information about th e next higher level in the hierarch y. Durand and Davis ( l985) 
hav e recently reportcd a sim ilar scheme, which they designed to manage archaeo
log ical [(:sources in ~cv3da. Other states, suc h as Hawaii, also have similard3ta bast' 
systems. 

Table 6.4 presents a hypothetical example of this approach. It depicts a 
four-level hierarchical design ex tending from the sllrvey unit ( the highest level) to 

the artifact (t he lowest level). In Tabk6.4 rhe relationships between diffe rent level, 
in the hiera rchy art.' maim:lined by label s on each successive reco rd thn identify, in 
turn, the survey unit, the sire, the feature, and the artifacts (which arc eitht'r 
isolat ed find s or parts of features). A particu lar level in the hierarchy can take on a 
nuil value in order to acco mmodate fe:1turcs th:H arc nor associated wirh sites in the 
tradition al sense, as well as isolated anifacts. In practice, rhe number ofhierarchic;ll 
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TABLE 6.4. 


Hypothetical four-level hierarchical field data file

Survt'Y Cnil I , .. ,." 

I Siir: 1 

....... , ..... , .. , .. (survey unit d:Hl) . , , ................•.•.... 


... , , . , . . . . ,. (site dlll) ..................•• , .... 


Ft';Hun.: . . , , ... " (Il::ilurt'd;u:1) ... , ............ . 


Anif3 ( t I ., .. , .... , ( :miIJct dal.l) ..••..... 

Aniflct 2 

AuiflCl l 

F~ :}(urc 2 

2 ArIl(lCI I 

2 Art ilJCI 2 


2 Anif:)c( 3 


Silt' 2 

2 FC;J(lIrt: 

2 

2 

Anifl.(t I 

Anif:.!.;:t 2 
Si[t~ 

Fea(urt: [ 

Ft: :Hllr~: 2 

2 AnifaCT I 


2 Artif;JCl2 


o l~oll!t:d 

FC':Hllrc 

o Isolated 
Fe.Hurt: 2 

o 2 ,-\rufact I , .. , ................•........ ... 


o 2 Artlfle! 2 .•.... , ........ •• ...... " .....•• 


o o ho1.UL'd Arllfact 1 


o o Is obred AnifJ.c( 2 ....... •• .... " ... , ..••.. 


levels, (heir labl'ls, and otht'r dt'rails ofimplemen ration would be the responsibility 
of rhe sysrem designer/ user. 

This methodology would make it possible [0 deal wirh culrurJI remains 
occurring eirher in packers rermed sift,s or as individual items varying in densit~ 

across (he landscape. In the lac Cer instance, if the spacial coordinates ofartifacts have 
bce.:n recorded, their locations could be.: ente.:rt.·d into densiey-contouring algorirhms 
or k-means analy sis (Kintigh and Ammerman 1982) as (he basis for activity area , 
feature.:, or site definitions. Furtht.·rmore, characteristics of lower-order records 
could be: used in any number of ways to construct variables descriptive of higher
order entities. Artifact variablt·s could be transformed, for exampll', to produce new 
information to describe: the: features or sites in which they were (ound. Similarly! 
dat;] from feacures might be aggregated to characterize sites further, and data from 
sites might produce additional informarion on (he survey unit in which the)' were 
located. Counts of different types of artifacts recovered from features might be 
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transformed to cons truct do new variable of artifact density for each feature, or 
difTerent types offc.:atures found on sites might be tallied ro build 3 new variable to 
characterize sites. It is L'asy ro envision many other kinds of aggregaH:d variables 
dut could be developed from lower-level constructs to charactl..'rizc higher-k'vc.:I 
entities . 

A st'cond major Issue in cultural resource man3gcment that dirccrly affects how 
resources arc recorded is the question o[whL'rhcr or nor 3.rtiJacrs should be collected 
(rom the surrace. Over the past dL'cade a Hno collection" policy h35 become 
standard for more ~lnd more federal agencies. The basic reasoning behind this po li cy 
is that more information is los [ by uncontrolled surface: collection than is gai ned by 
having access to cultural mJterials in the laboratory (5. Plog et al. 1978; Schifl"er and 
Gumc:rman 1977). CertJiniy mJ.ny cuhllral resource inventory su rveys arc con
ducted without benefit of a research de::,ign, J.nd in these casc::, collecting :utifacts, 
especially if they will not be analyzed, se rves 110 useful purpose. But if the 
development of regional predictive models, such as tho::,c advocated earlier in this 
chapter, were ro become a m:ljor objective, then results from ::dl sun'eys could be 
used in rhe process of mode} buildmg. In this casc, the no-collection policy would 
have saions ramifICations. 

\Vhile in theory a no-collection policy should not affect either the quality or 
the exH'nt ofarrifact analyses, in practice the re is link question thac it doe", In-field 
analysis requires a It'vel of competence for crew mc:mbcrr. th :H is gene rally not met. 
\Vhen in fact the requis:ice expertise is assembled, tht' costs ofin.tidd analysis risc to 
a k'vel comparabk with laboratory analysis. There is no qucstion th:H, as commonly 
used in cultu ral resource management, thc no-colle'ction policy saves money. The 
qU6(ion is, at what cost? 

As is the case wit h so many survey decis ions, tht· impact of the no-collection 
policy is ditTerent on ditrerent types of si(es. For large sites with high su rfacc
artifact densi ties, this policy may not have st"fious negatin' effects. Ampk numbers 
of(empOfai diagnostics can usually be found on the surface withollt much rrouble, 
an d cvcn without diagnostics these siws Jre generally classifiable into one ol"onl), a 
small number of functional sitt, types. Real probl ems can arisc, however, when 
low-density anil3ct scatters arC' encountercd. In sHch cases we usually need all the 
information Wt' can get in order to even hope [Q defint· useful analytic units. Often, 
d isting uishing criteria, such as tht· presence or ab:)cnce ofa certai n chen: type or the 
proportion offhke categories, will not have been devised at the time offieldwork. 
Thus, evcn if crewS arc well trained for in-field analysis, it is simply nOl possible to 
foresee all the observations tha t might prove to be informative. Further, detailed, 
tc:chnically complex analyses, such as wear pattern or oq;anic rc~idue analysis , may 
be rC'juircd [0 address issues ofsite function. These simpl y cannot be conducted in 
the field. 

The no-collection polic), is in pan responsible for our current inability to 
d istinguish useful site classes, and it is unlikely that this si tuation will change until 
th e policy is altered . The probk-m of lost provenience fOf surface-collecred materials 
does Ilot necessarily ca ll for the radical measu ft· 0 f prohibiting collections; contract 
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ing agencies could simply require that provenience information be recorded. If a 
project is designed to collect data for predictive modeling, what is needed is not that 
we record less information but that we record morc information and record it more 
accurately. 

The issue of accuracy is central [0 any disclission ofdata recording. Basically, to 

develop a predictive model three categories ofdata are needed: (a) Ioeational data, 
(b) environmental contextual data, and (c) cultural data. It should be pointed out 
that, if nonsitcs are [0 be used in the prcdiC[ivc model, data on the first two 
categories must be recorded for each nonsitc location as well. 

The im portancc of precise loeational data may seem obvious for any project 
with the stated goal of developing a predictive model of site location. WhH is 
perhaps not so obvious is the ditlicultl' of obtaining such data. S. Plog ot al. 
(1978:415) cite experiments on Black Nlesa in Arizona in which sites were revisited to 
check on locational accuracy. Considerable variation was found, with some sites 
located accurately and others having been plotted more than 200 m from their 
correct location. These problems tend to multiply as more researchers work in an 
area through time. In a Class I overview for the Upper Gila River in Arizona, Phillips 
et al. (1984) I"und that the same site had been recorded three separate times (twice 
by the same institution) and plotted in three different locations. Portions ofanother 
sitc had been recorded as two separatc sites by survey teams who were recording 
only the portion of the site that fell within their project area. 

Locational errors such as those cited above indicate the need for some type of 
error-checking program within the survey design. Ideally, such a program would 
include Hdouble-blind" tests in which a second survey crew with no knowledge of 
the fIrst crew's results resurveys the same quadrat. This procedure would be 
especially helpful for federal agencies, such as the BLM, which have placed a high 
priority on maintaining comparable data standards between surveys. Double-blind 
tests allow us to assess locational accuracy, and because two crcws record the same 
resources, they also permit us to examine variation in the other aspects of site 
recording discussed below. 

Another approach to assessing the accuracy of data recording is through 
random spot checks. Such a program would ensure that sites are recorded accu
rately, but i[ will not assess whether sites were missed. A third approach, often used 
on large surveys, is to use separatc survey crews and recording crews. Survey crews 
mark encountered sites on a map (and, if possible, in the fIeld) and the sites are then 
visited by the recording tcam. This approach has the advantage of providing a 
check on recorded site location and of improving the consistcncy ofdata recording. 
The recording crews usually have fewer people than thc survey crews, and their 
members have been specifically trained to collect the desired data. 

Collecting environmental data is perhaps the most confusing and difficult area 

of data recording. The reason for this confusion appears to be that archaeologists 

have only poorly developed theoretical notions about the relationships between 

aspects of sitc location and thc cnvironmcnt. The prevailing tactic seems to be to 
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use as many environmental variables as possible, in the hope that something useful 
will fall out. The result has been a mushrooming of the quantity of environmental 
data being recorded. Less than a decade ago, one-or two-page survey forms were 
the norm. Today many forms arc standardized at the state or instirutionallcvel, and 
often they are 10-\5 pages long and accompanied by a 20- to 30-page instruction 
manual! 

It is not at all clear that the recent trcnd toward standardization has either 
improved the accuracy of data recording or provided the desired data. This is 
especially true of features of the environment that are difficult to distinguish 
without quantification, such as plant communities, or those that arc known to 
change through time (c.g., vegetative zones). Instead of having archaeologists, who 
may be poorly trained, make many of these observations, a more dTieient approach 
would be to determine for a specific project the en\<ironmental factors associated 
with site location (either through background research or in a pilot study) and then 
train crews to make only these critical observations. This approach encourages 
flexibility rather than standardization in recording procedures. It rna}' be [rue that 
at some later date an archaeologist may find that data pertinent to a specific 
problem were not collected. But the same thing can happen even under the 
alternative approach of trying {Q record everything at once, and worse, the "record 
it alP' approach probably increases the chance that whatever data are recorded arc 
recorded inaccurately. 

Once we have decided what data to record, we then necd to decide how to 
record them. Some typcs of data can only be observed and recorded in the field 
(e.g., site location, artifact assemblage, etc.), but others, sllch as vt.'getation and 
slope, might be recorded equally well cither in the field or in the laboratory. There 
is no question that data collectl.'d in the laboratory are less expensive to acquire and 
casier for others to replicate than field-recorded data. Before the decision is made to 
collect data in the laboratory, however, the researcher must determine that the 
resulting information will be sufficiemly accurate and precise. Specifically, ifinfor
mation is going to be taken from 7.S-minute USGS quadrangles, the adequacy of 
these maps for providing the data at the required scale must be tested, rather than 
assumed. Verification of tcst information taken from maps should be carried out 
before the n..·search dcsign is finalized, and the test data should be selected from a 
variety of cnvironmcTual settings. 

The decision concerning whether to collect certain data in rhe field or in the 
laboratory will also be affected by several project-specific considerations. If field 
crew members do not have the training to recognize vegetation patterns or to 
distinguish different artifact types, it may be unrealistic to expect them to record 
such information in the field. On the other hand, there may be instances where 
variables exhibit interaction effects, m:lking it necessary to record the data for these 
variables in the field-information that would otherwise be collected in the bbora
tory. As a case in point, if site size falls below a particular threshold, it might be 
desirable to record some aspects of microtopography in the immediate vicinity of 
the site during the field visit. Iflaborarory determinations of slope rely all cllcula
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tions using rdatively sma.1l selle topographic maps, [he resultant datJ may reflect 
only a general average in the neighborhood of the sire. 

The rhird class of information needed for predicrive modding involves record
ing ofcultural phenomena. In general terms we want to know as much as possible 
about [he activities that took place at a locale and about the timing of those 
actlvities. Data pertinent to these objectives dt'scribe the nature: of artifacts and 
feature s present and their spatial distribution. Many of the issues that were 
discussed in the context ofareal su rve), have correl:ttes at the level ofsite recording. 
For example, just as the spacing between su rveyors is the single.: most imponanr 
factor in determining the number and type: of sires fo und in a survey, the spacing 
between surface collectors is the primary detcrminant of the number of types of 
artifacts collected (or observcd) at a site. Questions of sample size and fraction, unit 
size and shape, and sample design mus t also be resolved at the si te level. 

There are, however, fu ndament al ditTerences between regional survey and site 
collection strategies. Ar rhe regional level we begin with a clearly defined sample 
universe. At the site level, the first issue to be decided is the boundary ofthe unit. In 
areas of high surface visibility, determining the areal extent of a site may not be 
problematic, in which case defining 3n appropriate collection or observation stra
tegy is relativdy straightforward. At sites with minimal or no surface t~xpression, 
much afrhe rime spenr recording rhe site will be devored to defining the boundary, 
with little or no attempt being made to obtain a representative sample of the 
cultural assemblage. 

A second diJTerc.'nce is that at the site level we are sometimes in the position of 
being able ro define rhe entire population of,urface artifacts, or at least a vcry high 
proportion thert'of. This is especially true oflow-density artifact scatters. Often it is 
less time consuming to fla g and map each artifact in the entire site area, and collect 
rhem if possible, rhan ir is ro grid rhe site and sample it. Furrher, because one of the 
major problems in pf(~dictive modeling is site-class definition, and especially func
tional defmition of lIndiagnostic artifact scatters, complete distributional assem
blage analysis is often a requirement rather than a luxury. 

In contrast) sites with high anifact densities \1,:i ll probably have to be sampled. 
These sit es art' not likely to present major definitional problems, however, since 
rhey will usually yield diagnostic remporal and lor funcrional dara. Any type of 
probabilistic sampling design that ensures that aJl areas of the site arc inspected is 
likely ro yield rhe dar a necessary for sire-class dcflnirion. 

Anotht'r type of site, the large, low-density artifact scatter, is much morc 
troublesome. In many cases the designation ofsuch a phenomenon as a "site ll is a 
misnome r, if rile' is taken to mean anything other than a defined area o f cultural 
materials. These sites arc usually interpreted as resulring Crom multiple occupations 
at which similar (or dissimilar) activities may have been conducted. If we arc: to have 
any hope of disentangling these multiple occupations, precise dlstributional infor
mation from large block unirs must be collecred. Thus, rhe grain size ofa grid placed 
over such a sire musr be ar least as large as one clusrer of arrifacrs and features. 
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Decisions about appropriate survey unit sizt' and shape should be based on J 

preliminary reconnaissance o f the sitt'. Once a grid has been established over {he 
site, an appropri31c number of survcy units can be seic.'c (cd for sampling, with 
arrifacts and features in each selected unit mapped and collected or observed and 
recorded. 

In some areas ofwidespread, low-density artifact seancrs it is impossible even 
{O distinguish whefe onc site ends and another scans, Van Tries Burron (personal 
communication, (986), faced with sllch a situation in the San Luis Valley of Colo
rado, developed 3. survey procedure, termed lrattuCI rt'cordi"tv in which the location, 
length, and orientation ofsets of2 m wide [ranscc(s were specified, Transects were 
spaced every 100 ft and provcnienced to a O.lO mi2 unit. Counts on all anifacts and 
on a specified list ofenvironmental artribures found in each transecr were made and 
computer coded. In this wayan entire 20,(XX)-acre parcel was surveyed. This 
approach was highly sllccessful in this case because rhe {'ntirt' area could be 
considered onc l:uge, low -density scaner. By nor forcing rhe results inro an 
inappropriate concept (i. c" sites), the researchers were able to make useful statc
men{S about the quantity and nature of cultural resources in a reliable and replica
ble manner. 

DATA PROCESSING 

The collection and processing of new data for predictivt, moddlng, whether in 
the field or in the laboratory, has traditionally been 3 labor-intensive and largely 
inefficient process . The advent ofcomputcrs held ou t the promise that the process 
of getting information from the field into a form that could be analyzed could be 
greatly speeded up an d streamlined. During the 1960s and most of the 1970s many 
projccts utilized large mainframe computers for this purpose, with varying degrees 
of succcss. Yet it was not until the rise ofrelativdy inexpensive microcomputers and 
associated hardware and sofrware that the porential of automated data processing 
came within the reach of the vast majority of archaeologists. 

h is not ou r purpose here to review thi~ rapidly changing flcld, In stead, we will 
discuss some ofrhe factors that should be considered by rhose who wish to automate 
data collection and processing, 

Preliminary Considerations 

The process ofcollecting and recording da" for predictive modeling should be 
carefully planned from the beginning of the project. As Sarasan ( 1981:48) has 
pointed Out l once the research design has been selected and most of the data fOf a 
project have been collected, restfucturing of the data system may be extremely 
time consuming) cos tly , or both, and in certain situations it may indeed be 
impossible, 
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In-Field Data Recording Options 

At the prescnt time many difTerent system options designed to converr raw 
data into machine-readable form exist. Not all of those available are suitable for use 
in ficld-recording situations, however, and some that arc adaptable to field use arc 
more practical in certain settings [han others. Faerors other than intended 10c3tion 

of use also influence the choicc of an optimal data-recording system. One of the 
most important considerations is to minimize (he number of steps between data 
observation and machine-readable record, since this reduces the opportunitit·s for 
tran sc ription errors (G aines and Gaines 1980; Nagle and \Vilcox 1982). Considera
tions affecting decisions about data recording will differ between field and labora
(Ory sC Hings of a single project, and data recording will probably be subject to 

dificrcnt constraints during each new investigation. 

The most commonly used recording format is the familiar, handwritten data 
code sheet, which is llsed in various permutations for coding site surveyor artifact 
data. Data code sheets have been in use for a long time and arc not likely to be easily 
supplanted as the primary archaeological tool for field data enrry. Handwritten 
forms arc highly portable, survive all but the most adverse field conditions, and 
provide a readily acccssib!t.· hard copy of the information they contain. "\Vhen:lJl 
else fails, one can always go back to the field notes" is perhaps the most commonly 
held (if not always the most accurate) archaeological perception of data recording. 
On the other hand. most code sheets filled in by hand arc not machine-readable and 
must go through a secondary transcription to attain this state, a step [hac has the 
potential fo r introducing errors into rhe data. 

Nevertheless, variations of the handwriuen data code sheet will continue to be 
used in gathering data. as they should for small to moderately sized projec ts . 
Because si((~ survey and/or artifact forms have to be transc ribed, they should be 
designed to follow as closely as possible the intended flow oCiater machine cntry. 
Ch<-'nhaJl ( 1975) lists many "do's" and Bdon'['s" for those who anticipate develop
ing and using hand-completed forms as the first stage in data entr),. 

Another well-know n paper format. the optical mark. OMR. orOPSCAN form. 
possesses many o f the advantages of the handwritten data code: sheet but is directly 
machine readable as well (Nagle and Wilcox 1982). Customized forms have been 
employed to create artifact records in the field (Nagle and Wilcox 1982). to code 
faunal data ( Bonnichsen and Sanger 1977), and ro capture site data on several 
archaeological surveys (Klinger 1977. cited in Schifrer ct a1. 1978: 14; Scholtz and 
Million 1981:18). If creatively designed. customized OPSCAN forms represent a 
viable alternativt: to the lise of handwrittt.·n code sheets for field data cntry since 
they are well suited to handling intcrval-scale data as well as other numerically 
codablt", ordinal- and nominal-scale variables in common use in prcdictivt.· model
ing. OPSCA~ forms might also be chosen as J means ofdata entry when poo r field 
environmental conditions eliminate or restrict the use of otht.~r automated 
possibilities. 

291 



ATLSCHUL A:-iD ;\;AGLE 

One of rhe mos t promising arc-as of automation in field data collection is the 
contlnuing ucvclopmcnr of portable data collectors. Th(~sc machines, often no 
brger than a standard caicuiaror, record and store data in a machine-readable 
format that can subsl.'qucnrly be transferred to 3. more powerful and less porrablc 
machine. Portable data (aHectors, or PDes, have been lIsed since the carly 19705 in 
the flcIds of forestrv and mining (Cooney 1985). Many of the early POCs had 
de-dicHed function s, sllch:ls determining [fCC' height or board feet, which restricted 
their liSt' to onc discipline. 

In tht'late 19705 a number ofarchaeologists began experimenting with the lise 
of POCs in field situations (A ltschul and Sanders 1984; Stephen and Craig 1984). 
\Vhilc the technique was promising, these researchers ran into a number ofcommon 
obstacles: most notably, excessive power demands, programming difficulties 
(many of the ea rly machines, such as the Hewlen-Packard 41 series, could only be 
programmed in a language specific to that machine), storage limitations, communi
cation problems, .nd the inability to prod uce paper copy in the ficld. With the 
advent of lap or notebook computers, virrually all of these problems have been 
solved. Computers art.· now readil), avaibble rhar can eas ily be carried into rhe field, 
arc barrery powered. have built-in communication capabilities) and can utilize one 
or more high-level programming languages. Furrher, the development ofbarccry
powl'red pc:ripherals, su ch as microcasse ((e drives and princers, provide the neces
sary storage requirements demanded by archaeological field situarions as well as the 
capabilities to produce on-site hard copy offield forms and bit-mapped dra,.. ings. 

Laboratory Data Recording 

Although much has been made of the potential usc ofmicrocomputcrs on-site, 
this is rarely feasible. By nature, surveys arc mobile. and microcomputers (even the 
so-called portables) are ill-de~igned for this purpose. N1icrocomputers may be more 
useful on-site during excavations, but by lnd large the primary purpose of having a 
machine in [he field is to record and S[Q re data, and in this role microcomputl'rs 
( even with all their power and capabilities) are simply no match for the lighter, less 
expensiv l~ , and more maneuverable PDes. 

\Vhen.· microcomputers (an be used effectively is in the laboratory. Here the 
computer can provide data entry , data storage and managemenr, text editing, and 
staristical manipulations and can serve as a mechanism to communicate with and 
transpof{ dara (0 ~lOd from other micro- :lnd mainframt: computers. For su rvey 
projccr~ of evt.'n moderate size, data management with a data base management 
system is probably a cost-effective strategy. A!\ mos't archaeologists arc familiar with 
these co mputer capabilities, they will nO( be discllsscd further. 

\Ve would like to notc, ho\\'Cver, that aU commercial s tatistical software 
packages (w hether for a micro- or mainframe computer) with whi ch we are familiar 
reqllirt' input d ata to be in the fo rm ofa sequential (and generally ASCll format) file. 
RC'cords in such a file (so-called On files) usually correspond to a survey unit, a site, 
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or an arrifact, althollgh these record types would not be interspersed on a single file. 
Since this will probably be the file format in which the vast majority of predictive 
madding analyses are conducted) anyone conu:mplating using a generalized data 
base management program to store and manipulate his or her data should be 
cognizant ofche fact that it will be necessary (Q convert the records, or a subset of 
t he records, to a ilat file format prior to conduct ing st at ist ieal analyses. F orr unarely I 
most software packages incorporate utility programs to accomplish this step easily, 
but the capability of creating a sequential output file structure should still be 
ascertained in advance ofselecting any particular software forclata base management. 

CONCLUSIONS 

This chapter has presented an outline ofche data needed to create a predictive 
model, some of the factors that should guide the development of a survey strateg), 
to obtain those data, and the constraints of data collection in a cultural resource 
management contcxt. By virtue of (he fact that different t}'pes ofdara arc needed at 
different times to build a predictive model, rhe process lends itself vcry well to 
multistep survey designs. \Vhilc each situation will call for a distinct strategy, some 
general guidelines can be suggested. 

The first step of fieldwork should concentrate on three topics: (a) magnet 
sites, (b) depositional and postdepositional processes, and (c) estimates of site 
density and of the range of site types. Some sort of informed probing of specific 
locations ( i.e., using information from local informants or regional knowledgc) 
combined with extensive areal coverage (either through imagery or actual nyovcr) 
should detect a large proportion of the magnet sites. A detailed gcoarchacological 
analysis should provide [he necessary information on paleo land surfaces as well as 
indicate past trends in environmental conditions. Finally J some.: typ~ of small-scale 
probability sample survey can be used to calculate working density estimates and to 

obtain some notion of the range in variability in site types. Sample universes should 
conform to natural units, and t he area to be surveyed should be stratified if previous 
information can lead to the definition of justifiable strata; otherwise, a simple 
random sampling approach is advisable . The level of surve), intensity for this first 
stage should probably be high. 

The second step of fieldwork should be devoted to obtaining the specific 
information needed to develop the predictive model. Data must be gath('red on the 
relationship between site locations and environmental features and between sites 
and other sites. Based on the preliminary density estimates and the location of 
magnet sites, the sample universe(s) should be stratified if at all possible. For 
example, catchment zones can be defined around each intrinsically important site 
and treated as separate strata, as cm environmental zones that shov.' wide ranges in 
site density. Optimal allocation formulas can be used to maximize survey resources. 

It may be necessary to increase the grain size of the grid during this stage of the 
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survey. This will especially be (rue if interest focuses on inrcrsltc relationships so 
that a high proportion of survey units must contain ('\\' 0 or more sites. 

A third srepofflcldwork is necessary [0 tcst the mode!. At this stage some form 
of purposive selection may be used to designate for survey areas predicted [0 

contJin sires and areas predicted not to contain siu:s. Alrcrn:nivcly, the region 
could be stratified on the basis ofhigh, medium, and low probability ofsite location, 
and each resulting stratum could be sampled according to some probabilistic 
design. Also at this time the geomorphic map of the survey area should be tested. 
One approach would be [0 place subsurface tests, such as decp cores, rcst pit s, or 
shovel probes, according to some multistep >ampling design. A second possibility 
would be to usc:: some type of subsurface test, such as backho(' trenches at specific 
localt:s along an alluvial terrace. 

Discussions of multistcp survey designs are nor new in archaeology (e.g., 
Binford 1964;Judge ct aJ. 1975; S. Plog <t al. 1978; SchilTer and Wells 1982; SchilTeret 
a!. 1978) . Implt:mt:ntarion of such dt:signs, however, is less common, and multistep 
surveys are almost noncxistcnr within cultural resource management contex(s. By 
its vt.~ry nature prcdictive modeling is a mulrifacC'ted process; it is imporr:lI1t, 
therefore, that surv~ys designed to collect data for predictive modeling projects be 
multisrep as well . 
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Chapter 7 


USING EXISTING ARCHAEOLOGICAL SURVEY 
DATA FOR MODEL BUILDING 

Kenneth L. Kvamme 

This chapter examines the usc of existing JrchJcologic~1 survey data for the 
development orarchacologicalloeational models. Observe that iran a prio ri deduc
tive modeling strategy is being pursut"d, then there is no need for site survey data of 
any kind for model dcn~lopmcnt (since presumably the Hrulcs" of prehistoric site 
placement will be derived through theoretical or other mcans). Hence, this chapter 
necessarily is oriented toward quant"itJtivc model development based on patterns 
exhibited by empirical data, in this case existing site survey data. 

A fundamental assumption made throughout this chapter, unless otherwise 
stated, is that the arcbat'o/()giealfiu is thl' basic unit ofanalysis. For some strategies, a 
grid cell ofsmall size (e.g. , 50 by 50 m) .hat contains a site or a significant amount or 
prehis[Qric cultural ('vidence.:' is the unit ofanalysis, but this grid cdt type ofunit can 
be assumed to be included in discussions using the site concep[. 

Our primary concerns when using existing site survey data arc with loeational 
and site content information because these two types of data arc impossible to 

obtain without additional survey. \\le are interested in the /octl!iom of known sites 
because most empirical modeling strategi(,s arc based on patterns identifl(~'d in 
various characteristics of si te locations. \V e an~ interestcd in Iiu co"lrn! information 
for clues that might suggest site function or type, cultural anlliation, or period of 
occupation. Thes~" data are important because we want ideally [Q devdop models 
for specific types or period groupings of sites. As noted in Chapter 8, however, 
trustworthy inferences about site function often are difficult to make based on site 
survey information, and for many sites all that can be said is that a prchis[Qric site is 
present at some location. 

A third type of information that usually is available in existing site survey 
reports includes \'arious environmental descriptions pertaining to a site's situation 
(e.g., vegetation) soils, landform). Although ('nvironmental data usually 3.re the 
very information that is needed for many modeling strategies, th~' kinds ofcnviron
mental data commonly included with most site reports often will not coincide with 
the data requirements of a locational analysis and modeling strategy, and in any 
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case, the environmental observations usually arc inconsistently recorded from site 
to site. Fon unareiy, the environmental information reponed in existing site survey 
data is not critical [Q IDeational modeling because such data can be observed and 
measured (and consistently and reliably measured) in vinually any manner on 
various kinds of maps, aerial photographs, or even through remote-sensing or 
computer-based geographic information systems techniques (see Chapters 9 and 10). 

Collectively, existing site survey data fonn a large and unclt..'Tutilized body of 
information that is available in almost any region of study. This body of data 
represents the cumulative effort of, pcrhaps, decades of archaeological work per
formed at considerable cost. Although archaeologists might argue that random 
samples of site survey data (collected on the basis of regional probabilistic sampling 
designs) arc necessary to make valid rcgionwidc generalizations, new surveys are 
expensive. Moreover) such an argument neglects an important source of potentially 
abundant and useful information in {he form ofexisting site survey data. Ie could be 
that existing data .are well distributed throughout .a region of sClIdy and are 
lIapproximarciy representative" of a region's archaeology. Alternatively, using 
procedures discussed in this chapter, it might be possible (0 make existing data 
be((er represent the archaeology of a rcgion through removal or reduction of 
apparent biases. If existing site survey daca could be used in loeational srudies in 
place of nc~' survey data, considerable savings in rime and cost could be realized. 

Ofcourse, the quality ofexisting site survey data might be questionable and 
biases might exist in those data. A major focus of this chapter is on ways of 
removing, or at least reducing, apparent biases from existing data bases in order to 

obtain better-quality analysis data Sets for use in model development or testing. 
There is no procedure that can correct all biases, of course, and it certJ.iniy is not 
possible to make good data out ofbad, but a number ofprocedures arc available that 
can be used in an effort to reduce cenain biases. In most cases, existing archaeologi
cal data bases do not constitute a representative sample of the archaeological 
remains in a region of interest; even in cases where some type of random slmple 
survey results ilrc available, the procedures discussed in this chapter will be useful 
for preparing other available data for usc lS, among other things, a tcSt sample with 
which to assess the performance ofsite-location models independently (see 44 Assess
ing :Ntodel Pc:dormance" and 44Indl'pcndent Tests," Chapter 8). Problems in the 
usc of existing dlca are myriad, and only a few can be discussed in detail here. The 
following pages consider the implications ofthese problems for model building with 
existing data. (The statistical and math('matical details of model development arc 
discussed in Chapters 5 and 6; the application of these methods in model develop
ment and testing is illustrated in Chaptcr 8.) 

USE OF EXISTING DATA FOR SITE-LOCATION MODELS 

A few years ago I conducted a large survl'y designed to yield a random sample 
of prehistoric sites that was to be used for developing archaeological models of site 
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location ror the region studied. Arter the survcy was completed I had the opportu
nit)' to meet with J stltistical consul ting group in a university mathematics 
departme nt. I presented maps illustrating OliT ran dom sampling design and the 
loca tions ofthe sites that we had discovered . The same maps also happened to show 
the locarions ofa few hundred si tcs known rocxist prior ( 0 the survey. Although we 
disc ussed several interesting topics, the one that srruck me most forcibly was that 
the s tatisticians wcre amazed that I had conducted such a large and expensive 
survey when several hundred sire locations were already known for that region. 

This re asoning went against all my archaeological training and against what r 
perceived as an accepted notion in settlemenr archaeology : that in order to make 
valid regional inferences about archaeological site location (o r any other) patterning 
one nct:ded rep resentative samples chosen on rhe basis of probabilistic sampling 
theory. T his position has been stated by Binrord: 

I'roblb ility ~ :Jm pli ng i.\ , , . 1 ITIljor t!lt:( hodologic1l im pro\'I.·mt: nt which, ift::H'cutcd on 111 

le n ol s of dll:l collection in fu ll f<.'cogn ifion Of lhl· inht." rcnl di tTe rc!1ccs in the f)3ture of 

obsc rV~H iOllli pOpllbtions whic h :Hcillt:o logis ls im 'esligatl.·, C:lO r(."~tlh in t hI." product ion 

of ldcqUlh." :lIJd rl.'prcscm:lIivt: d:U3 useful in (hI.' st udy of cuhu ral p rocl."ss 11964:4391 , 


The statisticians did admit that my sample seemed very nice, but they pointed 
out that sampling is a pragmatic effort conducted for the purpost: of reducing costs. 
That I had sampled in the rlfsr place indicated a concern ror cos t, yet I conducted an 
expensive survey even though the previously known sites existed in large numbers 
and appeared to be well distributed in the region. When I asked them about the role 
of statistical theory in model deveiopmenr, they suggested that J worry less about 
theory and more about how well the model works in practice. 

In Chapter 8 it is emphasized that from a statistical standpoint an)' procedure
ranging from statistica l techniques to simple mathematical rules or t:ven armchair 
theory-might appropriately be used as a basis ror site-location model develop
ment. \Vh at matters is how well a model works in application, how accurately it 
performs on future cases. Given this perspecrivc, it is appropriate to usc any type of 
procedure as wt"ll as any source of data (s uch as existi ng site-flle informacion ) in 
model development. In order co determine how well a model will perform in 
practice (and here I rerer to allY type or model, including those rormulated deduc
tively), independen t testing procedures arc Tcquired, and in this case methods of 
statistical inference muU be applied,l"dtpcndcnt trUing means that a modt..'1 is applied 
to data indepe ndent orthe data set used to build the model ( note that deductively 
derived models arc not built with data, and therefore any data se( is independent of 
these models), which provides a test of model performance. Statistical theory can 
then be applied to the tcst results (if the tcst data constitute a representative 
sample) in order to assess the significance of the resulting model performance and 
construct confiden ce limit s around modcl accllracy rates. (The reader is refe rred to 
the section on assessing model performance in Chapter 8 for a more detailed 
discussion of these issues and procedures.) The purpose of the current chapte r is to 
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examine various problems that can be encountered in exis ting archaeological sire 
surv(;'Y data bases and to recommend ways ofcorrc.~ccing somt ofchc more apparentA 

problems in order [Q obcain data se ts better suited for regional analysis and 
modeling purposes. In ocher words, this chapter examines methods for reducing 
obvious biases so char rht: loeational pancrns appa rent in a final analy sis sample of 
existing archaeological data are more likely to be representative ofoveralllocarional 
panerns within the region of interest. 

PROBLEMS AND BIASES IN EXISTING SITE SURVEY DATA 

\Vhen examining existing archaeological sire survey data bases from a region 
ont" is ofrcn struck by (he great variation apparent in (he quality of the data. It has 
been appropriately noted that the greatest source of variability in the archaeological 
record may be due to the behavior of the archaeologist. This variation stems from a 
number of factors, ranging from dinl~ring standards of quality or practice between 
different archaeologists to changes through time in accepted field practices to 

variability in the goals and research plans of individual survey projects. 

The ways in which different field projc.:cts, archaeologists, and field crews 
perform field work and define, identify , and record archaeological sites introduce 
the major sourCt'S of"ariation, bias, and inconsistencies in existing site data bases. 
Chapter 4 describes some of the operarional problems in defining sires on rhe basis 
of diffuse scatters of artifacts . Sites defined by one project may not constirute sires 
by anorher projecr's definirion. Nor only docs rhe lack of standard archaeological 
pro((.'d ures, such as field ml~thods and operarional definirions of sires, creatc 
inconsis tencies in rhe data base, but differences in research goals from project to 

project, even within a single region, create major inconsistencies in regional data 
bases. 

Thc problem goes deeper than this, however. Even within a single project) 
sites mighr) in practice, be defined differentl y owing to difli..~rences in rhe qualit y of 
individual field personnel and crews or because of other facrors, such as insect 
density, adverse wcather, rerrain roughness, crew tiredness, or the arrival of a 
Frida)' afternoon. Budgt·tary const raint s can also influence the quality of data 
collected when, for example, a contracror has a fixed price contract but site densities 
are greater than expected; thi s can lead to Hhurrying" rhe survey. Sc hiffer and 
Wells ( 1982:346) nore rhar "r his is accomplished by increasing crew spacing or 
reducing the recording time. \Ve suspecr that such modifications in technique are 
rather common, if seldom admitted in the final reporr. H These practices, ofcourse, 
can lower rhe quality of the resulting data. 

Several factors influencing archaeological survey results and the quality ofrhe 
retrieved dara are s ummarized by SchifTer and Wells ( 1982). A principal facror is 
survey intcnsity or crt'w spacing. Crew spac ing not only affects site discovery rates 
bur ·also rhe sizes of discovered sites (Plog er al. 1978). Small sites and cultural 
fearures rend ro be missed when crew spac ing is large (Wandsnid<T and Ebert 1984). 
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Narrow spacing, hO\\'I..'ver, dramatically incr~ascs survey time and effort and there
fore costs (Figure 7.1 ). 

The nature or ohlrur;v(ncIi of [he archaeological evidence determines the 
likelihood [hat a particular archaeological feature, such as a sitc or an artifact, will be 
discovered gil'en a specified lel'el of survey intensity (Schifferct aJ. 1978). A mound 
or architectural feature, forcxamplc, has a higher chance ofdiscovery (han a single, 
isolated flake. Low-intensity surveys ( those with wide spacing) tend to bias result
ing archaeological samples in favor of more obtrusive remains (Schiffer and Wells 
1982). 

Difliclilcy ofaccess, a common problem in many regions of [he western United 
Stares, might mean that samples are biased against difficult-to-reach regions. In 
regions with relatively few access roads, for example, sampling units might be 
placed \\'ith the restriction that units lie within some maximum distance of an 
existing road, Even when it is possible to arrive at hard~(O-r('ach places, the limited 
amount of time left in the day after tral'eI might lower [he quali[y of resulting 
survey in those regions. Private land ownership presents similar difficulties when 
landowners refuse access (Schiffer and Gumcrman 1977: 187). Indeed, in western 
regions, where most archaeological survey work tends (Q be conducted on federal or 
state lands, [he lack of comparable sit(- data from private properties presents a 

FiguTt! 7.1. Rd~tion s hip beclJ.'ccn crC'w spacing and sun'c), raft' (after Schifli-r and \Vcll ~ 

1982:J~). 
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severe source of bias ro regional archaeological dara bases, because private property 
often includes some of the best agricultural lands as well as the best areas for 
hunring and plant collecting, and prehistorically, it is these very places that often 
were the most critical to site placement. 

Variable archaeological \'isibility, due primarily to vegetation cover, intro~ 
duces another ma.lor source of potential bias. Planted fields, s\\.'amps, or forests 
might afTer poor visibility and low archaeological discovery ratcs, while desen 
regions or sagebrush~grassland settings usually afTer high visibility and excellent 
site discovery rates (Schiffer and Gumcrman 1977: 187). Study regions containing 
zones with markedly difTerent levels ofvisibihty arc likely to have existing site data 
bases biased toward the morc visible zones. 

Perhaps one of the principal weaknesses of existing data bases is that the sum 
total of previous work in a given region constitutes an unplanned effort. In other 
words, strong iocational biases typically exist in the areas that have been field 
inspected within a region. For example, early work oftcn was conducted only at the 
most accessible and visible sites, while much contemporary survey is conducted 
primarily in areas of planned development. Thus, existing site data may be strongly 
biased toward cenain types of settings and may not constitute a representative 
sample of sites within a region. 

An additional problem is ehlt sites might not be accurately located on maps. 
For modeling approaches that focLis on the specific locations of sites, accurate 
placement ofsi tes on maps 1S ofcritical importance since characteristics of t ht.~ actual 
locations, such as environmental properties, arc often used as a basis for modeling. 
In actual field praccice it is often difficult to locate oneself pn..·cisdy, particularly in 
fotested areas with few ncarby landmarks. Field crews often get lost or misread 
maps. Moreover, early archaeological surveys often did not have access to good 
maps and oflcred only verbal descriptions, directions, and rough locltional skerch 
maps. 

This problem is further compounded as site locations are transferred from map 
to map. In examining cx.isting site Jiles for one Bureau of Land Ntanagement (BLivt) 
scudy, I found that the original site forms were available as well as the district's 
master management maps. The latter arc a set of maps that can be found in any 
tegional BLiv1 offICe and contain the most up-to-date information on the locations of 
all known sites and field-inspected regions. In this BLNI district, [he majority ofehe 
sitcs were extrcmely small lit hic sca[{crs (essen tially points on maps). \Vhen the sitc 
forms, which included copies of original maps, were compared with the BLNf'S 
master maps, many sites were fOllnd to have been mislocated when they were 
copied from the original to the master maps (Figure 7.2). In fact, almost 10 percent 
were mislocated by more than 100 m ( on('~sixth ofan inch on I :24,000 scale maps), 
and several were even placed on {he wrong drainage! 
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Figure 7.2. Erron in the locttions olsill"s fC'suiting irom copying sitl'locHiom from ant' map to 
anodlC'r. 

PROCEDURES FOR REDUCING DEFICIENCIES AND BIASES 
IN EXISTING DATA 

A number of problems with existing data bases were presented in the previous 
section . In order for researchers to use such data in archaeological model develop
ment (her need (Q eliminat<.' data ofquestionable quality and to reduce the efleets of 
apparcnr biases, 

If possible, the original site forms should be obtained in order to assess the 
q ualir), of the inirial sire-recording dTon and to eliminate secondary sources oferror 
that might be introduced by later handling ofrhe data by other investigators ( as in 
the example discussed above). Cerrain minimal standards mighr be establlshed; 
precise location of [he site on a CSGS 7.S·minure map might be required, for 
example, along wirh a dcscriprion of 50 me minimal amount of archaeological 
evidence. SitL's nO( mcc[ing these sta ndards mighr be eliminated at this stage. 

\Vhen a pool of minimum-quality sites h:\s been obtained based on inspection 


of site forms, it would be prudent, depending on available funds, to examine in the 
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field a random sample of the sitcs recorded by each major investigator in the area, 
This practice would aBow verification of iocational accuracy on maps 3S wcll as 
assessments ofsite content and function, h would also be wonh\\'hik to resurvey at 
high intensity reg ions that have been field inspectcd by othcr rcsearchers in order 
to obtain data on sitl' discovcry ratts. These rates might then be used as a means of 
bias correction through the subsamplingor weighted analysis tcchniques dcscribed 
below. 

\Vhen lise of existing data in site-location model developmem is considered, 
bias must be viewed in terms of current modding goals. For example, a survcy 
conducted for the discovery of only Paleoindian sites is not relevam to a sitc
location model for Puebloan villages. Similarly, a survey conducted in pine forests 
does not bear on models for grassland st; ttings. 

TIH: nature of bias also must bt, considered in terms ofrhe type of modeling 
approach used. Models that examine characteristics observed at the actual locations 
of sites or model s that usc a small-size quadrat approach in which characteristics of 
quadrats with sites are examined are particularly sensitivl' to the happenstance 
locational biases of previolls surveys. For example, if 60 percent of one pan of a 
study region has been field surveyed but only 20 percent ofanot her pan, indiscrim
inate usc of the site data without regard to these surVl:y proponions can bias a 
resulting model toward characteristics of the more extensively surveyed zones. On 
the other hand, modeling approaches that partition a reglon into discrete catego
ries, such as environmental communities, lnd then project site drnsities in each 
community ar~ less sensitive to this factor. In this approach, if one community has 
bel'n 20 percent surveyed but another (fJ percent, so much the better for the latter 
community, since the: resulting est imates ofsitt' density would presumably be more 
reliable because they are blsed on more information. 

Two major approaches might be investigated as a means of reducing the 
int1l1~nce of known biases in existing data. Subsamplillg attempts [0 reduce bilses by 
undersampling areas that have been extensivcly examined and by oversampling 
areas that, by comparison, have been little eXJ.mincd. This procedure usually 
re-quires that some information be disregarded during the model-building process, 
but it should be realized that the sites eliminated during this pan of the project 
might be reserved to provide indcpendent tests ofloca[ion31 models at some later 
point. If/(lghlr'd antl~}·w, on the Q{her hand, permit retention of31l information, but 
the impact ofan individual case (e.g., a site) on the analyses can be weighted by, for 
e:\J.mple, the rdative importance of that case relative to other Clses (sec below). 

Subsampling 

A common problem in c:xisting site-file dara bases is unequal survey coverage 
10 variolls regions of a study areai these inequalitil's arc a result of the use of 
non probabilistic designs and purposive survey that is commonly required for 
various form!i of cultural resource clearance. Earl y s urveys typically examined only 
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the most ideal or most easily accessible regions, simply for purposes of site discov
cry. Unequal survey coverage also occurs among different archaeologists or projects 
owing (0 variation in crt'\\' spacing, vegetation cover, and other factors. A goal of 
subsampling is to obtain a subset ofrhe wtal number ofsires available in the entire 
study area such that many of the regional biasing [aewrs arc reduced in the fmal 
subset. A number of approaches might be lIsed to accomplish this goaL 

One approach thal helps to reduce the effects of unequal amounts ofsurvey in 
different regions ofa study area is to divide tlll~ arca intodiscretc: carcgorl{"s, such 3S 

environmental communities, and then to sample each category in a way that will 
correct for the inequitics. A hypothetical study area containing three communities 
is port rayed in Figure 7.Ja. Forty percent ofcommunity A has been field inspected, 
20 percent ofcommunity 13, and 60 percent ofcommunity C. In devdoping a model 
for the cntire study area it is important to remove the biasing ctYects of the morc: 
heavily surveyed communities. This might be accomplished bv sdeeting 100 
percent ofche sitt.'s in stratum B for the analysis sample and taking asimple random 
sample of 50 percent of the sites in stratllm A and 33 pt'rccnt of the sites in stratum 
C; this would yield a 20 percent overall sample of sites in the study area. 

Another subsampling approach attempts to provide an analysis sample with a 
more uniform distribution of sites from within a study area. It is important to 

attempt to obtain a regional sample that is well distributed across the areaofstudy 
in order to ensure that site location variation from throughout thl.:' ('mire region is 
included in the sample. In this approach a grid may be superimposed over the study 
area or ovcrc.;.'ach str:Hum in the study area (Figure 7.3b). Dept.·nding on the size and 
nature of the study arca the grid might be as large as a to\l:nship (6 by 6 mi) or as 
small as J hectare (100 by 100 m). The analysis sample for the gridded study area or 
gridded stratum is selected by choosing sites from within each grid unit, which 
creates a more uniformly distributed sampl<.~. For example, let us assume that the 
gridded region in Figure 7.3b is a portion ofenvironmental community C in Figure 
7.3a. A simple random sample of 33 percent of all the sites in Figure 7.3b could, by 
chance, caUse some ofehe griddcd cells that contain sites [0 t:ontribute no sires to 

the sample and others to contribute many. If a 3J percent simple random sample of 
the sires within t:ach grid cell were taken instead, this would help to ensure a 
better-distributed analysis sample. 

A third subsampling approach may be used when large clustcrs ofsites exist in 

a data base. Clusters of sites can have adverse effects on later analyses because the 

clustered sites may have highly related characteristics rather than offering new and 

independent information. A field-inspectcd region containing a single cluster of 

many sites along with a number of dispersed sites is portrayed in Figure 7.k. If a 

subs ample of 20 percC'nt of all siees in the region were randomly selected for an 

analysis sample, it is likely that all or almost all of the selected sites might be from 

thc single cluster. Yet, multiple sites from the same cluster might yield much 

redundant locational information, and it might be desirable to incorporatc the 

locational variation of sites outside the cluster into thc sample wht'n the goal is a 

regionwide model and most of the region ofconcern is outside the cluster. This can 
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be accomplished by stratifying the area into a cluster region and a noncluster region 
(Figure 7.Jc) and taking a simple random sample of20 percent of the sites in each 
reglOn. 

Ir might even be desirable, under cerrain circumHances, co reduce the inllu
ence of major clusters still further. This could be accomplished, for example, by 
taking a larger sample of sites outside denoted clusters (e.g., 30 percent) and a 
smaller sample of sites within clusters (e.g., 15 percent). The goal might be to 

develop a model that performs well for the portion ofa study region that lies outside 
clusters. This would be particularly useful where previous investigation has shown 
th;u sites from major clusters tend (0 possess ioeational propenies different from 
those ofsites outside clusters. By taking a smaller sample ofsites from clusters, one 
can reduce (he influence ofrhose sires in an analysis. On the other hand, the very 
presence of clustering can be indicative of desirable loc:uions that need [0 be 
includcd in a sample. Hence, some thought should be given to the goals of the 
analysis and to the behavioral implications of such pa((erns when one is using 
clustered data. The presence of significant clustering can be determined through 
simple statistical tests described by Clark and Evans (1954), Dacey (1973), and 
Thomas (1971:41-43). 

Weighted Analysis 

Weighted analyses can present an alternative to the elimination ofdata when 
existing site information is used for model development. Individual cases or sites can 
be assigned a weight that affects the influence of that site in subsequent analyses. 
Sites with more "important" location information (e.g., those that lie in undersur· 
veyed regions) can be assigned more weight) and sites with less important location 
information (e.g., from well-surveyed regions or from major site clusters) can be 
assigned less weight. In this manner it is possible to utilize information from all or 
most of the sites, while correcting for certain biases at the same time. 

Common statistical analysis computer programs, such as the St:ltistical Pack
age for the Social Sciences (SPSS 1983), the Statistical Analysis System (SAS Institute 
1985), and BMDP Statistical Software (Dixon or al. 1983), allow case weighting as an 
option for many procedures. A weighted sample mean is given by 

( i ~, ~ ,~ I ) 

and a weighted variance by 

/I 

L "';(X; - x)'
Jl= ( ) 

; ~ 1i "', 
I ~ 1 
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where xi is the sample value (or the j'hcase (site), and wi is the weight associated 
with that case. Note (hat if wi - I for all i cases, these equations reduce to the 
traditional formulas for mean and variance. 

To illustrate how thes~ formulas might be applied, th~ lirst problem area of the 
previolls section, environmemal communities with disproportionate areas ofsurvey 
(Figure 7.Ja), " ,ill be examined. The hypoth~tical r~gion contains three communi
ties, A, 13, and C, of 'Jthich 40, 20, and 60 percent, respectively, have been surveyed. 
Suppose, for simplicity, that 4 sites were found in zone A, 3 in zone B, and 6 in zone 
C, for a total of 13 known sites (Table 7.1). The subsampling approach described in 
the previous scction called for selecting half of the zone A sites and a third of the 
zone C sites, which would provide an approximated overall 20 percent sample 
consisting ofonly seven sites. The weighting approach merely assigns weights to all 
o( the cases such that a site's contribution is inversely proportional to the percen
tage ofarea that has been surveyed (Table 7.1). Thus, a site in zone B (ofwhich only 
20 percent has been survc..~yed) carries twice as mueh weight as a zone A site (of 
\\·hich 40 percent has been surveyed) and three times as much weight as a zone C 
site (of which 60 percent has been sun'eyed). 

In conducting a site-location analysis encompassing multiple regions, as in 
Table 7.1 and Figure 7.Ja, w(·ighting can permit the archaeologist to emphasize 
feature s peculiar to undersurveyt'd regions. For example, let us say that zone B 

TABLE 7.1. 

Example: of we:igblS applied to data as a mrans of bias correction 
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contains more variable terrain in the form of hills anl ridges and fewer sources of 
water [han zones A and C. Hypothetical mt.'Jsurements of slope and distance to 
nearest water given in Table 7.1 show that, without \\·cighting (i.e., Wi - I), the 
measurements from the sires in the more heavily surveyed zones A and C dominate, 
yielding a mean slope of only 5.23 and a mean distance to nearest water of 115.38. 
\Vhen weights giving increased influence ro the zone B data are used, however, the 
weighted mean values exhibit greater slopes (a mean of 7.81) and distances to water 
(a mean of 153.57), rei1ecting the greater steepness of hiUslopes and the paucity of 
",.. ater in zone B, 

The utility of case weighting is nor restricted [Q altering regional survcy 
coverage bias; this procedure can be applied to other sources of bias as well. If 
reliable estimates can be made of sire discovery rates under differcnt typcs of 
vcgetation cover, the discovered sites in zones offcring less visibility might bc given 
greater weight in anal)'sis. A similar approach could potentiall), be applied to correct 
for differences in site discovery rates between different archaeologists or projects. 
The use of weighting to correct any ofthese forms of bias should bc carried out only 
aftcr thorough considcration of the available evidence, however. 

Finally, it is important to note that not only can weighted means and variances 
be computcd, but also covariances, which open the doors to the host ofmultivariate 
procedures discussed in Chapters 5 and 8. 

EVALUATION OF SITE-LOCATION PATTERNING AND 
MODEL BUILDING WITH EXISTING DATA 

\Vhen this stage is reached it must be assumed that the researcher believes he 
or she has a reasonably good sample ofexisting sites with which to work. The data 
might exist in scveral groups, each corresponding to a different site type. The 
investigator must decide on the kinds ofphenomena that should be investigated for 
possible relationships with the locations of sites and then devise ways to make these 
phenomena operational. In other words, the variables that are to be investigated 
must be defined. An overview of some of the variables commonly used in site
location research and of the ways in which they can be made operational is given in 
Chapter 8. Once the ",riables arc defined, the), must be measured or observed on 
maps at each of the sample site locations, either b), hand (Chapter 8), through 
remote-sensing techniques (Chapter 9), ot through computer technology using 
geographic information systems (Chapter 10). 

A usual step in the model-building process (e.g., Larralde and Chandler 1981; 
Thomas and Bettinger 1976) is to examine the data at this point through usc of 
histograms, descriptive statistics, or simple univariate statistical procedutes. In this 
way it is possible to identify variables that arc more likely and less likcly to have 
some bearing on the locations of sites in general or of individual site types. 
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The empirical data can then be subjected to a variety of modeling approaches 
ranging from simple mathematical rules to multivariat(, statistical techniques. A 
single-class classifier approach (Lin and Minter 1976; Thomas and Bettinger 1976) 
can be used to model the dislriburion of individual site classcs t or a conrrol-group 
approach consisting of background environment measurements at locations where 
si tes arcabunl might be used [0 contrast locations where there arc no sites with the 
locations of known sites using a variety ofquantitative classification techniques . A 
wide range of approaches using a variety ofrcchniqucs is illustrated in Chapter 8. As 
noted in that chaptcr, any form of decision rule may properly be used to develop a 
modeling procedure for classi(ving locations~for t"xamplc, as site-likely, site-type
likely, or site-unlikely locations. Admittedly, some procedures work better than 
orhers, and statistical procedures generally work best whcn thc required assump
tions are fully mer. Once a modeling procedure is developed, however, irs perfor
mance must be assessed using statistical theofY, an independent sample of dar a (of 
the kind of site being investigated and from the region being modeled), and a 
sample that can be argued to be representative of the si res in the region. 

Assessing a Model and Determining Additional Data Needs 

A fundamental question that must be asked when evaluating a model based on 
existing data is whether or not the model might be biased . Even if a developed 
model successfully predicts locational patterns similar to patterns exhibited in the 
existing site data base, how cenain can we be that the existing site dara patterns are 
representative of the locationai patterns ofas-yet-undiscovered sircs in unsurveyed 
regions? Despite careful data evaluation and crude attempts at bias removal, it is 
possible that [he bulk of existing sites really arc not representative of sires in the 
general study area, and there is no way to derermine whether or not this is the case 
unless some form ofdata known to be representative of sircs in the region at large 
arc obtained with which to test the model. 

An initial and simple test of model performance may be obtained simply by 
applying the model to the same data used to build the model. Although at best this 
procedure y ields an inflated view of rhe model's true performance, it can provide an 
immediate indication of model deficiencies. The predictions of sire locations made 
by the model might be categorized along several dimensions (Q assess performance 
in a number ofareas (Table 7.2; sec Chapter 8 for a discussion of the necessity for 
reviewing model predictions of sitC'-absent locations or nonsites as well). For 
example, (he model might be examined to sec how well j( predicrs variolls func
tional or temporal site types or various subtypes ofsites (the columns in Table 7.2). 
Similarly, (he performance of the model relative to different environmental set
tings, such as various plant communities or topographical situa(ions~ might be 
assessed ( the rows in Table 7.2). Deficiencies at this stage should be taken seriously; 
if they exist here they certainly will exist when the model is applied to independent 
and new samples. 
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TABLE 7.2. 

Assessing model performance along s(:vcral siu...type and environmental categories. In testing a 
site-location model, the percentage of correct modd pn:dictiom for each silt: tyJX.' arc assessed 
along the columns and the percentage of correct model predietions for each envlronmental 
categor), are uselsed along (he rows. 

Su, "I)-pi I S'l/( 7)p.. 1 Sit( I)p * 

Erl\'LrOnmcnc;:J\ 
Catcgor)' A 

Env ironm..::n tal 
C;Jt(~gory B 

En\'ironmt'nrJI 
C :ltcgory C 

... p,"r(t lll Con,.rr 

SiN Pruii({Ul ff} . 

Environmcor;J.1 
CHcgory p 

Model rests that are more independent and can yield J truer picture of actual 
model performance may also be performed using existing dara. O ne independenr 
test uses sites in the c:xisting data base (hat were "Of used to construct [he 
model-entries chat were eliminated during attempts at bias removal, for example. 
Such sites represent independent informarion, and the model can be applied as 
shown in Table 7.2. A somewhat better approach is called rplil sampling (Mosreller 
and Tukey 1977:38); with this procedure the analysis data is randomly split into two 
groups, a model is built with one half, and the re maining data3re used to provide an 
independent rest of the model. The jackknife procedure (Mosteller and Tllkey 
1977: 133) presents yet anot her alrernat i \'c. In this proced lire one case in t he analysis 
data set is temporarily ~~ thrown out," the remaining data are used (Q build a model, 
and the single case is used to test the model. This proc.:css is repeated using each casc 
in turn to yield an independent assc..'ssment of model performance. (S plit sampling 
and jackknifing arc discussed in more detail in C hapter 8.) 

Since existing data often arc highly clustered (Figure 7.3c), the traditional 
split-sampling and jackknife approaches still might yield an inflated picture of 
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model performance. A sire [hat is parr ofJ cluster of sites might exhibit characteris
tics that arc highly related to the other sites in rhe cluster. \Vhen that site is used in 
a split-sample or jackknife pron'dure, it docs not necessarily yield an independent 
test since its characteristics arc rebred to those ofother sitts, some of which may 
have been used to develop the model. An altl:marivc that might otTer less inflated 
results is to superimpose a large grid) like that shown in Figure 7.3b, over the region 
and to use the grid cells as the basis for the split-sa mple or jackknife techniques. For 
split sa mpling tht: individual cells lrc split at random into two groups, and the 
analysis proceeds wjth sites in the selected half of the grid cells while sitcs in the 
remaining half arc reserved for model testing . In the jackknife approach the sites in 
the k'h grid cell arc eliminated from the k!H model and are then used to test that 
model independently, with this process repeated for all k cells. 

Such testing proccdun.·s, however, arc only as good as the data to which they 
arc applied, and as menrioned ('arlier, existing data might inherently be strongly 
biased. Independent and representative data ar(' therefore nceded if Wt..' are to assess 
model performance in a reliable and confident manner. 

In many federally administered regions and districts some form of random 
sampling survey may well have been conducted in [he past. These data can be used 
for model testing ifit can be argued that they an~ rt:pres(·ntativc ofsites (or the site 
type ofintcrest) in the whole region and if the sitc sample was suitably constructed 
and sut1icicntly large. Not only can these data be used to assess accuracy (Table 7.2), 
but statistical signilicance can also be determined and confidence limits around the 
predicrions can be calculated. Since thc width ofa confidence intt..'rval is directly a 
function of samplt..· size, relatively large tcst samples are desirable. For example, if a 
model accllracy rate of80 percent correct is obtained, a sample size of50 yields a 95 
percent confidence interval width of 19.8 percent (±9.9 percent), a sample size of 
100 yields an interval width of 15.5 percent (±7.8 percent), and a sample size of200 
yields an interval width of 11.0 percent (±5.5 percent; Hord and Brooner 1976). 

Collecting and Integrating New Data in Model Development 

During model testing through lise ofexisting data or throLigh usc of independ
em test dara it might be discovered that a model undt..·rpcrforms for cenain types of 
sites. Alternatively, a model might perform poorly when applied to ct.... rtain environ
mental settings - grassland settings, for example (Table 7.2). 

In order to attt..'mpt to remedy these failings, rhe researcher might go back ro 
the existing data base (especially ifit contains;1 number of sites e1imina[cd from the 
analysis through subsampling or for other reasons) and, using the above examples, 
attempt to incorporate mort..' grassland sites or more sires of the type being 
underpredicted. If a weighted analysis approach is being used, the investigator 
might simply assign more weight to site rypes or sites in environmental settings 
that are being poorly modeled. The model-building and model-assessment stages 
then might be repeated. 
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Another approach to remedying modeling problems is to develop a specific 
model for the particular environmental setting or sire type that is being incorrccrly 
predicted (S tone 1984). This tactic might be more successful than refmement of the 
originaJ model, since a site-type or environmcmally specific mod..:1 would only focus 
on the IDeational variarion exhibited by the particular se ning or sin: type. Ie should 
be nored, ho~vcvl"r, [hat when analy ses become roo fine-grained, as when specific 
site types or environmental communities are investigated, available sample sizes 
can become prohibitively small. 

A last aircrnarivt' when one is faced with the problem~ ofunder- or overprcdic
rion by a site-location model is to conduct a 11("W survey designed (Q obtain more 
data from deficiently predicted environmem:ll regions or site types. This is a \.as[ 
resort, due to costS, and should be performed only when the researcher is certain 
that the modeling application warrantS collection ornew data. It might be that it is 
not possible to model the locations of sites in a specilic environmental community 
sllccessfully (owing to a low It'vel of pauerning with respect (O the variables 
examint.'d, for example) regardless orthe amount ofdata available. The.; collection of 
new d:lta in this case would not oller any improvement to the modeling si tuation. 
Before initiating a new survey the investigator should consider this possibility by 
examining the quality and amount of the existi ng data. 

\Vhcn implementing a survey for the purpose of providing more information 
about a particular region, such as a specific environmental community, some form of 
random sampling design should be used. Sires discovc:red by [his slIrvey could then 
be compared with previously known sites in the same communic;.'. This comparison 
can entail visual inspecrion ofehe shapes of histograms of the measured variables, 
descriptive statistics, indices of difTerence, and statistical (ests lar differences, such 
as {he (-tcst. If differences between the samples arc found, this would suggest that 
new and difle-rent information might be contained in th<..' new sample. The new data 
might {hen be incorporaced into the analysis dat:l base or analyzed as a separate data 
base, and the model-building and testing processes could be reinitiaced. 

New site data inevitably become available- as archaeologit:al work continues in 
a region. Model updating and testing using chest." new data can be performed as an 
ongoing process. The techniques used in evaluating existing data should also be 
applied [0 these nt'w data; i. e., the quality of site recording and survey should be 
inv<,,'s cigaced, and appropriace bias-removing techniques, such as subsampling to 

reduce locational survey bias, should be employed. 

EXAMPLE ANALYSIS 

A settlement pattern study of Mesolithic sites in the Federal Republic of 
Germany (K vamme and Jochim 1988; also see K vammo 1986) ,,·ill be described here 
as an example of the usc of existing sitC' data as a basis for locational modeling. 
Although [his study docs not illustrate many of the bias-reduction techniques 

discussed above, it does illustrate the locational patterning that can be found , and 
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the kinds ofinrcrprcrarions ofn.~sults that can be made, given the biases that might 
exist in a body of rcgion31 archaeological data. This study focused on a region ncar 
Stuttgart where there arc many recorded Mesolithic sires. The journal Fundberichle 
aUf Schwabtn, which contains regional archaeological repan,', of investigations by 
local amateurs, was used to obtain the locations ofl70 known w1csoiirhic sites in the 
region. Since the site descriptions were vcry terse it was not possible [0 assess 
quality ofreporring, nor was it possible to field check any ofth,' sites. The sites did, 
however, appear [0 olTer a fairly good spatial disuiburion that was well spread 
throughout the 940 km' study area (Figure 7.4a). 

Previous rest'arch in the Mesolithic of nonhern Europe had suggested a 
number of relations-hips between the physical environment and pauerns of sen le
ment. Nine environmental variables were sciected for this study (Kvamme and 
Jochim 1988), largely on the basis of previous work. These variables are elevation, 
~Iope, aspect, local relief, a measure of view quality, a measure ofshelter potcntial, 
horizontal distance to nearest water, vcrtical distance to water, and horizontal 
distance to nearest third-order stream (sec Chapter 8 for a discussion of how these 
variables can be dctined). Measurements ofeach variable werc made at the locations 
of the 170 known Mesolithic sites, and the same measurements were made at 100m 
intervals across the entirc background environment (a [Otal of84,(0) measurements 
for each variable). The large number of measurements wa!ol possible owing to the use 
of computer-based geographic information system (GIS) technique, (see Chapter 
10 for discussion of how the computer approximates measurements on the basis ofa 
regular grid system). 

The methodological premise of the study was that, in order ro determine 
significant environmental pauerning at site locations, one must contrast empirical 
data measured at known sites with the same data measured in the background 
environmenr. For example, ifonly the site locations were examined, as is usually the 
case, the data might indicate a major tendency for south-facing aspects. Such a 
tendency in the data could reflect a significant pattern, or conversely, the entire 
scudy region might generally possess a south-facing orientation, in which case the 
pattern exhibited by the site, would only be a reflection of the background 
environment; it is an examination of the background data that allows us to make 
this assessmenr. For each variablt:, thc data measured at the 170 sites werc con
trasted with a represcntative sample of 3201 measurements taken from the back
ground environment using Srudent's I-s tatistics as a rough guide for differences 
bet ....'een the two groups. Since the a priori chance of an as-yet-undiscovered 
:Vfcsolithic sitc occurring in one of the background samples was assumed to be 
extremely low, the two classes could be argued to be reasonably distinct, although 
the represt'ntariveness of the Ntesoli(hic sample and the general independence 
problem of spatial samples forced cautious interpretation of the statistical results. 

The analysis results (Table 7.3) indicate a number of,trong patterns of 
contrasts bctween site locations and the background environment (in the original 
study, detailed histograms wert' also examined). The sites show a strong tendency 
toward level ground slope (Figure 7.4a), for regions of great relief, and for higher 
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Figure 7.4. GIS-gtne rlH:d imagl's. (A ) Locuian> of Tc."cordc:d \o,lnoiichi(' sites plout'd on a 
compu[C'r-gt'n,,: r:Hl'd j111 ~ g(' of!he ~tll dy ft.'gio n!n sQulhl'rn Gt'rmlny. The imagt· was obl3int"d hy 
Cl\cuiaring slopt' (.on ry 100 m and .~h ading t Ill' imagt" by dq:;n.:t· of slopt.'. (B) Im:lgt" of I he Inulrlv:l ri:l(l" 
modd of :Vkso ii! hie ~ it~ loc:1( iOll rn:lp pt'cl on'r 1he em ire qudy rq;ioll. 
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TABLE 7.3. 

Descriprive statistics for the site loc:nion study of German Mesolithic sites 

DocxgrlJllltJ 
MNOlubr( Siw E"r-lrQlllltllti 

Vdrfdb/( (n - 170) (n - 32(1) f-I{atif;/( 

Mean Mean 

Elevation (m) 478 423 11.50 
Slope (percem) 6.9 9.0 -4.90 

Aspect (rescaled; degrees) 95 95 0.10 
Local rdief (m) 99 92 2.49 

Angle of view (degrees) 244 186 10.51 
Sheher index 2735 2256 11.83 
Horizontal distance to nl'ues r \!t';,tl'r ( m) 272 199 6.09 

Venic..1disuncl' [0 neJr<"lil 1,I,'3tcr (m) 23 13 5,48 

Horizontal disunce [0 nl':lIl's t Ihird~ord('r 

stream (m ) 757 709 1.21 

elevations, suggesting high-elevation ridge crests and the edges of plateau rops as 
the primary locus of site placement in the region. Although there was no strong 
preference for orientation or aspect, the remaining variables were supportive of the 
suggested pattern. The sites possessed wider views and lower values for shelter 
(reflected by a higher index in Table7.3) than the background environment, which 
is consistent with these high-point locations. Moreover, the results showed fairly 
strong tendencies for site location relatively far from water, also pointing to ridges 
and plateau edges, which tend to be located far from water. 

A multivariate model of the Mesolithic site-Iocational pattern was developed 
during this study, not t'Or prediction purposes but in order to assess (he locational 
pattern in the known site sample further. A robust nonparamelric discriminant 
function known as logistic regression (sec Chapters 5 and 8) was used to develop the 
model, which supported the univariate findings. The modd, in conjunction with 
the GIS, was used to map the quantitative environmental pattern of site location 
over the remainder of the study region(i.e., every lOO m) in order to provide a visual 
representation that summarizes the Nlesolithic tendency (Figure 7.4b; sec Chapter 
10 for a more detailed discussion of how this is accomplished). The mapped pattern 
also supported the univariate findings of a tendency for sites to be located on ridge 
tops and the edges of plateau tops, considerable distances from drainages (compare 
Figures 7.4a and 7.4b). 

A number of cautious interpretations can be drawn from these empirical data 
(K vamme and Jochim 1988). Patterns in this nonrandom sample ofsites might reflect 
Mesolithic locational preferences, modem collector biases, geological or other 
processes, or a combination of these factors. Geological processes might have 
introduced bias to the sample in a number ofways. Although the general patterns of 
landform and drainage in the study area have not changed since the Mesolithic, 
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alluvial deposition has occurred. If there arc deeply buried sires in these areas of 
deposition, the sample will be biased away from locations in valley floors. Erosion, 
on (he other hand, might have destroyed sitC's on steep slopes or along streams 
where meandering has occurred, thus biasing the sample away from stcep slopes 
and drainage locations. Another Caaor influencing sire visibility is modern land usc. 
Materials in plowed fields tcnd to have higher visibility than those in forested areas, 
which biases the sample toward areas under cultivation, such as river tcrraces, 
gentle slopes, and ridge and plateau tops. 

Geologic processes and modern land-use pancrns have biased the efforts of 
modern collectors away from steep slopes and marsh), valley bottoms and toward 
areas under cultivation or river terraces, geode slopes, and ridge and plateau tops, 
and this is indeed a pattern similar to that demonstrated by the site sample (Figure 
7.4b). The sites, however, exhibit a more restricted pattern in that they rend not to 
occur on river terraces or hill flanks, and they are found mainly on [he edges of 
pla[t~alls rather than on all portions of plateaus. Because the site distribution is morc 
resrric£cd than the pattern of areas inspeC[cd by the amateur collectors who 
reponed the sites, Jochim and [ have suggested that the observed distribution of 
sites appears to be partially [he result OfNlcsolirhic loeational preferences (K vamme 
and Jochim 1988). 

Interpretations of these pa((crns should also take iow account the nature of 
the archaeological sample. The sample used in this study included all Mesolithic 
sites recorded in the region regardlt·ss offunnion or season of occupation (factors 
that were Llnknown). Different site types could, of course, have varied locational 
requirements. As has been noted, 

The \o<:1(iona.\ pa.rte'rn of such a. mi~ed group of si[\.'s is dilli eult to inrerprl.'t , In P.J.rt ir 

represents .J. bk'nding of ch.ulc[eris tics sp\"citic [0 e~ch site l ype 3nd season, w('ighted 

.J.ccordins to Lheir proponionli reptt= s~nt3(ion in the s3mplc. Sinc<-' thl: sill: types lnd 

thl'ir proporlioos 3re nO[ curr("ntly kno\\·n. it is not possiblL" to Sep:lf;ltC rhos\.' different 

specific p.J.ttern .~. In this study. for enmple, sites show\"d no tendency [ 0 f:l ce :lny 

dirl:ction. It m.J.Y be, hO'J.·\,·v(.·r, t h;j( wint \.' r n:sidcnt i3\ camps showed .l tcndenc), to f:lec 

south, whilC' sitcs of other ~e3.~ons :md functions h.J.d other chlucteristic orient:ltions. 

The mixed ~ample 'J.'Duid obscure thC' se scpuat\.' patrC'rm [K\' .:l.nllll\" :md Jochim 1988]. 


Based on the results ofour research, however, we concluded that the overall 
pattern reflt.'cts environmental characteristics common to all sites and all sets of 
~ctivities and that interpretation should emphasize general advantages of such 
locations rather than those relevant only to certain seasons or specific activities. 1n 
the region of study these advantages rna)' have included (a) wide views allowing 
easy spotting of game and strangers in any st.'ason; (h) strong breezes providing 
comfort in summer, reducing snow cover in winter, and helping to keep away 
insects; (r) good drainage in every season; and (d) light forests adapted to these 
exposed, dry situations, which may have otTercd ease of travel, hunting, and 
burning. Large dis[ances from water may refleer an avoidance of riverine forests, the 
unimportance of riverine resources, or a major importance of high elevations. The 
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tendency for level ground probably represents the preference for performing 
activities on level ground (Kvamme and Jochim 1988). 

In terms of the prescnt volume, the multivariate model ofth~ Mc:soiirhic site 
pattern and its mapping (Figure 7.4b) can be viewed as a "predictive model" for 
Mesolithic sires based on existing data. The modd remains untcsted t however, and 
its performance as a predicri\'c (001 cannot be evaluated until the model is applied to 

a sufiiciently large, independent, and representative sample ofMesolithic sites' from 
within the snldy region. At this point there is simply no way to determine whether 
the known ,ite sample upon which the model is based is strongly biased (e.g., as a 
resuh of the unsystematic way that amateurs find sires or ofgeological processes), or 
indeed whether it is representarive of the region's Mesolithic pattern in general. 
Before the adequacy of the model could be assessed, some form of random sample 
survey would havc to be conducted within the region} and a sufficiently large 
sa mpk' of Mesolithic sites would have to be discover~d, The multivariate model of 
site location could then be applied (Q this new and representatjve sample, and the 
pcrc~ntage of correctly predicted sites could be detcrmined, along with s{atistical 
confIdence limits around (he prediction . 
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Chapter 8 


DEVELOPMENT AND TESTING OF QUANTITATIVE MODELS 


Kenneth L. Kvamme 

This chapter is about the application of methods o f empirical analysis
marhem:Hics, statistics, and computer-processing rcchniqllcs- w the dcvelopmcm 
and tc..~sting of models ofarchaeological distributions th at have a predictive capacity. 
This chapter is written primarily for the archaeologist with a background in 
quantitative methods of data analysis who is contcmplating the developmt~nt and 
teSling of archaeologicallocational models. In order to appeal to a broader base of 
re:-aders, the number of mathema tical equations has been kept to a minimum, 
extensive descriptions of the various methods have been provided, and figurt"s have 
been used to illustrate rhe techniques whenever possible. 

Past peoples Icft behind material evidence of their ac tions- the archaeological 
record . This record is full of telltale patterns. Today we have access to a host of 
advanced tools for analyzing such empirical patterns: the tools of multivariate data 
analysis and the great analytic al engine, the computer. \Vc might hope to make 
some.: s...~nsc of the past by noting relationships within and among these data 
pancrns. Csing th~'se tools I will describe in this chapter sev.:ral paths toward 
developing :md test ing modds of the patterns of prehistoric land use in a region. 

It should be noted at the outset that formulati on of rigorous models through a 
priori deduction of underlying causal processes is a laudable goal. \Vc must temper 
thi s goal, however, with a practical outcome. The social disciplines presently lack a 
broad theoretical base, and therefore deductively bascd modeling strategies typi
cally have little foundation. Haining ( 1981 :88) has ",bserved in geography, for 
example, (hat 

most g(·ogDphl...·" h :wt' Iud .1 prdi:n: nce for d:H.\ ;In ;lly ~i) r.1lhl.-r th:m rigoron.. model 
form ,11ion 1 hrough prior speciliCltion ofl li t' unde-rly ing process. In BrI(.) in 1hi ;. lendl...'ncy 
p:af:Jllds I hI...' ~rowlng in[t'rt~H in problems of region.)1 foreClsling. Tht, elllt'rgenct' of rhi, 
Irl1 cn::;[ in Ihe 19iOs i~ in pHI Ihe rl.·s ult o( rht' diseipline\ m~w qU\'SI lo r "rl·h:\'Jrlet''' 3tJ 

poli(y 1t:.'\"d. As J. rcs~arch gOJ.1 il t·k ... ates lhl' methods of dar;]' :lna\ysis OH' r those of 
ri goroll) modl.'l lonnublion Ihrollgh I hI.: nccd (0 provide ;Jnswcr~ 10 difficu lt and oflen 

inhl·rt·mly lTlessy problems. On ly thl.: );mpkst spJ.ti31 proct·ssc~ ;ITC c.p:lblt" J.( the 
prC$l'TlI rime of being gi\'t'n a rigorous formulalion and Ih\'rl...' i~;1 [l'ndcney for them to 
Sl'l'TTl (TiV!:l1 ,1nd ulHt';Jlis{ic wht'n St'! ,ltPins[ the exp:msi\'L' problems of pn·dicling 

rt'g ion:.l unem ployment 1('\'\"Is J.nd (or~C:l S ling tht' Sp-J«,-timL" L"yoiution of L"pidcmics, 
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The analogy with the archaeological problem or this volume is clear. Like geog
raphers, archaeologists have a Hmcssy" and expansive problem-modeling regional 
archacological distributions. Like geographers, we can apply the methods ofempir
ical data analysis to this problem of regional forecasting bl'G lU SC these models arc 
able to produce nontrivial rcsuhs that can be used in applied, real-world contexts 
(e.g., Custer et al. 1986; Kvamme 1986; Kvam me and Jochim 1988; Larralde and 
Chandler 1981; Parker 1985; Schollz 1981). This chaptt'r focuses on these data
analysis modeling approaches. 

The unit of analysis in thi s chaptcr is the loctItiou, or land parcel. Treating the 
land parcel as the unit ofinvcsrigarion allows greatc.-r freedom in the definition of the 
dependent variable used in analysis (Carr 1985: 116). At Ihe vcr)' sim plest le vel , a 
binary dependent variable can be defined and coded according to whCc,ther :1n 
archaeologic:ll sile is present or is not prescnt in a particular parcel (and it can be left 
up to the researcher to define what conslitutCc's an archaeological St H:). Some 
investigators (e.g., Dunnell and Dancey 1983) argue against usc of the..' si te concept, 
pointing oul that the term rite typically refers only to clusters of artifacts, a mere 
subset of{he archaeological rc..'cord, By using the land parcd as a focu s the..' researcher 
can define virtually any archaeological manifestation of pote.:ntial inten..'st as the 
dependent variable.:. Othrr examples of dependent variable catt·gorie..·s include 
parcels with 20 or mon' artifact s of any kind vs parcels with less than 20 artifacts, 
parcels with 100r more sherds vs parcels with less than 10 sherds, or parcds with any 
cultural manifesta tion V$ parcels withom prehistoric e..'vidt:nce. Note that more th"Jl 
two categories also are appropriate, allowing investiga tion of multiple si te or 
functionalland-parccl types 5imultanl'ously (e,g., settlement, temporary camp, kill 
site, other archaeological evidencl', no archae..·ological eviJenC4..'). By using [he land 
parcd we are able to examine various environmental, social. or other characteristics 
of the parCt.:.'ls that are coded as having archaeological manifestations or specific 
types ofmanifesta tions, as Oppos(.'d to parcels thal contain litrJc..~ or no archa<:.'ological 
evidence. An "dditionai benefIt of using I he land parcel is that the size of the parcel 
controls the scalc..- of investigations: very small parcels allow investigation of 
microcnvironmental and other small-scale..- influences on archaeological distribu
tions and potentially allow gn'arer d"tail and precision in modding; Iarg~ parcels 
allow similar pursuits but on a grosser scalc, (Note that ifsmall parcels are lI sed, and 
large archaeological sites or scatters an.' prt'sent, then contiguous parcels may be 
coded as "si te II or 1\ scaner" prcsen t.) In the- following pages, discus~ion principally 
focusl..'son the simplest two-c ategory situation for the dqxndent \'ari~ble, for ease 
and clarity of presentation, All of the me{hod~ gc..'nerally apply, of course, to 
siluations in which any number of catcgorit;s arc be..'ing lIsed, Since archaeologists 
trlditionally have used the sitc concc..'pt, I use the term f;l( in a general se nse..' to refer 
[0 land parcels posse:olsing the archaeological manifestations of interest, howe vcr 
defi.ned, Similarly, the term lJomilc is used to refer to land parcds that do not meet 
the defi.nition of the archaeological manifestations. 

The phrase prt"dictfr.'<' arr/Jdt'%gical modd) which has recc..'ndy come imo usage, is 
som ewhat miskading becausc..~ most dat~t analysis approaches do nor really predict 
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where as yet undiscovered sites arc specifically located. Instead, data analysis 
approaches attempt to abstract the loeational partcrn exhibited by a s;lmple of 
site-present locations (or specific site-type locations) in a region in t(:rms of 
cnvironmcmal, cultural, Of other variables, and then [Q project this pattern over the 
entire region (using variolls computer mapping techniques, ifavailable; sec Chapter 
10). If the initial sample ofsite locations Irom which the model is abstracted exhibits 
a iDeational pattern similar to that ofehe remainder ofehe region's sites (i.e., if the 
sample is a representative Of random sample), and the sites are strongly patterned, 
then the mapping of the model can provide a very good indication ofwhere sites will 
be found in the fest of the region. Thus, we do not prl.·dict che 10c:Hions of 
undiscovercd sites, wc merely map locations that possess environmental or other 
characteristics that arc similar (0 thosc of the initial site sample. 

The naturc of this mapping or extr3.poiation of an archacological locational 
patt~rn depends primarily on the quality and type ofmodeling approach used. The 
mapping might correspond with simple environmental catcgories, such as plant 
communitics (Figurc 8.la), or it might plot a complex multivariate function ofa 
varicty of facrors with estimates of site sensitivity cvcry 50 m across the region 
(Figure 8.1 b). These products ofempirical data-analysis models (Figure 8.1) should 
include performancc indications-statistics that dcscribl' how well (e.g., how 
accurately) the model and resulting map portray the locations of sites. 

It should be emphasized that the ability to predict locations (land parcels) 
where archaeological sites arc likely to be located logically implies the ability to 

predict where sites are not likely to be found. Without this ability the modeling 
exercise becomes meaningless. It is casy to dcvelop a model, for example, that 
predicts thc locations of all sites 'o.'lthin a region with 100 percent accuracy; such a 
model would simply classify every location (i.e., every land parcel) within the region 
as likely to comain sires. of course, nothing is gained from Stich a model. The 
usefulness of a model must be judged not only by how well it predicts locations 
likely to contain sites but also by how well it predicts locations unlikely ro contain 
sites. Ifa model is able to predict 90 percent of the sirc locations correctly in a region 
representing only 50 percent of the total land area (as opposed to 90 percent ofth~ 
land an~a)J then something is gained. 

Many ofrhe locational modeling approaches discussed in this chapter make usc 
of basic patt(·rn-recognition principles and technique; (Duda and Hart 1973). 
Predictive archaeological models developed within this perspective must wor,k if 
two assumptions can be met. The first assumption requires rhat the locational 
patterns exhibited by the ini[ial site (or site-type) sample lIsed to "train" the 
pa((ern classifier (the quantitJtive model) are reasonably representative of the site 
population under study. Thc second assumption is thac the site locations are 
nonrandoml), distributed with respect to the environmental or social facrors under 
investigation. Use of some form of random sampling designs (Mueller 1975) will 
usuall), cn:;ure that the requirements of the first assumption are met. \'lith regard to 

rhe second assumption, it is a b~1sic premise of modern arch3cology [hat human 
behavior is patterned, and the invl'stigator's familiarity with the region or wieh 
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figur~ 8,1. End prod uc t s of euit ura.\ rl'sourCl' modelin g. (.\ ) A .simpll' plant comm uni ty mappin~ in which (he 
communi (i<: ~ corrcspond 10 dilTcrc nt )itc densil il..'$ (:litc r Plog 19S1 :(4 ). (8 ) ;\ ".site proba.bi lil )' m rlaee" sup(,'rimposcd on a map 
:lnd dcri~'ed (rom ~ complcx mul li" ;lri :Hl' iUlle lion of ~ JX variablc} mc;\ stm.:.'d in each SO by 50 m cdl (af(("r K\'amml" 1980), 
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sc{{lcmenr data in general will usually guarantee chat some ofche variabh:s selected 
will refleC{ chis nonrandom behavior. \Vhcn I indicatt: that such models Hmusr 

work," I mean that there must be some gain (e.g., in terms of percent correct 
predictions) oyer a purely random model with no predictive capacity. 

\Ve might define {he gain concept more rigorously Cor purposes of {his chapter. 
Ir was stared above {hat the results of archaeologicallocational models should be 
mappable within the region under studv. When the model is mapped (e.g., Figure 
8.1), cenain areas of the region are indicared as being more likely [Q contain sires 
than ocher areas. Only a percentage of all {he sires (o r of (he si[(, type under 
investigation) in the enrire region will occur within the. areas indicated on the map. 
lfrhe arcalikely ro contain sites i" small (relarive w (he wral area of the region) and 
if the sire..'s found in that area represent a large percentage of the tor al sires in the 
rt.·gion, then W~ have a fairly good model ofsirc location. On Iheother hand, if the 
area predicted ro contain sires is a relatively large portion of the rotal area :lI1d the 
percenrage of sites within rhat area is not significantly greater than the percentage 
of regional coveragc, rhen the model is not very useful. Base..·d on these considera· 
tions we might explicitly define gain as 

Gain = 1 _ (percent.:tge of total arca cove red by mOdeG 


\~crccntage..~ of wt31 si tes within mudel an.a) 

As gain approaches I, the model has .increased predicrivc utility; if it LS near or 
approximately 0, then the model has little..' or no predictive utility. Ifgain is negative 
«0), then the model has rt'1't'r u pre..·dictive utility ( i.e" a grcater densiry of sites 
occurs outside the area sp<'cilied ov the model ). Such a model could still be orsome 
use if the arca outside that specified by the model were sub~equently considered to 
be rhe area being modeled (but the model developer should be fired!). 

The gain statistic is lIsed throughout this chapter as a rne..·ans of comparing 
models, Most archaeological modelers tend to fo cus on percent corrt.·ct predictions 
for sites, for nonsirt.'s, or even an Q\Terall percent correct statistic (sec C hapter 3). 
These statistics can be useful and important, but they can also lead to serious 
misinterprctations. In addition, they ofTer little basis for comparisons bc:twc:en 
modd s ( these issues are discussed in detail below), while the g.:li n statistic pre
sented htore is easy (0 interpret and facilitate s comparison. 

An important consideration that must be addressed before model develop
ment is discussed is exacrly what types of sites or archaeological manifestations are 
to be modeled, A central assumption in archaeology is that the locations of sites of 
different functional ca tegories or chronological periods will represent responses to 

different situational contexts, such as environ mental circumst ancc..o:" It is important, 
therefore, to develop modds for specific archaeological types whc-never possiblc..o, 

In practice, specific site-lype models arc often difficult [0 establish for se..·ve..·ral 

reasons. The problems lie not in tht~ modeling techniques but in the definition of 

meaningful andju stifiablc..· site types, in assigning sites ro tht~ types based on limited 


and often questionable evidence, and in acquiring sulIiciently large samples of the 
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types fo r subsequent ana ly sis. The practice ofassigning sites to functional types on 
the basis of surface information or limited excavation data is often questionable. In 
many regions, panicularly where surface evidence consists of only a handful of 
liehics, the invesrigaror may be relying on rh" flimsiest of evidence <if any) and on 
sheer guesswork. Although sites may be forced iow type categories under ccrraio 
circumstances, the quality ofrhe resultant groups and their utility for subsequent 
analysis must be questioned. In other words, meaningless site types will yield 
meaningless analysis resulrs. 

A second difficult), involves categorization ofsires iora many si(c type groups, 
a procedure that can imroduct.' sample-size problems. On (he other hand, even 
when only a few site-typt' categories are employed, certain types within a region, 
such as major village cen[crs or Paleoindian sires, might inherently exist only in 
small numbers. Since locational models derived from empirical data require rela
tively large samples in order to deftnl' a loca tional pattern successfully and extrapo
late it to a larger region, functional or temporal types containing few cases simply 
cannot be modeled. In general, empirical models can be developed only for the few 
types that contain a signiticant number of represemativ{' cases . Careful thought 
should be givt'o to the nature of the available evidence and the reliability of 
resultant site types prior to subjecting the types to a modeling exercise. 

In other publications (K varome 1983a, 1985a) I have suggested an alternative to 
the practical problem of making rraditional tC'mporal-functianal site types opera
tional using regional survey data. Site types can be defined on the basis ofamount of 
inferred activity occurring within a land parcel, rather than t)'pt'f of inferred Jctivi
tics. The amount of activity is measured in terms ofquantity and variety indices of 
obsl.'rved artifac£s at a location. Locational studies can then bc carried Out by 
comparing environmental characteristics among locations indicating much prehis
toric aeti vity I locations indicating littk prehistoric actlvi ty, and locations indica ting 
no prehistoric activity. This approach allows one to invcstigate why certain ioca
tions were used in the past and why ot her locations were no[. 

Historical si te location model developmem poses problems similar to those 
encaumered in prehistoric model development I but here additional problems arise. 
In most rt.'glons the amount of rime allo[{cd for historical site model development is 
probably best spent researching historical documents and archi\'es, which often 
indicate exactly where many types of historical sites are located (see Chapter 7). 
Moreover, [he best predictor of historical site locations in many regions may be 
neither environmental phenomena nor the typically used cultural factors (such as 
distance to nearest road), bur simply the cadastral survey grid I since patterns of 
settlement were often dictated by section and partial-section boundaries (e.g., 
Scholtz 1981 :220). This is not to say that sllccessful models for historical sites cannot 
be developed utilizing the lIsual environmental or other predictors. Scholtz (1981), 
for example, was able to construct a model far domestic historical sitc locations by 
correlating 15 environmental variables with the locations of known sites in a 
southern Arkansas region. Using a somewhat different approach, ;vlonroe et a!. 
( 1980) developed powerful trend sur fa ce models for the spread of historical settle
mt'or in colonial Connecticut. 
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At the eXlCt'ml', and depending on the quality of the regional data, models can 
be dc.:veloped for {he locations of all sires :IS a single group within a region. This 
approach has been criticized (a nd in cenain contextS rightly so) because lumping 
sites of many differcllr funcrional t ypes and (emporal periods into a single group 
introduces a grcJt deal of variability ro any analysis, making it mort.' difficult to 
develop a successfu l culrural resource model. As we shall see in Ia[er sections, 
however, this varia tion usually is substantially less than (he variation present in the 
environment as a whole, and it is possible on the basis of a general model to define 
significant porrions ofa region char are unlikely to contain sites of any kind. Ifwe 
lump together all environmental and other variation mt'asured at all site locations, 
the resultant characteristics might dctinc an (lct;vit), rpau (~ee Kvamme 1985a), a 
subset of the whole environment within which the bulk of human activity (aside 
from moving from onc activity place to anotht~r) is performed, Although different 
functi onal activities might be conduct ed in entirely different situational context s 
within the activity space, the activity spact· can be a useful construct for locational 
modeling purposes ifit is substantially smalle r t han the whole environmental range 
of a region. 

It should be recognized that the goals of culrural resource management may 
nm always be consiS('nt with traditional archaeological pt.'rspectives, For example, 
cultural resource managers are often intere sted in regional models for the locations 
of all sites in general, simply because all sites arc initially important from a 
management standpoint. Additionally, models for traditional site types might not 
be as important as models for significant sites, where significance is defined as those 
sites being important to predefined regional research questions. 

In the following pages, site location models are often referred to in a general 
sense. Such statements should nor be.: taken to apply only to model s for all sites as a 
single grou p, but also to models for specific types of sites, since th<:> methods 
discussed arc applicable to any class or c1as~es of sites, 

Finally, since this chapter CO\'t.:rs stlch a wide diversity oftopics, three data sets 
are used to provide the best possible illust rations of the methods employed. The 
data sets arc (a) a western Colorado daca set from a mesa and canyon region known 
as Glade Park, used to illustrare model-building and model-testing procedures; (b) 
an eastern Colorado plains data :;,et l u~ed to compare differl'nt types of modeling 
approaches and their mappings; and (c) a ~'lesolithic data set from the Federal 
Republic of Germany, used to illustrate modeling multiple archaeological sire 
c!;\sscs. 

V ARIABLES USED IN LOCATJONAL RESEARCH 

A researcher usually selects a variable for investigation in Jocacional analyses 

because distributions of archaeological phenom{'na are believed co have been 

somehow influenced by thar vari:lble. Hence, most researchers rely on the results of 


previous and similar studies in order [0 determine the variables to be used in an 
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investigation. A multitude of perspectives have been applied in archaeology to 

examine site loeational information. Those that focus on the physical environment 
and irs eflccr on settlement behavior occupy a major portion of [he loeational 
analysis literature. The examination of sire catchmems, topography, v('gcrarion , 
and other environmental features are major c1emems of this approach. Roper 
( 1979a) has labeled analyses in this perspective the study o(man-Iand relationships , 
as opposed ro man-man relationships. The larreT tl'rrn refers to analyses that assess 
the imponance of [he human or social environmem in srrucruring parrerns of 
settlement, These analyses focus on such areas as central place theory, the rank-size 
rule, and population distribution s over the landscape. Although man-man relation
ships play a major role in the settlement panern of modern industrialized society 
( Haggett ct al. 1977) and oner an important and useful perspecti ve in many 
archaeological applications (Flannery 1972; Johnson 1977) , many key (eatures of this 
approach are meaningless in a large number of archaeological situations. For 
example, in most hunter-gatherer contexts markets and central places ;lre not 
meaningful concepts. Moreover, the primary orientation ofman-man approaches is 
the analysis of properties rdated to fixed seniements in space, again precluding 
invcstigation of much of prehistory (e.g., many hunter-gatherer groups). In con
trast, man-land relationships arc intimately related [0 site location dt.'cisions among 
hunter-gatherer groups (Bettinger 19l!O;Jochim 1976; Wood 1978), and the), play a 
significant role in the scttlement patterns of more complex societies (Green 1973; 
Grossman 1977; Hill 1971; Hudson 1969). An investigation o(man-land relationships 
can contribute to our understanding of Iocational behavior regardless of cultural 
form, and this is why most work in site locational modeling has fo cused on 
environmental data. Another reason for this focus is that environmental data are 
generally easier to acquire than social data. Although social factors undoubtedly 
influence settlemem decisions in most culwral contexts, given the nature of the 
archaeological record it is generally impossible in any but the best understood and 
preserved archaeological regions to rcconstruct contemporaneity between sires, 
population structures, etc. - important requisites for invcstigating social pheno
mena. For this reason, social, factors often cannot be examined as frequendy as 
environmental factors in archaeologicallocational studies. 

Archaeologists have traditionally relied to an extraordinary degree on [he usc 
of nominal-level variables to describe phenomena under investigation in regional 
research. Examples include 3 focllS on biotic communities, soil classes, or the 
practice of classifying a region as lIleveP' or Ustccp." Landforms are oftcn catego
rized into discrete types, such as rivcrine, arabic, mesa top, mesa side, mc:sa bottom, 
and southern aspen (e.g., Euler and Gumc~man 1978; Gumcrman 1971; Plog 1971; 
Plog and Hill 1971; Zarky 1976); indeed, interval-level data arc sometimes rescaled 
to the nominal level. Yet most archaeological phenomena are eminently quantifia
ble. Geographically distributed phenomena, particularly characteristics of the nat
ural environment, by the ir very nature are distribu[t.'d in a continuous manner (and 
thus are potentially quantifiable) . Slope, aspect, and distance to nearest drainage, 
for example, change continuously as one moves ove r {he landscape. Likewise , so 
does vegetation diversity, density, and biomass, as well as soil pH and mean grain 
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size. The use of catego rical data and the practice of rescaling interval-level mea
suremc.:nts to the nominal level causes criti cal information [Q be.' discarded) reduces 
the power ofsubsequcnr analyses (siner.: nominal-level data camain less information 
than corres ponding interval-level data), and precludes usc of many powerful 
analytical alternatives and resea rch designs. 

A major foclis of this chapter will be on [he usc o f continuously measured dat a 
in site location rcsc..:arch, and emphasis is placed on the importance of developing 
suitable measurement concepts. The typc~ of phenomena typically investigated in 
this rest.'a rch might convenic ntly be grouped according to two major classes (see 
PJog 1971:47- 48): fIll'ironmt'llltJI factors Jnd facial facro rs . The follo\\'ing discuss ion of 
a number of key variables (hJt have been freqUt.:ndy examined in site location 
studies is by no means an exhaustive...' summary. In any particular region, somt:ofthe 
variables mentioned may nor be appropriate. 

Environmental Facrors 

Landform and Iandform-rc.:.1atcd phc:nomena arc commonly considered ill 
archaeological st udie~, A typical approach is to categori ze..> rhe landscape..' inro a series 
ofnominal-lcvd type;, such as cany on, canyon floor, canyon side, clifT, mesa, plain, 
and slope (e.g., Vivian et 31. 1980) and to observe the distribution or archaeological 
sites across these categories. Such catego rization ofcontinuous landscape forms, in 
addition to the problc.:ms outlined above, leads to problems of defmition and tends 
to imply a defmireness abou r rhese catego ries {har may not be warrantt·d (Robinove..· 
1981:240)- for examp!c..-, how dOt~s one con sistently delineate boundaries around a 
construct SHch as an arroyo head? Additionally, class boundaries may be totally 
arbitrary ; a line dividing lcvel from stcep locations depends on current deflOitions o f 
whac is !cvl,·1 and wh at is steep, 

Steepness of ground is \\'iddy investigated in settiemenr st udies becausc 
scttlemenrs typically arc locat ed on level surfaces where Sleep slopes do nor 
intcrre re with ac tivities (fudge 1973:\33; Roper 1979b:77-81; Williams et al. 
1973:230). This concept is easily made operational lS a quantitative variable in a 
variety of ways, such as rlop!' as pacOI! gradt (Figure 8.23; note chat the C .S. 
Geological Su rvey provides a template that perfo rms thi s calculation) . The lorm or 
roughness o r local terrain has also been investigated (Hurlbett 1977:25-26; Plog 
1981 :49), presumably bec ause rough local terrain wou Id inhi bit day-to-day Jctiv ities 
and tra\'e\ to and rrom si t,·, ( Eric son and Goldstein 1980). One measu re of local 
terrain roughness is termed local rdi"f (Hamrnond 1964); it is measured lS the rang t: 
in elevation wirhin J predefined radius of a locarion under in n's tigation (Figure 
8.2b). High values su gges t rllggc.::d terrain while low values sugge st gentle terrain . A 
(trrain lrxlure' measure..·, borrowed from image processing ( \1oi k 1980:233), providt·s 
anorht"r alternativt". An elc-vation is estimatt~d at tht'locus ofinteres{ and at a fI xed 
pattern of poin ts surrounding the locu s (Figure 8.2c). The variance of these 

elevations is then comput ed. High values suggest variable and dissected terrain, 
while low values indicate a levt"I, smooc h surface. 
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DEVELOPMEi':T AND TESTING OF QlJAi':TITATIVE MODELS 

\Vater resources arc widely viewed as important factors in loeational studies. 
Roper (1979a) states, "some resources, such as water, are so basic and so vital that 
the distance to obtain them must be minimized. II In a cross-cultural study ofcriteria 
influencing hunter-gatherer site-placement deci.sions, Jochim (1976:55) designates 
proximity [0 water sources as a cenual factor in determining immediate site 
placcmenr. Jvl0S( often examined in settlement studies are disrances to a variety of 
water source types, such as permanent rivers, seasonal streams, lakes, springs, or 
streams ofspecified rank (e.g., Brown 1979;Judge 1973: 120; Lovis 1976; Parker 1985; 
Roper 1979b:81; Scholtz 1981). Ltn,ar dillan", arc casy to measure; leas/-e!!orllrap" 
diuanC(f afC somewhat harder to estimate (Ericson and Goldstein 1980). Archaeolo
gists using categorical variables generally assign class boundaries to drainage basins 
and let the highest stream rank in each basin represent the class category (e.g., Plog 
and Hill 1971:23; see Unwin 1981:79-84 for a discussion of systems of stream 
ranking). 

The importance of view to hunter-gatherers for surveillance of the surround
ing terrain is a widespread notion, and the necessity of a good field of view for 
spotting game animals is often cited. Jochim (1976:51,55) suggests that a good view 
is one of the chief noneconomic objectives in the selection of immediate sjtt~ 

locations among hunter-gatherers. In a more complex social context, among the 
pastoral N1aasai (\Vestcrn and Dunne 1979) view is mentioned as an important 
settlement locarion critcrion purely for aesthetic reasons. A good view might also be 
of importance for social or defensive reasons. 

A measure ofvin]} quat;t)' was introduced by Brown (1979:197) in a study of 
settlement patterns in western Kansas. This measure, which yields an angle ""of 
surrounding terrain visible from a site" (Figure 8.3a), has been used in a number of 
archaeological studi"s (e.g., Kvamme 1983b, 1983c, 1984; Larralde and Chandler 
1981; Reed and Chandler 1984). A more common measure pertaining to the view 
concept is a lint'ar diuancc to ill1 oP!n'lnp or ra11lage point (e.g., Brown 1979: 197; Judge 
1973:133; Larralde and Chandler 1981:118), where vantages are defined as high 
points, sllch as hilltops, ridge cresrs, or mesa and canyon rims. Ifview was important 
to the prehistoric occupants, then sites might be located on or in proximity to 
vantages. The importance of view, of course, might vary with cultural type, site 
function, the kind of animal being hunted, and from region to rcgion and season to 
season. 

Shelter and the quality of the shel"'r provided by a location is often recognized 

as being important in site location studies. Locations offering protection from wind, 

adverse weather, or even sunshine (in desert regions) might have been sought after 

for site placement. Euler and Chandler (1978), for example, examined the shelter 

quality of settlements in the Grand Canyon in Arizona. Among hunting-gathering 

groups, Jochim (1976:51) designar"s shelter as a central factor in the choice of 

location. 


Shelter is a difficult concept to make operational; Euler and Chandler (1978) 

examined situational categories of shelter in the Grand Canyon, and Larralde and 


Chandler (1981) used an ordinal rank of 11 sheltering categories (from low or no 
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shelter to extremely high shelter) for site location investigations in Utah. [0 a recent 
paper (Kvamme 1984) I have attempted to devise an int,rpal-ltVeI mtaiurtOJ,belur by 
considering how exposed a location is in terms of the shape ofsurrounding terrain. 
The measure is derived by imposing an imaginary cylinder over the location of 
interest. The top of this cylinder is a constant height (x) above the locus, and its 
sides arc a constant distance (y) from the locus. The volume ofair above the ground 
surface c..'ncompasscd by (his cylinder constitutes [he measure of she-her. A large 
volume (e.g., surrounding a hilltop location) suggests an exposed location with a 
low level ofshelter, and a small volume (e.g., surrounding a valley bottom location) 
suggests a relatively sheltered location (Figure 8.3b). The ground surface is roughly 
approximated by nine elevations measured at a locus ofinrcres( (0) and at surround. 
ing loci every 45° at a fixed radius (y). The area of the base can be approximated 
(base - 17/') or calculated exactly (base - [/SlY'). The volume within the imaginary 
cylinder above the ground surface is calculated (after simplification) as follows: 

volume ~ (base/12)(12x + 8[EOI- El - E2 - E3 - E4 - E5 - E6 - E7 - E8) 

when.' EO, EI, ctc., arc the nine elevations. This index might be referred (Q more 
appropriately as an index that reOects hill-like vs valley like characteristics (sec 
Kvamme and Jochim 1988). 

The exposure or aJptCl of a site is often examined in site location studies in 
connection with sheltering effects. A south-facing aspect, for example, tends to 
offer greatcr warmth from the sun (during much of the year in most of the northern 
hemisphere). Grady (1980:170) argues that sites may be located with primary 
exposures away from prevailing wind or storm approaches. 

Aspcct is usually measured by drawing a line perpcndicular [Q the elevation 
contours ofsloping terrain and recording the azimuth of this line, which provides a 
measurement that ranges from 1 to 360° (Figure 8.2a). A difficulty that this scale 
poses is that 10 and 3590 both indicate approximate north, yet in a quamitative 
analysis 359 is much greater than I. This difficult), con be resolved by collapsing the 
west half of the compass scale over the east half, such that evcry azimuth on the 

west halfis given the azimuth of its mirror image on the cast half. This transforma

tion allows the measurement of direction relative to north or south where CO is 

north, 1800 is south, and 1800 is twice as far south as 900 (east or west). Another 

approach is simply to use the cosine of the anglc of prominent direction (Hartung 

and Lloyd 1969). 


Resources (other t han water) and their importance to site placement ar~ often 

examincd in site location studies. The resources usually investigated are biotic 

communities, A major approach is to divide a study region into mvironmtntal 

C(lligorlu, such as plant communities, and to examine the number or density ofsites 

in each community (e.g., Bettinger 1977; Thompson 1978). Catchment analyses 
utilize a variety of different perspectives. The percentage of various resource 

communities found within a fixed distance ofa site might be examined (Findlov.' and 

Ericson 1980), or perhaps thc variability ofresources or indices ofcaloric potential of 
the area within that catchment might be calculated. Simple distance measures to 
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various resources are often utilized. Lipe and Matson (1971:134) mention that sires 
might "be located so 3S ro maximize access to several resource lOnCS l1 j Gumcrm:m 
and Johnson (1971) invesrigar<.' the biological transition zones bet\\'ccn maior com
munities, or (Coronef, arguing rh:H these zones "arc also cultural transition" zones." 
Simple distance measures to these resource lones might be utilized, such as a 
distance to the nearest ecotone or to a specific plant community (e.g.) Bradley cr 31. 
1984:75). Carr ( 1985:123) discusses other distance measures. When using biotic 
variables, the researcher should keep in mind that present-day vegetation may nor 
necessarily correspond to past situations owing to changes in climate or land-usc 
practices. 

Finally, it should be recognized that other resources, such as fuel Uochim 
1976:51 ), might be important considerations in site location research. In the same 
vein, such resources as lithic raw materials (Johnson 1977:484) might exert a Hpull" 
on setrlement location, and a corresponding \'ariable, such as distance from a lithic 
quarry, might b{' used in arch:.leological loeational studies. 

Social Fac[ors 

The variety of social variables utilized in archaeologicallocational studies is 
certainly smaller than the range of {'nvironmental factors that have been investi
gated. General concepts that have been examined rclate to loc:.lI riu dtns;tier, ,iu 
proximilieJ, and 'pacing. Plog (1971 :47 -48) mentions the import.ncc of density-the 
distance to other sites or sites ofspecific type-as well as distance to great kivas :.lnd 
other ceremonial sites in a southwestern archaeology context. The Southwestern 
Anthropological Research Group (SARG) computer system incorporates such soci.1 
locational variables as number of sites within I km and number ofhabiration sites 
within I km of the site being recorded (Plog 1981:54). Horizontal distance to first
thtough fifth-nearest contempor3ry habitation sites was investigated by Adams 
( 1974) in a locational an.lysis of Pueblo sites in southern Colorado. 

Gra\'ity models are often used in cnvironmentaianaiyscs because setrlcmcnt 
locations Happear co be rdated to movcment-minimizing behavior" Uohnson 
r9n:489), which helps co justify arguments about Iocational proximity to critical 
resources (e.g., Jochim 1976). The same perspective can be applied to cultur.1 
features. Thus, distance to the nearest road or road interscuion might be a useful 
variable ifprehistoric road networks were culturally import3nt, ifthey can be traced 
across a region, and if contemporaneity of sires and roads can be established. An 
implicit basis ofcentral-place theory is That central places can be viewed as resource 
centers. Hodder .nd Orton (1976: 108) illustrate empirical daro that show decreasing 
site frequency wirh distance from a resource c~ntc..'r. 

Spacing betwec.:n settlements lS also a concern. Hill (1971:56) mentions Hspac_ 
ing due to competition with othcr groups for critical resources," which might fit in 
wirh certain territoriality concepts ( Bettinger 1980:225; \Vilmsen 1973). A major 
concept in many settlemenr studies is regular spacing characterized by hexagonal 
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arrangcmenrs of seniemem around major centers or central places (e.g., Johnson 
1972; Flannery 1972). Wobst (1976) discusses hunter-gatherer spacing requirements 
from the standpoint of demographic constraints on biological rcprodunion. 

ASSESSING PATTERNS IN ARCHAEOLOGICAL 
LOCATIONAL DATA 

Approaches to the study of archaeological site location arc, of course, myriad 
(see Kohler and Parker 1986 for an extensive overview). Quantitative data analysis 
approaches might initially be lumped into two categories: those based on trends in 
location and those based on trends in charanerisrics of locations. Models of the 
loeational trends of site distributions are based solely on spatial coordinates; 
locations in space are modeled, not characteristics oflocations. As Parker (1985:202) 
notes, 

Even in t he case of accurate representation ofa disl ribulion ... , this mcthodology gives 

no information for c:>:plaining why thc distribution is in a particular form. Explication of 

sitl" sl"tth-ml"n! systC'm~ is enhanced by methodologies which rciale sitl' prescnce to 


location char;lC(erislic5, thl'reby allowing inrerprcl.Hions as to why sites arl' locatl'd 

where they are. 


iVlodds of trends in locational characteristics, on tht' other hand, analyze 
t'mpirical relationships among characteristics of the natural or social environment 
and the locations of sites. (\10deling of locational characteristics has been the 
dominant approach, and such models are to be preferred not only because of their 
generally greater power (see below), but also because they offer some potential for 
in terpret3t10n. 

Approaches Based on Trend in Location Only 

Approaches that focus on trend in location attempt to modd regional site 
distributions only on the basis oflocational (x,),) coordinates. 0.:0 other information 
is used. Positions in space are modeled, not characteristics of the spatial positions. 
Hence, these models arc generally rather crude. 

Trend-surface analysis (Unwin 1975), a regression technique, is one procedure 
for modeling locational trends, although it is not ideal for site location data. Based 
on spatial coordinates of known sites, most archaeological applications develop 
functions to model a (olltimtOlH dependent variable, such as trends in dated sites, 
across a region (Bove 1981; lvlonroe et al. 1980; Roper 1976). Other examples include 
modeling trends in length/width indices of BJgterp spearheads Jcross northern 
Europe or varying percentages ofOxford pottery across southern Britain (Hodder 
and Orron 1976:164-174). 
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NOh.' that :111 of these studies utilize :1 continuous dependent variable, which 
poses something of a probk-m for site location analysts because ofren their goal is to 
uevelop models for discrete claSSl'S of such information as sitc (or sire-type) 
preS('nCl' or absence. This amount:) to a nominal-level dependent variable, for which 
mOH regression techniques arl' poorly suited. One analytical lItcrnarive for site 
location modeling in [he traditional Tl'grcssion context is [a convert the presence! 
abst'ncc Criterion to SOffil' numeric form that the [cchniq lie is betteT able to handle. 
This might be accomplishl'd by placing an arbirrary grid over the region and 

Oestimating site density or pl'Tforming J simple site count in each grid cell to providt
a depend(·n£ variable that is morc: chan dichotomous. This approach has been llsed 
in a numbe r or archaeological studies to develop regression models of artifact counts 
per grid unit for intrasite disrributional analyses (Feder 1979; Hietala and Larson 
1979; Larson 1975). For sire location SI udies, a similar approach could be applied on a 
larger scale by gridding a region and treating sites as the unit of analysis. 

;\, major problem with the trl""nd-surface regression approach is that dint-rent 
results can be obtained depending on which arbitrary grid size is chosen. A second 
problem involves the ddiciencies of tht.' regression model when it is applied to a 
dependent variable consisting ofcoun". Hodder and anon ( 1976) and Davis ( 1973) 
discuss general probll"m s in the use of trend-surface analysis . 

Kriging approaches to the same problem (Parker 1985:202-205; 'lubrow and 
Harbaugh 1978; Chapter 2, (his volume) utilize similar kinds of data, spatial 
coordinates and site counts per gridded unit area, and generally do a better job of 
modeling densities across a region than trend-surface approaches (Dclflfll"r and 
Delhomme 1975). This method also sulrers from problems resulring from arbirrary 
grid sizes, ho we\'er. 

Rt:ccntly, an approach to {rend mapping that is specifically de~ignC'd for 
nominal-level class caregories has been de veloped (Wrigley 1977a, 1977b). This 
me-thad is based on a logistic regression technique (see below ) and can be referred to 
as /ogiIli r {n'"d~Hlrfa(( al1a/;'J-if. It makes no assumptions about distribution~d form, 
and it is appropriate for a nominal-levcJ dependent variable. ~\'loreover, [he 
dependent variable can consist of multiple class categories (c:.g, site absent, sirl' 
type A prcsl'Ilt, sitt' type B present, sitl' type C present). For a given locality, with 
spatial coordinates x and)" the outcome is a value for a class that is constrained 
berween 0 and I. This value can appropriarely be interpret,·d as the probability of 
an outcome, such as site presence, gi ven its location coordinatt·s ( \Vrigky 1mb: 12) . 
Examples of this rechnique all come from g.·ograph)' and include the probability of 
households in a neighborhood shopping at a particular mJrke[ \'5 [he probability of 
the households nor shopping at thar marker (a two-class problem; Wrigley 1977b) 
and probability rrend surfaces ofhouseholds highly annoyed, madera rely annoyed, 
and little annoyed by aircraft noise in the vicinity of j\;1anchl:ster Airport (a 

three-class problem; \Vriglcy I 977a). 

A model of archaeological site trend in location can be developed through 
application of the logistic trend-surface technique. The location s of 95 known 
open-air lithic scatters in a 5.5 by 8.5 km It:Sl study region on {he southern Colorado 
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plains arc presenred in Figure 8.4a (this study region will be extensively used for 
examples in later sections of this chapter). The study region has been gridded into 
approximately 19,000 cells (land parcels) measuring 50 m on a side; Figure 8.4a 
illustrates those cells with open-air sites prescnt. Thc res ults of various e!Tons to 

develop a probability trend surface for the presence of this site type based only on 
the spatial coordinates of [he known sites are sho\\'n in Figure 8.4b-d. This is a 
simple two-class problem of sire prcsenCl' and site absence, although we arc 
interested only in the mapping fo r the site-present ciass. (Note that in a two-class 
problem the mapping ofone class is the Hnega tive im::tgt>1I of the other class since 
probabilities at any locus must sum to unit y. Thus, it is not necessary [Q produce 
probability surface maps for both classes . In a problem context involving three or 
more classes, however, a separate probability surface map fo r each class is required, 
each derived from a separate eq llation that is mathematically calibrated to the other 
class equations .) The site-absent loca tions were obtained at 54 locations (cells) 
sys tematically placed every kilome ter across rhe study area, 

First- throu gh fou rth-order logistic trend surfaces were fitted to these data 
using the BMDP logistic reg ression program ( Dixon et al. 1983). Fitting trend 
surfaces to empirical data requires usc of polynomial functions, which employ 
various powers of a variable. A function ofx and x 2 (a second-order model) makes a 
graph with one Hbend"j a function of x, Xl, and Xl (a third-order model) makes a 
graph with two bends, and so on, Since we are working in a two-dimensional space 
with (x,y) coordinates, we need to express powers orboth variables (x) X2, xJ, , , ,y,),2, 

),1, ' ..) plus all interactions bt"tween the two variables (.\)', x,', xy2, x~)', ...). 
Generally, the higher the order of the model the better the fit to the data. Because 
the resultant function s arc onl y combinations of these rather meaningless variables 
and their powers, it becomes clear what Parker (1985:202) was alluding to in the 
quotation given above, when she claimed that these models have little explanatory 
potential. 

The first-order probabilit y su rfac~ con tain s the terms x andy. The second
order modcl -adds the terms j;.2, j;)') and y2; the third-order model adds to these (he 
terms Xl, x~y, and),); the fourth-order model adds the terms x~, X)', X,,2, x)'1, and), ' 
(see Feder 1979:96). T hus, the fOllrth-order model containS a total of 15 par>meters 
( includ ing an intercept ) that must be estimated. Second- through fOllrth-order 
surfaces are portrayed in Figure 8.4, with si te-prescnce probabilities portrayed in 
steps of 0.2 probability and in levels of increasing darkness. 

In traditional trend-surface analy sis (discussed above) the utilit y ofthe various 
poly nomial surfaces arc usually evaluated on the ba:; is of increases in R2 (variation 
accou n ted for in the depen den t variable) ov,,'r prcv iOlls SlI rfaces ( l~nwin 1975). Th is 
is no t possible with the logistic trend-surface technique sinn' the dcpendent 
variable is catego rical. A number of pscudo-R2 statistics for logistic regression ha\'e 
been introduced. One, Rp' (Baxter and C ragg 1970), provides a vallie th at ranges 
between 0 and 1, although midrange values are considered very good for indices of 
this kind (S topher and Meyburg 1979:334). The fIrst- rhrough fourth-order ,u rface, 

shown in Figure 8.4 yield the following v~lues of Rp': 0.0218,0.3125,0.3799, and 
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0.5043, tespectively. Thus, the first-otdet su rract' accounts for almost none of the 
"variation" in sitc presence / absence. Tht second-order surface provides a substan
tial improvement (increasing Rp' by about 0.29) because the resulting probability 
ellipses center around the major concemration of site locations (Figure 8.4b). The 
third-order su rface provides an increase in Rpl of about 0.07, and the fourth-order 
su rface yields anothcr leap, an increase of about 0.l2. Note that the fourth-otder 
surface (Figure 8,4d) does a relatively good job of modeling or describing the spatial 
distribution of the known sitcs (several branches and clusters of sites are picked up 
by the :m rface), considering that it represents a simple function basl..'d solely on the 
spatial coordinates of the site-present and site-absent data. It should be apparent 
that if the locations of the known sites in a modeled region arc representative of the 
location s of unknown sites in as yet unsurveyed areas of that region, then high
order logist ic trend surfaces offer a predictive aspect, like any ot her model. 

\Ve might also apply the gain statistic, discussed above, in order to t'xamine 
model performance in a more interpretable way. The gain statistic was defined as 
one minus the ratio of the percentage of tht~ total area encompa ssed by a model 
when mapped, divided by the percemage of total sites within a model's areaj a good 
model is suggested as values approach I (small area with a high percentage ofsi tes). 
The locations in Figure 8,4 with an estimated probability of membership in the 
site-prese nt cla ss greater than 0.5 (thc two and one-half darkest level s of shading) 
can be used as the area encompassed by each model. The 0.5 poim, which is a 
traditional dccision rule, is arbitrarily llsed here and eisewht.'re for comparative 
purposes only; later sect ions examine ot~l.'r decision rules. \Vhen the 0.5 level is 
used, the second-ordcr model (Figure 8,4b) cover> approximately 40 percent of the 
study region and 74 of the 95 ,ites(78 pncent) occur within that arca. This yields a 
gain stJ.t istic valllt· of I - 40178 or I - 0.513 = 0.487. A similar assessmcnt of the 
third-order model (Figure 8,4c) reveals that the modeled area is 39 percent of the 
total area and that 80 percent of the sitcs (76 o(95) lie within that area. Thus, the 
third-order model provides only a slight improvement in gain (gain 0.513). TheE 

founh-order model ( Figurl.' 8.4d) provid('s a major improvement, encompassing 
only 31 pcrcent of the total area and including 82 percent of the sites (78 o(95), 
yielding a gain statistic of 0.622. 

Approaches Based on Trends in Locational Characteristics 

Archaeologists ha"e examined trends in arch aeological site locational charac
teristics, particularly environmen[al fcaturt·s, for a long [imt:'. To illustrate, in a 
stlldy of the Paleoindian occupation of cefltral New Mexico Judge ( 1973 ) examined 
water sources, vantag<.' points (from which game might be viewed), hunting areas, 
and trapping areas ( locations where large animals could be driven and trapped), and 
thcir relationships with the sitcs in his sample. In th('ir inves[igation of prehistoric 
Shoshonean scnlement pattcrns in Nevada, Thomas and Beuingcr ( [976) examined 
distance to w:ner, distance to the pinon ecorom.' (pinon was considered an impor
tant economic resource), clc"J[ion above the valley floor, and ground slope. The 
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imporrance of shelter, fuel (lirewood), a good view (to observe game), and water to 

the immediate locations of hunter-gatherer sites in general were outlined by Jochim 
(1976:55) in" study based on ethnographic literature. Analyses p<:rtaining to more 
complex agricultural situations often examine conditions related {Q {he arability of 
the land. For this reason, Grecn (197]) in\'c.~srigarcd five variables related to soil type 
in an anal~fsis of 7vlaya settlement in Belize. A soil texture variable as well as 
vegetation, hydrographic, and landform variables were examined by Roper (1979b) 
in a study of \Voodland site location s in central Illinois. In all of rht'se studies, 
characterist ics ofsire locations arc the focus ofinrcrcst, and as noted earlier, variolls 
soc ial fac to rs, such as distance to the ncare:)t contemporary road or to a si te alTering 
services or religious or socill resources, may also be considered characteristic of a 
location. 

Approaches of the kind just described typically summ3ri ze empirical data 
observed or measurl'd at knmvn site locations through tables or various descriptive 
statistics , The ability to "pn.~dict" in gene-ral terms on the basis of these data 
patterns is implicitly or explicirly recognized. Many archaeological studies of this 
type have depended largely or wholly on the use of nominal-level categorics for 
investiglting site location patterning. One such predictive model dcveloped by 
Bcttinger (I m:220) was constructed for Hpredicting the distribution . function, and 
dcnsitr of archaeological materials in thc Inyo.Mono region ." This model simply 
divided the st udy region into biotic communities and projected expected num~'rs 
of various site types in each community based on site density estimates obtained 
from sample surveys. This is the most common approach in traditional site-location 
investigltions, and discussion of other examples (e.g.! Brose 1976; Grady 1980; 
Reher 1977; Thompson 1978) would be redundanr. 

Other investigators have focused on continuous site-location information 
(e.g., Judge 1973; findlow 1980; Hurlbert 1977). Such empirical data can be quite 
lIseful in formulating projcctions about sitc locations. One might show, for example, 
that x percent of sites OCCllr within), distance of a drainage in a study region by 
obtaining measu rements of distance to water from a representative sample of 
known sites in the region. Thomas and Bertinger (1976:362-363) go • step beyond 
this by fitting normal distributions to empirical data on slope, distanct' to water, 
distance to pinon ('cotone, and elevation above valley floor obtained at site locations 
in (he Reese River Valley of central ;'\cvada. The central portions of these normal 
curves are taken to represent "ideal locations" for sites. ~1oving in either direction 
along (he curves (c.g., to steeper ground) decreases the probability (hat sites will be 
found. 

The practice of lining theoretical distribution s to data is a common one in 
many disciplines (e.g., Cooper and Weekes 1983:20). Th,> above procedure of 
Thomas and Bettinger might SCl'm u~eful for modeling site distributions, e.g., 
projecting sit(, probabilities across the landscape. Such models are cailed ring!r-riaH 

claHifi f rr in remotc-sensing applications (Lin and Mintt.'r 1976; ~,tintC:.·r 1975) because 
the)' arc used to describe th(;~ distribution of a specified class (e.g ., a site-present 

class) using data only from that class. (Such single-class approaches do not perform 

345 



KVAMME 

as well as approaches that utilize a second class as a control group to connJst with 
the group of interest; this latter approach will be described below.) 

A problem with archaeological studies of the type discussed above is that they 
often consider nominal- or interval-level variables only singly, on:l univariate level. 
Data often arc not examined in a multivariate context, and as a result interrelation
ships and redundancies between variahks afC ~eldom considered. Nor are their joint 
effects on site location taken into account for prediction purposes, evcn though a 
cursory inspection of the literature points [Q {he multivariate nature of {he site 
locJtion problem. 

Conlro/ Group' 

An imponam medlOdologicai difliculty of many archaeological site location 
~(udics is the failure (Q use a conno1 group \I.,jth which archacological distributional 
pancrning may be compared. \Vc might imagine, for example, a ncwsp:tper repon 
indicating that \190 percent of the inmates of Smith County jail are nonwhite 
minorities." Such statistics arc often used in lay contexts, but a scicntist seeks 
background control dara before formulating conclusions. Ifa control group obtained 
by selecting a random sample of members ofthe entire population ofSmith Cou"'y 
were to indicate that 90 percent of the popuiJ.tion are nonwhite minorities, this 
would suggest that the jail in matt: proportions do not represent a noteworthy 
panern. This example has direct bearing on archaeological site location studies 
because the same kind of initial argument is offered in many studies, namely that x 
amount of sites are located within J distance of a resource. 

In many disciplines, control data sets are rominely used. Quantitative psy
chologists) tor example, typically m(.'aSUfC personality traits on a control group 
selected randomly from the population. This reference body of data is then 
compared with data from the group under study, e.g., suicide-prone individuals 
(Overall and Klett 1972:257) . Geologists have compared locations exhibiting high 
levels of radioactive emissions with a control group of locations exhibiting low 
emission levels in order to develop predictive models for uranium exploration 
(~1issalati et al. 1979). Remote-sensing scientists obtain spectral data from a variety 
oj environmental settings in order to amass a comparative background with which 
:,pc:ccr.ll emissions of crop types of interest, such as wheat, can be compared 
(Landgrebe 1978; Swain 1978). These techniques are common in pattern
recognition studies (Duda and Hart 1973). 

In archaeology a similar approach can bt., taken. Environmental or other 
information can be measured at locations (land parcels) containing known archaeo
logical sites and then contrasted with a control group of identical measurements 
obtained at r:lndom locations in a study region where sites are known to be absent. 
By this mean s, environmental and other ft'aturt's beating relationships with the 
locations of sites might be identified. Data for such a variable as distance to nearest 
dralnage, for example, might b(' collened a[ a feprl'~cn[Jd\'c sa mple ofarchacologi
cal locations within a region ( Figure 8.5a, top). Since the distribution of the data is 
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concentrated in the area of (he graph representing short distances to water, a 
typical archaeological conclusion might be that proximity ro water is an imponant 
fac[Q( in sift' location. Yet we must also ask how far any location within the region 
under study j~i (rom a water sou rce before drawing such a conclusion. A conrrol 
g rou p of measurements of distance [Q watcr taken at random locations where si res 
d o not occur might yield an identical distribution (Figure 8.50, middle), forcing the 
conclu sion that water is generally close [ 0 any location and that proximit y to water 
is not a significant factor in site location in [his area. Ie on rhe other hand, rhe 
control data yidded a distrib ution with a central tendency somt" distance from 
water (8.5a, bottom), the archaeologist might more justifiably arrive at the conclu
sion that proximity (0 water is a significant 10cational facror (~et,.· Kvamme 19853). 

As the above exa mple suggests. a conrrol group approach may be essential to 
forming valid conclusions concerning ~'ite location factors when empirical archaeo
logical dat a are used. Concrol g roups serve several important function s. Their use in 
model deve lop ment is discussed below. bur perhaps the most important use of 
control group data is in model testing; it is only through the use of a conrrol group 
that the performance of a site location model may be prope rly assessed. Return ing 
to the example given in the introd uction (0 this chapter, a model might class ify tl'l'~}' 
location ( land parcd) within a region as sire-likely and thereby predict all actual site 
locations with 100 percent accuracy, but such a model is useless. (In this case the 
gain statistic would yield I - 1100 percent o f total orca classified by modd Vll OO 
percent ofsites in model2fea] =0.) On the other hand, by lIsinga conrrol group that 
approximately represents the environment at large, i( might be found (hat a sitt'" 
location model encompass(~s only 60 percent of tht,.· land area of the region when 
mapped, but it includes 00 percent of all sites within that area, representing an 
amount of gain against which the utility of the model may be j udged (in thi s case, 
gain = I - 60 /90 =0.33; sec the section below on HAssessing ~'Iodd Performance" and 
the discussion of gross errors and was(efulerrors in Chapter 3). 

The use of a nonsite cont rol grou p also helps to clean up some concep(tlal 
sloppiness. Through li St' ofcerrain stati stical procedures, we oftcn wish to estimate 
the proba bility ofsite-group membership at a location ( land parcel ). Obviously, t his 
probabilicy o ften can bc less than 1.00. But irthc probabi lit y of si te-doss m<mber
ship is estimated as 0.6, what does the rc:=maining 0.4 probability rcpresent? Logi
cally, and consistcntly, this remaining probabilit y repre sen ts site ~tbsencc, the 
complement ofsite presence. Thus, models for site prest"'ncc must also consider si t e 
absence, and nonsitc data permit us to do this. 

i\!onsi te locations should be selec ted from throughou t the region in which the 
sites under question arc being modeled . If the region is large and diverse, with 
multiple natural subgroupings of the environmcnt ( e.g ., plains and mOllnfains), 
then the in vestigator might wish to examine sitc location palterni ng within c.:ach 
grouping (a plains model and a mountains model). Such a practice could lead to 

enh anced precision of pr~dictions. In this cast', it is appropria tc [0 randomly select 
nonsit es according to the groupings (strata). 
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The lise of background data sets has been explored to some c~.:tcm in archaeo
logical site location studies, Plog and Hill (1971), Plog (1971), and Flannery 
(1976:92-93) point to the importance of knowing conditions in the environment as a 
whole before assigning significance [0 a particular factor in terms of site location, 
and Plog (1968) and Zarky (1976) actually determine background characteristics in 
their studies of prehistoric settlement systems. These studies focLls on proportions 
of gross environmental categories (e.g, arable bnd, mesas, river bottoms) in the 
study region as 3. t;\:hole as a basis for contrast with the observed pJttern of sire 
distribution with respect to the same categories; diftercnccs in proportion are 
interprcted J .,) impl~f ing some so rt of selec tion on [he parr of the prehistoric 
inhabitants for some of the environmental categories. In conlras( to this focus on 
large-area environmental types, which offers liule information on the immediate 
locations ofarchaeologic31 :\it("s, a t<.."chniquc in which control data arc me3sllred at 
random "point" locations (e.g., land parceh or quadrats ofv<.."ry small size) at which 
sites are known [0 be absent can provide stlitable background contrasts to identical 
information recorded at known site locJtions (Custer et 301. 1983, 1986; Kvamme 
1980, 1983b, 1984, 1985a, 1986; Larralde and Chandler 1981; Morain l'! al. 1981; Peebles 
1981; Wells et al. 1981 ), ,\ ,omewha t diflerent approach, but one that uses an 
identical methodology, measures control data for larg(·land parcels (e.g., one-halfor 
one square mile) that cont3in no archaeological sites (Holmer 1979; Scholtz 1981j 

Schroedl 1984; Zier and Peebles 1982), 

Ptll/am tlml C/d.Hi[icdlion: TJx k!eaiUronoll Space 

Scientists working in renlotc se llsing, pattern recognition, statistics, and 
decision theory have developed a number of ways to classi!), objects (individuals, 
locations) into prespccified groups. A great deal ofpracticil experience in predictivc 
modeling in geographic contexts has been gained by researchers attempting to 
analyze and classify n:motely sensed images. 

In image analysis studics, multispl'cnai scanners p.1SS) on pbtforms in orbit 
above th~ earth sense reflected radiation from the eanh!s surface (!\occ Chapter 9, 
this volume} The predic(or variables are the various \ ..ISS bands in which reflect cd 
radi3tion is mC3sur<.."d. T he basic unit of analysis is [ermed th~ pixd ( picture 
element ), which corrc~ponds [Q a sm311 3r~J on the ground. Reflected radia(ion 
values arc fllc3sllf(.'d on each :vlSS band ((he variables) for each pixel in the region of 
interest; image cias:,iflcatiol1 SC il:nt ist s lhcnllse the ITlcasured rl'f1<.."clann.' character
istics to cb.ssify each pixel into iikely (prt'speciflcd) groups ofinrerest, such as wheat 
vs nonwheat , forest \'s nonlorest, or urban vs non urban areas (La ndgrl'be..: 1978). 

Thl' analogy with our archa(:,ological problem is clear: in many site..:-Iocacion 

modeling approaches we want to cbssify locations (analogous to pixels ~lI1d oftl'll 

small in are:\) into site-likely, site-tYPl'-likely, or site-unlikely catcgorie..:s on thc 

basis of the vari3blcs (usually measuring terrain or environmental characteristics) 

measure..:d at thl' locatiuns, Ivlodc::ling approaches that utilize computer-based gco· 

graphic information system (GrS) techniques (Hasenst3.b 1983; Kvamme t983b, 
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1986; Chapter 10, ,his volume) actually g rid entire stud), regions inro small cells 
(pixels) and trea' these cells as the units of analysis. As a resulr of this general 
similarity between the problems of rcmote.sensing classification and those of 
site-location modeling, many of the techniques presented in this chapter arc 
borrowed directly from pattern-recognition and image-classification studies. 

In pattern-recognition :md image-analysis research, measurements obtained 
at locations belonging to known categories arc often called training data bt.·cause 
they arc used to develop or Htrain" classification functions. These functions are 
numerical decision rules that utilize class Ch;.u3cteristics (i.e., measurements) [0 
classify entities whose group membership is not known (Swain 1978: 142). In an 
archaeological context, sampk'$ of known archaeological site locations constitute a 
training set, and measurements of environmental and other variables at each of the 
sites provide a sit e class characteriza tion. If a cont rol grou p of site-absen t locations is 
used, measurement s at these locations provide a nonsite class characterization. 
Patterning represented by the measurement s of each class can be used to assign 
future locations (for which si te presence/ absence is unknown) to ont of the classes 
in a predictive sense. Exactly how this is accomplished depends on the narurcofthc 
technique used (several alternative methods arc presented later), but all techniques 
for accomplishing this goal have an underlying similarity. 

Archaeologicallocational data typically occur as a series of points Of small areas 
on maps chat represent the locations of kno\\'n archaeological sites or artifact 
clusters. These site locations might suggest an intuitively identifiable seulc.:ment 
pattern; for example, the sites might be located along high terrace ridges above 
major drainages within stands ofoak. In working with classifi.cation procedures that 
can be used [0 model a site location pattern in an objective manner, however, a more 
abstract concept of the term patttrn is required. Characteristics of a location arc 
reduced to a series of measurements (which may be categorical), and the classifica
tion procedure compares the measurements with a set of pre\'iou sly made mea
surements that arc 4"typical" ofknown classes, such as site-present and site-absent 
categories. The location is assigned to the group whose measuf(:,'mt'nts are most 
similar to its own. In other words, as far as a classification procedure is concerned, 
after the measurements arc obtained the physical form of the location and of the 
surrounding environment are unimportant: the set of measurement s if the envi
ronmental (or other) pattern of ,he location (see Swain 1978: lJ9). In general, we 
might think of the environmental terrain characteristics of a loc3tion simply 3S a set 
of measurements, not in terms of their ph ysical form. 

The" measurements made at a location define a point in If-dimensional space, 
which is referred to as the m(amranmt fpau , The purpose of a classification procedure 
is to divide the measurement space into appropriate daision rt'giom, each correspond
ing to 3 specifi.c discriminable class, and to assign the measurement s made at a 
location to the cl-ass lh3t corresponds to the decision region in which it falls. A 
two-dimensional measu rement space where Xl might be ground slope and X2 
might be distance to nearest water is illustrated in Figure 8.Sb (above). The 
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sire-present locations ( hollow circles) [cnd to possess Je\·d ground and are close to 
water, while the si te-absent locations (t he black dots) overall tend to be on 
somewhat steeper ground and farther from water. The decision boundaries (several 
are presented for later reference) attempt to separate the two classes. IfXI and X2 
were measured on a map at some location where site presence/absence is unknown, 
the locarion would be idencified as more similar ro the site or (he nonsiec group, 
depending on where its measurements fall relative to the currently defined decision 
boundary. Of course, some nonsite locations will always fall on the site side of the 
decision boundary and some sites mar fall on (he nonsite side, which introduces an 
amount oferror that we at (empt to minimize. (The: case excmplified in Figure 8.Sh 
is an oversimplification since t in practice, we work with many more variable.:s 
[dimensions), which provide morc information and help to reduce error.) 

Although the above example utilizes continuous data, categorical data can be 
approached in the same way. \Vhen dealing with such variables the measurement 
space is best seen as a table, with one dimension representing class partitionings 
according to onc variable (e .g ., plant communitie.:s) and the other dimension 
comprising class partitionings according to another variable (e .g., topographic 
categories). 

Pra(lica/ Slalillica/ Concerns in Model Drve/opmenl 

In earlier chapters a great deal has been said about statistical inferential 
techniques and their proper application in site location studies, particularly with 
regard to meeting various statistical assumptions. It is often diOicuit, however, to 

meet many of these assumptions in real-world applications. This section briefly 
discusses certain statistical difficulties pertaining to sampling and model 
development. 

A concern commonly voiced in regional archaeological studies pertains to 
apprehensions about cluster sampling and the problem ofobtaining representative 
Ot unbiased samples of sites from within a region (e.g., Berry 1984; Mueller 1974; 
Thomas 1975; Chapter 5, this volume). What is meant by representativeness is that 
the characteristics of a sample (i .e., sample statistics) are unbiase.:d estimates of the 
true parameters of the population under study (e.g., the mean slope value esti
mated from a sample of sites provides a good estimate of the.: true mean slope value 
for the population of all sites in the region of study). 

Some.: archaeologists maintain that the only way to obtain unbiased site 
samples in a regional context is through simple random sampling, but to obtain a 
correctly drawn simple random sample ofsites from within a region, the location of 
every site would have to be known beforehand, each would be assigned a number, 
and a simple random sample would be obtained by random selection of the 
numbered sites (sec Thomas 1975:78). Clearly this approach is impractical; 
moreover, ifcvcry site were known prior to the sample selection, there would be no 
need for the si te-location modeling exercise. 
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An alternative procedure that would allow simple random sampling requires 
that the researcher superimpose a smaU-mcsh grid (where each grid cell is approxi
matc\y the sizc of a typical archaeological site) over the rcgion of study. Each grid 
cell is assigned a number, a simple random sample ofcells is drawn, and this sample 
is then surveyed. Most of the cells will not contain sitcs, owing [Q their relative 
rarity (see uBasc Rate Probabilities," below). If they are very rarc, for example 
occupying only aboU[ I percent of the celis, then this procedure also presents 
difficulties since many thousands of cells would have to be surveyed [Q obtain 
reasonable site sample sizes. Additionally, the problem of traveling to and locating 
numerous randomly placed small cells presents a nontrivial factor that must be 
considered. 

Even if we could obtain simple random samples in regional surveys, problems 
would still arise in attempts to draw statistical inferences during model develop
ment. Most techniques of stat is ricaI inference assume independent observations. 
Statistical independence in terms of areally distributed data implies that when 
observations arc ordered in space it should nor be possible to have a better than 
random chance of predicting values of some observations when other values are 
known. As Gould (1970:443) points out, "it is doubtful that one could find an 
assumption that is more at variance" with geographical data; spatially distributed 
phenomena generally possess regular spatial variation or positive spatial au[Qcorre
lation (Cliff and Ord 1973), thus violating independence assumptions. Tobler 
(1970:234) has referred [0 this propert), as "the litS[ law ofgeography: everything is 
related to everything else, but near things are morc related than distant things." 

Many environmental phenomena commonly examined in archacological stud
ies, particularly distance measures, exhibit significant levels of spatial autocorrda
tion. To illustrate, I undertook a simulation study (Kvamme 1985b) that utilized 
simple random samples en = 100) of I ha locations from a 100 km' region. The data 
were obtained from a working geographic information system (see Chapter 10), 
which tacilitated the simul:Hlon. At each location, elevation and slope (percent 
grade), tWO commonly used vaiiables in archaeological studies, werc determined. 
An autocorrelation coefficient (Cliff and Ord's [1973) I statistic) was calculated for 
these variables for ~ach offive simulation runs (where a new sample was selected for 
each run). In an associated significance test that yielded standard :z.-scores (a 
common statistic used to evaluate significance; se~ Thomas 1976), the :z.-scores 
ranged from 3.71 to 10.17 forslope (with an average of6.15) and from 7.72 to 9.95 for 
elevation (with an average of8.46). These scores indicate highly significant levels of 
spatial autocorrelation for these rather common variables, pointing to a lack of 
independence between the observations, since a :z.-score of 1.64 is significant at the 
0.05 level and a "<-score of 3.72 is significant at the 0.001 level (these tests were 
one-tailed). Thus, the real world presents difficulties even for simple random 
samples; researchers who somehow are able [Q obtain tht'm and argue statistical 
correctness may be working with a false sense of security. 

In regional archaeological analyses we often have no choice but to use some 
form of duster sampling [0 obtain representative samples of sites from within a 
region. As Holmes (1970:381) states, 
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Ihis dl..'sign sometimes mu... t bl..' employc:d lx'cluse o(,dOln(icd{ioll frob/I1T11, In somt' ost.'S 
idC':'l1 ific:ltion oiindividuals ior sampling is absolutely impossiblt.,) whilc in otht::rs il is:m 
("xttl!"mdy bborious, unrcw:uding I.\sk. These nonm:uh(;lTIJ.ticJ.l idc.:nl ilic.u ion difficul
ties-, uising (rom tho.: n:ltutt.' Ofl hc d:lt3, willlh~'lYS persist in (eft:!in t ypC!'O ofn:seaTch, so 
Ih:H t he nc.:t~d for :.ut':ll clU'Stl'T1~.lmpks will continue- in t ht'Sc important fields Icmphlsis 
origin31J. 

Hence, it is imporrant to examine the effects of cluster sampling on quantitative 
c1assificJtion models bflort looking Jt the madding approaches rhcmsrivcs, since 
many models of necessity are based on cluster-sampll:d data. 

The typical sampling practice employed in image-analysis studies (Moik 
1980:Fig. 8.7; Schowengerdt 1983:192, Fig. 3-30) is informative. This procedure is 
ponra),cd in Figure 8.6a, which illustrates forested areas (shaded) and nonforeseed 
areas (unshaded). The large blocks represent ground-truthed clusters ofsmall cells 
or pixels of known group membership; in the rcmaindtr 'of the image, group 
membership is unknown. In each ofrhc pixels, me~tSllremen(s of reflected radiation 
are recorded. A goal might be to develop a predictive model that classifies forest 
locat ions in the remainder ofrhe image based upon reflectance charancrisrics of the 
known forest and non forest pixels. This form ofclusrcr sampling is somewhat mort' 
cxcremc than that {),pical in archaeological sampling, since (he analysis elemems 
(pixels) occur in tight, contiguous blocks (compare Figure 8.6a with Figure 8.6b, a 
typical archaeological sampling example). On(" might expect that in the Figure 8.6a 
example there would be a high d(,~grcc of positive spatial autocorrelation because of 
the increased rel~Hivt' proximity between analysis elements. A second drawback of 
c1us[(.'r-samplt:d data is that within-class variation l,,-'nds to be underestimated (this 
follows from the reduced variability within clusters), making classes appear more 
different than th~y really arc. The possible drawbacks ofcluster sampling must be 
weighed against its benefits; in (he remote-sensing case (as in archaeology), cluster 
sampling is much less difficult and costly than obtaining simple random samples of 
elements. As Schowengcrdt (1983: 192) states, 

In;)11 nndom s:1mpling proc(.;d\lr~s, it is dcsir:lblc [0 sdcct r:lndoOl t,ro:'pi ofpisds r:uher 
than :oi nglc pixels bct:::amt: alth\.· practical difJicuhy in at:cur .trely iOC:H ing single pixels on 
thc ground [emphasis original]. 

In a classification pt:rspeccivc, the detrimencal effects of well-designed cluster 
sampling seem to be small, as indicated by excellent classification r(.'sulcs typically 
obcained by remare-sensing studies Uvloik 1980; Schowcngerdt 1983; Swain and 
Davis 1978). It is eas), to see why this is trill.': a classification procedure only 
partitions (he measuremen{ space (Figure 8.5b). Differences between (he mea
surement spaces defined by simple random samples and those defined by suitably 
constructed clusrer samples are radwr small when compared with dillen'nccs 
b,,-,tween discriminable clasH's, particularly when the sit"-'-presenr and site-absent 
contrast discussed earlier is used. Ont: simulation study (Campbell 1981) compared 
rhe performance of the dense cluster sampling practice illu strated in Figure 8.6a 
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Figu re 8.6. S:Hnpling pr::a clicc:s. (A) In remold)" scnwd imagt: studicl\ an;J.iysis, c:h:Tnl'nts or pixels (tnc: 
sm:tll cells) or known group mcmbl'rship J..n: typ ic:dly selected in b rgc contiguous blocb' as J praclic:u and 
cosr. slv ing mcasun", hl" r4." from fOTc $l4."d (Shldl"d) and nonfor~S( t"d (UI1Shldl'd) ~et l ing~" (B) A I ypical arch.ll"olog· 
luI sJ.mplil1g prJcl icc comists of r;mdoml~" pbccd qua dr;u s wirh a \'ariabk number of ~itcs (bbck dots) in each 
qU:ldr3t. 
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with simple random samples in classifying forested areas ( v~ non[orcsted areas) in 
several ditlcrent Landsat scenes. The classification accuracy of the predictive 
(discriminant analysis) models obrained from the less autocorrelarcd simple random 
samples ranged from 15 pCfeem better to 2 percent worse (an averagl.:' of6 percclH 
berrcr) than thac of the corresponding mod..:!s ob tained from the more highly 
autocorrdated cluste r samples. The lesson ro be learned from [his evidence is that 
we should nor be roo concerned with (he detrimental crteas resulting from the use 
of cluster samples, considering the benefits that arc derived in return. 

Notwithstanding {h(~sc.· resules, the question about the: corn:ctnes~ of using 
statistical inferential procedures in these contextS still remains. Researchers faced 
with similar problems have developed robuf,t model validation procedures in 
remote sensing and elsewhere (Schowengerdt 1983; Swain 1978). As describe.d 
earlier, a site location model can be viewed simply as a classification o r decision rule. 
For the moment let us forget how such: model might be developed. Rather, let us 
focus only on the idea that we have a decision rule, howevc..~ r it was derived, and rhat 
we can apply it to measurements obtained at loc:uions (land parcels). Based on these 
measurements, the decision rule yields, 3t the very simplest, an a~si.:.,nment to one 
of two categories-for exam pic, site present or site absent. If t he decision ru le has 
some predictive c:lpacit)' in terms oCtile populations under study, then it should 
offer correct decisions more often than could be attributable to chance. This notion 
can be tested in practice by obraining new random samples of known site-presenr 
and site-absent locations (both entirely independent of any sa mples thJt mighr 
have been used earlier in model development), by applying the decision ruk· to the 
meaSLl rements at these locations, and by determining how well these sites and 
non sites are c1assjfied. If the percentage correctly classified is greater rhan that 
attribu table to chance, then the decision rule has some pn.:dictive cJpacity I and it is 
here, in this testing phase , rhat methods of sta tistical inference are mote appro
priately applied. Relatively simple statistical testing procedures can be lIsed to 

assess the significance of model classification results (see below). 

The usc of independent test samples makes this overall approach robUJI 
because p{'rformance is ass(..'sscd on entirel y new sets of data, which gives an 
excellent idea of true model performance: in practice and obviates the.: nel"'d for 
reliance on the assumptions of multivariate statistical theory (c. g., multi va ria te 
normality and homogencity of variance) in the model-devc.:lopment stJge . :,\'otc 
that in this scheme it does not mattcr what procedures arc used to develop a model 
or decision rulf.:', sina all informul about the' uft!lIll1(J1 oj a modtl (11"1 drawll .from ,b( 
indepmdmltot Jamp/d. Thus, any procedure CJn appropriarl'iy be used to formulate a 
decision rule, from simple subjective notions about ~ite locations to complex 
multivariate data models. Rt:gardless oftht> modc.:l-bllilding procedure used, how
ever, the statisti cal assessment orits worthiness is made through independent rest 
samples. This is the..: approach taken in the remainder of this chapter. Such multivar
iate techniques as multiple discriminant analysis and logistic regrc....ssion arc used in 
subsequent sections for model development, but only as a mean s of obtJining a 
partitioning of the mcasurc..:mcnt space in the form of a decision rule..:. These 
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algorithms are based on very powt:rful mathematical differencing techniqut:s that 
arc able [Q provide excellem partitionings of the measurement space even when 
underlying assumptions are not flilly mer. 

Example Analysis Based on Locational Characteristics 

A si te location study performed in the Glade Park region of western Colorado 
( K"amme 1983c) can be used to illustrate model building based on loca tional 
charact e ri st ics . In this section these data are used to illustrate on<.· approach to 
model development bast:d on environmenral and terrain characteristics observed ar 
rhe known si te and nonsite loca rions fo und by th at sUld)'; a lat er section will usc 
these dara to illustrate model-res ting procedures. For simpliciry the model is 
developed for rhe loca tio ns of all open-air sites within Glade Park, alth ough 
identical methods would apply [or speci fic site-type model development (sec 
H ~\'t odeling Individual Site Types," below). Only environJ11<.'ntal factors are consid
ered in this ;lnalysis. Variables measuring social factors would, if available, be 
treated in an iden rical manner, but in the present study, w hich dealt wirh hunter
gatherer archaeology, contemporaneity ofthe sit es was impossible to esrablish from 
rhe survey data and such fe a tures as central-place sC' rrlemem s simply did not exist. 
The anal),sis WJS carried out by ",>ating each hectare (100 by 100 m parcel) as the 
unit o f in vestigarion and th~n comparing land parce ls rhat includ ed sires wirh land 
parcels thl[ did not. 

The Glade Park st udy re gion, encompass ing nc:arly 650 mi2, lies on tht: western 
border ofColorado in rhe Bureau of land :Vlanagcmenr's Grand Juncrlon Rcsourn' 
An.::). This arid region of mesa and canyon country is covc.::'n:d by pinon-juniper 
forests interspersed with grassy clearings and is archaeologically one of the richest 
areas ofColorado ou tside t he sou rhwe stern ponio n of rhe stare ( \Vormingron and 
Lister \956). T he archaeological sites uniforml y consisr o f small sca tters of chipped 
stone artifacts, lithic debris, and occasion al g round stone; ceramics are cxrrc:mcly 
rare . 

Sa mpling 

The purpose of the an:hacological sur vey conduct<.·d in Gbde Park was to 

obtain a random sample ofsire loca tions to be used in a modeling srudy ofpanerns of 
prehistoric site distriburion. Thi s was ac~omplishcd by su rveying 38 quarter· 
sections randomly selected from a tara! of nearly 2600. These qU3ncr-secrions were 
g riddcd into 64 units of I ha each, which were the primary analysis units . Prehistoric 
sites \",en." discovered in 157 of the se I ha unirs out ofa toral 01'2432 unirsexamined. 
O[ the 2275 land parcels that did not contain sitt>s, a rlndom sa mple o[ 157 was drawn 
to serve as tht' nonsile control group. It sho uld be noted that , beca ll s ~ nonslte 
locations were select cd (rom a limircd number ofquarter-scer ion c1usre rs, envi ro n
mental (and orher) variation may have been underesti mated , which can have a 
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deleterious effect on the performance of the resulting model. This practice of 
selecting nonsitcs from the same clusters as those in which sitcs are found also tends 
to make nonsitc samplt.·s more similar to site samples than is really the cas(" in 
nature, and this also can weaken a model. Although the Glade Park sample may not 
be optimal, it will be shown that very good results can be obtained through the 
nonsiee sampling procedure used here. 

An al£crnarive nonsiee:; selection approach that resol ves these problems to some 
extent was used in a Colorado plains site location study (Kvamme 1984). This 
approach recognizes that in many regions archaeological si res an~ an extremely rare 
phenomenon, occurring by chance on the order ofaround 1 percent ofrhc timc (see 
the section below on HUase Rate Probabilities"). In other words, for every acre in a 
region that contains a si te there might be 99 acres where no sites occur. The 
alternate approach draws a simple random (or other) sample of control locations 
from across the entire landscape of the region regardless of wht.·thcr or not the 
locations have been field inspected for archaeological resources. The advantages of 
this approach arc (a) that the resulting control group represents the true range of 
background environmental variation and (b) that levels of spatial autocorrelation 
are reduced (since selection is not by clusters). The disadvantage is that by chance a 
small percentage - in the above example around I percent-of the control locations 
actually falls on sitcs, which introduces error in group id<.'ntification. This error is 
usually negligible and has little effect on analysis. A control group obtained in this 
manner may still be referred to as a" nonsite" group since under such conditions the 
vast majority of {he group (99 perccnt in (his example) really arc nonsitcs. 
Obviously, in areas wht're the probability of finding a si te is high this procedure 
should not be undertaken. 

Environmfll/a/ Variabler 

Fourteen environmental and tcrrain variables were measured at the center of 
each of the 157 site and 157 nonsite units. The variables were measures pertaining to 
landform, water, view, and shelter. The landform variables were slope measured as 
percent grade (Figure 8.2a) and local relief within 100,250, SIlO, and 750 m (Figure 
8.2b). The watcr variables consisted of horizontal and vertical distance (0 nearest 
stream and (0 nearest permant'nt river. The view variables were distance to nearest 
point of vantage and a measure of the angle of view (Figure 8.Ja). The shelter 
variables consisted of aspect measured rdativc to north or south ( using the 1800 

rescaling technique described above) and shelter volume measured within 100 m 
and 250 m (Figure 8.3b) but rescaled such that low (negative) nlues suggest 
relatively little shelter (hills) and high (positive) values suggest relatively high 
shelter (valleys). 

Un;pariali Examination 

The sample means , trimmed means (removing 15 percent of the largest and 
smallest values), medians, and standard deviations (Chapter 5, (his volume) for the 
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site and noosire samples are presented in Table 8.1. Ir is readily apparent Thac some 
major differences in environmental patterning exist beewet'n the site-present and 
si te-absent (nonsiee) groups. For example, sires tend [Q occur closer to water, on 
relarlvely level ground, and in regions of less local relief~ and they tend to have 
bener views. Sites al so {(.'nd to occur under limited ranges of t'nvironmental 
variation (as indicat{"d by somewhat smaller stancl:lrd deviations). 

Given slich results , most rcscJrchers auempt (0 assess tht: statistical signifi
"nee of the data patterning (e.g., Lall"rt)' 1981; Larralde and Chandler 1981). The 
two-sa mple I-test (Thomas 1976:227) is a tcst for the difference between means, bm 
USt' of chis [cst requires sltch assumptions as normality and equal group variances. 
The ~\'Iann- \Vhit ney test (Conovcr 1971 :224) is a nonparametric alterna t i\,t") and the 
Kolmogorov-Smirnov [es( can be used to aSSess distributional differences of any 
kind (Co nover 1971: 309). As noted in earlier stctions, however, use of these tests in 
spatial contexts is problematic because of positive spatial autocorrelation, which 
violates the common assumption of independence. Since the Glade Park spatial dara 
arc derived from cluster sampling, we might exp(,~c[ the level ofspatial autocorrela
tion to be rather high. 

One way to resolvc this difficulty is [0 treat slic h tests conservatively by using 
the 0.005 level instead of the 0.05 level, for example. When the I-test is used, the 
absolute value of I it self can servc as a relative index of difTerc..'nce or separability 
between classes. C urrently there are no readily available ~ignificancc tests for 
assessing class differences in spatially aU{Qcorrclatcd comexts (however, sec Cliff 
and Ord 1975). 

A modified I-test valid for unequal group vanances (Steel and Torrie 1980:2(6) 
'(\.'as applied to the Table 8.1 data lIsing a robust procedure that trims the largest and 
smallest values in each group (Dixon el al. 1983:101), since the I-tcst is ovt:rly 
sensitive to extreme scores. The I-statistics and associated two-tailed probabilities 
arc given in Table 8.1 and arc..' presented only as a relative index of st:parability 
between the sitc and nonsite groups. The I indcx suggests thar certain variables, 
such as slope, aspect, and view, 3rc more separatcd than other variables. Statisti
cally, the results of the I-tt'st should be vit'wed conservatively because ofviola tions 
of the independence assumption th3r n'sult from spatiaiautoco rrelation. Addition
ally, even if the data could be assumed to be independent, the resulting statistics 
would still b~ inflated because simultaneous inference method s (Miller 1966) were 
not employed. Besides correlation between caw· resulting from spatial autocorrela
tion, the 14 'Variab/er arc also positively correlated (e.g., horizomal and vertical 
distance to water are highly related). Thus, the 14 individual signif,c3nce test s are 
not independcm assessments; moreover, with 14 tests some arc likely to appear 
significant by chance 3lone. 

iWultivariate Asu:rrnlml 

Before attempting to model the site and nonsite differences that appear to 
exist in the Glade Park data (Table 8. 1), it might be ins(Tuctive to assess group 
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TABLE 8.1. 

Descriptive statistics for Glade Park sires and nonsires 

Trj"",ud '-ftrl 


r driabl( Mum ,Htdn M(Jian I.d. l ip 


XI slope (st: grad\.') 
sites 
nonsiles 

12 
24 

10 
18 

10 
13 

II 
26 

-5.28 /0.0000 

X 2 rdief wi,thin 100 m (01 ) 
site s 
non sit l's 

JO 
39 

'n 
34 

24 
30 

20 
JO 

-3.00/0.0030 

X J r<:licfwithin 250 OJ (m) 
SItes 

nonslles 
70 
85 

65 
79 

61 
73 

45 
52 

-2.65/0.0085 

X 4 rdief <:I,'irhin 500 m (m) 
Sltl'S 

nonsi(es 
133 
160 

130 
146 

134 
146 

63 
90 

-3 . 11 / 0.0021 

X 5 rc:ii(.'f within 750 m (01) 
SHl"S 

nonsi{c.:$ 
180 
217 

180 
200 

183 
195 

78 
112 

-J.JJ/O.OOIO 

X6 horizont al di~(ancc to pc:rnuncm water ( m) 
sitl'S 2m 1943 
nOnSi{l's 2426 2254 

1950 
2300 

1960 
1689 

-0.75/0.4566 

X 7 \'crtic:l1 dist::mcc to permanent water (m) 
sites 129 98 
nOlulte:.: 168 125 

91 
125 

138 
li5 

-2.16I0.OJl9 

X 8 hori zo,ntal distance to nl·3rl·~t w;1.[I.'r (m) 
SHes 164 139 
nonsirl's 194 18J 

100 
200 

IJJ 
136 

-1.94 /0.0535 

X 9 vcreical dLHancC' to nearest Watl'r (m) 
SHes JJ 
nonsll es 44 

26 
JJ 

24 
24 

37 
48 

-2.22/0.OliO 

XIO ":lnllgl' ( 01 ) 
s ites 
nonsi! cos 

159 
1.10 

68 
86 

50 
100 

m 
182 

1.14/0.2556 

XII view l.ngk' (0-J6O") 
sites 
nonsi!cs 

219 
174 

222 
178 

220 
180 

7J 
Ifl 

5.51 /0.0000 

X I2 "'1'<''' (0-18Q') 
sitcs 
nonsi[(~s 

64 
89 

57 
87 

50 
90 

48 
55 

-4.15/ 0,0000 

XIJ .~h(..'hcr ....·ithin 100 OJ 

sites 
nonsic(.'s 

-14 
J 

-9 
-I 

-6 
-3 

43 
57 

-2.94/0.00J5 

X l4 shcltcr ....,ithin 250 m 

sites 
nonsi[l'.~ 

-140 
-28 

-93 
-78 

-59 
-i3 

546 
654 

-1.63/0. \OJi 
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differences by considering all available information (the 14 variables) simultane. 
ously. HatcHing's T1, a multivariate extension ofrhe ,~teS(, and one-way multivar
iate: analysis of variance (!v1ANOV A) aTC traditional parametric procedures for 
performing such a task (Morrison 1976). Recently, a nonparametric airernarivc has 
been presen[(:d for a similar problem context in archaeology. ~,tul(i-Rcsponsc 

Permutation Procedures (MRPP) originally were introduced to archaeology for 
assessing anifac[ class loe3[iona1 difterences in rt'al space based on positional coordi
nates (Berry et a\. 1980, 1983, 1984). MRPP can be used in the present situation to 
assess mulrivariarc site and nonsitl' class locHional differences in mearurrmml space 
(Figure 8.5b). Since MRPP are based on a randomization procedure, they are 
exuemely robust. If substantial class ditTerenCl,'S are found, this result would 
suggest that thc site and nonsite locations occupy different regions ofthe measure
ment space. Site location modeling procedures thl.'n might have a reasonable chance 
ofpartitioning the measurement space into appropriate decision regions, providing 
a successful classification model. 

The Glade Park sitc and nonsirc locational data were subjected to an MRPI' 
analysis. Thl.' simultaneous comparison of all 14 site and nonsitc environmental 
charactl.'ristics indicates an extreme ditTerence between thc two classes that was 
significant at p = 0.00000000032. This suggests that the Glade Park locations with 
sites tend to be markedly ditTerent from locations without sitcs in terms of envi
ronmental characteristics (see HInterpretation and Explanation of Data Patterns" 
for a discussion of how such data patterns can be interpn:ted). 

5ile Localioll Modell 

The technique chosen for sire location model development at Glade Park is 
multiple logistic regression. This classification algorithm is particularly robust 
because, unlike many other classification techniques, it docs not assume a particular 
underlying distributional form (Press and Wilson 1979) but achieves a partitioning 
of the measurement space (Figure 8.5b) based on the empirical distribution of the 
particular data set used (see Chapter 5 and the discussion below for more details 
about logistic regression). The following logistic regression equation was obr:aincd 
through the BMDP program LR (Dixon et al. 1983): 

L = 	0.713 - 0.0390XI - 0.00454X2 + 0.00602X3 + 0.(0526)(4 - 0.0054OX5 - 0.OOOO82ax6 
- 0.(0186)(7 - 0.00062ax8 - 0.0126.l(9 - O.OOOOaxlO + 0.00748.,'(11 ·0.00519XI2 
- 0.0178XIJ + 0.000746)(14 

where the variables referred to by theX; may be found in Table 8.1. The value of L 
theoretically can range between positive and negative infinity; positive values 
denote locations in the site portion of the measurement space, negative values 
indicate locations in the nonsitc portion, and L = 0 represents locations that fall 
exactly on the decision boundary (Figure 8.5b). Thus, L represents a decision rule 
that can be used to assign locations to site or nonsite classes on the basis of (heir 
measurements. AdditionaJly, large positive or negative values indicate locations 
having characteristics that, overall, are more like (he site or nonsite classes, 
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respectively, than locJtions with small positive or negative values. L therefore 
represents l single scale or axis representing an underlying environmental contin
uum with "site-favorable" conditions on (he positive extreme and Hsite

unfavorable" (nonsi(e) conditions on the negative extreme. 

In practice, rhe use of1. is unwieldy because its v:llues arc unconsfrained. A 
simple rransformarion yields a value (hat ranges from 0 (large negative values of L) 
to I (large positive values of L), with 0.5 indicating locations on the decision 
boundary (L = 0). 

, (Li) 

I +, (Li) I +, ( -Li) 

where L; is (he logistic regression score measured at (he /' location and Pi is the 
transformed value. Note that if ( a) the data are obtained through simple random 
sampling (generally impractical in archaeology, as noted above), and (b) the data 
repre-sem independent observations (generally impossible owing to the spatially 
autocorrclated nature of archaeological data), then the Pi values can be inrerpreted 
as estimates of a iocarion's probabi.liry of membership in the sitc:-presc:nt class 
conditional on the measurements (Xi) made at the location. Since these twO 
conditions are not met in the Glade Park analysis, the Pi values can b~st be 
interprt."ted as standardized reJarive indications of location within the site-present 
or site-absent portions of the measurement space. 

To illustrate usc of these formulas, suppose that a location is found to exhibit 
measurements on 14 prediccor variables identical to those presented for the site 
group mean values in Table 8.1. \Vhen thc site mean values and the first equation 
are ",cd, L ~ 0.633 I; the second equation givesp - 0.6532. Thus, a location with those 
environmental charactcristics \\'ould be assigned to the site-present group since p~ 
0.5. \Vhen this procedure is applied to the measurements of all314 sitc and nonsite 
locations, the initial classification results are as shown in Table 8.2a. The percent 
correct statistics in this table are undoubtedly inflated because (he same data were 
used both to build the model and (0 yield these performance indications (a model 
like logistic regression rends to maximize fit to the particular data at hand). In a later 
section, independent tests are applied in an attempt to assess the H true" perform
ance of a Glade Park model. The gain statistic for this model is 0.60. 

One problem in applying a model such as the one presented in the above 

equation is that measuring many variables and performing many calculations 

requires much work, even for a comput<.'r. A common data reduction technique is 

principal components analysis (Morrison (976) by means of which the variation in a 

large number of variables is typically summarized by a smaller number of dimen

sions (principal components), which arc linear combinations of the original varia

bles. This technique is also llsed to eliminate redundancies resulting from inter

correiarions (collinearity) among variables. The reduced numocr of components 

can be used as predictor variables in classification analyses (Schowcngcrdt 1983: 160). 
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TABLE 8.2. 


Classification pt:rformance of inicia1 Glade Park models 


A. 14-Variahle Model 

Actual Group 


Site 


Nonsitc 

8, 9-Va,rillble Model 

Act uJ,( Group 

Site 

NonsilC 

Number 

Percent 


Number 

Percent 


Number 

Percent 


Number 

Percent 


Silt Nomi/( 

p'" 0.5 p < 0.5 

107 50 
(68.2) (11.8) 

41 II. 
(27. 4) (n.6) 

G';n - I - (27. 4/68.2) - 0.60 

PrfJicuJ Group 


Silt N()fuirr 


p '" 0.5 p<0.5 

110 47 
(70.1) (29.9) 

51 104 
(ll.8) (66.2) 

Gain - I - (ll.8!70.1 ) - 0.52 

Principal components analysis has not been used extensively in site location model 
development, principally because it is very difficult [Q interpret (he meaning of {he 
components obtained. !vlorcovcr, in order (Q obtain component scores for each case 
(location) to which the model might be applied, the technique requires measure
men[s of the original variables anyway, and rhus there is Iiuic savings in time and 
elTon. 

Various stepwise procedures prescnt an ahernativc (sec Chapter 5). These 
techniques a((empr to select a Ubest" subset of variables for a model. Btu in this 
case mcans that the addition of other variables will not substamially improve the 
model because they comain only redundant information (owing to intercorrela
tions). In forward stepping, the first step selects the single variable that offers the 
maximum discrimination between groups (irdicarcd by some statistic) and enters 
this variable into the model. The second step selects the variable from the remain
ing pool of variables [hat offers the greatest increase in discrimination between 
classes by considering the relationship of this second variable with the variable 
already in [he model and with variables nor yet in the model. On each succeeding 
step additional variables are selected and entered into the model until the remain
ing variables ( those not yet entered) arc determined to contain only redundant 
information (again owing to correlation between them and the variables already in 
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rhe model). The resulr is a subset ofava ilablc variables that yields a model whose 
performance may be similar to that of a model in which 311 variables were used bur 
thar requires less information. One drawback ofsrcpwisc pro((:dures is that the tinal 
subset of variables obtained in a particular application can vary depending on the 
particular ::,rcpwisc procedure and the selection criteria ust'd and can also vary from 
samp le to sample. lc is usually the case) however, that a certain COfC of best 
discriminating variables is selected. 

The 14 variables ofthe Glade Park dara were subjected to stepwise procedures 
using the BMDI' stepwise logistic regression program (LR; Dixon et al. 1983). 
Variables were entered at each step on the basis of largest chi-square value 
(suggesting best discrimination). A subset ofnine variables was ultimately selt~cted 
br graphing at each step changes in several staristics, including (a) (he improve
ment chi-square, (b) the model log likelihood , and (c) the good ness-of-fit statistie
Rf' (described above), all of which are monotonically related functions. After rhe 
nmrh variable was entered, changes in all ofthe.se sratis tics levc.:led off, suggesting 
rhat no subsrantial model improve ment would occu r ifrhe remaining five variables 
were included. The resulting nine-variable model is 

L = -0.158 - 0.040IXI + 0.518.\'2 - 0.00224X7 - 0.OIl3X9 - 0.000602\'10 + 0.00738X11 
- 0.00582X12 - 0.0183XIl + 0.000804XI4 

and for this model gain equals 0.52. The classification perfotmance of this nine
variable model, when it was applied ro the same data used to crea te it, is shown in 
Table 8.2b. (Independent tests of Glade Park mode ls are given below.) A compari
son of the nine-variable model show n here and the 14-variable model described 
above shows rhat not only arc the models \'<:ry similar (in terms of the coefficients) 
but so are their suggesred p<:rform-ances, as indicated by the statistics in Table 8.2. 

APPLICATION COMPARISON OF QUANTITATIVE 
LOCATIONAL MODELS 

In rhis section scveral forms of quantitative data models of characteristics of 
loca tions that have been used in archaeological research are prcsentl~d and com
pared. Each type ofmodel achiev('s a partitioning of che measurement space..' (Figure 
8.Sb) in a diflerent war. The goal of this section is to demonstrate the broad 
similarity of these diverse modeling techniques and ofrheir results. For comparison, 
each modeling technique is mapped across the ~ame study region using GIS 
computer mapping techniques (see Chapter 10); rhe patterns ofrhe mappings are 

often stri kingly parallel. The results of this section support the conclusion alluded 

to earlier and arrived at by Hixon et al. (1980): the particular classification algo

rithm used is Ius important than the representativeness of the samples used in 

predictive model development. 


All models prcsc.:med in this section were developed using the same data from a 
Colorado plains stud), region (Kvamme 1984, 1986). This study region of nearly 575 
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km' was gridded inro approximately 2]0.000 cdls (land parcds). each measuring 50 
m on a side; these cells were the elemen[ary units of analy sis. The archaeological 
data used for the models consisted of269locarions (cells) containing open-air lithic 
seaner sires. A background control group of 1154 location s without archaeological 
remains (nonsircs) was also used. These large sample sizes should help to illustrate 
the relative performance of each modeling procedure. Eight environmental varia
bles calculated at these locations by a computer through GIS techniques formed the 
d~Ha base, and in all models all eight variables arc used for consistenc), in compari
son. The variables are aspect (XI). slope (X2). local relief within 100 m (X]). local 
relief within 300 m (X4), a canyon rim index value (the Bshclrcrn volume measure 
described above; Xs), distance to nearest point of vantage (mesa edge, canyon rim, 
or hill or ridge top; X6). distance to the closest drainage (X7). and distance to the 
closest second-order (or greater) drainage (using Strahler order ranking; X 8). The 
reader is referred to the section HVariables Used In Locational Research" for a 
description of how (hcse variables arc measured. 

Robust Classification Models 

Robust classification models can be grouped according to two types
parametric and lIollparan/Uric. Parametric techniques assume a particular type of 
statistical distribution (usuallr multjvari:ue normality) and then c.:stimate parame
rers of that distribution (e.g., means, variances l and covariances). Nonparametric 
classification procedures makt, no assumptions about distributional form and are 
sometimes considercd parricularly robus t because they work under a wide range of 
distributional types (if the groups to be classified arc reasonably distinct). It should 
be.: noted that under the same conditions (varie.:d distributional types) parametric 
methods usually provide good results, even when the assumed (multivariate nor
mal) distribution does not occur (Schowcngcrdt 198]: 176). 

Two paramt.·tric techniques) a linear discriminant function (commonly called 
discriminant analysis) and Bayes's maximum likelihood, arc compared below with 
log istic regression, a nonparamerric technique. The section ends with a brief 
discussion of a quadratic classification technique. 

Di,eriminanl Analpi' 

Bl:cause many archaeologists arc familiar with discriminant analysis and 
bccaust.' the software needed to use this technique is rcadil}· available in common 
statistical packages, it has been the dominant technique used for site locJtion model 
development (Kvamme 1980; Larralde and Chandler 1981; Peebles 1981; Schroedl 
1984). 

The overall strategy ofdiscriminant analysis in the two-group situation entails 
summarizing class differences by a linear combination of the original and multiple 
variables, where each obst.'rvation is assigned a score on [he single resulting 
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dimension or diirriminanl (lx ii. The di ':oc riminam fun ction has the characteristic or 
maximizing the separation bctween groups along the Jxis, assuming multivariate 
normality and eq ual g roup variat io n. A maximum likelihood technique is then used 
on the discriminan ( axis to ("val uate probabilities ofgrou p membership (see Chapter 
5), 

\Vhen thL' example data of 269 sirc and 1154 nonsi rc loca tions afe used, the 
followin g discrimi nant limclion is obtained th rough [he BMDP discriminant analy
sis program 7\,1 (Dixon e( aL 1983), 

Di ~ -5 ,7058 - 0,0047Xli - 0,08X2i + O,05X3i - 0,0164X4i + O,OOllIXS; - 0,0002X6j 
- 0,001X7i - 0,OOO8X& 

whcr<' Di is the discriminant sco re for ,he /' Clse (location) andXI throughXS :HC 

rh e variabl es defined above. Like..' L, D can range between positive and negat ive 
infmity. A simple transformation yields a vaillep, which rang{~s from 0 to I) allowing 
interpretation ( when the assumpcions of this model arc fully met) as the probability 
of a location's ml:mbcrship in the site..' grou p, conditional so lcl~' on the measure
ments. This cr:msforll1ed vaiu l: is calc ulated as fol(ows: 

, -0,5 (Di - D,)' 

<' -0,5 (Di - Dj ) ' + <' -0,5 (Di - Dm)' 

where Dr is t he estimated mean (ceneroid) ofdiscriminant scores fo r the sit e group 
and Dm is the mean disc rimin:lIH score for the nonsite group. 

T o illustrate use of these formula s, the environmental characteristics of site 
SLA5364, one ofrhe 269 sample sites, are shown in Table 8.3. \Vhe n these data are 
used, the first equation yields a discriminam score ofD = 2.1909. lfrhis value and the 
site and nonsite slmple ce mroids on the discrimin ant axis (Dr = 0.8304,Dw = -0. 1936) 
are inse rted in the second equation , thenp =0.8719. Sincep is greater than 0.5, which 
is the traditional ciecision rule, this location would be co rrectly classified as a site. of 
course, this model can be used for prediction when ie is applied to locations of 
unknown group membersh ip. 

Replicating this procedure fo r the 1423 :l ite and nonsi tl: sample locations yields 
{he initial model acc uracy indications (percent correct statistics) shown in T able 
8.4. The gain st ari stic can be estimated from th('~e dlta. The percentage of the total 
arC::1 covcred by the model (at the p :: 0.5 cu toff) can be esrimated by using: the 
percentage of nonsite locations classified by the model to the si te g roup, 32. 1 
percent in this caSl:. \Vc I.:an use thi s figure as an estimate because in the region 
under study (as with most region:-) the area occupied by site locariotls constitutes 
only a tiny percent age of the srudy area-in the present case about I percent of all 
the locations (50 m c("l1s) in the region, which means that the nonsirc loc:.nion s 
represent about 99 percenr of the total area (see K\'amme 1984). Thus, ifrhe model 
classifies 32 percent of the nonsir e!l (Q the si re group, we can infer that approxi

mately 32 percent of the total area ofrhe region would be classified in the site group 
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TABLE 8.3 . 

Valul's ror eigh( cnvi ronml'nt:l\ variables: SLASJ64, aU 269 sites, l.nd 1154 no mite locations in 
thl' Colorado plains study region 

5L·153M All S;M ,-1/1 N(!ff);/fJ 

E"l'ir(}!lnr, n(;J1 V dndbl,j X, x J. d. x J. d. 

X, lspcC{ (0) 31.0 79.8550 52.7906 97.\% S2AI57 

X2 ,,\ort: (r:i" @..adc) 5.0 4 ,3090 4.1598 4.452 S.7874 

X~ rdlci"wi{hnl leo m (m) 24.4 13.5750 10.~165 11.263 17.4562 

X.. n·li~i within JO() III ( m) 30.5 27.6383 18.3213 24.70S V.2M7 

X5 Cl.nyvll rim index 6104.0 5908.1320 460.7H2 573 I.&!2 }92.094J 
(m il 1000) 

:\6 \'J.nf.lgc diHJ.nc...: em) 72.0 472.53S0 637.6297 916.471 84 I. 7876 

diH:II1Cl' to doseStX7 
dr:lill;lgc (m) 144.0 \47.5910 105.4219 365.180 366.7622 

Xs disl.UlCl' to sl'cond-ordL'r 
drJ.inagc (m ) 144.0 392.75:'0 465.3968 79".431 602. ~54S 

by rhe model ifit wt're mapped. The': percentage of all sites within the model's area 
is estimated by the pl.Tcentage of si tes corrcctly classified by the model ("Q the sirl' 
gronp-76,2 percent for the current model (Table 8.4). Based on these;: calculat ions, 
the discriminant model yields a gain of I - (32.1176.2) or 0.579. It should b~ noted that 
both the: percent correct and tht' gain statisrics presl..'nted in Table 804 3rc inflared 
owing to a variety of (actors, the most notable of which is that the same data were 
used both to build the model and to evaluate its performance (procedu res given 
below help to correct inOated st3.ti!)tics through independent tests). 

\Ve can illustrate thL' application of this model \\,hcn mapped over a region by 
using the Colorado plains 5.5 by 8.5 km t('Sf study region discussed in the section 
ent itl ed" Approaches Basedon Trend in LocHian Only," This region, \vhich can be 
chaTlcterized as a level phin dissected by 3. number ofdeeply ent r('nched canyons, 
repre sents only a small portion of the larger study area from which rhe: samp1t- data 
\\'ere dcrivl'd. Approxinurely half of the 95 sites in this test study region are 
contained in the larger sample of 269 sites w.ed for development of this model. 
Computer measurelTIt'nt and mapping techniques in the form of a g(·ographic 
inform:ltion !)),stcm (see Chapt(' r 10) were llsed to estimate values for the eight 
variables in each 50 by 50 m cell and to map the resuits of the model over the 
approximately 19,000 cells of this tcst region (Figure 8.7a). 

In this figure, and in those that iltustrJte mapping of the subsequently 
discu:-;sed models, estimated probability values are portra)'~d in five levels (in steps 
of 0.2 and in levels of increasing darkness), Thus, the traditionalp == 0.5 d<"cision rule 
lies midway within the sl'cond lcvel of shading. The actual site locations in this 
study region were shown in Figure 8.4a and may be compared with {his predictive 
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TABLE S.4, 

Comparison of classification performance rates of ~cveral site location modding procedures 
(row percents are given in parentheses) 

Dil(rimill:ml " lnd(;'Hf .H£1.'O"':,"1 Likdih(U)J wf,iJlic Rlgrtll/(/1/ 


Pudi{(iOni PrtJiui(lra PrdictionJ 


Sif, Xonsi/t S lit Xomiu SII, :, 'O l/i/ft 

ACTual p 20.5 p< 0.5 Actual p 2: 0.5 p< 0.5 Actual p ~ 0.5 p< 0.5 

Sit<: 205 1>1 Site 202 67 Sitl; 2n <7 
(76.2 ) (23.8) (75.1 ) (2<.9) (82.5) (17 .5) 

Non ... il(.' 370 78. NOTlsitc 3S2 Ti2 Nonsitt" 399 755 
(32.1 ) (67.9) (lJ, \ ) (66.9) (34.6) (65.4 ) 

i;ain - 0.579 g:lin - 0.559 g:lin - 0. 58\ 

Euclldlt/n D lJldlt("( (JZ) Cil} B/u } Dj,lanu (d/) Ltrrl Sliu (±I. i5 I.d. ) 
p,.,Jirl l'JfI! [iNdiawn , PrtdicridnJ 

Sif, Nom;/( Sil , i'.t"IIJ/f( Sih l\omilt 

Anu3i p~ 0.5 p< 0,5 Act u:l! p 20.5 p < 0.5 Actual p 2: 0.5 p< 0.5 

Sitt" 217 52 Site 218 51 Sit(, 18() 83 
(SO.7) ( \9.3 ) (81.0) ( 19.0) (69.1) (30.9) 

0:onsitc . 82 on NonsitC' 498 656 ;"';on .~j[ c SOO 654 
(41.8) (58.2) ( '3 .2) (56,8) (41.3 ) (56.7) 

gJ.in .- 0.482 g.l;n :: 0.467 gain - 0.37.1 

map. Since discriminant analysis assumes equal class variation, achie\'cd by pooling 
the sample covariance..' marrices, a greater proportion ofrhc en\'ironment [ends to be 
classified with higher p-values (3) indicated by the extent of the shaded region s) 
with this technique than with other methods described below rhat do nO( make this 
assumption (compare Figures 8,7b and c). 

Maximllm Likdibood CI""ifla 

The maximum likelihood classifier is (he most commonly used classiticarion 
procedure in many disciplines) parricularly in remore-sensing modeling applic:1
rion s (Nloik 1980; Schowcngcrdr 1983), .lrhough it has been used less frequently in 
archaeological sitc location srudies (tvlorain C( 31. 1981). 

The probability that an observation belongs to the f " class, according to 
multivariate normal theory, is d('scribed by rhe following function: 
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where.: Xi refers to v(,ctor ofmeasurements ofrhe mulriplc variables ;H location i, J.l.k 
contains the v('c(Or of multiple mean values associated with class k, and Lk is the: 
corresponding dispersion matrix containing) rows and column s of variances and 
co variances for class k(Swain 1978: 156; also sct' Grecn 1978 for a discus sion of matrix 
algebra techniques). In pracricc.:, (he means and dispersion matrices are unknown; 
they are estimated by sample means, variances, and covariancL's. An obse rvation is 
assigned ro (he class for which it has the greatesr probability vailic. 

Although discussion of matrix algebra is beyond the scope of this prest'nrarion, 
a simplifted dl'scriprion of the technique follows. For a single variable we can 
imagine a normal probability curve with it s maximum height or dt'nf ;l), Jt th(' mean 
value and with a width that is indicative of the variaTion in the disrribmion . For any 
value of:l variable we can detcrmine the densiry (height ) of the distribution. 
Similarly, in a muhivariate context multiple measurements can be assessed by the 
abovl' formula relative [Q the multipk mean values for a class, consid ering at the 
same time the nature of the dispersion within that class, and this yields a multivar
iate normal density valut'. A density can be determined for each cia :ss under 
consideration. To illustrate with hypothetical values, if the multivariate density for 
Class A is determined [Q be 0.3 for the multiple environmcmal measurements made 
at some location and the density for Class 13 is dctennined [Q bt, 0.2 (in a two-class 
problem), then the measurements have a higher probability ofbclonging to Class A 
than to Class Bj in fact, the probability ofmembership in Class A can beestimatcd as 
p ~ 0.3 / (0.2 + OJ) ~ 0.6. The mathematics of this procedure pcrtorm optimally when 
multivariate normality and independent observations can be assumt~d ( i.e., classifi
cation error is minimized), evcn though this technique docs not require equal 
covariance matrices (sec Chapter 5). The Statistical Analysis System PROC DIS
CRIM pcrforms multivariatc classification through the maximum likelihood 
method (SAS Institute 1982). 

To illustrate application of this technique, data from sire 5LA5364 arc again 
used (Table 8.3). Entering these data into the above equation, together with 
estimated means, variances, and covarianccs for the site and non site groups (some of 
which are included in Table 8.3), yields a density for the site group of4.8539 x 10-11 

and a denslty for the nonsite group of 3.4153 x lOon. Thus, the measurements at 
5LA5364 indicate that thi s location has a higher probability of membership in the 
site-present than the site-absent group, and it would bt, appropriate based solely on 
these measurements to assign the 5LA5364 location [Q the site class. The conditional 
probabilitits become 

4.8539 x 10-21 
p (site I Xi) = = 0.9343 

4.8539 x 10-21 + 3.4153 x 10-22 

p ( nonsite I Xi) = I - P (s ite I Xi) = I - 0.9343 = 0.0657 
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Applying identical calculations to the 1423 sample locations yields the initial 
model accuracy rates and gain statistic shown in Table 8.4. The rc..'suirs of the 
maximum likelihood technique applied to each of the 19,000 locations in the [est 
study region are mapped in Figure 8.7b. Although the classification accuracy is 
about rhe same as chat provided by the discriminant analysis, norc chat the 
maximum likelihood procedure maps a relatively smaller ponion of the region as 
site likely because it takes into account the lesser environmental variation usually 
exhibited by a site-present class while the discriminant analysis model used above 
docs not. 

Log;iilic Reg;rmioll 

iVlultlple logistic regression has recendy come inco use as a classification 
technique (e.g., Maynard and Strahler 1981; Pindyck and Rubinfeld 1976:237-263; 
Schmidt and Strauss 1975), and it has been applied in several studies ofarchaeologi
cal site location (Custer et at. 1983, 1986; Holmer 1982; K"amme 1983b, 1983e, 1986; 
Parker 1985; Scholtz 1981). This lIollparam(lri( technique makes no assumptions 
about distributional form (Wrigley 1976) and has been shown to offer improved 
classificlWfY performance o\'er discriminant analysis when the clara arc nor multi
variate normal (Maynard 1981; Press and Wilson 1979). Maynard and Strahler (1981) 
argue that logistic regression is [he optimal statistical classifier for remotely sensed 
data, and because no distributional assumptions arc made, this technique is appro
priate (or nominal-, ordinal-, or interval-scaled data or for \'arious combinations of 
these levels of measurement. (Logistic regression has been applied in several 
examples in earlier sections of this chapter.) 

Logistic regression can be be([cr uncicrs[Qod if we consider the results of 
appl~·ing a multiple linear regression model to a dichorornolls dependent variable, 
such as sHe presence and site absence. Such a modd has a number of sc:rious 
problems in this context (Wrigley 1976:7-9; Chapter 5, this volume), not the least of 
which is that predictions can range in value between plus and minus infinity, 
making it difficult to interpret these predictions as probabilities. Logistic regression 
is able to overcome these difflcuhies and yield a result that is consrraincd between 0 
and I. This result can be interpreted as a predicted probability ofclass membership 
(when assumptions of independence and random sampling are met) through usc of 
the logistic transformation. 

where the logistically derived discriminant function at the;t" location is 

Li = 01 + f31Xli + f3zX2i + ... + f3jXji 

and a and the fjj are thl' estimated intercept and regression weights. 
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A logistic regression analysis was performed using the example data of 1423 
site-prescnt and sire-absent locations and the BMDP program LR (Dixon ct al. 
1983), and the result was the following function: 

Li = -6.8837 - 0.0043X Ii - 0.1 14X2i + 0.0277X3i - 0.0136X4i + O.OOI64XSi - 0.000626X6i 
- O.0043X7i - o.ooomx& 

When applied to the measurements from 5LA5364 (Table 8.3), these equations yield 
L ~ 1.9085 andp = 0.8708. Based on its environmental characteristics, 5LA5364 would 
be correctly class ified to the sire-prescnt group. 

Model accuracy for the logistic regression application, as measured by the gain 
sc3ristic in Table 8,4, is slighdy higher than it was for the previous, paramccric 
techniques. Figure 8.7c shows the results of mapping (he logistic regress ion model 
over the test study area, Since logistic regression makes no assumptions about 
discriburional form, it is usually regarded as a very robust procedure. This would 
appear to be an advamagc for archaeological locational modeling because site 
location data are dccidedly nonnormal, but in fact, the application of this technique 
to the sample dara produced results that arc very similar to the results obrained by 
the previous classifiers, both in performance (Table 8.4) and in mapped results 
(Figure 8.7). 

§(uadralic C/aflificalion Procedure 

The quadratic classification method is a general technique that can be applied 
to such staristical models as discriminanr analysis and logistic regression when 
group variances and covariances have been found to be markedly unequal. This 
procedure has been shown to offer improved classificarory performance in these 
situations (Anderson 1975; Eisenbeis and A very 1972:44; Michaelis 1973; Smith 1947). 
ln archaeological predictive modeling, Kohler and Parker (1986) have applied 
quadratic discriminant analysis to simulared data, and I have applied quadratic 
logistic regression as a test case in actual model devclopment (Kvamme 1983c). The 
quadratic procedure incorporates all quadraric terms (i.e., squared terms for each 
variable and all possible interaction pairs) into a model, along with the predictor 
variables being used. This causes the decision boundary to wrap or curvc around 
the group with less variation (a hypothetical quadratic decision boundary is shown 
in figure 8.5b), which can provide an increase in model accuracy. 

Any benefits obtained arc nO[ without cost, however. The discriminant 
analysis and logistic regression models presented in the previous sections require 
estimates of) + I parameters (wherej is rhe number of predictor variables) to yield a 
linear decision boundary in the measurement space (Figurc 8.Sb) . The nonlinear 
decision boundary of the quadratic model (Figure 8.5b) requires estimates of IJ + I) 
+jIJ + 1)/2 parameters (rhus a nine-variable model would require estimates of 19 + II 
+919 + 1112 c: 55 paramctcrs). This increase in the number of parameters may require 
a corresponding increase in sample size in order for estimation to be reliable. 
Another problem is rhat, like the polynomial regression technique discussed in rhe 
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section on U Approaches Based on Trend in Location Only," [he quadratic proce
dure does nor produce a model that can be readily interpreted. Finally, in an 
application of the technique to archaeological sitc and nonsitc data, I found it to be 
overly sensitive (0 outliers, which offsets most of (he advantages gained through the 
inclusion of the extra terms (Kvamme 198Jc). 

Some Simple Classification Models 

The models of [he previous section constitute one set of approaches for 
partitioning [he measurement space (Figure g.Sb) (0 achieve classification. \Vhen 
appropriate theoretical assumptions (such as muhivariarc normality) are met for 
each of these models, classification error in (he panirioning that is obraint.-d is 
minimized. As noced in earlier sections, however, many ofrhcsc assumptions arc 
difficult to meet when one is dealing with geographically distributed phenomena. 

A number of simple mathematical rules have been deVeloped to achieve a 
partitioning of the measurement space in paucrn-recognition and image-analysis 
studies (Duda and Hart 1973; Moik 1980; Schowengerdt 1983). These procedures can 
be classed as non parametric because no assumptions arc made about probability 
distributions, and in some cases they perform with accuracy rates comparable to 

those of the models discussed in the previous section. An important advantage of 
these procedures is that they are easier to calculate (many can be done by hand) 
than the computationally burdensome procedures described above. Although a 
wide range of possible examples t.'xist, only rwo arc discussed here: the minimum 
distance classifier and the level slice classifier. 

Dillance MealurtJ 

The minimum diftanct algorithm simply classifies a location to the class that it is 
"closest" to in the measurement space (Figure 8.Sb). In other wotds, a location 
(wit h characteristics summarized by measured variables) _is assigned to one of the 
classes ifits distance from the center of that class is less than its distance from the 
center of the other c1ass(es) (Schowengerdt 1983:49-53). The center of each class is 
represented by the point in the measurement space having the class mean value for 
each variable under examination. The distance from the f l:· class is given by 

J2}, ~ [(Xli - !J1k)' + (x2i - !JU)' + ... + (xji _!Jj},),)\7 

which issimply the Euclidean distance between the values ofthej variables (X \>,'2, 
.. . ,Xj) measured at the;''' location, and the mean values for each variable (JJ.1, JJ.2, . • 'J 

!Jj) for the },,' elass. 

To illustrate application of this algorithm, the measurements for 5LA5364 and 

the estimated means for the sample sitc (I) and nonsite (m) classes (Table 8.3) can be 

entered into this equation to yield the following: 
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= I(ll - 79.855)' + (5 - 4.3086)' + (24.4 - 13.575)' + (30.5 - 27.6383)' + (6104 
- 5908.132)' + (72 - 472.5353)' + (144 - 147.5911)' + (144 - 392.7546)']~ 

- 511.0281 

d2,1f -((31 - 97.1958)' + (5 - 4.4515)' + (24.4 - 11.263)' + (30.5 - 24.705)' + ~6104 
- 5731.842)' + (72 - 916.4705)' + (144 - 365.1802)' + (144 - 794.7305)'] 

= 1152.6467 

Since d2;< d2mJ 5LA5364 is' closer to the site group mean values in the measurement 
space and is assigned to thc site-prescnt class. 

In actual practice the data should be standardized so that each variable 
(dimension) contributes equally to the calculations. In cases where the variances for 
each variable for each class arc equal and where the variables are uncorrclarcd, this 
algorithm minimizes classification error (S chowcngerdt 1983:54). Even when these 
special conditions do not arise, studies have shown that the accuracy of the 
minimum distance classifier js comparable to that of the maximum likelihood 
method (Hixon et al. 1980). The minimum distance classifier may be calculated 
using the Statistical Analysis System PROC NEIGHBOR program (SAS Institute 
1982). 

Figure 8.8a maps the results of applying the minimum distance (d2) classifier to 
the \9,000 locations in the test study area described above. The shaded areas arc 
thosc portions ofthe region that were classified as being closer to the site class mcan 
values in the measurement space than ro the nonsite values. This Hsitc-similar" 
region compares favorably with the site subspace delineated by the statistically 
derived maximum likchhood classifier (for comparative purposes, the: site subspace 
defmed by maximum likelihood as all locations with conditional site probabilities 
> 0.5 is portrayed in Figure 8.8d). Similarly, the classification accuracy and gain 
statistic of the results ofapplying thed2 classifierto the sample data of 1423 locations 
(Table 8.4) compare favorably with those of the multivariate data analysis proce
dures of tht:' previous section, if the relative difticulries of the two types of 
procedures are taken inro account. 

A slightly different distance measure, ter:ned rif)' blork distance (Schowengerdt 
1983:51), is merdy the sum of absolutc distanc~s from the j ib location to the class 
mean value's: 

This distance measure is somewhat easier to employ than the Euclidean distance 
measure because it requires fewer calculations. \Vhcn mapped across the study 
region (Figure 8.8b) this decision rule yields tesults almost identical to those of the 
d2 classifier (Figure 8.8a). The classification accuracy and gain statistic for the 
application of the dl rule to the 1423 sample locations are given in Table 8.4, and 
these, roo, are almost identical to those lor the d2 results. Despite thesc similarities, 
the d2 rule is more commonly used because it is marc interpretable and tends to 
perform somewhat better than the dl rule. 
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Level Slice Cla!Sifter 

This algorithm is sometimes called the para"&pip.-d daHi{i"r (Moik 
1980:271-272). Ie establishes decision boundari(,~s that are parallel to (de/; axis in the 
measurement space (hence the term Il'vd slicf') by forming a hyperrectangle or 
parallelepiped about the c1ass(es) or interest; a hypothetical level-slice decision 
boundary in a measurement space is portrayed in Figure 8.Sb. In image processing, 
minimum rectangles are usually tined around class boundaries derived through 
maximum likelihood estimation. The best known archaeological application orchis 
technique is [he polyrhetic choice model of prehistoric settlement developed for [he 
Reese River Valley of Nevada (Williams et al. 1973). This poly the tic choice model 
lIsed arbitrary curpoinrs (levd slices) on each ofseven environm<.:nral variable axes. 
In (his case, howevcr, a location was classified to the sitc-prl'sent group (no acrual 
nonsites were used) ifany five ofrhe seven values measured at a location were below 
the threshold levels. The level slice dassifier can be defined for any variable as 

(x -I):::; Xj:::; (x +1) 

where Xi is (he value ofa variable at rhe / ' locarion, xis the esrimated mean value for 
the class of intetest, and 1 is a threshold or cutpoint value (see Moik 1980:273). 

To illusrrate appiicarion ofthis mcrhod with our example data, measure men ts 
from 5LA5364 and the mean and standard deviation data rrom the site group sample 
were used to produce the results shown in Table 8.4. The rhreshold value, I, is 
arbirrarily ser at ± 1.75 standard deviation of the s ire group mean . N ote that any 
threshold value may be selected and that this choice will directly arfect subsequent 
performance; in rhe presl'nt case, s("v erai values of, were examined before r he± 1.75 
s.d. value was :selected because of irs relatively good performancc. Inserting rhe 
relevant data ror each variable, we find that the rollowing relations hold: 

x s.d. 5L-IS364 x r.d. 

79.8550 - ( 1.75)52.7906 < 31 :::; 79.8550 + ( 1.75)52.7906 

4.3086 - (1.75)4.1598 :::; 5 :S 4.3086 + (1.75)4.1598 


13.5750 - ( 1.75) 10.4165 :S 24.4 :S 13.5750 + (1.75)10.4165 

27.6383 - (1.75)18.3213 < 30.5 :S 27.6383 + (1.75)18.3213 


5908.1320 - (1.75)460.7342 :S 6104 < 5908.1320 + (1.75)460.7342 

472.5353 - (1.75)637.6298 < 72 < 472.5353 + ( 1.75)637.6298 

147.5911 - ( 1.75)165.4219 < 144 :S 147.5911 + (1.75)165.4219 

392.7546 - (1.75)465.3968 < 144 :S 392.7546 + ( 1.75)465.3968 


Thus, 5LA5364 is classified [0 the si te group. 

Application or this procedure to all 1423 locations in the sample yields the 
accuracy ratcs and gain statistic given in Table 8.4 for the ±1.75 s.d. threshold 

value. When the level slice is applied to each of (he 19,000 locations of the {est study 

region, (he resulting mapped subser (Figure 8.8c) is vcry much like (hose resulting 

from the application of minimum distance (Figure 8.8a and b) and maximum 


likelihood (Figure 8.8d) classifIers. As with all of the above techniques, it is quite 
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casy to alrer results in either direction simply by changing a cutoff point or 
threshold vJlue. 

COMBINING MODELS FOR LOCATIONAL CHARACTERISTICS 
AND MODELS FOR LOCATION ONLY 

A fundamental dichotomy in types of archaeological iocational modc.:ling 
approaches was esrablisht..'d carly in this chapter. ivlodels were classified as those 
based only on locational data (spatial x,y coordinates) or those based on characteris
tics of the: locations, such as environmental information. A fourth-order polynomial 
logistic regression modd was presented as a modd based only on IDeational data in 
the section HApproachcs Based on Trends in Location Only." The preceding 
sections have illustrared several approaches for modc1s based on the environmental 
characreriHics of locations. Since both approaches to modeling provide 
information-and generally independent information-summarizing where 
archaeological Sitl'S are located, it would seem a logical stCp to combine these 
approaches in order to enhance Ollr ability to model prehistoric site distributions. 

To conduct this experiment the Colorado plains !itudy region is used again. 
Unlike the analysis in the previous section, which utilized 1423 site and nonsite 
locations from the entire 575 km2 study region, the prescnt analyses make use only 
of the samples of 95 site-prescnt and 54 site-absent locations from the 5.5 by 8.5 km 
study portion of the larger region. (The smaller region has been used in Figures 8.4, 
8.7, and 8.8 to ponuy various model mappings.) This smaller region is used here for 
two reasons. First, the logistic trend-surface technique for location only is best 
suited for modeling the reduced complexity of a smaller «'gion (and such J model 
has alreJdy been established for the prescnt region in Figure 8.4). Second, the 
environ men rally based models of the previous scction were based on locational 
parrcrns from a collection of sites from a huge region; therefore, these models 
Jveraged the locational panem ofall the sires and nonsites from the wider region. It 
is germane to illustrate the power of the environmentally based approach by lining 
such a model to a relatively small region, which must contain a lower degree of 
environmental variability than the larger study area and thereforc ofier the poten
tiJl of J tighter lit of the model to the dotJ. 

[n order to facilitate comparison of these modeling approaches, the locations of 
the 95 site-prescnt ceUs (out of nearly 19,000 cells) in the study region arc shown in 
Figure 8.9a. The logistic trend-surfJce model derived through use of the fourth
order powers of the spatial (x,),) coordinates ofrhc 149 site and nonsite locations is 
shown again in Figure 8.9b. The classification accuracy of this location-on!;' model for 
these data is given in Table 8.5. The pseudo-R' goodness-of-lit statistic (delined 
earlier) for this model is Rp' = 0.53 18, and the gain stJtistic is estimated as 1 - 3 I .5/ 82.1 
= 0.616. 
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TABLE 8.S. 

Comparison of classification performances of site location models for (a) loeational coordinates, 
(b) loeational characluinics, and (c) loc;uional coordinates and characteristics for a ponion of 
the Colorado plains nudy area (row percenu given in parentheses) 

LIXallOlW1 Coordi1ftZW Localional CharaUlr1$tio LOCdliMal COQrdilldlfJ anJ 
PridultQm Pred,cliom Chard(/frIJlm Prtdi((iom 

Sir, .'lomilt S;u Nom;lf Silt XonJl/( 

Actual p 2: 0.5 p< 0.5 Actual p2: 0.5 P < 0.5 Actu31 p~ 0.5 p< 0.5 

Silt: 78 17 Site 87 8 Site 90 5 
(82.1 ) ( 17.9) (91.6) (8.4 ) (94.7) (5. l) 

Nonsilc 17 37 Nonsitl.: 9 45 Nonsi tc 7 47 
(3 1.5) (68.5) ( 16.7) (83.l) ( I l.O) (87.0) 

R/  0.5318 RP'  0.7156 Rp'.0.8081 

gain  0.6 16 gain - 0.818 gain'" 0.863 

A logistic regression model for environmcn[at /ocalional fharaCl(1"illiCf was also 
fitted to the site-present and site-absent data in the 5.5 by 8.5 km study region 
using the eight variables described in the preceding sections (Figure 8.9c). Since 
this model is based only on the data patterns of the 95 sites and 54 nonsites in the 
smaller study area and nor on all of the 1423 sire and nonsi re locations ofthe larger 
region , the resulting model provides a much righter fl( to the site data than the 
previous logist ic regression modd (Figure S.7c). The classification accuracy statis
tics for this locational characteristics model are given in Table 8.5; Rp' ~ 0.7156 and 
gain equals 0.818. The fact that environmental characteristics oflocations provide 
more information than simple Ioeltional coordinatcs is amply illustrated by compar
ison of the resullant models (compare Figures 8.9b and 8.9c). 

Finally, a model was developed that combined both positional dara and infor
mation about loeational charanerisrics. This was accomplished by utilizing the 14 
polynomial terms of the location-only model and the eight environmental terms of 
the loeational characteristics model simultaneously in a single logistic regression 
model (Figure 8.9d). The results of this model exhibit characteristics of both the 
trend-surface and the environmental models, as indicated by the mappings (rigure 
8.9b-d). By incorporaring both sources of information, c1assifica[ion accuracy is 
increased (Table 8.5), as suggested by the higher goodness-of-flt (Rp' ~ 0.8081 ) gain 
(0.863) stalistic, and model mapping. 

MODELING INDIVIDUAL SITE TYPES 

The methods discussed in the previous sec tions may be applied not only to 

questions of site presence and absence but also to modeling multiple site types 
within a region, as has been noted. These might be functional site types or site 
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types representing differ""t chronological periods, for example. The major problem 
in developing locational models for individllal site types lies not in the methodologi
cal difficulties ofdeveloping the models but in the definition and operationalization 
of meaningful site-type catc..·gorics and in acquiring sufficiently large sa mples ofthe 
types for analy sis. These problems were discussed in greater detail in the imroduc
tion to this chapter. 

When dealing with probabili stic locational models of archaeological phenom
ena, it is often desirable that the individual class p-vaiut"s (probabilities of class 
assignment) for all of the classes under consideration sum to 1.0 for any location to 

which the model(,) arc applied. A nllmber ofstandard and not-so-standard proce
dures exist that allow one to constrain estim:Hcd probabilities from multiple groups 
(e.g., site-type groups) to sum (Q l.0 at a location. 

The simplest model is one that assumes for any location (a small land parcd, 
such as an acre) a limited and finite number ofpossible outcomes and then estimates 
the probability of any given alternative (e.g., by means of some of the modeling 
procedures discllssed abo\·e). In an archaeological context tht' altt'rnatives that may 
occur at a locat ion include an alternative for each possible site type (including 
isolates or other remains) and the alternative ofno site (no archaeological remains of 
any kind), and 

pem) + PCJlI ) + P(Jl2) + ... + pCJI,,) ~ I 

where m is the site·absent alternative and the flj refer to the individual si te t ypes. 
This model assume, that all possible si re t),pes have been specified, but this 
difficulty may be circumvented simply by dclining a type called "other." This kind 
of model is assumed by many packaged computer programs for statistical analysis, 
including those for multigroup discriminant analysis (e.g., PROC C ANDISC; SAS 
Institute 1982). 

An alternative model that perhaps offers a number of advantages, given our 
limired knowledge of the past and the normal difficulties of dealing with the 
archaeological record in terms ofdefining site types, is a hierarchical mode.'1 that first 
assumes only two possible outcomes at any gi\1en location (again, a small land parcel, 
such as an acre). One outcomt' is that some evidence ofhuman activity (btl ) occurs at 
the location (i.e., some kind of site or cultural manitcstation will be found there); 
the other is that no evidence of activity (m) occurs at the location, and 

p('If) + p(ha) ~ I 

Outcomes indicating specific kinds of anivit ies, archaeologically re prese nted by 
functional types of sites or remains, are then conditional on the outcome that 
evidence ofhllman activity is indicated ( Wrigley 1982), and 

P(JlI ) + P(Jl2) + ... + p(fI,,) ~ p(ha) 

The termp(ha) refers to a human activity space within which all activity in a region 
is conducted (sec. also the introduction to this chapter). This space is represented 
archacologically by all material culture remains, including settlements, sites of 
spec ific function, and isolated occurrences (see Kvamme 1985a for a more detailed 
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discussion orchis concept). Although some researchers mighr argue that in certain 
regions pasr activity occurred everywhere, the concept ofimportance here is that of 
flajp;l)' demili c'J: in any region certain locations may have been more favorable for 
activity 0('1n)' kind than others (e.g., locations with level ground surfaces). In fact, in 
mountainolls regions or in regions containing significant acreage ofswamplands, for 
example, the human activity space can be resrrincd to a major extenL Site location 
models that lump sites of all types into a single analytical group-whether because 
of an inability to form meaningful types from the available evidence or as pan of a 
prcplanned rest'arch lactic - art· simply developing modds of the human activity 
space. Such modds should, in principle, demonstrate lc...·ss-pronounced patterning 
than models for specific types of sires since the former incorporate many types of 
sites with varied locational requiremc:nts. Nevertheless, strong and predictable 
patterning can sometimes be achicved (e.g., Figure 8.9d portrays a remarkably 
strong model for all opcn-air lithic scatters in the rcgion cven though these scatters 
undoubtcdly represent a variety offunctional site types). This hierarchical schem(' 
has the advantage that locational models for specific site types may be incorporated 
as well (e.g' l at a later time) . The site-type models, however, are conditional not 
only on the environmental and other measurements upon which they are based but 
also on p(ba). 

The following illustration oflocational models for multiple site types uses data 
from a study ofGerman Mesolithic sites by Kvamme and Jochim (1988). This study 
was used as an example of model building with existing data in Chapter 7. As noted 
then:-, the data available for the 170 known sites in the region were extremely 
limited, making it difficult to distinguish site typcs with specific functions. The 
amateur collectors who discovered them, however, reported a number of sites that 
contained rdatively abundant remains. Ofthe 170 sites, 39 could be categorized in a 
usettlcment" group and 74 were classed in a ~ 'smal1- s itestl group (the remaining 
sires were unclassified or represented ~Iisolates" and arc not used here ). Although 
the validity of these sire types is questionable, we can assume for the purposes of 
this discussion that the types art valid and use these data to illustrate the simultane
ous modeling of multiple site-type groups within a single region. 

An ad\'antage of using these Mesolithic data as an example of site-type 
modeling is that a computerized GIS has been established for the entire 940 km' 
study region (see Chapter 10 for a discussion of geographic information systems). 
The GIS contains a griddcd represcntation of the study region comprising approxi
mately 84,000 cells measuring 100 m on a side. Within each grid cell values wcre 
estimated for elevation, slope, aspect, local relief, a measurc of view, a measure of 
shelter, horizontal distance to nearest water, vertical distance to nearest water, and 
horizontal distance to nearest third-order stream. Additionally, grid ceUs that 
contain Nlesolithic sitc.."s were denoted and information on the site types present in 
the cell was encoded. The mathematical details of the site-rype models arc pre
sented in Kvamme and Jochim (1988) and Kvamme (1986); for the purposes of this 
discllssion, Hpicturcs" oreach model will he used to indicate the results ofsire-type 
modding. These mappings were accomplished by applying the mod~ls across the 
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entire study area (i.e., in each of the 84,000 cells) and using computer cartographic 
techniques to display the results. 

The site location models were developed by contrasting the 39 settlement 
locations (cells) and the 74 small·site locations against a representative sample of 
3201 locations taken from the background environment at large, rather than from a 
group of known sit.c.abscnt locations (because the laHer information was unavaila
ble). The site types could be contrasted with the background environment becausc 
Mesolithic sites ofany type could be argued to be an extremely rare phenomenon, 
causing the background environment to constitute a reasonably distinct class for 
analysis purposes (in other words, in the sample of background locations only a very 
small percentage of the selected locations could be expected to contain as yet 
undiscovered Mesolithic sites by chance). The classifier used was logistic regression 
(discussed above), and all nine variables listed abo,'e were incorporated in the 
models. 

The study region consists ofhigh ridges and plateaus overlooking a number of 
river valleys and plains like areas (Figure 7.4, this volume). The analysis suggestcd 
that sites of the scrricmcnr class tend to he located at lower elevations, on less 
sloping ground, in regions of less local relief that were more sheltered (i.e., less 
likely to be on hilltops and more likely to be on valley bottoms), and in places with 
lo\\'cr values for the overall view measure than the smail-site class. Additionally, 
sites of the sertlemcnt class (end to lie closer to relatively secure water sources, 
including major drainages (third.order streams), although they did exhibit a slight 
orientation (oward location at greater distances from nearest drainages when 
compared with the small·site class. 

These findings are largely borne out by the site type locational models when 
they arc mapped over the entire region through a GIS (Figure 8.10). The map of the 
model for the settlement class (Figure 8. lOa) shows a locational pattern (the darker 
regions) emphasizing areas along a major drainage near the southwest border of the 
region and in a plainslike low-elevation area in the far western ponion of the region. 
The locational pattern mapped for the small·site class (Figure 8.IOb) does not show 
an emphasis on these areas. More imponam, however, the loeational models 
indicate that the settlement class is much more highly patterned in terms oflocation 
than the small-site class, as indicated by the relative sizes of the dark areas in the 
twO maps. In other words, the settlement class tends to exhibit a tighter and more 
restrictive loeational pa((ern while the small-site class pa{(crn seems to be more 
variable. 

Elsewhere I have shown with regional survey data from the western United 
States that large sites or settlements do indeed tend to be more patterned in 
location than smaller sites, which as a group are functionally more variable 
(Kvamme 1985a). In that study, it appeared that the greater functional variability 
within a small-site class led to greater locational variability (presumably owing to 
differem loca(ional requirements of individual functional si(c types that were 
pooled within the small·site class) and that these sources of variability caused the 
less-pronounced locational pa((erning of these sites. The large-si(e or s~(dcmen( 
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Figul'"e 8.10. Mc~olithic site-type ioc3.l lona\ modl,.'ls m:lpp\.!d through J. GIS: (A) ~C'((k'mnlt 
cI :w;. (8 ) small-silt' clH~. 

class, on the other hand, possibly consis[(.'d of sites representing a morc similar 
range of activities (e.g., extended occupation) with similar and thus tighter IDea

tional requirements. Alchough the integrity of the site classes and sample in the 
rvlesolirhic study may be questioned, the patterning discerned dol'S resemble the 
large-site/ small-sitc patterning discussed heft". 
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INTERPRETATION AND EXPLANATION OF DATA 
PATTERNS 

The foregoing sections have prcsented a number ofquantitative data analysis 
tcchniques that are relevant in dle development ofarchaeologicallocational models. 
As scientists, archaeologists arc also intcrested in (a) methodological rigor and (b) 
explanation. The methods presented offer great potential for both. The most 
obvious benefit obtained from usc of quantitative methods of data analysis is that 
research findings can be obtained with greater objectivity. Additionally, results 
tend to be more easily replicated by other investigators: another researcher can 
duplicate an experiment or analysis using identical procedures and the same or even 
similar data, allowing independent verification of findings. 

Quantitative analysis procedures yield other benefits that rna)' be less obvious. 
In traditional archaeological research strategies the researcher only has access to (a) 
the raw phenomena (objects, entities, individuals) under investigation; (b) data 
(observations or measurements) pertaining to those phenomena; and (r) relation
ships subjectively perceived between and among the data or phenomena. The 
researcher who has knowledge ofand access to empirical data analysis methods, on 
the other hand) can greatly augment these most fundamental capabilities because 
these procedures yield additional information in the form of (d) descriptive and 
summary statistics, which describe and generalizc tendencies and patterns in the 
data and make relationships e,plieit; ( l) eomple, data models, which portray the 
raw data in different ways, often illustrati.ng or summarizing the essence ofmultiple 
empirical pa((crns; and (f) unforeseen (multivariate) relationships between classes 
of phenomena. Thus, the practicing scientist who makes use of empirical analysis 
procedures can greatly increase his or her abilities to postulate a pattern among the 
basic facts of the discipline, an important basis for theory formulation . 

Quantitative methods of analysis arc also beneficial in other domains of 
research. In classic deductive research approaches, certain predictions often are 
made based on the premises of the initial hypotheses. In the hard sciences these 
predictions usually rest on mathematical deductions or established physical laws 
such that the predictions muff mat hematically (or by law) follow from the hy
potheses. In archaeology, which lacks a base of laws or theory, our bridging 
arguments that lead to predictions, as Thomas ( 1979) notes, arc Hscat-of-the
pants" kinds of statements. \Vell-cstablished relationships of a statistica l kind 
might be used here as an alternative or supplcmenr to such arguments when 
predictions are formulated from theory. Finally, the methods ofstatistical hypothe
sis testing arc particularly well suited as a 'mcans of verifying (or refuting) hy
potheses. A myriad of testing and validation procedures exists for virtuaJly any type 
of problem context. Hence, the qU:lntitative investigator is armed with more tools 
and capabilities for conducting basic resrarch and for porentially interpreting and 
explaining archaeological phenomena. 

Previous sections generally presented only the basic statistical facts because 
their goal was to describe the procedures used in modding. In this section, the 
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interpretation and t."xplanation ofrhcsc facts arc briefly considered. The Glade P:uk 
descriptive statistics in Table 8.l suggested a number ofempirical tt'ndencics. For 
example, the sites exhibited tendencies to be located in proximity [0 permanent 
and neareS( v.'a ter sources (when conrras[{'d to the background nonsitcs) and also 
tended to be iocated with good views of surrounding terrain and close to point s of 
\'anragc. The Glade Park sites were distributed with a north-facing preference, on 
level ground, and on high points or mesa edges in regions of limited local relief. 
Traditionally, explanation of empirical pancrns such as these have generally 
assumed human selectivity (e .g., Findlow 1980; Green 1973; Kvamme 19115a; Lafferty 
1981; Parker 1985; Roper 1979b). For example, using the above evidence we might 
argue that sites rend to be close to water because the.: Glade Park region was arid, 
forcing people [0 carry out most of their activities in areas ncar water courses. The 
aridity argument might also explain the strong tendency for north-facing aspects 
since these locations would tend to increase shelter from sunshine during the hot 
summer if, indeed, the sites were occupied during t he summer. Locational tenden
cies toward good views, vantages, and high points might be interpreted as resulting 
from the need to watch for game, since the inhabitants ofGlade Park were primarily 
hunter-gatherers. Such arguments, although plausible, need to be substantiated 
with additional evidence bcforc they are taken seriollsly. Alternative explanalions 
might also be possible. 

The actual equations of the empirical modds based on characteristics of 
locations also have interpretive potential. The discriminant analysis discussed in 
the uApplication Comparison" section yielded the following model: 

D; ~ -5.7058 - 0.0047 (aspec t) - 0.08 (s lope) + 0.0152 (relief, 100 m) - 0.005 (relief, 300 m) 
+ 0.001 (shelter index) - 0.0002 (yaorage distance) - 0.001 (distance to nearest 

drainage) - 0.0008 (distance to second-order drainage) 


Positive coefficients associated with a varia ble suggest that high values of the 
variable arc related to site presence, while negative coefficients suggest tha[ low 
values of the variables are related to site presenn'. Hence, this model indicates that 
high values ofrdief(within 100 m) and the shelter index and low values of"pect 
(i.e., north-facing), slope, relief (within 300 m), vantage distance, and di;itancc to 

nearest and second-order drainages are suggested by [he data to be related to the 
site-present locations. 

It is possible to go beyond this level ofinterprctation when the independent 
variables are measured in the same units and are uncorreiated. One way to acquire 
variables measured in the same units is to standardize tht~ data. Parker( 1985) utilizes 
this tactic [0 interpret logistic regression site location models in Arkansas. In {hI.: 
above nonstandardized discriminant analysis model, sevcral variables arc measured 
in rhe same units. \Ve might compare the absolute values of the associated coeffi
cients of these variables to assess the relative importance of the variables. For 
example, the distance variables arc all measured in meters; if wc compare them we 
find that the dat a sugges t that distance to nearest vantage (wilh an absolute 
cot'fficienr of0.002) has about one-fourth as much influence as distance ro sccond

order drainage (0. 0008) and one-fifth as much inOuence as distance to nearest 
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drainage (0.001 ). Distance to nearc:; ( drainage is slightly morc important to site· 
location placement than distance to seco nd-order drainage. In the prescm case, 
hO\\fCVCT, the~e variables aTC positively correlated, and sllch interpretation should 
be madl." with so me caution. 

One way (0 remedy the correlation problem is to perform a principal compo· 
nents analysis (described earlier) on the variable,. This procedure yields linear 
combinations orehe correlated variables, and a model can tht.·n be built that uses (he 
components rather than the Taw variablc..'s as preciicCOTS (Schowcngc..'rdt 
1983: 159-167). Since the resultant components will be uncorrebted, model interpre
tation can be faciliutcd in this manner. Although (his approach has certain merits, 
it often is the case that interpretation of the components themselves is quite 
difficult. 

Explanation of any facrs pe.~ naining to archaeological distributions, whether 
raw fact s or higher-order statistical generalizations, may take a number offorms. A 
good approach might be to treat each possible explanation Js an ahernativ(~ 
hypothesis. Possible alternative hypo theses for an observed rebtionship between 
archaeological sites in a region and some environmental feature might include (a) 
human sdec livity, (h) geologic processes, (c) vegetation patterns, and (d) sampling 
biases. 

To illustrate this multiple-hypothesis approach, recall that the models dis
cussed in the section on "Application Comparison of Quantitative Locational 
(vlodels" all indicate that the location s of open-air lithic sC~Ht('rs tend to occur in 
close proximity to second-order (or greater) drainages (Figure 8.7). In Chapter 10, a 
histogram of this variable measured at a11230,000 land parcels (50 by 50 m units) in 
the study region is compared with a histogram of the same variable measured only 
at the nearly 600 parcels with sites in the arc, ( Figure 10.11). These histograms 
clearly support the suggested pattern; for example, halfof the sites occur within 150 
m ofdrainagc.·s of"thcse ranks, while only 17 percent of the !:atudy region lics within 
this distance of such drainages. 

The explanation of this pattern that probablr comes to mind first is that of 
human selectivity: the.' prehistoric inhabitants purpost:'fully placed their sites in 
proximity to relatively secure sources of water in order to obtain water more casily. 
Various sources of ethnographic evidence and the aridiry of the sou thern Colorado 
plains could be argued to be supportive of this hypothesis. An obvious and related 
alternative hypothesis is that the inhabitant s tended to locate activity close [0 

drainages not for the water but for somt· other rcl:Hed resource. For example, they 
might have been esploiting plants thar tend to be found near warer, or they might 
have chosen stream-associated location s in order to hunt a variety ofgame animals, 
such as bison, that might be drawn to water. This is a common case, where one 
variable (proximity to water) might be only a proxy for some oth~r variable 
(availability ofpiant foods or prey animals) that aCluaily was important. Supporting 
dala for thi, comp<ting hypothesis would be hard to obtain. Such data might 
include appropriate floral and faunal remains in a suitable archaeological association 
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from sites both close to and far from the drainages. In addition, the sample of sires 
would need to be large enough to yield statistically reliable conclusions. 

A third hypothesis might be that the observed pattern is a result of geological 
processes or vegetation paucrns that have buried or hidden sires located great 
distances from these drainages and exposed sites lying in proximity (Q the drain
ages. In the present case, a geomorphological study of the region (Schuldenrein 
1983) found the reverse (0 be true; the primary areas ofalluviation were along major 
drainages. Addition3l1y, vegetation in this region (which affects site visibility) is 
densest along major drainages and very light or nearly absent far from drainages 
(Van Ness 1984). 

Finally, a fourth explanation ofche pancrn might be that it is the: result of 
sample selection bias. Since a random sampling design was employed for site 
discovery (based on randomly placed transects), and assuming the trustworthiness 
of the survey crews and uniformity of their procedures, this hypothesis seems an 
unlikcly candidate. 

Certainly there are other alternative hypotheses lur explaining {he observcd 
relationship. In this case, as in all cases involving hypothesis testing, tht' alternative 
for which the greatest amount of supporting t"vidcnce can be obtained should be 
advanced as tht· most likely explanation. It is also quite possible that several of the 
hypotheses could be true. 

ASSESSING MODEL PERFORMANCE 

In pre\·ious sections ini(ial or Happarent" accuracy rates were presentcd for 
several models. Apparent accuracy ratt's were obtained by applying a model to the 
rame data used to generate the mode!. This practice, as noted in those discussions, 
tends to gi\'e an inflated vieVl' of true model accuracy and underrepre:senr true 
model error rates. The: purpos(' of this section is to ('xamine methods that can yield 
truer indications of actual moclel performance and (0 offer statisricai significance 
tests of model performance. It is emphasized that regardless of how a model is 
developed-from theoretical expectations or from empirical data-most of the 
following methods for testing apply. These methods should be lIsed to validat<· the 
pcrformanct· of all)' model prior to its application to management or research 
problems. 

Adjustable Accuracy Rates 

Site location models discussed in previolls sections were designated as having 
classified a percentage ofsites correctly and a percentagt' of nonsites correctly. Some 
of the models classifIed only about 70 percent of the sites correctly (and some had a 

lower rate than this), which might not be very useful from a practical standpoint; 
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the 70 percent correct figure means that 30 percent or morc of the sites were 
incorrectly classified. This is fairly costly given the nature of the resource and our 
goal ofde"eloping models rhar have some porenrial for real-world applicarion. One 
way co resolve this problem migh t be to obtain bettcr data or [0 make operational 
new variables that would yield stronger models, but either solution could entail 
additional cost and cf(ort. Even if such models wea' dcvclopc.:d, some sires and some 
nonsires will always be incorrectly classified by a model, and the accuracy rates 
might be less than desirable or be unacceptable for practical applications. 

A solution [Q this problem is to accept a trade-off, to exc hange inert'ascd 
accuracy in classifying sites for decreased accuracy in classifying nonsircs since ir 
costs us less to call a nonslte a site compared with the rt.'verse (us ing th(.· terminology 
introduced in Chapter 3, we decrease gross error by increasing wasteful error). The 
decision rule used for examining the initial apparenr accuracy rares ofall previous 
models (e.g., Tables 8.2, 8.4, and 8.5) was a maximum-likelihood rule; locarions were 
assigned to the class (si te or nonsite) to which they were most similar. For several of 
the models this amounted to assigning a location to the site class based on a clltoff 
point of p = 0.5. In order to trade nonsite classification accuracy for increased site 
accuracy, we need only change rhi s p-value to a lower cutoff-for example, to p = 

0.25. In rerms of rhe measuremenr space (Figure 8.5b), rhis change moves rhe 
decision boundary upward, causing morl' of the sires to be correctly classified (but 
causing more nonsites to be incorrectly classified), The logical extreme for this 
tactic would be to choose a clitoff of p = 0.0, which would catlse the entire 
measurement space ro be class ified to the site group ( bur this would crea.te the 
absolutely accurate but useless predictor of site locations described in an earlier 
section). 

\Ve can use the Glade Park nine-variable site location model prescnt(~d in the 
HExample Analysis" section as an illustration ofthis procedure. This modd is based 
on a sample of 157 known site and 157 known nonsite locations, obtained through a 
cluster sample of38 quarter-section quadrats. The Glade Park model was applied to 

estimate site~group p-values for each of these 314 locations based on rheir nine 
environmental measurements. Histograms of these p-values arc: given in Figure 
8.lla. If we use rhe tradirional curoif point (p ~ 0.5), 70.1 percent of rhe sires fall 
above this point in the site histogram, while 66.2 percent of nonsites fall below this 
eutoff in the nonsite histogram. Or is this process that yields the accuracy rate 
predictions given in the cwo-by-two matrix in Table 8.2b.) Ifwe were to use a lower 
cutoff, it is readily apparent from Figure 8.lla that more sites would be classified 
correctly and morl' nonsites incorrectly. This effect is summarized in Table 8.6 
using curoifp-values ofO.O, 0.1, 0.2, ... , 0.9, 1.0, and ir is graphed in Figure 8.11 b. Of 
course, when cutoff probabilities ofp = 0.0 and p = 1.0 arc used, (vl'/')' location is 
classified either 3S a sit(, or as a nonsice, res pectively, and we have a zero-gain 
predicrive model. On rhe mher hand, at a curoffofp ~ 0.2, 96.2 percent of rhe sires 
and 26.1 percent of the nonsites lre correctly classified; atp = 0.4, 82.8 percent of the 
sitcs and 52.9 percent of the nonsites arc correctly assigned, etc. 
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Although application of a model to the same data used to build the model can 
yield inflated performance indications, the researcher can use these data, together 
with the adjustable rate method, to design a model that performs at an approximate 
level of accuracy. For example, using the information given in Table 8.6 and 
graphed in Figure 8.llb, the researcher can contrive a model that apparently 
predicts approximately 90 percent of the sites correctly by selecting a cuwfT value of 
p =0.3. At this cutoff point approximately 38 percent of the nonsites would also be 
correctly assigned. (Of course, these figures arc undoubtedly inflated to some 
extent because the Glade Park model has not yet been tested with independent 
data. The same procedures apply after testing, however, and it is shown below that 
very similar results arc obtained.) 

TABLE 8.6. 

IIlU$h"alion of changing cutoff p-values and their effects on site and nonsd:c c1assific2Ition 
accuracy using the nine-vari2lble Glade Park model data 

Corr(r/ PrtJicrwnJ Incorrtf( Pr(dil/uml 

Silt N()n!iu S;{( N.onIiu 

Cutoff Point Numhtr P(r(rnt NNmher Pt ra"t Numher P(r(rn/ Xl4mhtr P(rrrnt 

0.0 157 100.0 0 0.0 0 0.0 t57 100.0 

0.1 157 100.0 21 13 ... 0 0.0 136 86.6 

0.2 151 %.2 'I 2<1.1 6 3.8 116 73 .9 

0.3 142 90.5 60 3S 2 15 9.5 <n 61.8 

0.. tJO 82 .8 82 52.9 1:7 17.2 75 47.8 

0.5 110 70.1 II)< 66.2 <7 29.9 53 H .8 

0.6 87 55.4 12<1 SO.3 70 44.6 3 I 19.7 

0.7 58 36.9 144 91.7 99 63 .1 13 8.3 

0.8 Jl 21.0 157 100.0 12' 79.0 0 0.0 

0.9 12 7.6 157 100.0 1'5 92 .. 0 0.0 

1.0 0 0.0 157 100.0 157 100.0 0 0.0 

Clearly, the actual number oflocations (e.g., smal1~~uea units, such as acres) in 
a region of study that arc nonsites is usually far greater than the number that are 
sites-on the order oflOO nonsites for every site. (This is usually referred to as the a 
priori or bare raU probability problem and will be discussed below.) Thus, our claim 
that 38 percent of the nonsites are correctly assigned by a model essentially means 
that nearly 38 percent of the area of the stud y region as a whole is unlikely to contain 
sites ( in this example, if the 38 percent area were mapped, it would only comain 
about 10 percent of all sites). If the study area is extensive this could amount to a 
sizable area that is largely devoid ofsites. Thus, another imporrant function of the 
nonsite control group is to provide area estimatcs about model performance. In 
other words, thc nonsites provide data concerning the estimated 3.rea ofa model at a 
particular cutoff point when mapped. If the data in Table 8.6 arC correct indications 
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of the Glade Park model's accuracy, we could claim that 90.5 percent of the sitos 
should occur in only about 100 - 38.2 =61.8 percent of the total Glade Park land area, 
which could be caUed a Hhigh site-sensitivity zone, H and that 9.5 percent of the sites 
should occur in the other 38.2 pereent of the land area, which constitutes a "low 
site-sensitivity zone." Compucer mapping techniques shown in the previous sec
tions and described in detail in Chapter 10 may be used to provide maps of these 
sensitivity areas. 

This cuwff adjustment approach is not necessarily rescrictcd [Q models that 
yield a 0-1 scale of estimated probabilities. The simple mathematical models 
discussed in previous sections can also be examined in this conrexL The perfor
mance of minimum distance models might be assessed by investigating accuracy 
ratcs at various cuwff ratios of distance [0 class ceneroids, for example. Similarly, 
performance statisrics from a number of"slices" might be c..'xamined in a level-slice 
approach. 

From rhe foregoing it should be apparent that the usc ofoverall accuracy rates 
(i.e., the combined site and nonsite accuracy) to evaluate the performancc ofa site 
location model, a fairly common practice (e.g., Berry 1984), is not only misleading 
but inappropriate. To illusnate, suppose that a sample survey from a large region 
discovers 100 site locations. It is possible [Q obtain virtually any sample size of 
nonsites as a control group since if is not uncommon for 99 percent ofmany st udy 
regions to be classifiable as "site absenr." Let us say that 9900 locations arc chosen 
for the nonsite conrrol group, for a total sample size of 10,000. (Although this mal' 
seem to be a ludicrously large number, such sample sizes are possible rhrough use of 
computer data bases, as Chaprer 10 will show.) Ifall 10,000 locations "'ere arbitrarily 
classed as nonsites, an impressive overall accuracy rate of 99 percent would be 
achieved (100 x [toral coffecrj / [rotal casesj- 100 x [9900 + 0V[ 10,0001), but the 
resulting model would be useless. It is clear that performance must be judged by 
focusing on percent correct rates for sites and nonsitcs individually. 

Model Validarion Procedures 

The nine-variable Glade Park model has already been used to illustrate 
performance adjustment; in this section it will be used to demonstrate several 

model validation techniques. \Ve can assume that the apparent performancc rate 

statistics given in Figure 8.IIb and Table 8.6 are inflated, but to an unknown 

degree. In orher words, when this model is applied to orher locations in rhe study 
region, actual accuracy rates may be lower than those indicated in the figure and 

table. The inflated performance statistics result from a number offactors. Primary 

among these is that the same data were used to build the model and to estimate the 

percent correcr prediction rate (Table 8.6). Since rhe Glade Park model is based on 
differences between site and nonsite locations in that specific sample, the statistical 

procedures capitalize on variation in that sample such that apparent accuracy rates 

are maximized (Swain 1978: 163). Violarions of srarisrical assumprions, such as the 
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independence assumption that results from spatial autocorrelation (sec above and 
Chaprer 5), further widen [he difference between apparent and actual accuracy 
rates, particularly in this cluster-sampled contc" (Basu and Odell 1974; Campbell 
1981; Tubbs and Coberly 1978). 

Randomization procedures for assessing the upward classification bias that 
rcsulrs when a model is applied [0 (he same data with which it was generated have 
been developed by Frank ct al. (1965). These proccdures were applied by Berry 
(1984) in a paper that generally attempted to discredit certain cultural resource 
modeling approaches. The procedures of Frank et al. (1965) and the findings of 
Berry (l984) arc both germane ro (his discussion. One randomization procedure 
requires generating random normal deviates as a "synthcticH validation sample, 
and then developing a model based on these random data. The resuhant classifica
tion accuracy, when the model is applied [0 the symhcric data set, reflects upward 
bias 3[[riburablc [0 the proc("dufe it self. since rhe robusr properries of many 
mulrivariare classification models can cause 3 better-than-chance fit even ro random 
data. Berry (1984) points out that in two such simulations by Frank et al. (1965), 
which used the discriminant analysis model, average overaH classification rares of 
68.2 and 72.6 percent were achieved, which would seem to reflect poorly on 
discriminant analysis efforts in general, including those in archaeology. Berry does 
nor memion, however, that one simulation used 19 predictor variables with 150 
cases and the other used 25 variables with only 98 cases (Frank et al. 1965:256). The 
large number of variables rciarive to the number ofcases is an example of what can 
be called byptrfilling of a model to [he data. It is possible, through lise of large 
numbers ofpredictor v'Jriables, [0 obtain very strong fits regardless of the degree of 
pa[[crning in the data (using n-l predictor variables in a discriminant analysis 
guarantees a perfect classification, for eX'Jmple). This property is demonstrated in 
Berry's Table 2. Using random data and 30 cases, Berry shows through simulation 
that four variables yield an overall correct rate of53 percent (3 percent upward bias); 
8 variables, 70 percent (20 percent upward bias); 12 variables, 77 percent (27 percent 
upward bias); and 20 variables, 93 percent (43 percent upward bias). The difficulty 
in real-world applications is to obtain a good fit \\·ith few variables rc1;nive to the 
number of cases. This randomization procedure seems useful, however, when the 
numbers of variables and cases arc matched [0 [hose anually used to develop an 
archaeological model. The resuhs could give an excellent indication of the size of 
upward bias an investigator might be facing. 

The second randomization procedure for investigating upward bias described 
by Frank et al. (1965) utilizes [he actual model data for the predictor variables. In 
this case, though, the true value of the dependent variable, class membership, is 
randomized and a ci:Jssific'Jtion model is produced based on the randomized groupr. 
The advantage of this procedure is that the actual model data are used, allowing [he 
upward bias result to pertain more closely to the model under investigation. Berry 
(1984:849) utilizes this technique, with 10 replications, to illustrate a mean random
ized classification rate of71 .6 percent) suggesting that the apparem overall accuracy 
rate of 85 percent for an archaeologicallocational model developed for the Bureau of 
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Land Management is mostly attributable to upward bias. The particular modd that 
Berry examined was based on six vatiables and 174 cases (Burgess et a!. 1980). Berry 
achieved his result, however, h)' using [he six variables pitH 10 additional ones thal 
were eliminated from consideration in the original study owing to the lack of 
significant fmdings of s(.'vcral univariate and multivariate..' res ts made on these 
variabll's. Thus, Berry achieved a mean randomization rate of 71.6 percent by 
hyp(.·rfirring 16 variables to 174 cases, I rcran this randomizJt ion procedure with 10 
replications on the original six variabks, which yielded overall classification rates 
ranging from 49.4 to 60.9 percent \\' irh a mean r;}(c of 56.9 percent, an upward 
inflation ofIc..'ss than 2 pt'Tcent ( the Tatc expected by chance in this case is-55.6 owing 
(0 unequal class sample sizes; Berry 1984). These findings are more in line with the 
amount of upward bias on(' might expect when the number ofpredictor variables is 
small relative to the number of cases. 

There arc a number of ways to conduct independent tests of a site location 
model's performance. In an ind('Ptndm( {(!lJ data that are different from the informa
tion used to build a model are used to test the model in order to diminate the 
possibility ofmodel capit alization on chance sampling variation. The strong(~st test 
of model performance would requi re an additional independent survey. Site loca
tion mod"'s could be applied eo these independent data to derive unbiased esti
mates of model p<.·rformancc accuracy rates. ( Id('ally, the independent survey would 
be conducted by archaeologists different from those who collected the data used to 
construct the initial site location modeJ .) In many cases it is difficult or impossible 
owing (Q cost constraint s to conduct a second, independent survey. For (his reason, 
a number of alternative procedures have been developed that attempt to provide 
independent testing information but do not require that a second su rvey be 
performed. Two of these procedures, which were introduced in Chapters 5 and 7, 
are 'plil <ampling and the jacHnif.. method. 

Splil Sampling 

Split sampling traditionally requires randomly splitting a sample ofcases (sites 
and nonsites) in hall; building a model with one half. and testing the model with the 
second. independent half(Mosteller and Tukcy 1977:38; sec Chapter7). A problem 
with this ml.'thod resu lts from the use of clusrer sampling. There is within-cluster 
spatial correla(ion between analysis locations so that sites and nonsires in one of rhe 
split groups may not necessarily represent completc:ly independent information 
rdative to sites and nonsiles in the other group. 

A better split-sampling technique for cluster-sampled data requires thac rhe 
r1l1flt'rf be randomly split into two groups ofequal size. The model is thcn built with 
data from one-halfof the clusters and tested "'ith the second hall; which now can be 
argued to be independent of the first half. This approach was applied to the Glade 
Park analysis data. The 38 sampling quadrats were randomly split into two groups of 
18 (t wo ofehe quadrats contained neither sites nor non sites and arc excluded ht're); 
models were thcn built using rhe same ninc variablcs used in (he previous Gbde 
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Park analyses for each half, and their performance was assessed using the data from 
[he other half. The classification accuracy curves for all poss ible model cutoffs arc 
illusrr:Hcd in Figure 8.123, as arc the aVCT:lgc perform :mccsofrhe two models. The 
inflation in accuracy of the original model, which amounts to a few percentage 
points, can be seen when the performance curves in Figure 8.123 are compared with 
those in Figure 8.llb. 

A drawback of the split-sampling approach is that only half of the available 
information is utilized in developing a model (since rhe other halfmust be reserved 
for testing), which is a wasrl' ofcosrly information. One approach that utili7.cS all of 
the available data is disclIsst.'d in the next section, 

'Jackknife Method, 

The jackknife method (Lachenbruch and Mickey 1968) was developed as a 
mcans of providing a less biased assessment of the performance: of a classification 
model while allowing all information {Q be used in model const ruction. In the 
rradirional jackknife, one ofrhl..· n cases is temporarily discarded, and the remaining 
'1-1 cases arc used to build :1 classification model. The discarded case is then 
independently classified by the model. This procedure is repeated, eliminating each 
case in turn, ro es tablish an indcpcndl'nr tcSt of model performance. Thus, unlike 
split sampling where halfofrhc cases arc normally discarded, t he jackknife requires 
that only one case be left our at anyone rime, which allows rctemion ofmost of the 
information. An additional benefit of this proceduTe is that the n resulting models, 
each providing d slighrly dil1erenr result, can be combined into a single model to 

provide a better estimated or jackknifed model (Mosteller and Tukey 1977: 152). A 
model derived from n models is usually superior [0 the tradition:d model based on 11 

cases because t..'ach coefficient in the combined model is based on 11 estimated 
coefficiems from the.' individual models. The B~,tDP discriminant analy sis program 
7M provides the jackknife as an option (Dixon et al. 1983). 

In an archaeological site location modeling concex[~ where some form ofcluster 
sampling is normally applied, a modified jackknife procedure can be used. This is 
necessary because, as noted in the section on split sampling, analysis loca{lons in the 
same cluster might be spatially correlated. Testing a case against a model derived 
from the other cases in the same cluster may not yield an entirely independent 
assessment. The modified jackknife technique requires discarding: all cases in onc of 
the k clusters, building a model widl the cases in the rt.'maining k-l clusters, and 
testing: the model on the data in the discarded cluster. This procedure is rcpeated, 
with data in each cluster in rurn being reserved as the test cases, until kmodels have 
been developed and data in each of the clusters have been tested. 

When this jackknife method was applied [Q rhe Glade Park model data, 36 
modcls~ each constructed by eliminating locations in a different sampling: unit 
cluster, were developed. In Table 8.7 the original model, L(O), based on all 314 orthc 
sites :md nonsites is given first, followed by the 36 models derived by leaving out the 
locations in a single cluster. The performance rates found by applying (he e"model 
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TABLE 8.7. 

Original nine-variable Glade Park site-location model (L( 0)). 36 jackknifed models. and final compo.site 
jackknifed model (L[ "'D 

X I X 7 XII btlrp'ul" 

l ( 0) 

L( 1) 

L( 2) 

.0.002240 

-0.0021 10 

-0,002 120 

-O.OIHOO 

-O.OIHOO 

-0.013200 

·O.OClOO)1 

-O.CoO'JH9 

-O.OOJOiO 

·0.1).10 100 

-0.040500 

-0.039900 

O.OClJI SO 

00.0C61SO ._ 
O. C(J7 JSO 

O.oomo 

0.0079W 

.O.lm &10 

-0 .OOS7W 

-O.0057s;() 

-0.018300 

-O .OUiSOJ 

-0.017800 

0.0008<>< 

0.oc.o&1 2 

0.1)))82 1 

0.158000 

0.146000 

0.072000 

L( 3) -0.001.310 ·O.OIW....(l -0.0(0573 ·0.040900 0.00!>060 O.OO7+W -0.005300 ·1),018300 O.QOOi'69 0.185000 

l. ( 4) -0.002'280 -O.O'6oK~ -O.~"76 -O.041roJ o. """"" 0.C05960 -0.006450 -0.017600 0 .JX)(l5.29 0.-421COO 

L( 5) -0.002070 ·Q.oua:.) -0.00:6&1 ·O.().I1OO) O.OO49C() 0.006280 -0.006380 -0.018800 0.()(Q16 OA2--WOO 

L( 6) -6.002250 -0.012COO -O.~78 -0.Q.\9900 0.CfhJ40 0.0(.17600 -0.005960 -0.017800 O.OOOIll! 0.062000 

L{ 7) -0.002220 -O.013CiX1 -0 .001500 -0.042500 O.QO.iOiO 0.007210 -0.0068i'0 -O.O Js.tOO 0.00J796 0.55OC(lO 

L( S) ·0.002210 -0.0\1500 -O.CIOC.I620 ·0.045100 0.006210 0.CXl6870 -O .0CX>790 -0.020300 0.001120 O.J04OOO 
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to the discarded cases ofthd" cluster are given in Figure 8.12b. Ar thep· 0.5 cuto/T 
point (Figure 8.12b) about 66 percent of the sites and 64 percent of the nonsites arc 
correctly classified, compared with 70 and 66 percent, respectively, for the initial 
model (Figure 8.11 b and Table 8.6). At thep~ 0.3 cuto/Tthc jackknifed data(Figure 
8.12b) suggest that 87 percent of the sites and 32 percent of the nonsircs arc 
correctly classified, in contrast to 91 and 38 percent, respectively, for the initial 
model (Figure 8.12b). Thus, the jackknife suggests moderate decreases in model 
performance, and these rates may be taken as bener estimatcs of Heruc" model 
performance rates. Similar results ha\"C been noted elsewhere (e.g., Campbell 1981). 

The jackknifed site location model, created by taking a weighted average of 
the coefficients of the 36 individual models, is given as L(*) in the last line ofTable 
8.7 (sec Mosteller and Tukey 1977: 152). 

Completely Independent Samples 

It was indicated above that one of the most reliable ways to test the perform
ance of a site location model is to apply it (0 data from a second, independent 
survey of random sampled data. Such data were not available in Glade Park, but the 
existing site files, which contain information on many hundreds of known sires, 
provide a large body of independent site location information. Site forms on file at 
the local BLM office were carefully screened for quality of inform arion, particularly 
with regard to accutate locational data (see Chapter 7). A simple random sample of 
50 sites thar reprt.'sclHed a wel1~sprcad distribution of sitcs from throughout the 
Glade Park region was selected (see Kvamme 1983< for details). A control group of 
noosiet.' locations was also chosen so that model performance could be assessed. 
These nonsites were not necessarily selected from previously surveyed regions and 
thus actually represent the Hcn\'ironmcnr at large" (rather than tfue nonsires), but 
they may still be referred to as nonsires. As discussed earlier, when the prior or 
chance probability of a sire is very low in a region (and in this case the site prior 
probability has been estimated to be as low as PIS] c 0.02; see below), nonsites can be 
selected at random from throughout a study region regardless ofwhether or nO{ (he 
locations have been field inspected. The advantage of this procedure is that better 
estimates ofnonsiee variat ion can be obtained (han ifthe nonsircs were restricted (0 

a limited number of survey<,'d clusters. The disadvantage is that some small 
percentage (here about 2 percent) ofthc: nonsites are misclassified because they are 
really sites. In the present case 87 nonsites were ~cll:cted at points located at thc 
center of each of87 randomly selected sections throughout the region (on a chance 
basis, only one or tWO of them should fall on sites). 

The jackknifed site location model (last line of Table 8.7) was applied to 
measurcmt'nts performed at {he 50 independent site and 87 independent nonsite 
locations. The results of this tcst, superimposed on the jackknifed results (Figure 
8.12b), arc very supportive orthl.' performance rates dctermined by other means. 
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Srarisricai Tesrs 

ivlodel classification performance indications arc often unreliable owing [0 a 
failure to meet [he variolls assumptions ofrhc model used and particularly when the 
same data arc used to build a model and to assess it. In making a statistical 
assessment of a model\ performance, it is much safer to usc independent test 
samples. In other spatially oriented disciplines, statistical signiflcance of model 
predictions and confidence limits around predictions are commonly determined 
through the lise ofindependent test samples (e.g., Hay 1979; Rosenfield et al. 1982; 
Schowengerdt 1983:109-195). 

The most common performance assessment of a classification model involves 
determination of accuracy rates (percent correct statistics). The following sections 
present a significance tcst for model classification results and procedures for estab
lishing confidence limits around percent correct statisrics obtained when a model is 
applied to independent test samples. Also presented is a graphic technique for 
assessing the goodness of fit of a model to the empirical data, which offers an 
alternative to accuracy rate statistics. Associated with this technique is a signifi
cance test that is appropriate for application to the same data set from which the 
iocational model was derived. Finally, a sequential analysis approach is presented 
that minimizes the size of independent test samples needed to test a model by 
requiring the collection of new data only until a decision about model performance 

can be reached. 

Telting tbe Significance of Model Classification Rffullf 

\Vhen an archaeologicallocational model is applied to independent tcst sam
ples in a two-class ptoblem (e.g., samples of sites and non sites), the resulting 
classification can be statistically assessed through a rclatively simple chi-square test 
for differences in classification probabilities. This test assumes that (0) independent 
test samples from both classes (populations) are being used, (h) the test samples are 
random samples, (c) the two samples are mutually independent (i.e., the locations in 
the site sample really have sites and the locations in the nonsite sample do not have 
sites), and (d) the locations can be unambiguously assigned by a model (decision 
rule) to either of the classes. The data are arranged in a 2 by 2 contingency table, as 
show n in Table 8.8a. 

A one-tailed test is most appropriatc since we arc testing for direction in the 
table, i.e., we are testing whether the model has some utility for making correct 
classifications. The null hypothesis states that the probability that a location 
belonging to the site-present population will be classified by the model [0 that 
population is less than or equal to the ptobability that a location from the sitc
absent population will be classified to the sitc-present class. Rejection of the null 
hypothesis implies acceptance of the alternative-that a location from the site
ptesent population has a greater probability of being classified to that population 
than docs a location from the site-absent population, indicating that the model has 
somc predictivc utility. The test statistic 
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DEVELOI'MENT AND TESTING OF QUANTITATIVE MODELS 

N (ad-he)' 

"1"2 (a+e) (h +d) 

(see Table 8.8a for explanation of symbols) is compared against the (1-20') quantile 
of the chi-square distribution with one degree of freedom. 1fT exceeds that value, 
the null hypothesis may be rejected (see Conover 1971: 141-146). 

TABLE 8.8. 

ASSl'ssment of model c1as~ificalion results: (a) set-up for a 2 by 2 table; (b) classificarion results of 
jackknifed model applied to indcp~ndcnt Clad~ Park data (at p - 0.4 cutoff poim); (e) goodness
of.fit test data with fixed cutoff points applied to data used (0 establish initial Glade Park model 

A. Table Set-Up 

True Class :'vll'mlxrship 

Actu:iI site prc:~c nt 43 (86'70) 7 5ll 

5ll J7 (43ee) 87 

137 

C. Goodness of Fit 
5',(t' Nom;/( 

Mod,; C:ao/f Pbin/l Expaud Ohle~r'(d EXP((ltd Ohrt~('J "{otal 

o - 0.08JJ 0.6144 0 17.3856 18 18 
O.Oill - 0.1667 2.3232 4 16.6768 15 19 
0.1667 - 0.25 3.1<314 5 15.0986 14 19 
0.25 - 0.lJJ3 8.5J5ll 8 20.4650 21 29 
O.JJJJ - 0.4167 1l.J486 14 18.6514 16 30 
0 .4167 - 0.5 16.5794 16 19.4206 20 J6 
0.5 - O.58B 19.08 15 16 15.9185 19 35 
0.5833 - 0.OM7 24.~1 23 14.5359 16 39 
0.fU>7 - 0.75 25.3594 24 10.64ll6 12 J6 
0.75 - 0.S3JJ 19.5763 19 5.4237 6 25 
0.8JJJ - 0.9167 16.6168 19 2.3832 0 19 
0 .9167 - 1.0 8.5999 9 Q.4ool 0 9 

Tot'[ 157 157 314 
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The independent Glade Park tcSt data results from the previous section can be 
used to illuscr3rc application of this test. The independent sample of site locations 
was taken from existing site file information at a local BLM office (this sample was 
discussed above); because it is possible [hat survey biases might be reflected in this 
sample, in practice it would be more desirable to usc sites obtained from an 
independent field sun'ey conducted under a random sampling design. The inde
pendent sample ofnonsite locJtions is actually a sample ofloc3rions taken at random 
from the background environment at large (this sample was also described above). 
\Vithout tield checking, {here is no way of knowing for certain whNher or not a 
particular location in this sample contains a site; an estimate of the base rate or a 
priori chance of a site occurring at a location in the region (see below), however~ 
indicates that approximately 94-98 percent of this sample shollid not contain sites. 
Although the third assumption listed above technically is violated, the performance 
of thc test should be modified only slightly given the low rate ofsite occurrence (the 
principal etYeet will be to make acccptance of the null hypothesis more likely 
through a reduction in the apparent significance of the model). NQ[e that even if a 
sample of actual nonsirc locations were obtained, there would always be some 
uncenainty about the absence of sites from all sample locations o'Q.'ing to the 
possibility of sites having been missed during survey and to the potential presence 
of buried sites. 

The independent test data indicate that at the p z 0.4 cutotY point approxi
mately 86 percent of the locations with sites and 43 percent of the locations without 
sites arc correctly classified by the Glade Park jackknifed model (Figure 8.12b), 
which produces thc 2 by 2 structure sho1l,," in Table 8.8b. When computed using 
these data, the tcst statistic yields 

137 [(43)(37) - (7)(50)]' 
- 11.853 

(50)(87)(43 + 50)(7 + 37) 

At a level of significance of 0.001 the null hypothesis will be rejected ifT exceeds 
9.549 (from a table of the chi-square distribution with one degree offreedom). It is 
therefore rejected in the current case, which suggests that the model has some 
predictive utility at the p = 0.4 cutoffpoint. (A common complaint with contingenc), 
table tcsts in archaeology is that a significant result might be due to only one cell 
with a large deviation from expectation. In this testing context, however, ifmost of 
the test statistic is due to one cell it means that either the model does 3. better job 
than chance at classifying sites or that the model does better than chance at 
classifying nonsites. In either case we win because the model offers somc gain over 
pure chance.) 

Before lea\'ing the subject of testing model accuracy rates, it should be noted 
that a number of additional procedures currently being examined in other disci
plines warrant investigation by archaeologists. These include specialized analysis of 
variance techniques (Rosenfield 1981) and the set of methods kno"'n as discrete 
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(P)(1-p) + (2:~!2 /4") 

" 


1.96. 2\ I (0.86)(1 - 0.86) + 1.962/(4150]) 
0.86 + ( 2(5O)t 1.96 IJ 50 

P/fI"!Z'lr ,.. = 0.74 
I + ( 1.962/50) 

1.962\ 1(0.86)(1 - 0.86) + 1.96'/(4[50]) 
0.86 + ( 2(50)) + 1.96 IJ 50 

= 0.93 
I + ( 1.962/50) 

DEVELOPMENT AND TESTING OF QUANTITATIVE MODELS 

multivariate analysis (Congalton ct al. 1983). Both of these approaches otTer the 
potential for significance testing of individual and overall classification results in 
tables larger than 2 by 2, making them suitable for multicbss modeling problems 
(e.g. , models for multiple site-type classes). 

Establishing Confid<nc< Limiti Around Accuracy Probabilrtter 

Since the classification of a tcst location by a model or decision rule is either 
right or wrong ( i.c ., a si te or nonsiee loc;:uion is correctly identified or ir is nor), the 
correctness of a classification assignment at each location represents a binomial 
population. The Glade Park independent data test results (Table 8.8b) indicate that 
86 percent of the site locations and 43 percent ofchc noosiee locations should he 
correctly classified b)' the jackknifed model (at the 0040 curall). These percent 
correct statistics, which represent estimated mean probabilities ofcorrect classifica
tion (when divided by 1(0), can be considered random variables with a binomial 
probabiliry disrribution. Associated levels of statistical error can be found in tables 
or graphs ofconfidence limits ofthe mean ofa binomial disc ribution (e.g., Conover 
1971 :380-381; Hord and Braoner 1976). Hord and Braoner ( 1976:672) give the 
following as the approximate 100(1 - (1 ) percent confidence interval for p, the 
proportion of successes 1 given n trials. 

When the Glade Park results for [he site class are used, the proportion of sites 
correctly classified by the model is p = 0.86 and" = 50. For a 95 percent confidence 
interval, a table of the normal distribution (found in any statistical text) gives zal2 "" 
".025 = 1.96. The limits of the 95 percent confidence interval become 

or 1'(0.74 S pS 0.93) = 0.95. Similarcalcularions for the nonsi,e class (withp = 0.44, n = 

87) yield a 95 percent confidence interval 0[0.34 S PS 0.54. 
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In theory, such confidence intervals indicated that, 95 percent of the time, 
independent test samples should yield proportion correct statistics (P) between 
these limits. In other words, ifwe had numerous independent rest samples ofknown 
sire-prescnt locations (and n 50), in about 95 percent of those samples the ::r 

proportion oC sites correctly classified by the model would be between 0.74 and 0.93. 
The range produced by these limits thus gives a mOTe realistic idea ofnue model 
performance. 

The width of a confidence interval at a given level of significance is a direct 
[unnion of (he size of the sample used [0 compute the intcrval. Ht'ncc, it is 
important to obtain large rest samples in order [0 produce narrower confidence 
limits. To illustrate, if we increase n to ISO for the above site-class 95 percent 
confidence interval (leavingp ~ 0.86), we obtain 0.80:S p:S 0.91. Increasing n [0 300 
gives 0.82 S PS 0.89. Upper and lower confidence limit values can be inserted into 
other formulas (e.g.) the gain statistic or those shown in the base rate probabilities 
section, below) to assess uppl.'r and lower bounds on other dimensions of model 
pcrformance. Confidence intervals arc nO[ restricted to 2 by 2 tables but may be 
applied to results obtained Crom tables oC any size (e.g., in problems with multiple 
site types). Parker ( 1985) illustrates use oC the Poisson distribution when estimated 
mean archaeological probabilities arc extremely low (e .g., p:S 0.05). 

A'UHillg Model Goodliest 'if Fit 

Parker ( 1985) presents an alternative approach Cor assessing archaeological 
model performance that docs no£ focus on percent correct statistics but compares 
observed with predicted probabilities of site presence. In this approach, which 
yields a graphical result, a probability scale (i.e., a scale ranging Crom a to I) oC site 
presence is divided arbicrarily into multiple groups or intervals (e.g., 0 Sp S 0.02; 
0.02 :S P :S 0.06; 0.06 :S P :S 0.10, etc.; Parker 1985: 192). Using predicted site 
probability values estimated at sample locations by a logistic regression model, the 
number ofknown sites and the number of known nonsites that fall in each interval is 
determined, and the proportion of the toral number of locations that are sites is 
calculatcd. This proportion is taken as an estimatc of the oburPed probability of site 
presence in each interval. Exp((ud probabilities for each interval arc calculated 
simply as the group midpoint vallie (e.g., the midpoint oCthe interval 0.02:S p:S 
0.06 is 0.04). The observed and expected pairs Cor each inten,.l arc then plotted on a 
graph that can be used to assess model goodness oCfir.lfthe plotted points Collow a 
line with an intercept oCO and a slope oC 1 (a 45' angle), the model offers a good lit 
(Parker 1985: 190-192). 

A problem with Parker's method is that it is largely subjectivc; goodness offit 
must be determined through a visual asscssment of how well the observed and 
expectcd values follow a straight line. Then: is no associa[ed significance test. 
:vtoreoverJ the specific group intervals used in Parker's application were of varying 
width and were apparently formed during analysis to maximize agreement bet.ween 
observed and expected values. This tactic may have been necessary, however, 
owing to the extremely small sample size (30 sites) under investigation. 
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Medical researchers have developed a remarkably similar approach for assess
ing the goodness of fit of predictive models based on logistic regression. In this 
approach, though, the grouped probability intervals arc specified pnor to the 
analysis, allowing more objective rcsuhs, and an associated signifICance (est is 
available. Of primary importance for archaeological purpost's is that the tcst may 
appropriately be applied to the data set from which a model was derived, forming an 
important tool for screening out useless models prior to further testing. This 
approach to goodness-oC-ftt assessment also utilizes the probability of site presence 
estimated for a location by a statistical model,p. Intervals of equal width arc formed, 
e.g., 0-0.1,0.1-0.2, ... ,0.9-1.0, and locations (cases) are assigned to the intervals on 
the basis ofp. If the model has predictive utility, then thep for locations with sites 
should fall into the upper intervals. The observed number oflocations with sites (0,) 
is compared with an expected number ofloc3rions with sites (fS) for each interval. 
The latter is usually calculated as the sum ofthe estimatedp-values for all locations 
in a particular interval. More explicidy 1 

where *= I, .. 0' g intervals; 0rk is the observed number or sites in the k'J, interval, erk is 
the expected number or sites in the k'h interval, ifk denotes that the ;'~ case is a 
member of the k'J, interval, and )'; is coded I for sites and 0 for nonsites. In other 
words, for a particular k'~ interval (e.g., 0.8-0.9), 0rk represents the observed count of 
sites having site-classp-values that faU in that interval, efk is simply the sum of the 
site-class p-values for all locations, site and nonsite, that fall in that interval 
(Lemeshow and Hosmer 1982). As in Parker's (1985) application, ,he g pairs of 
observed and expected values may be plotted, allowing a subjective assessment of 
goodness of fit when compared with a line with an intercept of 0 and a slope of I 
(Brand et al. 1976). 

The comparison ofobserved and expected site frequencies has been developed 
into a statistical test for goodness of fit by Lemeshow and Hosmer (1982). Since 
considerable information is lost when only the site group is considered, a more 
powerful testing procedure is made possible by considering observed and expectcd 
frequencies for site and nonsite classes simultaneously. Observed and expected 
frequencies for the nonsite group are calculated as follows: 

O"k = ~ (I - )'i) 
itt 

'.k-L(I-Pi) 
'" 

where 0nk is the observed number of nonsires in the ki lo interval and enk is the 

expected number of nonsites in the *" interval. The statistic developed by Lerne
show and Hosmer (1982:97) is 
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+ 

where the summation is from k = 1, .. "g intervals. 

The site loca tion model used (Q illusrrau.· (his test for goodness of fit is the 
initial ninc-variable Glade Park logistic regression model given in an carher section 
of this chapter. Results of applying this model to the same data that were used to 
consnucr the model arc tabulated in Table 8.2, A requirement ofehe [est is that rhe 
number of intervals (g) should be greater than )+1, where; is the number of 
predictor variables used by the model (Lemeshow and Hosmer 1982:96). In the 
present casc,j + 1= 10; hence, 12 intervals, with constant widths 0[0.0833, arc used. 
The observed and expected frequencies tabulated for the site and nonsi(c..~ groups in 
Table 8.8e arc used to calculate 

H~ ~ (0-0.61)'10.61 + (4-2.32),12.32 + (5-3.90)' / 3.90 + (8-8.54)' / 8.54 

+ (14-1 I.J5)' / 11.l5 + (16-16.58), / 16.58 + ( 16-19.08),/ 19.08 
+ (23-24.46)'124.46 + (24-25.36)' / 25.36 + (19-19.58)'/19.58 
+ (19-16.62)' / 16.62 + (9-8.60)' / 8.60 + (18-17.39)'/ 17.39 
+ ( 15-16.68)'1\6.68 + ( 14-15.10)' / 15.10 + (21-20.47)' /20.47 

+ (16-18.65)'/18.65 + (20-19.42)'/19.42 + ( 19-15.92)'115.92 

+ (16-14.54)' / 14.54 + (12-10.64)'110.64 + (6-5.42)'/ 5.42 
+ (0-2.38)'12.38 + (0-0.40),10.40 

~ 8.28 

The distribution ofrhis statistic is approximated by a chi-square distribution with 
g-2 - 10 degrees offreedom. At a level of signifIcance of", = 0.05 the null hypothesis 
ofa good fit can be rejected ifH~ exceeds 18.3 I. Since Hgis smalicr than that value, 
we can accept the null hypo thesis. In fact, the null hypothesis could be accepted at 
~ a 0.5. 

A similar goodness-of-fit test is presented by Costanzo et al. (1982). This test 
focusc..'s on residuals rather than predicted probabilities. 

S<quential MtlhQJI 

An approach to model testing that potentially requires smaller [cst samples 
was presented in an archaeological study by Limp and Lafferty ( 1981 :226- 229). The 
approach utilizes a sequential probability ratio test or SPR T (Dixon and Massey 
1957:304- 310; \Vetherilll975). The SPRT requires the collection ofnew sample data, 
but only until a decision about a model's performance can be reached. That is, the 
sequential method does not require the collection of more." observations than arc 
necessary to make a decision. This approach can be beneficial for model testing 
since it offers the potential for reduced amounts ofadditional survey and , (here-fore, 
lower costs. 
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The SI'R T allows a decision bet,,'een two simple hypotheses. Suppose there is 
interest in the parameter f), the true site density in a low site probability stratum 
established by an archaeological model. We wish to test the null hypothesis that the 
true site density equals some specified level, 0 = 90, against the alternative 
hypothesis that the true site densiry equals some other specified level, 0 - 01. The 
SI'R T decides in favor ofeither 00 or Ell on the basis of sample observations. IfeO is 
true, we would like to decide in its favor with a probability of I-a or greater; if01 is 
true, we would like to decide for 01 with a probability of 1-{3 or greater. 

To illustrate, a predictive archaeological model developed in southern Arkan
sas yielded a low site probability stratum that was mapped throughout the entire 
region ofstudy (Limp and Lafferty 1981). The unit of analysis was a 4 ha grid unit 
(i.e., a land pareel200 m on aside); the entire region was gridded into more than 3000 
such units. Based on the sample dau used to establish the model it was estimated 
that in rhe low probability stratum the proportion of all grid units with sites was 
only 0.009. Limp and Lafferty (1981 :227) were willing to accept the model if the true 
proportion (0) of units with sites in the low probabiliry stratum really was 0.009 or 
less. They therefore established an SI'RT to test with independent data the null 
hypothesis that the true site proportion is 0 0,009 (setting the probability ofm 

falsely rejecting the null hypothesis at a - 0.10). Their alternative hypothesis was 
that the true portion of units with sires was e I == 0.025, an arbitrary proportion that 
they deemed would yield an unacceptably high number ofsite-present grid units in 
the low probability stratum, (They set the probability offalsely accepting the null 
hypothesis, i.e., accepting 00 when e I is really true, at {3 - 0.10.) Thus, their 
sequential test was established in order to decide whether to accept 00 - 0.009 (or 
less) or an alternative, 01 =- 0.025 (or greater), as the true sile proportion. 

The SI'RT requires that observations (grid units) be made, by random selec
tion, one at a time. After each observation, one of three decisions is made: (a) 
accept the null hypothesis (00 ~ 0.009), (b) reject the null hypothesis by accepting 
the alternate hypothesis (01 - 0.025), or (c) make an additional observation. The 
test offers an easy-to-use graphic counterpart established by the following formu
las. An upper limit is given by 

(G f )ln(01 /0 0) + (Gn)lnl ( I-ElI)/(I-0 0)1- /nl ( I-{3)/" 1 
and a lower limit by 

(G,)In(01 /00) + (Gn)lnl( 1-01 )/( 1-00)1- /nl{3l( I-a)I 
where GI is the number of grid units currently inspected with sites and G" is the 
number of grid units with no sites. Inserting values defined above yields 

(G, )In(0.02510.009) + (Gn)lnl (1-0.025) /( 1-0.009)I = /nl (1-0.10)/0.10 I 
and 

(G,)lo(0.025 /0.009) + (Gn)lnl (1-0.025) /( 1-0.009) I - /oIO.IO/( 1-0.10) I 
yielding, after simplification, the following respective upper and lower limit equa
tions: 
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1.0217(G,) -0.0163(Gn) = 2.1972 

and 

1.0217(G,) -0.0163(Gn) = -2.1972 

These limits can be plotted as parallel lines in a graph by finding twO points for each 
and drawing a line through them. Setting Gn = 0 gives 2.15 for the upper limit and 
-2.15 for the lower limit. Setting Gn - 200 gives 5.34 for the upper limit and 1.06 for 
the lower limit. The upper and lower limit lines plotted through these points are 
graphed in Figure 8.13. • 

In a model testing context, graphs sllch as FiguT('" 8.13 are established prior (Q 

testing. During the survey, the result for each test observation (grid unit) is plotted 
by drawing a line one unit to the right if the observation does nor contain a site and 
onc unit upward ifrhe observation (onllins a site. Sampling is co ntinued until rhl' 
planed line crosses the upper or lower limit, at which time a decision is rcached 
concerning (he acceptance or rejection ofrhc model. If the true proportion ofunits 
with sites is exactly equal to 00, then the null hypothesis will be accepted 
approximately 100( I-a) perccnt of the time (upon repeated testing trials); if the 
(rue proportion of units with sites is cxacdy equal to 01, then the null hyporhcsis 
will be accepted about 100(p) percent of the time; if the true proportion of units 
with sites is between 00 and e" then the null hypothesis will be accepted bctween 
100( I -a) and 100(13) percent of the time, the percentage of acceptance decreasing 
progressively from 10001-a ) to 100(p) as rhe true proportion increases from 00 to 
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Figure 8.13. Sequential ~3.mpling dc:)ign for l sourho.:rn Arkansas Hudy. For :\ given number of unit s 
surveyed, if the number o f site.. cncounrc n . .'d eXCl"l"d s the upP"r limit, the site density expec ted by J. prcdicti\'c 
model i!i excccdc.:d and [he model on)' bl~ rejl'clt'd ( .• [Ier Limp :lnd LJJfc"rfY 1981:227). 
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In Limp and Lafferty's (1981) application (Figure 8.13), it is readily apparent 
that if the first 135 grid units sampled did not contain sites, the model could be 
accepted immediately (i.e., 0 - 00 ~ 0.009). On the other hand, discovery ofonly 
three units with sites for sample sizes under 53 would be cause for immediate 
rejection of the model and acceptance of0 ~ 01 - 0.025. The space between the 
acceptJncc and rcjccrion regions represents an "inconclusive" range where neither 
decision can be reached. 

Formulas for cstimacing the 3vc.:-rage sample size needed (Q arrive :u a decision 
arc given by Dixon and Massey (1957:309-310). Application of these formulas to the 
Limp and Lafferty data yields n= 253 when the true proportion ofsites is 00 -0.009; 
n = 183 when the true proportion is 01 ~ 0.025; and n ~ 290 when the true proportion 
is between 00 and 01 (this lauer figure is approximately (he maximum J\'cragc 
sample size). 

It should be emphasized that the Limp and Lafferty (1981) example illustrates a 
rather ext reme application ofsequential methods because they focused on such low 
probabilities (i.e., 00 ~ 0.009). In any statistical procedure dealing with rates and 
proponions, a number ofproblems arise when estimated probabilities arc very high 
or very lo~'. First, since the estimated probabilities arc based on relative frequencies 
derived from empirical data, very large samples are needed for reliable estimates 
when the relative frequencies are extreme (e.g., less than 0.05 and greater than 
0.95) . Limp and Lafferty (1981) derived 00 = 0.009 by finding two sites in only 235 
units in their initial sample. A change of only two sites in either direction would 
have caused 00 to range between 0 and 0.017, substantially altering the structure of 
the sequential test given above or even preventing its use (in the eO = acase). A 
sample size ofseveral thousand would be needed for a reliable estimate of00 ~0.009. 
Second, extreme estimated probabilities in a sequential tcst require that large 
samples be examined before a decision regarding acceptance or rejection of00 can 
be made. To illustrate, if a more reasonable low probability stratum that contained 
approximately 20 percent ofall site, had been defined, then 00 & 0.2. Suppose that a 
determination had been made that this stratum could acceptably contain as many as 
30 percent of all sites; then 01 = 0.3. The average sample size needed to arrive at a 
decision (leaving a ~ f3 - 0.1) would be n ~ 69 when the true proportion is 00 -0.2; n ~ 
63 when the true proportion is 01 ~ 0.3; and n ~ 90 when the true proportion is 
between 00 and 0 I (compare n - 253, 11 ~ 183, and n ~ 290, respectively, for the Limp 
and Lafferty application abo\·e). 

Several important assumptions and technical diHiculties behind the sequential 
method limit it~ practical usc. Sequential methods assume complete randomization 
ofsampling units. After each unit is inspected a new decision is made; therefore, the 
next unit must be chosen at random. This prohibits the typical practice of selecting 
clusters of units located near one another for each day's work in order to minimize 
travel. Each unit must be selected at random, and the units must be inspected in 
random order. This requirement necessarily causes increased eOort to be expended 
in travel to sampling units. This difticulty may be reduced to some extent by 
selecting sampling units in groups (e.g., groups of 10) rather than individually; this 
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"'ould allow some flexibility in travel plans. Thc scquential test would thcn be 
assessed after surveys of each group had been completcd. The principal eifect on 
the procedure would be to increase the average sample size needed {O arrive at a 
decision by an amount equal [0 the size ofeach group (Dixon and Massey 1957:310). 

Base Rate Probabilities 

Previous secrions have presemed a number of procedures for assessing the 
performancc ofa model through independent samples and significance tests, Before 
we can fully assess a particular model or understand how well it will work in 
practice, we must take into accoum one final domain-the base ratc or a priori site 
and nonsite probabilities, which have been mentioned several times in previous 
sections. By using these probabilities one can make estimates of the probability of 
site class membership within a rtgion mapped by a model or, alternatively, estimate 
the probability of site class membership at Ipteifle loei within a region of study. 

Archaeological sites are rare phenomena, This can be clearly demonstrated by 
examining the a priori probability of site occurrence within a region-the purely 
chance probability ofsite presence considering no other information, This probabil~ 
ity is usually extremely low, ranging in the vicinity of 1 to 5 percent or even much 
less. This probability can be estimated as 

(Otal area covcred by known sites 
P(site) - peS) ~ 

total area surveyed 

The total area covered by known sites is most accurately estimated by measuring 
site arca in the field or by determining the area of the dots and polygons usually 
uscd to record site locations on maps. If a small grid (e.g., one of50 by 50 m cells) is 
superimposed over the study region and the number of grid cells that contain 
cultural remains arc counted, then I'(S) can be estimated simply by dividing the 
total number ofcells with sites by the total number offield-inspected cells. Reliable 
estimation of peS) always requires fairly large samples. It is important to note that 
the gridding method can cause an overestimate ofP(S) when a large grid size is used. 
A large cell is more likely to contain a site than a smaller one, and this causes the 
relative number of cells with sites to increase while the {Otal number of cells is 
decreased. 

The Glade Park data can be used once again to reveal that 157 of the 2432 
surveyed analysis units (each measuring 1 ha) contain sites, yielding an estimate of 
peS) ~ 15712432 ~ 0.065. Most of the sites discovered, however, were vety small lithic 
scatters covering an area much smaller than a hectare, which suggests that the 
above figure is an overestimate, Examination of the site records indicates that the 
157 sites occupy a total area estimated at about 538,(X)() ml, or an average size ofIess 
than 3500 m2 (compared to 10,000 ml in a hectare). Since 38 quarter-sections occupy 
approximately 25 minion square meters, a better estimate of (he actual base rate 
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probability of archaeological site presence in Glade Park might be peS) ~ 

538,000/25,000,000 ~ 0.021. Since Glade Park is one of the archacologically richest 
areas in Colorado, t his fIgure is relatively high. 

Incorporation ofprior probabilities into a classifICation model will decrease the 
o.trall rate of misclassiflcation (Morrison 1976:235), but when the prior probability of 
onc group is extremely low (as in the archaeological case) the error fale for (he 
low-probability class is increased substantially by this procedure (Morrison 
1969: 160; Overall and Klett 1972:263). The extreme magnitude ofthc prior probabili
ties in such cases Hoverpowers" (he estimated probabilities that are conditional on 
environmental and other data, with the effect that (he fmal model csscncially 
utilizes only the prior information in classifying observations. It is best, therefore, 
not to include prior probabilities in model development but to reserve them for 
model performance assessment (see below, however, for a discussion of the use of 
prior probabilities in estimates of probabilities at specific loci). Some disciplines 
actually manufacture a priori probabilities, arbitrarily setting peS) ~ 0.9, for exam
ple, in an elTon (0 increase the chance that a rare group of interest will be correctly 
identified by a predictive classification model (Schowengerdt 1983:43). This proce
dure is mathematically equivalent to the cutolT point adjustment approach 
explained in an earlier section. 

Ellimating Siu Probabilities in Regiam 

Since archaeological sites arc: a valuable resource, it is more imponant for 

archaeologicallocational models (Q classify site-present locations correctly t han for 

models (Q classify site-absent locations correctly. \Ve:= would like, therefore, (Q 


produce models that classify a major proponion of sites correctly, say 90 percent. 

This can be accomplished using the method of modified cutolT points described 
above and the nonsite data can be used (Q indicat~ the approximate percentages of 

the study area within which a specified percentage of sites should occur. But in 

order co dc:tcrmine other dimensions of model performance, such as the site 

densitic:s that can be expected, we can use prior probabihties with the model 

performance indications obtained through the curolT point adjustment approach 

and Bayes's Theorem (Hays 1981 :39-41). More specifically, given an area ofa region 

mapped by a model as site-likely or ,ite-favorable, the following procedures yield an 

estimate of the probability ofsite class membership within that modeled region and 

an estimate ofthl' probability ofsitc class membership outside the modded region. 

To illustrate this procedure the percent correct statistics yielded by applying 

the jackknifed Glade Park model to [he independent test data (Table 8.12b) are 

used. These data indicate (at a model cutolT point of p ~ 0.4) that approximately 86 

percent of the sites should be classifIed correctly (Table 8.8b). Let S be the event 

that a site is actually present, and let,W be the event that the model indicates that a 

site is prc.;cnt. \Ve want to find the conditional probability, P(S!J..f), of sitc class 

membership given that the model suggests site presence. If we usc the grid-based 

anal),sis, the a priori probability of site presence at a local ion is estimated as peS) ~ 
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P(SIM) 
p(Mls)p(s) + p(MIS')p(S') 

(0.86)(0.065) 
a 0.094 

(0.86)(0.065) + (0.575)(0.935) 

p(M'ls)p(s) 


p(MCls)p(s) + p(M'IS')p(S<) 


(0.14)(0.065) 
= 0.022 

(0.14XO.065) + (0.425)(0.935) 

KVAMME; 

0.065 (see above); then peS') = 0.935, where S' indicates the complement of sile 
presence, i.e., sire absence. The probability that the model will indicate a site given 
Ihal a site is actually present is P(,~~S)= 43 /50 = 0.86, and the probability Ihat Ihe 
model will indicate a sile given thaI a sile is //0 1 preseO! iSP(MISC)= 50 /87 - 0.575 (dala 
from Table 8.8b). According 10 Bayes's Theorem, 

Consequently, in the portion of the Sludy region that this model would map as 
sile-likely (al the p = 0.4 cUIOI1), Ihe probabililY of sill' class membership al any 
localion (heclare eell) wilhin Ihe region is P(sj M) = 0.094, which isO.094/0.065 or 1.45 
times belter than a purely chance model (PIS] = 0.065). On Ihe olher hand, the 
probability ofsilt: class membership given that (he model docs not indicate a site is 
roughly 

In the portion of Ihe mvironmeO! nor mapped by Ihe model as sile-likely Ihe 
probabililY of site class membership is only P(sjMC) = 0.022. This suggeSlS thaI 
haphazardly Ihrowing darts al a map ofIht' region (a purely chance model) mighl be 
Ihree limes (0.065 /0.022) more probable of indicating a site Ihan Ihe probabilily 
produced by the model in (his subarea. Mort'over, the probabiliq' of site class 
membership in Ihe mapped sile-likdy region is more Ihan 4.2 limes (0.094 /0.022) 
morc likely than the probability ora site occurring in (he site-unlikely region. (It is 
emphasized, once again, that these ;->rocedurcs can be extended to problems 
involving multiple site classes.) 

The meaning of these statistics is made dearer by imagining (ha( (he Glade 
Park model (at the p - 0.4 cU(011) is mapped over Ihe entire Sludy region (roughly 
160,000 hal, much like Ihe mappings in Figure 8.8. Aboul 6.5 percent of Ihese 
hectare-unil local ions (PI S ] = 0.065), or 10,400 oflhem, will contain siles, and abour 
93.5 perccO! (prS'] = 0.935) or 149,600 will not (Figure 8.14), as eSlimated by their 
base rate chances of occurrence. Of the 10,400 locations (hat contain sites, the 
prediclivc sitt' localion model (al the p = 0.4 CUI off point) will (as indicaled by Ihe 
independent lests) correctly classify about 86 percent (PIMlS] = 0.86) or 8944 as 
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OEVELOPMENT AND TESTING OF QUANTITATIVE MODELS 

Figure 8.14. !llu ~ lr:tti o n o(BJYcs's Thcorl' Tn and rhe dTcCIS ofsitc and nonsitC' a priori probl.bilitics on Glade Park 
rnodc:l performance.:. 

413 



KVAMME 

containing sites and will incorrectly classifV about 14 percent (PIM~S I= 0.14)or 1456 
as belonging to rhc sire-absem c:Hegory. Of the 149,600 nooslee locations, 42.5 
percent (PIM~S(I = 0.425) or 63,580 will be correctly identified and abollt 57.5 
percent (PIMIS(I = 0.575) or 86,020 will be classified as sites. Thus, although the 
model assigns 8944 + 86,020 = 94,964 locations as site-likely, only 8944 of these 
actually contain sites, or 8944/94,964 =0.094 =P(SIM), a roundabout, and hopefully 
mon: underHandablc, presemation of Bayt's':; Theorem. These calculations are 
illustrated in Figure 8.14. 

h is important to recognize [hat the predicted 94,964 sire-likdy hectares ofrht 
model can potentially be mapped through usc of computer mapping techniques 
(see above and Chapter 10). About 86 percent of all sites would occur within the 
approximately 57 percent of the total land area that is mapped by the model as 
having high sirt' sensitivity. The area Olluidt' the mapping would form a low
sensitivity lone covering about 43 percent ofrhe land area and would contain only 
14 percent of all sites. [n fact, IOO(63,580) f (63,580+1456) = 97.8 percen' of the 
iocarions in the low-sensitivity zone would nor comain sites. About onc location in 
every 10 would contain a site in the high-sensitivity zone, but only one location in 
every 45 would contain a site tn the low-sensitivity region. Thest;~ statistics, of 
course, are based on (he model using the p = 0.4 cutoff and on accuracy rates 
obtained from one sample (Table 8.8b). Performance indications such as these will 
vary depending on the cutoff point and accuracy estimates used. 

Ertimating Sit< Probabi/itie< at Specific Loci 

Cultural resource managers often wish to estimate the probability ofarchaeo
logical site class membership given the data measured at a particular location, such 
as a single hectare grid cell, rather than simply estimating the probability ofa site 
within a larger region, such as a high.sensitivity zone as a whole. Probability 
estimates for specific loci also require usc of the a priori probabilities peS) and P(Sf). 
These probabilities are used in conjunction with modifications of the formulas for 
estimating site probabilities conditional on environmental and other measurements 
(given in the sc..'ction H A pplication Comparison ofQuantitative Locational Models" 
above). 

It was demonstrated with empirical tt.'st evidence that if the Glade Park 
jackknifed model (at the p = 0.4 cutofT) were to be mapped, the probability of site 
class membership within the mapped site-likely region would be about 0.095, and 
the probability ofsite class membership outside the mapped region would be about 
0.022. These estimates, one for the entire area mapped by the model and one for the 
rest of the study region, respectively, serve as a kind of Bavcrage" probability 
figure for these porfions ofthe srudy area. In other words l if we know that a location 
falls somewhere within the region mapped by the model as site-likely, then we can 
say that the probability of site class membership is about 0.095. This technique 
makes use only of the knowledg<.' that a location is, or is not, in a modeled region as a 
whole, mapped at some cutofTpoint; it does not consider any particular factors, such 
as environmental characteristics at a particular location. 
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It is also possible to estimate the probability of site class membership at a 
specific locus (land parcel) by ignoring the mapping and considering the environ
mental characteristics of the locus together with the base rate or chance probability 
of a site (but for complete validity this procedure technically requires that all the 
assumptions of the classification model used arc met). The discriminant analysis 
described in the application comparison section (above) provides an example. That 
analysis yielded a discriminant score of Di = 2.2009 for the cn\'ironmenral data 
measured at the location ofsite 5LA5364 (Table 8.3). This location's probability of 
membership in the site class, conditional on/;' on the environmental measurements 
and assuming that the assumptions arthc discriminant model were fully met, was 
estimated as 

,-0.5(D; - D,Y 
- 0.873 

,-0.5(D; - D,)' + ,-O.5(D; - Dm)' 

(recall that D, ~ 0.8304 and Dm - -0.1936). Again, this probability is estimated from 
the: measurements only and does not consider rhe base Tatc proportions ofsires and 
nansitcs in the area. A modification of chis formula to incorporate prior probabili. 
tics, peS) and peS'), yields 

P(S),-O.5(D; - D,Y 
Pi = 

P(syO.5(D; - D,)' + P(S'yO.5(D; - Dm )' 

and the estimated probability of site class membership at this location, incorporat. 
ing both environmental and base rate data, is approximately p - 0.323 (using P[S]
0.065 and PIS'] - 0.935). The lower figure results from the inclusion of the prior 
information on site proportions and provides a more realistic estimate ofanticipated 
probabilities. Similar modifications ofother formulas (e.g., logistic regression) can 
be found in standard statistical texts. 

MODEL REVISION 

Analyses described in the previous sections suggested that about 86 percent of 
Glade I'ark sites might be predicted correctly by mapping a high site-sensitivity 
zone that cOvers approximately 57 percent of the total Glade Park land area. This 
particular result may not seem very impressive as an illustration of the power of 
empirical site location models. It was noted earlier, however, that Glade Park 
contains one of the highest site densities in Colorado. This fact, together with these 
area performance indications, suggests that Glade Park was a very favorable place 
for prehistoric peoples to perform activities and, in the process, create archacologi. 
cal sites. The 57 percent figure suggests that about 57 percent of the land area of 
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Glade Park contains environmental characteristics that are very similar to character
istics exhibited by known sites (in terms of a partitioning of measurement space, 
Figure 8.Sb). This means that prehistoric peoples had a ,,·ide choice of settlement 
locations within the region. Other regions and studies do not indicate such favora
ble conditions for prehistoric inhabitants. The Colorado plains study described in 
earlier sections (also sec Kvamme 1984) found that sites were restricted primarily to 
a narrow zone around major drainages. Statistics obtained through independent 
testing suggested that about 90 percent of the sites might occur in onl), 50 percent of 
the total land area of that study region. In a stud), in central Utah more than 90 
percent of the sites were estimated to occur in about 15 percent of the study region'5 

area (Reed and Chandler 1984:80). 

It is through the usc of nonsile control data that these area projections can be 
made. Because many nonsite locations exhibit environmental characteristics identi
cal to those of sites (and thus fall on the site side of the decision boundary in the 
measurement space), and because they arc extremely prevalent, these approximate 
area calculations can be made. Although much of the (nonsite) environment may 
possess characteristics similar to those exhibited by known site locations, much of 
the (nonsite) environment is very dissimilar, which allows the designation of 
substantial portions of the cnvironment as a low site-sensitivity zone. Thus, at 
Glade Park 43 percent of the land area could be delineated as having low site 
sensitivity, a result that would include only about 14 percent ofthe prehistoric sites 
\\'ithin that zone. At prescnt, no method has been demonstrated that can discrimi
nate site-present from site-absent locations in the site-favorable portion of a 
measurement space. In other words, given that there are many locations in the 
environment that possess environmental and other characteristics identical to those 
exhibited at site locations, there presently is no procedure that can differentiate 
between sites and nonsitcs with identical environmental and other characteristics. 

A projection like "90 percent of the sites will occur in 90 percent of the land 
areaH offers no gain. In assessing whether gain is sufficient, such factors as test 
sample sizes and confidence interval widths should be considered. If it is deemed 
that a model is inadequate, new "ariables that potentially ofTer better predictive 
power might be investigated or altcrnative samples might be examined and a new 
model developed. It also might be determined through testing or usc that a site 
location model consistently misclassifies cerrain types of sites. In chis case a model 
designed specificall)' for that site type might be considered. 

The method ofsequential analysis (described above) is specifically designed to 
indicate the need for model revision in an ongoing rese-arch framework. \Vhen tcst 
sampling indicates that model-predicted sitedensities exceed or fall below speci/ied 
limits, the model should be rejected. If this should happen the need for model 
revision is indicated. Even for already tested models, ongoing testing through 
sequential methods might be conducted as future archaeological surveys arc carried 
out and new information becomes available. 

The use of geographic information systems techniques (computer data bases 
encoded with environmental and other geographic information; see Chapter 10) 
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might eventually lead to interactive model building, resting, and revision as an 
ongoing process. If environmental and other variables rdevant to archaeological site 
location models are encoded in the data base along with known site locations, 
predictive models of many forms and varieties, such as models for multiple sire 
types or temporal periods, could be generated instantaneously . As new sites and 
nonsires arc disco\'ered, additional model tests cou1d bt: performed or these data 
could be incorporated into the data base to update existing models. As models 
change, so do the results of models. Computer graphic techniques can allow new 
maps of model results to be rapidly and cost-effectively produced so that the most 
current information can be llscd. 

M:my ofthe rc.:sults presented ilC..'rc stem from l. hislOry ofpcrsoml invoh'c-mcm in l.rch:l.eologiCJ.l 
predict; v~,: modding thl.t .~pl.n$ the P:l.H dc:clde. This in ....olvement owc:s its origins to l 1979 cont rl.ct 
lWlrded by the: Bun.' J.u of Ll.nd Man:agc:ment, G rand Junclion District offill', 10 Nichn :o :lnd 
Associates ofMont ros'c, Colorado (whc:rc: I W.lS l'mployed). for a regionl l predictive model. The Gr:lnd 
Junction District O llicc ag:l.in supporte.'d my work in 1982-1983 lor .1 larger study rhlt rcsulted in 
considerlbl>' imprO\'l~d methods, including c:xtc:nsive sur\'q and modd testing) and :l procedural 
manu:l!. Doctoral work at the Uni\,l'nit )" o t Cllilornia lt S:lntl [hrb;J.u l'xposl'd ml' to geographic 
inform.ltion systl'ms :lnd rl'motL' ,>ensing technology. ,the qU:lntitati\'c L'xpcrti.~e of Alben C. Sp;luld
ing, and the hunter-gatherer set tlement ide:ls ofZ\·1ichal'i A, Jochim. and it resulted in l. dissertation on 
lTchaeological predictive modding in 1981. T he Cniversit)' OfOl'nYL'r's rinon Canyon ArchaL'ological 
Project, sponsored by (he: U,S, Army, called (or extcnsivc UH: and applicl.tion of l,r(hlcological 
prc:dict;\'e modL'l s J.nd GIS tL'chnology . \1y involvcmcnt wilh thaI project from 1983 to 1985 allowed 
further rcfincmc:nt and dt'"\'dopmenr of madding merhods with 1 vt'"r)' brgc data set, J.nd production 
ofGIS CJ.plbilitil's comp:ltibll" with archaeologic31.lnaly .~ i s and modeling needs. In recent ye:lrs at the 
Univcrsity of Aril.onJ. my cL'lching ofa splt ial :lnalysi :s class, which focuses on GIS lnd .lrchacologic:l1 
modding, hl.s forced me to t'"xprC'ss thl' bJsic idca.\ and ntc(hods on:ln elsy-tooundc:rsc:lnd level. Of 
more importance, hO\ll'evl'r, J.re the many insights .lnd applica(ions of (host'" technologies th:J( my 
studem s lIn'l' given mc. C haptcrs 7,8, :lnd 10 of th is \'oluml' owc much IOlhe abovl' per~ons .lnd 
inscitutions, 

Ifdll'f/: is:lflY gaugeof(he SlICCl'\S ofone's \II'ork, it is in hO\ll' much it is lIsl'd. Although r hlve not 
receivcd rOY:lltie .~ as of )'l"t, I am frequently sent copics o(project report s thar lItiliz.t.' (lnd in m:lny case) 
cop), directly ) the: methods summ:lrizcd in Chapter 8. Thest'" studies. brgdy stemming from c\llwr:.ll 
reSOUTn.' managcmL'nt cOflll'xrs and performed for \"anou$ government ;]gencies. repres ent a stagger· 
ing amount ofwork (probably J.pproaching IOOstudies and projl'CIS). \ .,)' hOpl' is that the resllltsofthi .~ 
work will bc med responsibly by manl.gcmcnt personnd as cools to ben er carl" for, pfl'sen'l', and 
protect cul l ural rl'sources. Ifthq' arc not used responsibly , then the iault lies with mln:l!;C;nent (noc 
the.' models) and Wl" mus( foc lis our ;][[l'n{ion on ddming responsibility. 

I wish to chlnk the following indi"idu;]is in particu!.lr Jor their cont ribut ions to C baptl' rs 7,8, and 
10 of this \'oluml'. JoAnn Chri:;.cein dcvo[cd considl"rlbll" cJlort in m:lnllscript production over se\'erJ,1 
rewrites, in digitization of much of the d:ltl. for thl' GIS work, and in giving moral support over this 
long and tTying projl·ct. 1 am gratl'"fulto Mike Jochim lor a.llowing mc ro pTl'Sl"nC SOml" ofhis' " ·1e:solithic 
data in t hl"se chapters. Fin:lll)" Dan ~1artin dcscrvcs .\peci:J prais'C for his support of the wholl" volume 
.lnd panicubrl)' for hi s continued encouragement of my work. 
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Chapter 9 


REMOTE SENSING IN ARCHAEOLOGICAL 
PROJECTION AND PREDICTION 

James I. Ebert 

During rhe preparatory stages of this volume rhe authors and editors were nor 
certain that a chapter on the potential and usc of remote sensing in archaeological 
predictive modeling would be entirely appropriate. The purposes ofrhis book are to 
explore some of the complexities of prcdinive modeling, to examine some of the 
biases inherent io our present merhods and dara (see particularly Chaprer 7), and to 
suggest directions that archaeological explanation will have (0 take in ordt.'r [0 

achieve successful and scientifically useful predictions (Chapter 4). There was some 
concern that the inclusion of a chapter on using remore sensing (0 do predictive 
modeling might imply thar technical means now exist by which predictions can 
easily be made, that all one has to do is plug existing archaeological and remote
sensing-derived environmental data into a computer and a predictive model will 
emerge. 

It is clear from the preceding chapters in this volume {hat this is not the case. 
Predictive modeling is an area ofgreat interest to archaeologists and managers alike, 
and perhaps more than any other fact, this interest indicates that we are just 
beginning to understand how to predict and model. One of the most universal 
cultural patterns is that people worry about and try to predict things in inverse 
proportion to how well rhey can really predict them. Nightly wear her forecasts, for 
instance, dwell heavily on such questions as whether it will rain tomorrow, and the 
resultant predictions arc of mixed success at best; there is never any discussion 
about wherher the sun will come up in the morning. When we finally do perfecr 
archaeological predictive modeling, there will probably be lirtle discussion about it 
at meetings or in the literature. As discussed in Chapter 4, however, before: we 
achieve success in prediction we will have had to learn many other things-how 
human systems arc organized at several levels; how deposition and postdepositional 
processes affect the preservation and visibility of archaeological materials, and how 
this varies across the landscape; and how to make our methods of data discovery, 
collection, and analysis compatible with what we want to know about the past. In 
short, by the time we know ho~' to do prediction we will also have discovered how 
to explain the archaeological record, and by rhe rime we know how to predict, we 
may not need to do so anymore. 
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At present, we have not achieved any of these goals completely. The preced
ing c hapters of this volume point out that there is still a great deal ofarchaeological 
research (0 be done. There is nor, in fact, agreement within the profession even 
about what predictive modeling means or about definitions ofsuch important basic 
operational terms as til( or l)' flem. This may seem unfortunate, but it need not be 
thought ofas being so. Learning how to do predictive modeling and archaeology in 
general is a great adventure that we have just begun. 

This chapter will explore the possible role that remote sensing can play in that 
adventure and describe attempts by archaeologists to usc remote sensing [0 project, 
predict, and explain the archaeological record, the operation of past behavior and 
behavioral systems, and the things that separate these two domains . This chapter 
will begin with a review of the basics of remote sensing-what it is, the methods and 
techniques by which it is carried out, the dara that it yields, and its capabilities and 
limitations for archaeological projection and prediction. Relevant literature and 
contemporary attemprs at incorporating remote sensing in archaeological projec~ 
tion and prediction will be surveyed, and the strengths and weaknesses of these 
approaches discussed. Finally, some suggestions will be made about new, poten
tially productive applications of predictive remote sensing. 

FUNDAMENTALS OF REMOTE SENSING 

Platforms, Recording Devices, Data Types, and Analyses 

Remote sensing is the science and technology ofobtaining information or data 
about physical objects and the environment through the process of recording, 
measuring, and interpreting photographic images and patterns of electromagnetic 
radiant energy (Ebert 1984:293). The most familiar remote sensing methods are 
photographic, and aerial and ground-based photography has been employed in 
archaeology since the beginnings of the discipline. The term rtmolt um;ng was 
coined in the late 1960s in response to the need for a term that could include both 
simple photographic data-collection techniques and the use of other, more exotic 
data sources, such as satellite and airborne multispectral scanners and microwave 
(radar) sensors, in a unified technical ficld. 

Remote sensing can best be understood when broken do",'n into several of its 
component pans. Remote sensing platforms (the vantage points from which data 
are collected) range from the- surface of the earth to low~altitudc camera supports, 
such as bipods and tripods, to balloons, aircraft, and satellites hundreds of miles 
above the landscape. The devices with which remote sensor data are collected 
include active radar transmitters and receivers, proton magnetometers, cameras, 
and scanning devices recording reflected radiation. Remote sensor data can be 
recorded by these devices photochemically (i. e., with photographic emulsions) or 
electronically in either analog or digital formats, and in one or more wide or 
restricted wavelength bands. 
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Remote sensor data can be analyzed by human interpreters who (a) simply 
look at visual produets or (b) use magnifying and projecting dcvices to examine 
minute details of an image or (r) employ stereoscopes, which produce a three
dimensional image from partially overlapping photographic prints. Stereoscopic 
images can also be used to produce orthophotos (photographs in which errors of 
scale and onhographic errors have been removed) and phorogrammctric maps, the 
most familiar of which arc USGS topographic maps, virtually all of which arc made 
from aerial photographs. 

The advent of computers capable of digital image processing has made avail
able new and versatile forms of remOtt:" sensor data analysis based on mathematical 
manipulation of the matrix of picture elements (pixt") that constitute a digital 
image. Each pixel making up a digital image has a numerical value, which expresses 
the reflcC(ancc ofrhc represented portion ofrhc earth's surface. These values can 
be subjected to ftltcring, classification, his[Ogram stretching (contrast enhance
ment), density slicing (density range simplification), power spectrum analysis, 
geometric correction, rcsampling, pancrn recognition routines, and virtually any 
other matrix operation. While digital data are directly derived by most scanning 
devices, photographic and other analog data can be digitized into pixels for digital 
analysis, and conversely, digital data can be converted into visual images for 
photoinrcrprcr3tion. 

Clearly, remote sensing encompasses a great many methods and techniques; it 
is beyond the scope of this chapter to describe and explain each of them. The 
fundamentals and details of remote sensor platforms, data collection devices, data 
types, and data analysis devices and methods arc covered exhaustively in many 
available sources to which the reader should refer for more complete information. 
One of the most comprehensive of these sources is the American Society of 
Photogrammetry's Manual of RtmOle S,ming (Colwell 1983); one chapter in that 

volume (Ebert and Lyons 1983) focuses on archaeological, anthropological, and 

cultural resource remote sensing. Other excellent general remote sensing refer
ences are A vety (1977) and Lillesand and Kiefer (1979). A more concise summary of 

general archaeological applications of remote sensing can be found in Ebert (1984). 


Scales and Resolution 

Regardless ofdata source or type, there are two basic properties shared by all 
remote sensor data: ~ca/t and r(f()/ulion. The scale of an image refers to the relation
ship between the size of the image and the actual size of the scene that the image 

represents. The scalc of an image is determined by the distance between the data 

collection device and the scene being imaged and by the field of view of the data 

collection device. For aerial photographic data) for instance, ('he scale equals the 
focal length ofthe lens divided by flight height. The scalc is gene rail)' expressed as a 

ratio of I:x (distance on the photograph:actual scene distance; Avety 1977:43). As an 

example, in a photograph with ascale of 1: 12,000, 1cm on the photographic image 
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would represent a ground distance of12,000 cm or 120 m. The scale ofdata recorded 
by such digital devices as multispectral scanners is determined similarly by distance 
(altitude) and the instantaneous field of view of the scanner (Lillesand and Kiefer 
1979:396). 

Remme sensor data resolution is a morc complex concept than scale because it 
can be of three basic sons: spatial, radiometric, and temporal. Spatial resolution 
refers to the minimum size ofaccuai objects that can be discerned in an image. This 
varies with recording medium parameters (photographic emulsions have the high
est resolution of any remote sensing recording medium) but in all cases is also a 
direct function ofimage scale. The smaller the scale ofan image (that is, rhe smaller 
the fraction of image sizc:objcct size), the lower the resolution. Since larger scale 
images cover a smaller area than smaller scale images, there is always an economic 
trade-off between scale and spatial resolution in remote sensing. 

Radiometric resolution refers to the portion or portions ofthe electromagnetic 
spectrum recorded in remote sensor data. Panchromatic photographs record the 
same portion of the electromagnetic spectrum seen by the human eye; other 
photographic cmwsions record ultraviolet or ncar infrared radiation. Microwave 
(radar) devices record wavelengths much longer than ultraviolet light, while 
scanners can record visual through far-infrared spectra. Film/ foter combinations 
can restrict thc portions of the spectrum that cameras measure, and mulriband 
camera clusters have been used to produce multispectral photographic data. Multi
spectral scanners (MSS) record more than one wavelength band; the example of 
multispectral scanner data most familiar to and most frequently used by archaeolo
gists is Landsat, which is discussed at greater length below. 

Temporal resolution is a measure of how frequently a scene is imaged through 
repeated aerial photographic overflights or satellite sensor passes. Comparison of 
aerial photographs from the 1930s with those taken more recently provides one 
example of temporal resolution, but the term takes on a clearer meaning in 
reference to regularly repeated satellite data collection. The Landsat satellites, for 
instance, cover the entire surface of the earth (cloud conditions permitting) about 
every 18 days. Temporal resolution is important because the surface and ncar 
surface of the earth changes on both large time scales (e.g., geological and geomor
phological change) and small time scales (~.g., seasonal variation, vegetational 
change, and modern devdopment), and change at either scale may be important 
archaeologically. 

Remote Sensor Data for Projection and Prediction 

Most archaeological uses of remotc sensing that can be characterized as 
projective or predictive:.> make use of two general data sources: aerial photographs 
and airborne or satellite multispectral scanner products. Archaeologists have made 
use of both existing data and data acquired specifically for their projects. 
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Existing remote sensor data arc of course the least expensive [0 use, for [he 
cOStS ofrheir acquisition have already been mer by others, and copies ofthe results 
can be obtained cheaply. Aerial photographs at a vatiety of scales and in several 
emulsions-black and white, color, and black-and-white or color infrared-have 
been taken ofalmost all the continental United States and much of the world. Many 
aerial phorographs are available from government agencies at nominal cos[ (for a list 
of these see May 1978 or Ebert 1984). The earliest systematic vertical aerial 
photographic coverage ofparts of the United States was initiated in the 1930s by the 
Soil Conservation Service, Depanment of Agriculture, and beginning at about the 
same time the U.S. Geological Sun'ey began blanket coverage of the country for 
[Opographic mapping purposes. Since that time, other government agencies have 
been taking aerial phowgraphs at an ever-increasing ratc. Generally at least one and 
often five or ten different types of aerial photographs will be available for a given 
area of interes£. For many purposes and in many project areas, it is likely that 
existing aerial photographs will meet at least some ofthe archaeological or manage
rial remotc sensing needs. It is also likely, however, that no existing aerial photo
graphs will satisfy all perceived needs. Most government agency aerial mapping 
photographs arc taken at scales smaller than 1: 15,000 (I cm on the photo represents 
ISO m on the ground), and many arc at very small scales, up to 1:400,0<Xl. 

Sometimes it may be necessary to acquire new, project-speciflc aerial photo
graphs to meet cereain scale and resolution needs. h may also be the case that the 
ttme of day or year in which existing photos were taken, or their emulsions, leave 
something to be desired. Flying new phmos may at first appear to be an expensive 
solution, and certainly it is more expensive than buying photographic prints from 
the USGS or other agencies. Effectiveness must also be considered, however, and 
often this concern may outweigh high acquisition costs, especially if no other 
suitable photographs are available (Avery and Lyons 1981:18), 

The other remore sensor data source commonly employed in archaeological 
efforts toward projection and pTl'diction consists ofimages derived from the digital 
multispectral scanners aboJrd the Landsat satellites, Thc first Landsat (then called 
ERTS-I) was launched by the USGS in 1972; since that time four Landsat satellites 
have been launched and have provided millions of images of the earth's surface. 

Landsats I and 2 orbit the earth 14 times a day in a circular orbit about 900 km above 

the earth; each covers a 185 km swath with little side-to-side overlap at the equator 

and as much as 85 percent at 81° north and south latitude. The satellites' orbits arc 

sun-synchronous, and images arc always collected at mid-morning. Landsats 1 and 2 

collect data in four bands designed to provide a contrasting basis for discriminating 

between water and land and among differt.'nt sorts ofvegctation cover and different 

surftcial deposits. Landsat data are rcsampled and corrected after being sent to 

earth, and the resulting resolution of Landsat 1 and 2 data is 80 by 80 m pixels, 
Landsat J has the same radiometric resolution in four bands, with the addition of a 
thermal infrared band and a somewhat higher (55 by 55 m) resolution, Landsat 4, 
launched in 1984, has seven spectral bands and even greater resolution. For a 
detailed discussion of the parameters of the Landsat satellite sensor systems and 

their products, sec Lillesand and Kiefer (1979:530-583). 
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The Landsat satellites are designed to provide versatile data with medium 
spatial resolution, high temporal resolution, and radiometric resolution that would 
make their data ideal for earth resources studies and assessments. Even with a 55 by 
55 m pixel spatial resolution, it is clear that very few archaeological sites or materials 
will be visible on landsat MSS data. landsat data are, however, ideal for analyzing, 
measuring, and mapping \\·hat archaeologists think of as Hindependent variables," 
whether these be assumed landscape preferences of past people, ecosystemic 
variables affecting [he placement of human systems and their componems, or 
depositional and postdepositional processes that affect the preservation or visibility 
of the archaeological record. It is small wonder that archaeologists interested in 
predicting have made use of landsat in a variety of ways, and it is likely that landsat 
data and perhaps data from similar, soon-to-be-Iaunched satellite sensors (the 
French SPOT, for instance) will constitute a major resource fot such experimcnts. 

Remote Sensor Data Analysis Methods and Techniques 

Two basic intetpretive or analytical methods have bcen used by archaeologists 
who have incorporated remote sensing in their projective and predictive experi
ments. The first of these is visual intcrpretation. As noted above, visual interpreta
tion is accomplished by looking at an image in one of several ways. Aerial photo
graphs or visual images derived from other analog or digital remote scnsing sources, 
such as Landsat, can simply be inspected without optical aids, with images being 
viewed either singly or overlaid in mosaic form. The interpreter, making usc of 
intcrnalized knowledge about how certain landforms or other characteristics of the 
environment should appear, makes judgmcnts abom areas or zones of differential 
occurrence of these characteristics on the basis of photographic Hcues," including 
tone, color, texture, pattern, shape, and relationship of one photographically 
imaged feature to another (for a more complete discussion of these image proper
ties, sec: Ray 1980:6- 13). 

In stereoscopic photointcrpretation, an interpreter views two partially over
lapping photographs, each taken from a different position along a flight line; this is 
usually accomplished with the aid of a stereoscope, which allows the ,·iewer to see 
one photograph with each eye. This results in the perception ofa three-dimensional 
image in which the vertical dimension is exaggerated because ofthe wide spacing of 
the points from which the stereo photos were taken relative to the spacing betwecn 
human eyes. Small topographic differences are thus easily distinguished, giving 
clucs to landform and thc identity or nature of other characteristics of the scene 
viewed; Ray (1980: 14) estimates that topographic differences ofas li"le as 1ft can be 
discerned by the average interpreter using a stcreoscopc and 1 :20,000 scale aerial 
photos. 

Photointerpretation might be thought of as being subjective, and to a certain 
extent it is. Human interprcters, especially those with expcrience in photointcrpre
tation, possess extensive internalized information about what different landscape 
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features and other environmemal characteristics Hshould" look like and may 
stretch these interpretations or generalize boundaries. On the other h:md, this 
internal information allows an interpreter to make supported guesses-usuJlly 
correct o ncs- about phenomena not previollsly experienced. This is something 
that even the most sophistjeucd image-processing machines (3nnm do and is the 
rcaspn that image analysis cannm , at least at prescnt, be (malty automatic. 

Ie should be noted at this poine that all map making is a process ofimerpreta
tion. Most topog raphic maps in use today, including the CSGS topographic maps 
used in many experimems in archaeological projection and prediction, arc compiled 
using aerial phowgraphs as a primary or exclusive data source. The (Opographic 
conrours arc measured and drawn from [ht' [hree-dimensional data comained in 
vertical-axis, s tereo aerial phowgraphs using optical-mechanical or analytical pho[o
grammetric plotting devices. \Vhile [his process is, wa certain extent, subjective, it 
is quite accurate and precisely repeatable. The indicated degree ofslope may be less 
so, however, as contour lines wo close [oge[hcr (0 be separated during printing arc 
often artificially spread apart. Almost all the rest of the data shown on topographic 
maps arc subjectively interpreted and generalized-including the in[e rmiut'ncy 
and even the existe nce ofwater in strea ms or springs, and the boundaries offorested 
vs non fore sted lands. Nlaps are interpretations, and when using them for a spec ific 
purpose one must ask what the purpost· of (he interpreter was. For [his reason it 
may well bc best to rely on one's own Hfirst generation" interpretacion from aerial 
photographs rather than on the standardized subjectivity of USGS maps for mea
surement of landform and environmental variables. 

The second class of methods used by archaeologists in analyzing remote sensor 
data for projective or predic[ive purposes is encompassed by digital analysis. Digital 
analys!:) is done by subjecting a matrix of pixel values representing an image w 
numl.~rical analysis, usually using a computer. Computer-assisted image analysis 
procedures include da[a preprocessing (image sampling and reconstruction, noise 
removal and reduClion, and removal o fimage blur and other distortions; Billingsley 
1983), pattern recognition (Haraliek and Fu 1983), the correction of geometric 
distortions in images (Bernstein 1983), digital filtering for edge enhancement, 
histogram manipula(ions for con[Tast enhancement, and classifi ca [ion of image 
characteristics through clustering analyses (Estes et a1. 198]). t-.'!any of these 
operations have already been performed on Landsat MSS digital data when it is 
recei\~ed from EROS. In addition, digital data can be processed llsing an)' ocher 
numerical or sta[ls[ical procedure that can be: performed on matrix data, and in this 
manner pixel spec[ral in(ensi(y values Can be compared with other values (for 
instancl') obsl'rved densities of archaeological discoveries or materials). The 
archaeological applications of remote se nsor data to projection and prediction 
discussed la[er in this chapter have used either cluster-based classifications of pixels 
or raw pixel data and consist ofcomparisons of these image data with archaeological 
data distributions. 
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Some Limitations of Archaeological Remote Sensing 

Several archaeological experiments in which remote sensing data and methods 
have been applied to projection and prediction will be discussed below. The 
potential utility of Temme sensing in such research is high, bur a shorr discussion of 
some oCthe limitations of remotc sensing in archaeology is necessary for at least two 
reasons. First, it has been suggested in several places recently that some archaeolog
ical remote sensing enthusiasts may have oversold the potenrial of rhis body of 
techniques and methods (Dowman 1980, 1983; Dunnell 1980; Evans 1983a, 1983b; 
Fuller 1983; Whimster 19833, 1983b). Second, it is necessary to emphasize that the 
limitations of any measuring technology are dependt~n[ on rhe conditions under 
which it is employed, and that rhe failure of techniques to reach their full potcntial 
in one siruarion docs not mean that they will always be less than useful. 

Limitations in archaeological remote sensing can be the result of many factors. 
They may be inherent in the sensing systcms themselves; the scale and spatial 
resolution of data provided by a system impose limits on what can be seen or 
analyzed. Lenses, shutter speeds, scanning races, and the speeds and altitudes of the 
plarforms that bear remote sensor devices can impose rcstriccions on the usefulness 
of data for specific purposes. Spectral resolution is another important system 
limitation, and for any purpose it is important to determine just what portions of the 
electromagnetic spectrum should be measured before remote sensor data are 
collected. Phowgraphic sensors image only a small portion of the electromagnetic 
spectrum, but they possess much higher resolution than most multispectral scanner 
systems. 

Instruments available for laboratory analysis may impose another set oflimita~ 
[ions on the application of remote sensor data to archaeological problems. While 
acceptable pocket stereoscopes can be purchased for about S30, more useful stereo
scopes can cost thousands of dollars and may not be available to all archaeologists. 
Digital image-processing systems are even more expensive, although it may be 
possible to rem time on such systems. Several examples of less-rh:lO-optimum 
digital image analysis being applied to Hprcdictive modeling" in an attempt to save 
mane), will be summarized later in this chapter. In many if nor most cases, 
archaeologists who wish to incorporate remore sensing methods imo their projects 
will do better to contact qualified and well-equipped archaeological and cultural 
resource remott: sensing consultants, rather than to eorenain norions of doing their 
remote sensing work "in house. H 

Environmental factors impose another SOrt of limitation on archaeological 
remote sensing. Clouds, mis[, and haze can obscure [he view of most sensor 
systems; heavy snow or vegctation cover rna)' also defeat some systems (multispec
tral scanners and photographic sensors) but have link effect on others. (Radar, for 
instance, penetrates vegetation canopies with relative case.) The phenomena 
recorded by some scanner systcms, in particular thermal scanners, arc rransient and 
often can be detected only for a few hours or even minutes when conditions are 
optimal; identifying such optimal conditions may rake years of experimentation in 
any study area (Pcrisset and Tabbagh 1981; Tabbagh 1977). 
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Individual human limitations, such as ability or inability (Q perceive stereo 
images, experience in pho(Qinterprctation, previous familiarity with a study area, or 
knowl~dge about what \'ariOlIs characteristics of rhe environment look like, can 
affect the application of remote sensing (Q any problem area. In general, in order for 
a researcher to apply remme sensing (OJ problem successfully the problem must be 
stated explicitly; the place ofremote sensing in the solution ofthat problem must be 
defined; and appropriate methods for discovering) collecting, and analyzing the 
archaeological (dependent) data that are (Q be conrrastcd with environmental 
(independent) variables must be selected. As we will sec when we examine the ways 
in which archaeologists hav(' applied remote sensing to the problem of predicting 
the locations and characteristics of archaeological materials, failure to meet these 
conditions may be one of the most obvious reasons for [he lack of s3risf)'ing 
conclusions. It may, in fact, explain much of (he prescnt lack ofsucc~ss in predictive 
modeling in general. Again it should be emphasized that the specialized technology 
of remole sensing- and the problems it can or cannot help the archaeologist to 
solve-are best assessed and implemented through a [cam approach incorporating 
not only in-house cultural resource management and archaeological personnel, bur 
a specialist in archaeological and cultural resources remote sensing as well. 

CONTEMPORARY APPLICATIONS OF REMOTE SENSING 
TO ARCHAEOLOGICAL PROJECTION AND PREDICTION 

A TalSonomy of Predictive Archaeological Remote Sensing 

[n a previous publication (Ebert [984:341) [proposed a taxonomy that distin
guishes between archaeological sampling, projection, and prediction. 8m taxono
mies are problem-specifiC, and the problem that I was addressing in this previous 
publication was the application of remme sensing to survey archaeology as a whole. 
The purpose ofthis chapter is somewhat different: it deals spc.:ciflcally with remote 
sensing applications (Q projection and /or prediction. As is evident in Chapter 4 of 
this book, I think it is probably most productive to view prt!di[Jioll) here, as an 
integral part of the explanatory framework of archaeology (see Figure 4.1), as 
something that archaeologists must do (0 draw testable expectations from modt·1J 
that describe the ways in which we think the archaeological record is related to the 
organization of past human systems. The term projalioll has been used in the 
taxonomy in Chapter 4 to designate empirical generalizations ;lbout the occurrence 
ofarchaeological materials in unsurveyed or unsampled areas on the b;lsis ofknown 
distributions in surveyed areas. Because lax definitions can lead to problems in any 
scientific endeavor (see the Chapter 4 discussion of the siU coneepr, for example), 
rhe definitions of projection and prediction set forth in Chapter 4 will be us(.~ d here, 
rather than those [ proposed earlier (in Ebert 1984). 
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Another theme ofChapter 4 is that we almost certainly do not know how to do 
successful predictive modeling, in the sense of bein~.. able to make generally 
applicable statements about the location of archaeological materials in unsurveyed 
areas, at the prescnt time. \Vhat is more, we do not know exactly why we cannot 
successfully predict in a general way. For this reason, it is my bcliefthat almost all of 
the archaeological Bprcdictions" that have been ancmpred, by archaeologists in 
general and by those employing remote sensor-derived data, arc probably projec
tions in the sense that this term is used in Chapter 4. 

The following discussion of approaches that have used remote sensing data to 
generate projections is arranged according to a taxonomy that emphasizes differen
ces in (a) the things that archaeologists want to predict and (b) the remote sensing 
analysis method employed. 

The first taxonomic category comprises approaches that generalize from 
extant archaeological and environmental data about areas in which archaeological 
materials are likely to be found but consider only peripherally where materials will 
not be found. Such approaches could be thought ofas prospecting, and their goal is 
to streamline the discovery ofarchaeological materials in order that those materials 
may be studied or preserved. The two basic analytical methods that have been used 
by archaeologists engaged in this sort of projection arc visual analysis and digital 
analysis. 

The second major taxonomic category consists ofapproaches to archaeological 
projection that use remote sensing to identify areas where archaeological materials 
can be expected and areas where they are not expected to be found. In effect, these 
approaches lead to projections of the dilTerential densities of archaeological ma.e
rials in a study area or, in some cases, densities of specific rypcs of materials. They 
can also be used to design sampling stratifications that are intended to provide this 
rype ofdensity information. Again, a distinction will be made between approaches 
that use visual analysis and those that use digital analysis. 

\Vhat follows is a review of the literature concerning archaeological projective 
attempts incorporating remote sensing data, organized by these taxonomic catego· 
ries. The successes and failures of these approaches will be discussed once the 
summaries have been presented. 

First, it should be pointed out that the distinction between these two mer hods 
is really technological-people are involved in making decisions " 'hether the 
processing is done by the human brain or partly by a machine. There are, however, 
some basic quantitative differences between visual interpretation ofenvironmental 
variables and digital analysis. One of the most obvious of these is that people 
generalize when they interpret things from remote sensor data, such as aerial 
photographs or Landsat visual images. A large, relatively homogeneous area of (for 
instance) pine forest is identified as such by a human interpreter, and tiny inclusions 
of oak are ignored. In the course ofa computer digital analysis, on the orher hand, 
each pixel is classified, and if an oak pixel falls within a mass of pinon pixels, it is 
classified as oak forest. In many cases, there is nothing wrong with or unworkable 
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about the generalizations of human interpreters; the presence ofa few oak trees 
within the pinon forest probably constitutes environmental variation at a scale 
incomparable v.'irh the scale ofhuman mobility and systems organization. For other 
purposes-in computing an environmental diversity index using a moving ftlter 
across space, for instance-the ungcneralized, digital classification may be the only 
workable data representation. 

It has been asserted (Baker and Sessions 1979) that digital analysis is superior to 
human visual interpretation because human biases are nor injected inro digital 
products and because digital analyses arc replicable. This is a somewhat optimistic 
interpretation of what digital analysis actually entails. In human interpretation, 
subjective decisions are made about where boundaries fall, while in digital analysis 
subjective, human decisions must be made about the limits ofdurter boundaries (in 
multidimensional analyses) or about the confidence limits one is willing to accept as 
representing useful correlations between the occurrence of cultural and environ
mental variables. The meaning assigned to interpreted or digirally derived variables 
is subjective in both cases. 

Nonetheless, a distinction will be madc below between those Hpredictive H 

attempts using visual interpretation and those using digital analysis. This is done 
for the most part for historical reasons, as visual inrcrpretations for archaeological 
purposes were arrcmpted earlier than machine-processing-based arrempts. Digital 
processing can be cost-saving when large geographic areas are being inspected, and 
digital-format predictive products arc also easier to incorporate into geographic 
information systems. For these reasons, digital-format products are likely to be the 
major thrust of remotc-sensing-aided archaeology in the future. 

Archaeological Projection Through Visual Analysis of 
Remote Sensor Data 

Archaeologists have been using remote sensing, particularly aerial photointer. 

pretation, for the discovery and inspection of sites since the early 1900s (Beazeley 

1919; Capper 1907; Lindbergh 1929). Especially in Great Britain and Europe, most 

archaeological uses ofaerial photographs are still directed toward actually seeing the 

manifestations of sites and structures through shadow or crop marks (Riley 1980, 

1982; Wilson 1982). The examples of "prediction" ofareas likely to contain positive 

archaeological evidence discussed here, however J are somewhat more indirect. In 

these examples the experimenters seek nOt to see actual sites but rather to correlate 

the distribution or occurrence of known archaeological materials with certain 

landform and environmental characteristics. These independent variables are then 

sought in areas thar have not been archaeologically investigated, and uninvcsti· 

gated areas exhibiting such properties are postulated to have a high likelihood of 
containing archaeological materials. In these studies, remotc sensing typically 

provides the basis for characterizing the environment in areas known to contain 

sites as well as for finding unsurveyed areas with the same characteristics. 
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One of the earliest predictive s tudies of this type was carried out in Iowa and 
used aerial photographs to define and map soil types that were thought to be ideal 
for the agricultural subsistence practices of the mound-building people who occu
pied the area shortly prior to European contact (Tandarich 1975). Soil rypes were 
photointerprCled and classified according (0 Department of Agriculture criteria, 
and those soil types that had becn found to be associated with mound sites in the 
past were further inrcrprett.'d in Slcft~O to find mounds. 

Another carll' predictive/ prospecting study made use of Landsat (ERTS-I) 
visual multispectral scanner (MSS) data. In this study, Cook and Stringer (1975) 
attempted first to see the actual manifestations oflargc, known, hist orically aban
doned village sites in a boreal forest around Kaltag, Alaska, but they were unable to 
determine whether the spectral signatures they saw indicated the villages them
selves. Then, by characterizing the landscape and vegetation in the vicini ty ofrhe 
kno,,'n village sites, they attcmpted to prcdict the pounlial prescnce of additional 
villagcs in other parts of their 450 mi' study arca. They fdt that they were able to 
relocatc 5 of the 12 known ,'i llage sites, and they also predicted a number ofother 
potential sites, although these were not field checked. 

A similar though more rigorous method was adopted by archaeologists at the 
National Park Service's Remote Sensing Division in .l st udy directed toward 
locating areas within Shenandoah National Park in Virginia, which had a high 
potential for prehistoric and historical archaeological site occurrence (Ebert and 
Gutierrez 1979a, 1979b, 1979c). One impetus behind this study was the desirc ofpark 
personnel to lind exemplary archaeological sites that could be uscd in interpretive 
programs. Additionally, this experiment was undertaken in an attempt to show that 
aerial remote sensing could be of value in the eastern deciduous woodland; a 
persistent theme in critiques ofarchaeological remote sensing is that it is only useful 
in the arid Southwest, where si tes can be seen because ofsparsc vegetation cover. In 
the Shenandoah project it was not sites thcmselves that were secn, bur rather their 
seuings. 

The first st('P in this project was the selection of en\'ironmc.~ntal indicators 
(Eben and Gurierrl'z 1979b:7), which were chosen not because of any assumed 
preferenccs on the parr ofprehistoric and historical occupants oftht' area but rather 
because these environm(.'mal characteristics could be phowintcrprcrcd from 
1: 12,000 scale color transparency aerial photographs oftwo arcas of the park. Values 
fOT the variables ofslope typc, slopc angle, slope aspect, vegetation t-ypt', vt'gctation 
diversity, soil thickne ss, rypc of surface deposit, bedrock type, and proximity to 
COnlacts, faults, and sht'ar zones were formulated, and recognition criteria for each 
value were explicitly identified. 

The next step in the project was to mark the exact locations of pH'viously 
located historical and prehistoric sites on the aerial photographs. In no casc could 
[he sire itself be scen, bur topographic fac(Qrs allowed map locations to be trans· 
ferred to the photos accltrately. Within an arbitrary radius of250 ft around each 
known locarion, the environmental indicators were interprcted using a Bausch and 
Lomb roll-film stercoscope with magnification up to 20x. Thc results of this 
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interpretation were tabulated and coded, and the characteristics of places where 
sites were likely to be found were summarized . Some successful "indicators" ofsires 
wt:rc slope angles from 0 to 5° , exposures of southeast to southwest, and proximity 
[0 fault or shear zones; historical sites differed from prehistoric ones in that most 
known historical sites occurred on locally flat areas on sideslopes and in colluvial or 
alluyial deposits. 

Finally, the aerial photographs were reinterpreted to locate areas rhat exhib
ited these site-likely indicators but had not been survcyed for archaeological 
materials in the past. A field check at Shenandoah revealed rhe presence of 
previously unrecorded archaeological materials, some of a spectacular nature 
(including a large ninetcenth-ccntury mill site; Figure 9.1), in 45 percent of the 
projected Hlikely" areas. One obvious weakness of ch is study was chac no unlikely 
areas were field checked to (es( (he rejenion potcn(ial of (his projenion, 

Figure 9,1. .-\n t·ight('"t·nth·c~:nt u ry mill or indu~trial site.' discovt'n:d in Sh(:nandoah N:Hion..l Park, 
Virginia, d·,rough remote. sensing·:lided arc haeological projection, Till,: I.: xistl-'ncc of fhis complex was known 
from t3X records, bllt its loc:uion was not pinpoinl(:d until field chl-·ck ing of"probable si tt' ar(:3)O" dcriVl.·d 
t hrough I he :malysis of I: 12,000 .!in ic color in frared :u:ri:.l photographs ofponions of the park \It.:J.!) ini,i .:J. l('d (3fl('r 

E.bert and Gut ierrez 1981 ). 
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In another projective study carried out during the same year, 1:60,000 and 
1: 120,cxx> scale color infrared transparency photographs were inspected for indica
tors ofsire occurrence in the National Petroleum Reserve-Alaska on Alaska's Nonh 
Slope (Gal 1979). Gal fclt that, while there "'as little hope of actually seeing village 
sires themselves, there was more potential for Hidcntifying areas where not [0 look 
for archaeological sites and areas of high archaeological potential" (1979: I). He 
sought such indicawrs as the con~jstcnr appearance of whaling lanes and areas 
where early melting of snow and ice provided locations desirable for springtime 
camping grounds. Areas with known archaeological sites appeared to be lighter in 
color than surrounding areas in the color infrared aerial photographs, which were 
taken inJuly; Gal believed that this indicated better-drained places ",here vegeta
tion flourished but died ofT first. Gal concluded that such studies held great 
potential, especially in the Arctic where ground reconnaissance is expensive and 
difficult and where "narrowing down" of survey areas is virtually necessary. 

Two studies that followed the lead of the Shenandoah projection experiment 
were also undertaken in the Eastern forests by archaeologists from the National 
Park Service's Southeastern Archaeological Center. Inspection of color infrared 
aerial photographs, which make it relatively easy to recognize the distinction 
between water and land, provided a preliminary indication of where to conduct 
archaeological surveys in the Big Cypress Swamp in Florida O. Ehrenhard 1980). In 
such areas, ofcourse, human occupation takes place only where there is no standing 
water, a criterion that restricts Hsite likely" areas severely. By noting the locations 
ofsmall mounded areas surrounded by sawgrass and water, archaeologists were able 
to narrow down their survey efforts to a ver>' small percentage of the total area 
encompassed by Big Cypress Swamp. A more complex series of indicators inter
preted from aerial photographs, including topographic, hydrologic, and soil pro
ductivity variables, were correlated with different temporal and functional charac
teristics of a sample of previously known archaeological materials in the 
Chattahoochee River Recreation Area; [he resultant model proved to be successful 
in locating sites from difTerent time periods (E. Ehrenhard 1980). 

Digital Approaches to Archaeological Projection 

A digital approach to detecting and analyzing the "residual efTects of prehis
toric human settlement upon landscapes" was undenaken in the late 1970s in 
southwestern New Mexico in an attempt to locate Animas phase pueblos for further 
study (Findlow and Confeld 1980:31). Landsat MSS computer compalible tapes 
(CCTs) were analyzed at Columbia University using Map I software. The spectral 
characteristics of "catchments" of32 by 40 pixels (about 1200 acres), 16 by 20 pixels 
(about JOO acres), and 8 by 10 pixels (80 acres) centered on 8 large (100-500 room) 
A nimas phase sites and 33 randomly selected points that had not been previously 
surveyed were compared using analysis of variance statistics. Findlow and Confeld 
concluded [hat soil and vegetation were darker around site areas than in nonsite 
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catchments (Figure 9.2) and that these differences were particularly obvious in the 8 
by 10 pixel exampl~s. The lower rene-crance was arrributed to grea[C'r moisture 
retention and [0 the existence ofcultural debris in middC'os surrounding the large 
sites. 

I 2 3 4 


Figure 9.2. Digit:lll y dt'ri\'t:d rc:J1 c:c Llncc \"llucs for si[t!'s vs nonsill."s in ~o \l thwt.' sw rn i\'cw 

Mexico taken from Landsat MSS computer c()mparible tapes (after Findlow lnd Confeld \9S0). 
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It is difficult [Q determine whether the above example Jcrually constitutes a 
Clse of"sct.'ing sites," or whether it was [he contexts ofrhe sites that were being 
detected. Another projective study urilizing remote sensing that evokes the Same 
question has been pursued since the l.'arly 1980s by K.-Pcrcr Lade at Salisbury State 
U ni,'crsity in Maryland (Lade 1981a, 1981 b, 1982). Using Salisbury State's ASTEP II 
software for the analysis of Landsat MSS data, Lade examined the land cover and 
geology ofa 34,OClO km2 study area (an entire Landsat scene), classifying pixels on the 
basis of "angular distance relationships observed in vec[Qr space of normalized 
data" (principal components analysis; Lade 1981a: 13). He found that dry, sandy 
ridges were easily discerned through densiry slicing of Landsat's band 7 (Figure 
9.3), and that such ridges were usuallr entirdy covered with cultural materials 
rcpresenring multiple occupations rhrough long time periods. It is not clear 
whether Lade is identifying the effects of such ol:cupation or a particular landform 
type conducive to occupation (or ro finding materials-sand ridges typically have 
discontinuous vegeration cover), bur his projecrions arc undeniably successful ar 
finding site-likely art'as. 

A morc rigorous prospecring approach, which was also carried out in an eastern 
coastal plain and piedmont setting, is \Vells's (1981) study, which is explicitly based 
on discrimination oflandscapt' fearures. \Vells sclecred "predicrive environmenrai 
variables" (1981:22), including disrance ro water, specific soil types, and specific 
geomorphological and topographic settings, as well as known archaeological site 
locations, and subjected rhese variables ro a iogisric regression. His rt'su1ts were 
tested by field-inspecting both site-likely and site-unlikely areas. Although Wells 
primarily used information derived from map-based geographic information sys
tems, based on phoroinrcrpreration by orhers, he discusses ar iengrh rhe potential 
for aurornatic projections of this rype using Landsar MSS data. 

An approach similar to rhe earlier Shenandoah cxpcrimenrs was used in 
Kentucky by Carstens et .1. (1981), Stereo photointerpretation of 1:20,000 aerial 
photographs v.'as performed by a number of independent inrerprercrs, and the 
re~ulrs consisted ofcodings of the characteristics oflandforms and vegetation cover 
in a 400 by 400 m grid overlain on the phoros. The same exercise was rhen 
undertaken using 1 :7920 scale photographs and a 100 by 100 IJl grid overlay. The 
smaller grid overlay interprctarions proved ro be more useful for identifying areas in 
which archaeological sites were found (using a previously known sample that 
presumably had nOI been inspected by the interpreters prior to their inspection of 
the photographs), resulting in the recognition of 13 of 19 known sites (68 percent 
accuracy). A field check revealed that additional, previously unknown sires could 
actually be found in 78 percent of the projected likely grid cells. Another study 
following almost the same methodology but using photomosaic (monoscopie) 
interpretation rather rhan stereo photointerpretarion (Haase 1981) predicted sire 
densirics on Cedar N1l'SJ, Urah, with more variable results. 

An ongoing projective experiment using known locations of Gallo-Roman 
villas in the Burgundy region of France (Madry 1983,1984) is especially interesting 
in that it incorporates modern digital analysis in an area rhat had until his study 
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SAND RIDGE LOCATIONS--IR BAND 7 

Figu re 9,) , '<;; :.md rids'" IUCltiom 10 \hr)'bnd with high problbilil;cs of .Hch;1l'ologinl sirl' 
occn rrcnn· . LJnds:u \-tSS b:md .. ( nl·.H inlraH'd) d;t( ;1 \\TH.· digit.1lly :rn:ll~"ll·d 10 lrrivc 31 I his m.1p of 
art'as in which ~i lcs art' likely 10 occur- or. mOTt' precisely, are hkdy 10 bt' found by archat'ologislS 
(.Iller L:t.dt' 19813). 
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been 3. stronghold of rhe "seeing sires" approach to remote sensing; usu~lIy aerial 
photography from light aircraft served only as a peripheral ffit'ans of documenta
tion. Madry analyzed two Landsat 2 iv1SS scenes using rhe General E.lectric "Image 
100" system, with known villa locations serving as a training set (rhat is, rhe spectral 
characteristics of known villa locations sNvcd as ~\jnstruc[ions" to rhe computer, 
which rhcn seic:ctc:d orher an:as with similar spectral signatures). He has concluded 
thus far that the resolution of the Landsat data (80 by 80 m pixels) is too gross to 

allow nc:w villa sites [0 be found, although relativc:ly tntcnsl' and continuous land 
use since rhe Gallo-Roman occupations may also be a factor in his lack of success. 

All ofrhe approaches summarized aborc share a number ofcommon character
istics. Their primary goal is the identification of areas th:lt are likely [0 contain 
archaeological materials, based on characteristics of the locations of pre\'iollsly 
discovered sitt·s. \Vhilc: they are strictly empirical, these studies arc also HpositiveH 

in that their goal is to find sites or materials for archaeological study. Their results 
cannot, therefore, be easily converted into statements about areas where sites and 
materials will 110/ be found and thus areas that can be ignored for c!t'arance or study 
purposes. 

The more explicitly "predictive" studies that will be discussc.'d below are, for 
the most p<\rt, c:xtensions of these projections. Although such ext(..'nsions arc useful, 
tht~ rl'suitant models are no more explanatory than the correlations on which 
prospecting for site-likely areas are based. 

"Predicrions" of Sire Occurrence/Nonoccurrence or 
Sire Densiries Based on Remore Sensor Dara 

Unlike the prospecting approaches to predicting likely areas in which to find 
undiscovered archaeological materials discussed above, the avowedly "predictive" 
remote sensing approaches to the archaeological record that arc summarized below 
arc directed toward identifying areas of ditTerential occurrt'nce of sites within 
regions. Such ditTerences may be expresscd in terms ofsites vs no sites (or noosites), 
ditTerential densities of sites, or variation in dl'nsities of more than one temporal, 
cultural, or functional site type between zones within a study or manageml'nt area. 
Nonetheless, the discovery of these ditTerences is approached in essemially the 
same way as was site HprospectingU in the section above. The locations of known 
sitcs, or of diff<.>rcnt types of sites, arc tabulated from previous survey data; the 
study arca is then divided through either an arbitrary stratification (e.g., grid cells) 
or an informed stratification (('nviron111emal zones ofone sort or anothc..'r). Through 
onc of a number of stltistical tC'chniques, the physical locations where sites pre
viously hlve becn found are correlated with the physical locations ofindcpendent 
environmental variables (sec Chapters 5-8 of this volume). On this empirical basis, 
projections are made about where sites will or will not be found and about thl' 
densities of sites in general or of different types of sites in areas where the 
archaeological record is nO[ known. 
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Clearly, these arc not predictions in the explanatory sense set forth in Chapter 
4; they arc indunive, empirical generalizations or projections. Some ofthe implica
tions of this face for the utility of such predictions are discussed in a subsequent 
section of this chapter, along with ways ofgoing beyond correlations ofarchaeologi
cal manifestations and environmental variables. 

Archaeological Prediction and Visual Interpretation 

To my knowledge, the first Hprt:dictivc" archaeological anempt utilizing 
remote sensing as a major environmental data source was initiated in early I m as 
part of the National Park Service Alaska Area Office's cultural resources assessment 
of the National Petroleum Reserve in Alaska (NPRA). This experiment was origi
nally envisioned simply as an exercise in sample design; it has obvious implications 
for remote-sensing-based archaeological prediction, however, and in fact the 
methods used werc incorporated in almost identical form into an avowedly upredic
tive model" of site densities in the San Juan Basin of New Mexico that was carried 
out by the National Park Service shortly after the Alaskan project was completed. 

The National Park Service was asked [0 conduct a reconnaissance of the 
NPRA, which covers about 23 million acres (92,000 km') ofAlaska's North Slope, by 
the Bureau of Land Management prior to the opening of the area to virtually 
unrestricted petroleum exploration. The ideal would have been to survey a repre
sentative sample ofthe whole project area, but this was nearly impossible given rhe 
shorr, 8-12 week summer field survey season; the general inaccessibility of the 
study area; the impossibility ofland transportation during times when the ground 
was not snow-covered; and the tremendous area to be covered. Although the North 
Slope appears almost featureless on atlas maps, it extends from the peaks of the 
Brooks Range across foothills and a sand-mantled upland region to the poorly 
drained coastal plains. The great environmental variability and logistical problems 
ofsurveys in the Arctic meant that any sort of successful appraisal ofthe nature and 
distribution ofarchaeological materials in the NPRA would require careful sampling 
and planning, and the National Park Service's Remote Sensing Division in Albu
querque was asked [0 provide assistance. 

The most interesting potential use of remote sensor data for this project was as 
a basis for sample stratification and design. A sample design was created, based on 
an informed stratification of the NPRA into a relatively small number of '"ecologic
cover type zones" (Brown and Ebert 1978; Ebert 1978; Lyons and Ebert 1978) 
determined on the basis of visual interpretation of Landsat NISS color composite 

images. 


An initial ecologic/cover-type stratification was compiled through visual 
interpretation of 10 Landsat Scencs and mapped on a 1 :500,000 scale base map of the 
NPRA (Figure 9.4). Subsequently, 1 :60,000 and I: 120,000 scale color infrared aerial 
transparencies, which present a spectral picture nearly identical to that of Landsat 
color composite MSS visual images, were used as a preliminary check on the 
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Landsat-derived classification, which defined seven zones based primarily on inter
preted drainage and vegetation-cover dillerences. Although the small-scale aerial 
photographs could also have been used to stratify the NPRA for sampling, this 
would have required the interpretation of iireraHy tens of thousands of frames, a 
practical impossibility. The second level ofground truthing consisted ofan exami
nation of zone boundaries across (he NPRA from a helicopter platform, which 
illustrates the point that ground trtlthing does not always have to be done on the 
ground. Additional oblique aerial photographs were taken during this helicopter 
examination, using 35 mm cameras and color infrared film for documentation 
purposes (Ebert 1980). Finally, observations of boundaries and the vegetat ive 
composition of each ecologic/cover-rype zone were made on rhe ground. 

Although it had been assumed that this stratification would be used to sdect 
rhose areas in which survey would be carried our by N PS field crews, conflicting 
ideas about the goals of the survey prevented this from being accomplished. By the 
rime the preliminary stratification had been completed, rhe NPRA survey crews 
were already in the field and had already selected arcas to be surveyed based on 
potential site densities-that is, areas that were believed, on the basis of past 
experience in the Arctic, to be likely to contain concentrations of archaeological 
sites were chosen for reconnaissance. As pointed out previously, this is a valid 
approach if it is the highest concentrations of spectacular sites that one is seeking, 
and in fact the major outcome of the NPRA cultural resources assessment was the 
setting aside ofa number ofNational Register districts with high concentrations of 
archacological materials. 

Even though thc remotc sensing sample stratification was not used [Q seleer 
survey areas, the discriminatory power of the sample stratification was tested using 
thc data that were collected. The approximate boundaries of the surveycd areas 
were marked by the survey crew lcaders on 1:250,000 topographic sheets, and the 
survey areas were then carefully stratified, using detailed versions of the ecologic/ 
cover-type zones discussed above. The area of each stratum actually surveyed was 
measured with a digital planimeter and compared with the numbers of the types of 
sites discovered during that survey. On the basis of this information, purely 
empirical Hpredictions" of site density within particular strata were made. 

The second season of survey, carried out in the summer of 1978, was also 
conducted without reference to the ecologic/cover-type sample stratification. Por
tions of four strata that were partially covered during the first season (summer of 
1977) were also surveyed during this second reconnaissance. A comparison of si(.' 
densities in these strata between the two field seasons is interesting (Table 9.1). 
The striking differences may be a rcsult of variations from place to place within the 
NPRA in the efiectiveness of the ecologic/ cover-type stratification. Altcrnatively, 
thesc dilTerences may rellect changes in the ways things were sought in the field, in 
the experience and expectations ofthe crew in successive summers, and in the ways 

that sites were recorded. Moist tundra, where the lowest densities were found in 

both seasons, is typically covered by dense grass tussocks, and none but the most 

obtrusive archaeological materials can be found [here. The "brush" stratum occurs 
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TABLE 9.1. 

Sites located by the NPR-A cultural rtsource surveys, 1977 and 1978 

Stralum Ar(a Su""]tJ (tm) N"",hfr a!Siw Sil(J / ktnl 

SlJ MMER 1977 

Mois t tundra 428 .85 34 0.079 
Alpine t undra / moi.,! tund ra 536.83 126 0.253 
Brush fmoist lundr;'! 117.73 29 0. 246 
Bare rock /gravel "".66 76 0.803 

SUMMER 19i8 

Moist lundr:1 56.48 12 0.212 
Alpine tundra/ moist tUndr3 219.82 110 0 .500 
Brush / moisl tundn 76.91 73 0.949 
8:u(' rodeJ grJ.YcI 46.42 18 0.389 

along rivers and lakcshorcs, and it is in this zone that large village sites are usually 
found, probably because of the availability of firewood. Sites do not occur every
where within brush areas, however. The brush cover must occur in conjunction 
with one or more of a number of geographic situations (caribou crossings, river 
conflucnces, thc windward side of lakes, etc .) if the likelihood of finding a site is to 
be incrcased. Thc survcy crcw may well have learned to identify thesc combina
tions offactors, which would account for (he dramatic increase in identified "brush" 
sites during thc second season. Another possibility is that, while thc ubrush H strata 
in which survcy was carried out in the first and second survcy seasons were of the 
same composition, other propcrties of the strata, such as distanccs to boundaries or 
sizes of portions ofthis stratum, may havc been different (Michael Garratt, personal 
communication 1985). This might underline thc appropriateness of attempting to 
derive diversity or heterogeneity measures from rcmote sensor data for predictions, 
a topic that will be discusscd at length later in this chapter. 

At about the same time that the National Petroleum Reserve in Alaska cultural 
resource projcct was winding down, the National Park Scrvicets Southwcst 
Regional Office became involved in studying cultural resources as part of another 
multi-agency impact assessment, the San Juan Basin Regional Uranium Study in 
northwestcrn New ~1exico. Thc Bureau of Indian Affairs, which administered the 
study, requestcd that the NPS Southwest Regional Office study the potential 
impacts of uranium mining and associated devclopmcnt on the cultural resources of 
this 100 by 100 mi arca. 

The primary task undertaken by the National Park Service for this purpose 
was the consolidation, in consistent format, of all available archaeological survey 
data from some 4000 known surveys that had taken place in the San Juan Basin, a 
herculean task in itself. Extensivc data on morc than 16,000 sites were compiled and 
recorded on computer media, and software was devised to make access to any aspect 
of these data simple and economical. These data have formed the basis of a widc 
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range of assessments and discllssions of the archaeology of northwestern New 
Mexico and the dangers threatening these resourct'S today (sec especially I'log and 
Wait 1982), 

As part of this impact assessment, the National Park Service's Remote Sensing 
Division was asked [0 attempt to predict distributions of sites-to umakc some 
statement about rhe disrribmion of archaeological sites throughout the Basin" 
(Drager and Lyons 198J:2) using remore sensing data and methods. An approach 
virtually identical to that of the NPRA remote sensing sampling design was adopted 
for the San Juan Basin project. An ecologic/cover-type stratification was prepared 
through the visual interpretacion of Landsat MSS color composite visual images, 
based on the methods used in the NPRA (Camilli 1984; Drager 1980a, 1980b; Drager 
et al. 1982). Eighteen dillerent cover rypes with 22 additional subtypes were delined 
for this area, which is environmentally far more complex rhan Alaska's North Slope 
(Figure 9.5). In addition, these cover types were cross-correiat"d with eight land
form types (see Drager and Lyons 198J for details). The resultant zones were 
mapped on a 1:250,000 scale base map. Other information also examined for the San 
Juan Basin included surface geology and average annual precipitation. 

The first step in maklng projections about site densities was to overlay 2 by 2 
km grid squares to code t he previously surveyed areas onto an ecologic/ cover-type 
map ofrhc basin. Sun'eyed squares that comprised more than onc ecologic / cover
type zone were eliminated. Numbers ofarchaeological sires found within each zone 
in the course of previous surveys were then determined by searching the computer 
data base. For each zone, the total number of sires found was divided by the area 
surveyed [0 calculate a density figure. Thc number of sires in each zone was then 
predicted. Previous archaeological surveys had only been conducted in 21 of the 40 
zoncs / subzoncs defined during ecologicl co\'cr-type mapping, and predictions were 
made only for rhese zones. Still, some 51,700 sites were predicted to be present in 
these zones, a sizable (and perhaps unmanageable?) number. 

Several other projective experiments in New Mexico) all based on the metho
dology used in the NPRA and San Juan Basin projects, have been reported in the 

literature (Camilli I 979a, 1979b; Camilli and Seaman 1979; McAnany and Nelson 

1982), and an additional experiment in predicting siw densities across ecologic! 

cover-l)'pe, surface geological, and soils zones (all based on remote sensing) has 

since been carried out by the Remote Sensing Division (Drager and Ireland 1986) as 

well. All of these approaches exemplify the ways in which an area can be stratified 

into different and ofren empirically significant areas or strata for sampling or for 

empirical projecrion from known site distributions to the distributions of sites in 

areas not yet surveyed. All sufTer the same deficiencies cxhibited by other empirical 

correlative Hpredictivc" schemes: they are not explanatory, and their SUCCl"SS or 

failure at prediction - even if"tcstcd"-cannor bt: accounted for. 


An additional problem of projective or predictivc experiments based on the 

use of archaeological data from many surveys should be: mentioncd briefly here. 

Although many states or regions oi"this country have well-developed data manage

ment ot geographic information systems from which great volumes of survey data 
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San Juan Basin Cover Types 
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Figure 9.5. S:m Juan Basic ecologlc/cover-t)'pt: wnes delinel ted through the iott'rprcr:ltion of 
L"ndslt :vtSS vi)ul.l datl produced in ;m .l1tcrnpt to project :uchacologic:l1 site: densilies lnd the 
ditTcrcnti;lllocatiom 01 Jrch;u:o\ogicai site l ypCS in northwc:s tC,.'rn Nc.." ": Mexico (C:lmilli 1984:Fig. 4). 
The inrcrprcc:ltion meth od:;: follo v.:<,'d in thi s etTort \\'c..'rc csst.'nrially the..' same as those used in the 
NPR-A inlc:rprcc:llion shown in Figun: 9.4 . 
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Figure 9,5, Continued 
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can be recovered, all archaeologists arc aware that survey data arc often inconsist
ent. The goals of archaeology have changed in a broad sense through time, and 
many SOrtS of information recorded today were ignored in the past. Survey data 
seldom contain any useful indication of survey intensity, a factor that is all
important for judging the completeness of recovery and representativeness ofdata 
collection (sec discussion in Chapter 4). As discussed earlier, geomorphological and 
climatic conditions may be as important in determining what is found during 
surface surveys as what is actually there; most survey data do not provide informa
tion on these factors, eithl'r. In predictive experiments thar utilize data from many 
different surveys, it may primarily be variations in survey quality, rather than the 
characteristics of the actual archaeological record, that are being measured. Some 
ideas about how archaeologists might deal with this problem arc presented in 
Chapter 7. 

Archaeological Prediction Through Digital Analysis 

A final class of ;'ipn:dictive" experiments utilizing remotc sensor data makes 
use of the computcr analysis ofdigital remote sensor data-either digitally recorded 
Landsat or other satellite data or, in a few cases, analog (photographic) images 
convened to digital form. Digital analyses can rake a number of forms, dis tin
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guished on the basis of the degree ofexplanatory meaning impaned to the results of 
the analysis. Some of the digital analyses presented here purposely avoid making 
statements about wh)· archaeological sites Of materials are found in specific areas or 
in conjunction with certain spectral valu~ ranges, citing instead the UobjecriviryH of 
3u(Qrnaric digital processing. As discussed above, this asscssmt.:'nr is not compJe£c1y 
realistic, for in any kind of computer processing of image data, decisions about 
cuwfT points for clustering or correlative anal),scs must be made subjecrjvdy. 

In order to make this point clear, a typical digital image analysis proccdure
clustering analysis-will be summarized briefly here. The goal ofdigital clustering 
analysis is recognition of recurrent spectral panern!) across multiple bands of a 
multispectral image (such as a Landsat MSS scene or subscene). DitTerent sorts of 
phenomena on the earth's surface-plants, water, bare soil, or rocks, for instance
reflect electromagnetic radiation differentially across multiple spectral bands. For 
example, water absorbs almost all infrared radiation and appears black in Landsat 
infrared bands and lighter in the red and green bands; bare soil reflects highly in all 
four bands; and gro\\'ing vegetation reflects infrared radiation bm absorbs light in 
the red band. Digital clustering analyses examine the difTerencial values of each 
pixel in more than one band and group them into clusters on the basis of subjec
tively determined cutoff values. 

A digital analysis Cln be eirher supervised or unsupervised. In a supervised 
classification, a human operator directs the computer analysis br specifying a 
utraining set" of areas that represenr each desired cover type class to be discrimi
nated. The computer then attemprs to fn rhe spectral variability within the data 
into these clusters (not always successfully). 1n an unsupervised classification, the 
computer discriminates clusters only on the basis of arbitrary cutoff values that 
draw boundaries between clustc.!rs of values in n-dimensional space (where n is the 
number of spectral bands used in the analysis). There are several kinds of cluster 
cutoffboundarics that can be used, including minimum distance to means classifiers 
(which measures between-cluster centroids), parallelepiped classifiers (which con
sider rhe range of variance in a training set), and maximum likelihood classifiers 
(which evaluate both the variance wirhin classes and the correlation between them; 
Lillesand and Kiefer 1979:457-487). The machine then tells the operator how many 
classes it has bounded, and the operator must decide what is actually being 
represented by each class. Following unsupervised classification, classes are usually 
collapsed into fewer classes by the operator, and these aggregate classes arc named 
according w what the operawr thinks they represenc. Subjective decisions 
obviously enterlnw each rypc ofcluster an:llysis, and the interprer:ltion ofwhat the 
results ofsuch an analysis mean is always subjective as well. The aerual composition 
of eoch area can be ground-checked and can also be compared with values of 
dependent variables (archaeological site densities, in most of the examples summa
rized in this chapter), but the reasons for the correlation between environmental 
and cultural variables arc not obvious. 

An example ofa remote.sensing-assisted predictive approach based on cluster 
analysis is a study of [he archaeology of the Bisti-Star Lake region in northwestern 
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New Mexico, which was done in anticipation of large-scale coal mining (Kemrer 
1982). The goal of this project was "to assess archaeological variability on lands 
[designated) for potential competitive lease coal development" (Kemrer 1982:2). 
This assessment was based on a sample of the total area and involved the implicit 
construction ofa "predictive model" (Kemrer 1982:2). Archaeological distribution 
data were derived from six previous surveys that had been undertaken in the 
immediate project area. 

Remote sensing was used to generate independent environmental data against 
which to compare the Bisti-Star Lake archaeological sample. Two basic assump
tions of this project were that "site locational patterning is strongly related to the 
location ofcritical environmental resources [and that) it is likely that site frequen
cies and environmental resources are directly related" (Baker and Sessions 1982:63). 
The critical environmental variables that Baker and Sessions decided to measure 
were soil associations and the presence of washes, which they concluded had not 
changed appreciably since prehistoric times and which directly affect many other 
variables that might have changed, such as vegetation and the distribution of 
animal resources. Landsat MSS data and digital analysis methods were chosen 
because of the size of the study area, the rep lieability of digital numerical methods 
as compared to visual interpretations, and the ease of statistical comparison of 
numerical output values with archaeological site densities. An October 1977 Landsat 
MSS scene was chosen, and Soil Conservation Service soil mapping units, super
imposed on aerial photographs, were used as training samples in a discriminant 
function analysis performed at the University of New Mexico's Technology Appli
cations Center. 

The discriminant analysis, using a maximum likelihood classifier, distin
guished eight soil classes, which "was considered adequate for predictive modeling 
purposes" (Baker and Sessions 1982:66). Based on methods developed during a 
previous predictive study in New Mexico (Baker and Sessions 1979), a 2 by 2 km grid 
was imposed on the study area, and archaeological and independent environmental 
variables were compared within the cells ofthis grid. Archaeological site density was 
correlated with four different, and perhaps overly complex, sets of remote-sensing
derived variables, which they describe as follows: 

I. The eight \':uiables (seven soils ;,usociJ.1 ions, plus the category "washes") output by 

the digital image analysis; 


2. A second set of eighr variables based on the proponion of pixels per grid unit 

classifll.:d into each class; 


J. A set of 28 variables char represent all unique two-way interactions bclween the 

t"nvironmtOnral classes (classes [2 through 78) wilh values derived by muhiplyi.ng the 

number ofpixels classified into each mcmbcrofeach two-class set within each grid unit; 

'nd 

4. A fourth set also containing 28 variables representing all unique t ....·o- ....'ay inter

actions bcr ....·cen the eight environmental classes, where the proponional numbtr of 

pixels dassilied into each member of each two-class set within each grid unit was 

multiplied (0 derive ,.';dues IB:lhr :lnd Sessions 1982:68-69\. 
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The stated rationale for developing these four rather complex sers ofcnvironmcnral 
variables was that it was not known whether cultural variables (i.e., site densititOs) 
would vary with absolute or proportional classified pixel frequencies, and that most 
squares contained more than one environmental class, 

The formula used for modeling site-component densities was a linear equation 
in which observed site densities were taken to be the direct result of summing a St.'t 

of weighted independent environmental ,'. riables (Baker and Sessions 1982:84). 
\Veights and constants were determined through a series of backward stepwise 
regressions; separate environmental variables '9.'cre chosen from the 72 variables 
that best correlated with (he occurrence ofeight tcmporal / cultural classes of sites. 
Regressions were done using squares that contained more than 20 percent (otal 
survey coverage, those with more than 40 percent coverage, and those with more 
than 60 percent coverage. The regression with the squares containing more than 60 
percent coverage exhibited the least error, with R2 values ("'explained variance"; 
Baker and Sessions 1982:87) ranging from 52 to 86 percent for each best-fit variable. 
This preliminary model, which Baker and Sessions term Modd 1, was used as the 
basis for making predictions about site-type densities for 8132 by 2 km grid units, 
and 15 of chese units were chen surveyed as a test of the prediction . 

Based on thes(.' results, another regression model was then generated in an 
effort to project site densities more accurately. This model showed smaU{'r avt"rage 
error than did Model I, with Rl values bet,,'een 52 and 68 percent. Kernrer (1982:98) 
notes that there are high Hcorrespondences in variables selected between Nlodds I 
and II," meaning that in gencral those variables that corrdate positively with the 
occurrence ofarchaeological sites in one model do so in the other as well, 3. pattern 
that holds for a large number of the 72 variables insp(.·ctcd. "Therefore," he 
concludes, "It is highly likely that the environmental variables arc sensitive indica
tors of site frequcncy variations." 

I would suggest (hat this correspondenc(.· might, instead, be the result of the 
variables all having been artificially constructed from the original eight remote> 
sensing-derived soil and wash classes . Such variables cannot be independt·nt, and if 
patterning t"xists in the original eight variables then it will also be found in a large 
number of the 72 derived variables. 

Another remote sensing experiment based on tht" assumption that environ
mental factors are significant predictors ofsit<.., locations was conductcd in southern 
Colorado by the University of Utah's Archeological Center in order to assess [hc 
prehistoric and hisrorical archaeological materials along a proposed railroad roller: 
(Holmer 1982). In this study, "raw" pixel data digitized from a visual Landsat image 
were correlated with the presence or absence ofpreviously discovered archaeologi
cal sites in parts of the study area [hat had been surveyed, and predictions wert" 
then made about (he probability ofoccurrence ofsites in (hose areas not previously 
surveyed. First, each 128 by 128 pixel portion ofa Landsat visual image was digitized 
or resampled into 500 by 500 m pixels, 22,400 of which were required to cover the 
entire study area. These pixels were no[ subjected ro a cluster analysis, bur rather 
their spectral characteristics were compared direcdy with site presence vs absence 
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through a discriminant analysis. The desired result was not determination ofgroup 
membership per sc, but rather dcrcrminalion ofrhe probability ofgroup member
ship \1.'ilhin the group that contained sites; in this way Hscnsiriviry zones [wereJ 
defined by ranges of probability ofsite presence" (Holmer 1982:37-38). A very small 
number of " sire present JI pixds - nine with historical sires and 119 with prehistoric 
sites- were used to define the dependent cultural variable; 'eventually [he histori
cal Si[l~-preSen( cells were dropped, and only the prehistoric cells were used in 
discriminant analysis. These cells constituted only 0.53 percent of the study area. 

Discriminant analysis compared site-presence with three spectral bands and 
with the ratios bcrwccn [he red and blue Landsat bands. It was found that site 
presence vs site absence could be best distinguished on the basis of dala from the 
rcd filter band (Holmer 1982:42). The same data were then compared using logistic 
regression analysis, and under this procedure the no-filter data (i.e., simple black
and-whit<.· density values within each grid cell) were the Hbest predictor" (Holmer 
1982:44). Based on the results of the logistic regression, the total study area was 
divided into three groups of pixels: those wirh a greater than 0.275 probability of 
having sites, those with a probability falling between 0.275 and O. 100, and those with 
J site: probability below 0.100. These three zones were mapped, and the lowest 
probability zonc was classified as the mOSt preferable area for development (Figure 
9.6). 

Holmer advances a numbt:r of conclusions based on this experiment. He 
suggest s that the pixel size used in this study, 500 m by 500 m, was excessive and 
that more accurate results wO'lld be gained by using considerably smaller pixels. 
Use of :!Iready digitized Landsat MSS data, he notes, would haye been p."ferable 
bu t could not be done given the economic constraints of this project. He concludes 
that logistic analysi s is an ideal analytical tool for studies of this sort because it 
permits rhe researcher to incorporare variables of different levels (categorical and 
continuoLl s) into the analysis. Finally, he poims out that, although a nonptobabilis
ric archaeological sample of prior surveys was the basis of rhis experiment, a 
probabilistic sample would be marc appropriate for future s tudies. 

Another remore-sensing-aided predictive study in the western United States 
compared archaeological survey data from a 2.1 percent rransect survey within the 
Naval \Vcapons Center at China Lake, California, with variables derived from 
resampled, 100 by 100 m pixel Landsat MSS data through a principal components 

clustering analysis offour-band data (Elston et al. 1983). The "major objective was 

to develop and characterize signatures for each transect irrespective of sire con

tcnt," and thus to arrive at an Hindependent typology ofrransects against which we 

can investigate the relationship between transect type and ~ile occurrence" (Elston 

ot al. 1983:63). The derived transect t)' pology was displayed as a dendrogram, and 
the numbc..~ r of sites per surveyed transect were Hsuperimposed on the distal nodes 
of the dendrogram" (Elston et al. 1983:64). The success ofthis projection was tested 
by arbilrarily selecting 45 more transects, classifying them according to their place 

on the dendrogram through additional Landsat-based cluster analysis, and survey

ing [hem to determine how faithfully the projection was borne our. 
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Figure 9.6. A sitc.occurrcnce: probability map ofa Coloudo study Jrea compiled for manage. 
men[ purposes through digital am.lysis oflandslt MSS d~IOi (after Holmt'( 1982:Fig. 4.5.1). D3rkcr 
shading indic:lICS .lrt'as with high probOibility of site occurrence; lighter shading, are:u wil h medium 
probability; no sh~ing, arclIs with low probability. 

Elston et al. found that their success rate for correctly characterizing the 
probability of site occurrence for transects was 86 percent. They suggest that the 
lower success rates of 58-70 percent achieved by Holmer (1982) and Baker and 
Sessions (1982) were a result of using a two-group-site-present vs site-absent
solution, when in reaJity not all Hlikely" areas would have been used in the past in 
sparsely occupied regions. Sites would also, according to Elston et aI., be likely to 
occur or to not occur in more than one type of environmental setting. They 
characterize their approach as ~\natural'· (Elston ct al. 1983:66), not a "cookbook 
application of discriminant functions" like previous projects. The fmal results of 
their analyses were mapped in three transect classes: those with probabilities for 
site occurrence ofless thanO.22, those with probabilities fromO.22 to 0.62, and those 
with probabilities from 0.62 to 0.67 (Figure 9.7), the last ofwhich they term ,if( li,tI}. 
The narrow probability range represented by the group of site-likely transects is 
interesting and seems to indicate that there were a significant number of transects 
within this taxon. 
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Figure 9.7. A sitc-oc,:urrcncc probability m:tp tiL'rived through digiul analpis O(L3.IId.~ :H MSS 
dat:l at the 7\::J.val Wt':lpons C<: nter, China 1.1h. C alifornia ( If[ (''r Elscon ct al. 1981 ). 

Another group of predictive archaeological experiments that made usc of 
remotc sensing for rhe measurement of cn\,ironmcnral \'ariables took place not in 
the arid West, but instead in heavily vegetated Dela,,'are. Based on Wclls's(I98I) 
proposed model of the correlation between site locations and certain landform 
features (especially sand ridges), these predictlYc 3ncmprs have encompassed at 
least three separate archaeological studies (Wells et a!. 1981; Custer et a!. 1983; 
Custer c[ a1. 1984). In each study, en\'ironmcntal variables included discancc co 
water, geomorphological/landform setting, soil type, gradient, and convexity of the 
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landscape (the two latter variables presumably based on topographic and not 
Landsat data). These variables were measured within a 3500 m radius of each cell 
(Wells et al. 1981), and a training set of such measurements was used as input to a 
logistic regression comparing site occurrence with each variable. The study 
reported in Wells et al. (1981) resulted in the compilation of a general site occur
rence probability map, which was then tested by further survey. This research 
indicated that the relative contribution of each variable to explaining site occur
fence was as follows: 

I. distance [0 minor stream l SO percent; 

2. distance [0 major stream, 42 percent; 

3. distance to opcnland soils, 51 percent; 

4. gradient, 51 percent; 

5. convexity J 67 percent; and 

6. distance [0 present marsh, 12 percent. 

The low conttibution of the last variable was explained by noting that most present 
marshes have been drained historically. 

A second study (Custer et al. 1983) compared archaeological surve), findings in 
the St. Johns and Murderkill drainages in Kent County, Delaware (Custer and 
Galasso 1983), on a period-by-period basis with Landsat-generated environmental 
variables, again using a logistic regression model and the same variables lIsed in the 
previous study. Contour maps showing areas with less than 0.5, 0.5-0.75, Jnd 
greater than 0.75 probabilities of containing sites were generated (I'igure 9.8). 
During a second-stage test survey, 37 percent of the inspected areas that had been 
predicted to have probabilities in the 0.5-0.75 range contained sites, as did 49 
percent ofthe surveyed areas with predicted probabilities of0.75 or greater. It is not 
clear whether areas predicted to have less than a probability of 0.5 were tested. 

Another, more comprehensive test ofrhe Delaware models has only recently 
been reported. This study took place in New Castle and Kent counties as part of 
planning for a proposed highway corridor (Custer et al. 1984). Detailed explanalol)' 

site location models-i.e., theorctical formulations describing assumed past sub
sistence and mobility organization-were set forth for each temporal period prior to 
opcrarionaiization of the cultural and environmental variables. Environmental 
variables were then dcvised and measured using the University of Delaware's 
ERDAS 400 digital image anal),sis system. The authors then used their settlement 
pattern model to predict the distance to each ofthese landscape features from each 
site type. Using Wells's (1981) logistic regression method, Custer et al. produced 
contoured probability maps that again showed three probability zones ofless than 
0.5,0.5-0.75, and gteater than 0.75. These maps were compiled at I :24,000 scale on 10 
USGS topographic quads, and they are currently being used by the Delaware 
Department of Transportation as planning aids. 

Although Landsat digital MSS data are the most likely source for the remote
sensing-aided classification and measurement of environmental variables, there 
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may be other choices in the near [muTe. A recent experiment in assessing cultural 
resources in Bandelier National Monument in ccntral New Mexico (Figure 9.9) 
made us< ofsimulated SPOT digital dara (Ing lis et al. 1984). SPOT is a satellite that 
is soon to be launched by the Centre National d'Etud<s Spariales (CNES) in France; 
an airborne multispectral scanning device was flown by the CNES over selected 
targets in the United States so that scientists could experiment with rhe three-band 
SPOT data prior to launch. Th< Bandelier data were acquired on June 19, 1983, at a 
resolution 0[20 m, more than twice the resolution of Landsat MSS data, and were 
analyzed using N ASA ELAS software on a V AX 111750 system at the University of 
New Mexico's Technology ApplicJtions Center. 

Figure 9.9. The 1001ion of an experiment in projt'cting :lrchacologicaJ site occurrence u5ing 
simulated SPOT dae.,;n B:.md1.'licr :-"::uional Monument, norrh-ccncral New }.·lcxico (after Inglis (.:t a1. 
1984:Fig. 2; sC:lle' 1:24,000, know!, sire IOCJtion ~ ~hown as open squares). O:UJ. from tne French SPOT 
satellitc will derivc Irom il muhi $ pcctr~tl ~c "lnm:r with com.idcr.lbly higlwr H.'SoluTion rh:&n th:u 
pro'lid(.'d by Land~J.L AlT hough thc data will be morc t.' :<peTl ~ ivl· 10 acquirL' . (hcy lTl:l.y b(.' !nore 
cosT-c!Yccti\'e ,h:'ln L:lndut d,1I .1 for CUh ~H:d H.-mure..: n1J.nlgcml'm. 
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The data were first geometrically corrected, (hen classified inw 27 data classes 
by mcans of an unsupervised principal components analysis. The classification was 
output at a scale of 1:12,000 and superimposed on a map showing the locations of 
known archaeological sites in (he study area. Two of [he spectral classes, which 
together constituted 25 percent of the total study area, contained 45 percent of the 
known archaeological sites (Table 9.2); these classes do not correspond exactly with 
any previous ly mapped soil or vegetation classes in (he monument, and (he 
SPOT-generated projection is a more powerful indicator of archaeological site 
occurrence than any previous map. This suggests that SPOT or other high
resolution digital satellite data may have considerable potential for projecting the 
occurrence of archaeological materials in an empirical manner-or for predicting 
differential Filibi/it)· ofarchaeological materials, as will be discussed at length below. 

Remore-Sensing-Aided Archaeological Predicrions : 
Some Comparisons and Commenrs 

There arc. ofcourse, differences among [he numerous studies in archaeological 
prediction summarized above . Some employed visual interpretation, while others 
were based upon computer analysis ofdigital data; some were approached as ways of 
designing samples using informed environmental srratification, while others were 
explicitly directed toward the uprediction" of archaeological site locations, occur
rence vs nonoccurrence, or densities. The mathematical models used to compare 
dependent (cultural) variables with independent (environmental) variables vary as 
much in these remote-sensing-based approaches as they do in other types of 
Hpredictive modeling" that are not based on remote sensing. 

These studies are basically the same in one sense, however. None of these 
a[[empts at prediction really constitutes prediction in the explanatory sense of the 
term advanced in Chapter 4. Each projects empirically from the known occurrence 
ofarchaeological sites to the probable occurrence ofsimilar places in areas that have 
not yet been surveyed. This is a reflexive exercise, and it is somewhat unsatisfying 
in that there is no assurance that any such projection will be successful umil it is 
tested, or that the next projection from the same data will be similarly successful or 
unsuccessful when tested. This is because, regardless of whether they incorporate a 
modern and useful technology like remotc sensing, such nonexplanatory exercises 
do not focus on the systemic level of the explanation of past human organization . 
The next section of this chapter will set the stage for a discussion ofsome of the ways 
in which remote sensing might be used to produce more productive, explanatory 
models . 

In concluding this section 1 would reiterate my caution that the use ofLandsat 
and other remote sensor data should be carefully considered with regard to the 
limitations of this technology. Remotc sensor data exist in the present and are no 

mote "reflections of the past" than arc contemporary archaeological data. Such 

landscape characreristics as the location of water and other faclOrs change through 
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TABLE 9.2. 

A 25 by 25 pixel (picrure clement) m,l(rUt of simulated SPOT d.na over pan of the Bandelier N:;uionlll Monumeot 
study ana. Known archaeological sitC'!! arc shown as thrcC'.digit num~rs in boldface. Known sitt' locations WC'fe 

corn.:LalC'd with zones classified using duner analysis of SP01',simulatC'd data (the single-digit numbers), and it w;u 

found that a majority of sitts occurred in only a few zones. 

33S 7 7 2 2 7 7 7 7 7 7 7 7 7 7 7 9 , , 5 5 19 19 5 5 

339 7 7 7 2 2 2 2 2 2 7 7 7 7 7 7 8 8 7 7 8 8 5 5 5 5 

3«J 7 7 7 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 8 8 5 5 5 5 

3# 7 7 7 7 7 2 2 2 2 7 7 7 7 7 7 7 7 2 2 2 2 7 7 , , 

3<Z 2 7 7 7 7 2 2 2 2 2 2 7 7 7 7 7 7 2 2 2 2 7 7 , , 

J.JJ 2 7 7 7 7 7 7 2 2 2 2 119 7 7 7 7 7 "' .. .. .. .. .. .. .. 

J·N 7 7 7 7 7 7 7 2 2 7 7 7 7 7 7 7 7 .. .. .. .. .. .. .. 5 

~5 7 7 7 7 7 2 2 2 2 7 7 7 7 7 7 7 7 7 7 8 8 , , ) 

3<. 2 7 7 7 7 2 2 2 2 2 2 7 7 2 2 2 2 7 7 8 8 , , , , 

~7 2 7 7 7 7 7 7 9 9 2 2 7 7 2 2 2 2 2 2 2 7 7 7 7 , 

3<8 2 7 7 7 7 7 7 101 9 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 

3<. 2 2 2 2 2 7 7 2 2 2 2 2 2 2 2 2 2 2 112 2 2 2 7 7 7 

35() 2 2 2 2 2 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 2 

351 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 

352 2 2 2 2 2 2 2 2 2 7 7 7 9 9 7 7 7 7 2 2 2 2 2 2 2 

353 2 2 2 2 7 7 7 114 7 7 7 9 9 7 7 7 7 7 7 7 7 7 2 2 2 

3J./ 2 2 2 2 7 7 7 7 7 2 2 2 2 2 2 2 7 7 7 7 7 7 2 2 9 

355 2 2 2 2 7 7 7 7 2 2 2 2 III 2 2 2 7 7 2 2 2 2 2 2 9 

~6 2 2 2 2 7 7 7 7 2 7 2 2 7 7 2 2 7 7 2 2 2 2 2 2 2 

357 2 2 7 7 7 7 7 7 7 7 2 2 7 7 2 2 7 2 2 2 2 2 2 2 2 

35S 2 2 7 7 7 7 7 7 7 8 8 8 2 2 9 9 2 2 2 2 2 2 2 2 8 

359 2 2 2 2 7 7 7 7 8 8 6 8 2 2 9 8 2 2 2 2 2 2 7 7 7 

300 2 2 2 2 2 7 7 7 8 8 7 7 9 9 9· 9 9 2 2 2 2 2 2 7 9 

30J 2 2 2 2 2 2 2 2 8 S 6 6 9 9 9 9 9 2 2 2 2 2 2 9 9 

362 2 2 2 2 2 2 2 2 8 2 2 2 2 2 2 9 9 2 2 2 2 2 2 9 2 

From Ingli~C:1 .1L 19804:1 1 
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time, ::tnd there is no assurance that the..' reasons why activities were located where 
they were in the past will have any son ofrransparcnr relationship to what we see on 
aerial photos or space images. In the final portions of this chapter some possibly 
morc realistic ways in which contemporary remote sensing data and contemporary 
archaeological data can be brought to bear upon one another will be explored. 

POTENTIAL APPLICATIONS OF REMOTE SENSING WITHIN 
THE EXPLANATORY FRAMEWORK OF ARCHAEOLOGICAL 
MODELING AND PREDICTION 

So far in this chapter I ha\Tc discussed remote sensing and what it is, what some 
of its general limitations in archaeology might be, and some of the ways in which 
archaeologists have applied remote sensing methods and data to experiments in 
predicting certain aspects of the archaeological tecord. Although remote sensing 
has been used in a number of different ways in these archaeological experiments, 
their general method is uniformly one of empirical) inductive uprediction" as 
diagrammed in Figure 4.1 of Chapter 4. This exercise generalizes from known 
distributions of archaeological sites or materials-known on the basis of prior 
surveys or the compllation of extant site forms-to a H prediction" of what addi
tional sites or materials' will be discovered in the futurc in areas not yet surveyed. 
This is accomplished through the tabulation or correlation of the differential 
occurrence of archaeological sites with respect to difTerential distributions ofenvi
ronmental charactetistics that are assumed to have been important to decisions 
about where sites would be placed. As discussed in Chapter 4, this is the method 
used in most of the "predictive modeling" efforts described in the archaeological 
literature or in management repons coday; the limitations ofand problems with this 
method are also explored at length in that chapter. 

Chapter 4 also describes another way of thinking about modeling and 
prediction-as integral aspects of the process of archaeological explanation. Refer
ring again to Figure 4.1, the interpretations we make concerning the archaeological 
record (that is) the meaning we assign to the remains that we encounter) are 
separated from the actual physical nature of the archaeological record by many 
levels of phenomena. 

It is the physical archaeological record and its distribution that managers are 
interested in, for this is what they must manage. 1\1eaning is givcn to the archaco
logical record, howevcr. only through explanation, and meaning is essential to 
predictive or projcctive statcments about the physical archaeological record for two 
ptimary reasons. The first is that in order to predict the locations of archaeological 
sites successfully we must know not only what Hnoncultural variables" they arc 
correlated with, but also wh)". The answers to the questions H why1" must be posed 
in terms ofs),stcmic human organization, because systemic organization is the way 
that people dilTerentially locate themselves and their activities on a landscape. Ifwe 
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do not understand (he 1)'I/emic InfchmltrmS of site placement, then there is no 
assurance that Jny prediction can be extended from a known area to unknown areas) 
even if these Jreas arc immediately adjacent CO one another. Such mechanisms can 
be known only through explanltory modeling, and through usc of predictions to 

[cst these models. 

In Chaptcr 4 Kohler and 1hal'e suggested that the best independent variables 
for site location models are ccos),utmic variables. Before models that incorporate 
ccosysrcmic variables can be formulated, however, the things that intervene in the 
real world between (he physical archaeological record and past human organization 
must be addressed or Hfilrcrcd om." These are the facwrs listed in the ~'proccssesJt 
column of Figure 4.1: discard behavior, depositional and postdepositional proc
esses, and the methods that archaeologists usc to discover, measure, and analyze 
the portions of the archaeological record that we find, 

The other rt'ason that the meaning given to the archaeological record
explanation-is all-important in managing this record is easier [0 S[Jte but ulti
mately more difficult to define. As the volume editors have pointed out in Chapter 
I, the legal and, I like to think, moral reasons for even worrying about managing 
cultural resources are based on the significance of those resources in terms of 
research potential. Cultural resources arc important because, by using rhem, 
archaeologists may be able to say something worthwhile about the operation and 
organization of human systems and their components, past and present. The 
managemem ofJignificanl archaeological resources has been mandated, and signifi
cance is based on meaning given to culrural resources through the explanatory 
framework of archaeological science. 

I can suggest two ways in which remote sensing has the porential for moving 
archaeological prediction away from simple empirical generalization and toward 
more explanatory goals. It should be understood that remote sensing, while it can 
playa pan in this reorientation of "predictive modeling," is not the :lolution in 
itself. The real solution lies in the ability of archaeologists to change the ways in 
which they think about doing archaeology-particularly we must discard the idea 
that archaeological cxpi3nation is or can ever be em)'. Remme sensing can only playa 
part in shifting archaeological thinking, but this part may be indispensable because 
of the unique and inclusive sons of data that remote :lensing Can provide. Remote 
sensing can provide tWo specific and immediate classes ofdata that archaeologists 
need: data perrinem to depositional and postdepositional processes, and data 
through which ecosystemic, rather [han simply environmental, variables might be 
measured. A few experiments in measuring and using such data are reponed below, 
along with suggestions concerning possible future directions. 

Another area in which remote sensing can aid in the investigation and explana
tion of the organization ofpasr human systems is through applications to ethnog
raphy and ethnoarchaeology. As emphasized previously in this chapter, remote 
sensor data are contemporary, and as such they mighr best be applied to under· 
standing [he relationships between ongoing humer-gatherer and primitive agricul
tural systems. These relationships are one of the most exciting data sources for 
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archaeologists ancmpring to understand the operation ofpas( systems because they 
have the potential for suggesting some of the alternative ways that people adapt to 

differing conditions through time and across space. Some of the ways (hat such 
information can be brought to bear on the question of predictive modeling are 
suggested by Eben and Lyons (1983), Kruckman (1972), (,arrington (1983), and Vogt 
(1974). 

Remote Sensing and the Measurement of Depositional 
and Postdepositional Processes 

The materials (hat people use leave (he cultural context and enter (he 
archaeological context when they are discarded; at some point after they arc 
dropped on or intentionally buried under the surface ofthe earth, they come under 
(he influence of depositional proccssc~ :lnd are incorporated in sediments and soils. 
Deposition most often occurs in the context of aggradational processes that bury 
cultural materials, although there arc situations in which cultural materials remain 
on (he surface of the ground. Some dcpos'tional processes are cultural, consisting of 
burial by human activity, but the!se arc less common than natural depositional 
events, 

Materials buried in a definable layer or "level" arc often assumed to be the 
results of a single occupational episode (Conkey (980), but this is not necessarily 
always the case. The nature of the deposited archaeological record is controlled by 
the periodicity of occupation or use of a plaCe! and the relationship between this 
periodicity and the periodicity of depositional processes acting on cultural mate
rials. Artifacts that are dropped only sporadically might be covered by sediments 
left by depositional processes that occur more often than episodes of dropping, 
while artifacts that are lost or abandoned relatively continuously will often be 
subjecred to depositional processes only after several episodes of site occupation 
have taken place. In the latter case, the apparent "levels" will be the result of more 
than one episode of site use. For instance, if a site is occupied or is the locus of 
activity several times between successive rainy seasons, more than one episode of 
activity may be represented in each depositional level. This poses problems for the 
archaeologist who is attempting to sort out the results of periodic human behavior 
in chat Hdemonstrably associated things may never have occurred together as an 
organized body of material during any given occupation" (Binford 1982: 17-(8). 

Once c~lrural materials are deposited and become part of the archat'ologieal 
record, they arc acted upon by another set of processes that can be thought of as 

postdepositional. Nlost processes t hat disturb or act upon the surface or subsurface 

of the earth also alTect archaeological deposits. Such biological processes as faunal

turbation and floralturbation (Wood and Johnson (978) modify deposited materials, 

as do a host of other mechanical and chemical events. Foley (1981) presents a 

taxonomy of natural processes responsible for the burial, movement, destruction, 

and modification of archaeological deposits (reproduced here as Figure 9.(0). Dis
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cardcd materials enler Ihe archaeological record through burial by cultural or 
natural agencies; once assemblages aft" buried they may remain in place, or they 
may be moved through stream action, sediment mo\'cment, faulting, or mass 
wasting. At the.' same time, certain materials mayor may nor be 31tcrcd by physical 
and chemical agencies while in or on the ground. Foley (1981 ) also identifies what he 
calls small-scale oscillation processes that act on [he discarded archaeological record, 
including water or wind action, animal burrowing, root action, and human 
disturbances. 

Natural postdepositional process(~s {~aT1 alter or destroy archaeological mate
rials, but they also playa role that is vitally important [0 the archaeologist: they 
expose these materials, making them visible and thus available for study. ~10st 
archaeology carried out in the Cnitcd States today is undertaken in the context of 
cultural resource management asse:,sments, which entail systematic survey of the 
surface of the earth in areas that arc..' to be disturbed by reservoirconstrucrion, strip 
mining, or other engineering and resource-extraction activities. Buried archaeolog
ical materials art: not found during such surveys; only those cultural materials thaI 
are exposed but not totally destroyed arc found and serve as the basis ofarchat'olog
ical Hlidy and interpretation. \Vhen subsurface testing is incorporated into surveys, 
it can ex post' but a tiny part of buried remains. It is only during tht· shorr and 
relatively uncommon period between the exposure ofdeposited materials and their 
dispersal or destruction that these materials arc availablt' to archaeologists for 
study. For this reason, it is critical that archaeologists carefully consider the nature 
and actions of the processes that make their basic data available to them. 

There is no easy way for the archaeologist to observe, characterize, measure, 
anel predict depositional and postdepositional processes. Both dc..'position and most 
postdepositional alteration took place in thl' past, so tht'se proct'sses cannot be 
observed directly. In addition, the distribution of these processes probably varies 
across the landscape. Analogs might be found in contemporary surface processes, 
however, which means that the forces that have acted on archaeological materials 
(and possibly also their rates or rhl' magnirudc of their efTects on the archaeological 
record) are potentially predictable. Ifsuch processes can be predicted, then at least 
some aspects of the depositional and postdepositional Hformation processes" 
(Schiffer 1983:675) intervening between the materials discarded by past peoples and 
the archaeological record that we actually sec today can be taken into account. And 
such factors must be accounted for before we can attempt to predict the locations in 
which archaeological materials can be expectcd. 

To most archaeologists it seems reasonable to turn to geologists and gcomor
phologist$ for the details of such natural processes and of their difTc-rentiai occur
rence and rates, but usually thest~ disciplines cannot provide- tht' necessary level of 
detail. In fact, when an archaeologist and a gcomorphologist are introducl.'d, the 
Iafter will almo~( always initiate probing questions about whether archaeology can 
supply concn..'(e dates for recent natural surface ('Vt·ots. This interest on rhe part of 
geomorphologists has probably been the major impetus lx'hind the development of 

the subfield of geoarchaeology (Butzer 1977; Gladfelter 1981), but it IS Just the 
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reverse of what we want to hear. Most geomorphological studies arc conducted in 
circumscribed places under specific conditions and arc even morc induccivc.:1y based 
rhan archaeology. Archaeologists need to be able to arrive at generalizations about 
the places in which different surface processes act to deposit and disarrange or 
preserve archaeological materials across relatively large study areas. Fortunately, 
remotc sensor data, v.,jrh their \Io·ide areal coverage, may help to supply this 
information. 

One such remme sensing study was undertaken in an a[[empr co define the 
extent of different surface deposits and their archaeological correlates in Chaco 
Canyon in northwestern New Mexico (Ebcrt and Gutierrcz 1981). Chaco Culture 
National Historical Park has been extensively surveyed for at least 50 years owing to 
the spectacular and concentrated nature of its archaeology, and a data base of more 
than 1200 archaeological sites was available at the National Park Service's Division of 
Cultural Research for comparison with remote-sensing-aided mapping of surface 
deposits there. Prcvious geological and geomorphological studies had examincd 
alluvial deposits and hillslope processes and their rates, and these data provided a 
basis for photointerpretation and mapping of geomorphic surface units. 

Geomorphic units were interpretcd bv Ebert and Guticrrcz (1981) using 1:6000 
scale aerial color transparency photos viewed with a Bausch and Lomb variable
power stereoscope; these units were transferred to I: 12,000 black-and-white onho
photoquads and from those to a I: 12,000 scalc base map, which also bore the 
locations of archaeological sites in the data base. Two descriptions-landform and 
photointerpretive-were generated for each geomorphic unit defined, based on 
tone, color, texture, vegetation associations, and landform associations (Figure 9.11 
and Table 9.3). 

Correlations between site locations and geomorphic surface units (summarized 
in Table 9.4) u'ere of interest relative to interpretations of the diflerences bC[u'een 
locations where different types ofsites were found by survey archaeologists. Archaic 
sites, usually consisting of small scatters of stone flakes, were found on the oldest 
visible surfaces in Chaco Canyon. Similarly, Basketmaker sites were found primarily 
on stable and inactive surfaces, as were the Pueblo I,ll, and III sites. Later Pueblo 
sites were found relativciy more often on less stable surfaces, and the cven more 
recem Navajo sites occur in high proportions on very active surfaces where older 
materials would cit her be obscured or dcstroyed. The smallcst sitcs (as rccordcd in 
the NPS data base) are found in units with little or no alluvial or aeolian surface 
veneer, while larger sites predominate in fine-grained, inactive Quaternary units 
where sheetwash, uniform sedimentation, and relatively even aeolian deposition 
would cover smaller occurrences but aUou' larger materials (masonry walls, for 
instance) to project above the surface. 

Anotherremotc-sensing-based study, which built upon the Ebcrt and Gutier
rel (1981) Chaco Canyon experiment, was carried out in the Green River Basin of 
southwestern Wyoming (Wandsnider and Ebert 1983). Fluvial, acolian, and gravita
tional processes have altered the landscape there in post-Pleistocene times, giving 
risc to what appears to be a varied and diverse region when it is considered on a 
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Figun' 9.11. An C'xpl'riml'nt urricd out by the ;\I.1liOl1.1J Plrk Ser\'iCt"'5 BrJ.f1ch 01 Rl'mOlc 
Sensing involved I he- mapp ing of geomorphologicJ.1 surf:lCc." un it ~ It C h3CO Culrure N:lt io f1JI Historio.l 
Park to l'xplorc.: [he roll" of posrdc:po::; ition:ll proces.ses lffc.:cling I he \,j"ibilit)', intl'~rity , ;lI1d discovl'r~' 

of [he lrch:u.'o logiCiI record. Thi s i~ 3. ponion of [he m:lp of SUrt3C(, unils Ihll were: derivcd using 
phoroinrl·rprctation of I: 12,000 ~cJ.1C' color leri :,i pho tographs J.[ Ch:)co C:tnyon in nort hWl'Slnrl :'..:CW 

Mexico (:tftcr Ebcn and Gut il'rrl'Z [981: Fig. 1). Ol'sc riptiof1s of the various unit s appeJ.r in T.1bl(' 9.3. 
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)0 '" TABLE 9.3. 

Surbet" gl'omorphologjc31 units, chl';r dcsign:uwms. their phoco;nh:Tprdin- recognilwn path'ros. and ,hl,j,. dc:.niptions and summary ,)"urfacl' 
dynamks as mapped using pho(oiml'rprdivc techniques in the .study of postdt'pol>itional procc~scs on the archat"ological rt.'cord ;u Chaco Culture 
National Historical Park in northwclitl'rn New Ml'xico 

Map (init J)(JIg. dI INi I.(JlIdf,Jr1!1/pwro IJmri/,til!1l Slahil"yif)vlI//llJIIf ['ro(l1U1 

QTP~5) 

(rrp~ ' ) 

Kb 

Kt' 

H~ 

Hd:; 

H,p 

Q"fl 

Q,f2 

Qll:ltt'rn:try Tertiary peJime-nt 
dcpo,.. j[~ (st:lb lc) 

QU:I« :rn:1rr ' , 'l'ni:try pediment 
deposits (tr:lnsitil)n:.I ) 

Cn:taCt'OUS s:J.ndy bc:.·drock (buricd) 

CrclaC'com s:tndy lx'drock 
(l')':posed) 

Holoccnc g,u llin 

Holocl'nc: dam sediment arion 

H oloet'ne soi l pipl'S 

QU;lIt'rn;nr .. lltn·lal 1::'0 I 

QU:ltc:r,mry :tlluYI ::d I~o 2 

Undul:u Ing surfan' Wit h poorly intl'gr;ul'd 
su rt':lcc dr;lln;]ge,~, dJfk in tom:. Vt'gctation 
s a~e :md !;fass. 

Tan s:lOd (eX(lIft', SCt llt'u,d \,(':~l'(:1ti()n :1Il« 
ilHq~r:l (nl s Url; ICt· dr:,lnagl"s. High «rai'lJgt· 
dl·n.~it)', fl;]r:llld to dt'ndritic dr:,ina);l' 
p:lttt'rn. 

I.i~h( t:ln- ..... hitl' bedrock with di)ocominuous 
\'l'Ol'l'r o( :lcoli~lT1 sand, local shcl'[w:1sh 
alluvium. 

Light t;tn-whiw cxpost'd bc.:drock with \'l'ry 
Sparsl' vq;ctation; fine [l')(wrc.'d ""ith joint 
patterns clcarly visiblc.·. Clill Hou se.' ;lOd 
I)i~·tuu: Rock:- formations, 

l,oC':!.liud discontinuous dr:,im,gt., J-3 m 
dc.'c.'p, up [0300 m long. 

Wcll-v(.'ge..'tatcd, fan-shaped dt'pa~its bc.·hind 
d:lms o r diversions. 

Arcuate..' dqm:ssions or collapsc:d soi l pipes on 
[t'rract' e..'dgc..'S. 

TOI)ogf:'lpiliC:'llly raist'd, irrq:~ub r-shapc:d 
dl'posilS; \'eget;:ttion d,·n )o il Y di~htly highn 
t h:lO Q:rf2 or QII' 

Conica l (:m-sh:Jped till a.,soci;t(,·d with m ..jor 
sidl' canyon:.; light-medium ron,:. 

Stable., alluvial, CO lillVi .. l, :md aeolian depmit~ 
('sting unconformably l)ll eroded Tertiary 
and Crt·tac'·OllS dt·pOSltS. I.illie runoff or 
sediment prodLICt·J on lhe..·se..· highly 
pcrnw;,b!c deposit!'. 

I'rooun::; ~i~niiiclOt runoir ,:rod hibh s(·climent 
yields; occupi,·s " ....lOn bt·( ....·C(·n QTp(:.) mn;lS 
and llm'e~I:(a(t:d bildl;)o(b. 

Imnmit (cnt :1ggr;)dat ion / t'rosion by 
Sht't'IWash, aeolian proccsse..'s. 

Flat sure,c,· ""'jth little or no COVCT; she(~twa~h 

;rnd :Jt'okm ('rosion. 

lJ nstablt-, rapidly t·roding. 

Rapidly .aggrading, an;rstomosing channels; 
date from 1930~, 

Soil piping, mass mO\'eme..'nt , highly um;(;lble, 
t'rodin~ rapidly . 

~by Of m;:ty IlO( conta in d("(i\'e, inci~ed 
ch;rnnds. 

R"la( ivd y st:lblc..· ~urt:'1Cl', .~oml' gr:ldc:d to 
QT I surl:Hx·. 1\1ay contai n buried ~oib of 
humu,s-rich byt·(:.. 



QU:H<:rn:t ry alluvium 1 	 Whit!,:, Lnci~l'd, mcand<:rln g / ~I r:lighc channd Actin' alluvium, thickness 0- 1.5 m. 
in ("emf:!1 v:ilk)' \/o' ich venical ....·alb. Ero."ion / aggr:ld:uion domin:!nI . 

Q,', 

Q>'2 Qll:H<.Tnar)' J.liuvilLm 2 	 T:m- li~hr ~tay :llIuvjUOl in incised I.: h:mnch Actin' ;dlu\·illm in m:ljor Iributarics ofCh:tm 
with ~( n:p b:lnb, cutting through :.lIl1\"ial fill c.anyon, many indj"idual channels and 
in ~id<-·. cut·lilll'>c(juc.:nn·:-, 

Q"J Quatcrn:lry alluvium 3 	 Lighl -wncd :d luvllIm aSSOCilh.'d ...... ith su rface Inact ivt' alluvium, mo.sdy rt: ....·orhd ({a12 
tra("("s of fossil ch~n nd.s, high n"gl'(afion. matcr;aL Thickne!'s 2- 4 m. 

Qb Qu:nernary badlands 	 Banded guy (Q dark bro\lo'n iM:ds following Rcl;Hivdy impt'rme~blc .-;halcs with 
topog raphy, high draimgc density_ Linll' interbc:dded 5and.Qones; covercd by 0- 0.7 m 
vege tation. of wt.·athered m.mtle. Easily eroded, act ivc 

surlace. 

Q< QWH<.'rnary tinc-~rdincd colluvium 	 Light brown. f!nl' [('xlurc:d, irrcgubr shJPcd Sht'cIWJ.sh matcri;.] dcrivt.·d from v~IIt.·y 

dcposilS nt."3t cxtcn.sivl' .s h ~dl' ;md ~ands[onc: side ....,:.11 sandstone." and gendl'f shale slope~ 
outcrop.... at their base:. 

Qd, QU:lI<.'rnary dune.' s:md 	 Light brown. linc;!t, topographically high No inte:grall·d drainage: dt.'vdopmt.·nr, lillk· :c 
deposits l!>soci:u<:'d with Kc bedrock m(~sJ.S (·rosion. Drmes aligned N (jij-7(JJ E wht.·re: 
and bu![(.·s. Btnhcs; no gr:ma:s; no (:~tJ.blished line:ar, Thickne:s.~ 0-2 m, '":!:: 

o 
drain:!gc5. 	 -i 

v. '" Q-..I Quatern:.r), t;llll~ i\1e:dium·tom' b;tl1d.~ along base: of ~J. ndy i. argcr ralLl S blocks srablt" localized crcep, 
7bedrock dilT~, Llrge :1Il ~llbr blocks of sht·e: (w;. ~h, ;md dt·bris flow depo~ib . '" 
~ 

sand... rone talus on sh;lle: slope. L 
8 

Q', Qtlatcrn ary tara((' I Highnt lenacc incised by curn:n! Chaco Olde:st in:l.crivc [(' r(;:I("C; inre:rbeddt'd with :r: 
Arroro (Qal]) . Large an:as oflo...... reiid'within :lUu,,;:,1 lan, shee lw.l~h, and colluvium from 

;'lmain canyon. Vt'get;Hion sp;lr~e . sidt.· canyons. 
.2 

Q'2 QU3tcrn :H}" Inr:1CC: 2 	 Di ~continliollS , light brown, line te xtured Youngt.'st te:rrace or Iloodpbin of prescnt () '" 
;If(:J,S b('[wc.·(·n Qt J sCl rp J,nd :lCl in: arro),o ;,rrnyo (Qall ) in ~ome :Ire:a~, Srahility "arie", -i 

(5(Q"',). 	 J - .~ m abovc ch:lIlnl'l . 
Z 

From Fb..-rl ,lI\d (;ll([ien'z 1'J1l 1 	 >
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TABLE 9.4. 

Occurr~ncc: of known archaeological sires and materials at Chaco Culrure National Historical Park (grouped by cultural affiliation and sire size) 
within geomorphic surface units mapped with phOlointerpretivc: techniques 

G(omoTphi( Unil 

H~ IIfP Kh Kt ~fl fi!'f2 ¢tall ¢tall ¢ta13 s:(h ¢t' ~dl ii!t ~..II ii!2 5:1Tp(t) ~/p(t ) 

CULTURAl. AFFILIATION 

Arch;tic 
B:l~h·tTn:JL:.er II 
Baskctmakcr III 
1)Ill'blo I 

Pueblo II 
Pm:blo III 
Pueblo IV 
Navaj o 
Un!.;noll'n 

0 
0 
0 

.20 

.60 

.20 

0 
0 
0 

0 
0 
0 
0 

.50 
0 
0 
0 

.50 

.03 

.OJ 

.08 

.06 

.12 

.11 
0 

.J] 

.25 

.05 

.0.1 

.10 

.14 

.27 

.22 

.01 

.18 

.01 

0 
0 

.06 

.1 J 
0 

.25 
0 

.4' 

. 1 J 

0 
0 

.11 

.22 

.22 

.22 
0 

.20 

.03 

0 
0 

.10 

.20 

.30 

.JO 
0 
0 
0 

0 
0 

.07 

.J I 

.36 

.1 J 
0 

.07 

.07 

0 
0 
0 

.11 

.56 

.22 
0 
0 

. 11 

0 
0 

.10 

.27 

.28 

.17 
0 

. 15 

.OJ 

0 
0 

.09 

.J2 

.29 

.12 
0 

.15 

.0.1 

0 
.05 
. 15 
.30 
.35 
.15 

0 
0 
0 

0 
0 

.05 

.20 

.28 

.22 
0 

.19 

.06 

0 
0 
0 

.17 

.24 

.25 
0 

. 18 

. 16 

0 
0 

. 19 

.29 

.24 

.14 
0 

.14 
0 

0 
.06 
.06 
.19 
.J I 
.J I 

0 
.06 

0 

0 
0 
0 

.06 

.J7 

.J2 

0 
.14 
. 11 

Vcry snl:ll\ 

Smlll 
~' kdil1m 

l"argl" 
Very largt.· 

.25 
0 

.50 
0 

.25 

1.00 
0 
0 
0 
0 

.47 

.21 

.25 

.04 

.02 

.40 

.26 

.22 

.09 

.OJ 

.36 

.43 

.31 

0 
0 

.J] 

.24 

.35 

.04 

.04 

SITE SIZE 
.25 .4J 
50 .18 
0 .32 
0 .07 

.25 0 

.08 

.23 

.54 

.08 

.08 

.26 

.34 

.28 

.07 

.05 

. 15 

.40 

.JO 

. 15 
0 

.19 

.J8 

.3] 

.06 

.06 

.25 

.26 

.39 

.05 

.05 

.35 

.41 

.12 
0 
0 

.H 

.67 
0 
0 
0 

.40 

.21 

.29 

.05 

.05 

S;lmpll'S ize 5 2 156 J25 16 88 !O 45 9 359 J4 20 389 124 21 16 79 

From Eberl "!ld Guninn 1981 
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small scale. The Green River Basin is quite arid today and probably has been for 
some time; in most places rainfall is less than 400 -500 mm annually. Even on high 
plateaus and slopes, vegetation is sparse, usually covering nor morc than 20 percent 
of the ground surface, which makes a remote sensing approach to surface deposi
tional, erosional, and aggradational processes fairly straightforward. 

The Green River Basin seems to have been inhabited at relatively low popula
tion levels since the beginnings of North American settlement. Paleoindian, 
Archaic, Fremont, and Plains Indian groups have left their remains there for at least 
10,000 years: it appears that there may actually have been little difference in the 
lifeways of these people over a long time span, although the Fremont were at least 
partially agricultural while the others follo,,'ed a hunting and gathering way of life. 
The majority of archaeological sites found in the Grecn River Basin are Archaic, a 
broad typological category encompassing virtually all materials dating from about 
9000 Be to historical times, with assemblages consisting of s(Qne tools and debris 
and containing liulc or no pouery. Many Usit~s" found in the Green River Basin are 
hundreds of meters long and wide, contain tens to hundreds of hearths, and have 
relatively sparse bur even distributions of lithic anifacts. These assemblages and 
features arc very likely the result of the reoccupation of these places over many 
thousands of years, coupled with depositional and erosional processes encouraging 
the formation of superimposed assemblages or palimpscsts. 

The Green River Basin experiment coupled the mapping of natural surface 

processes with an on-the-ground archaeological survey carried out by the National 

Park Service Branch of Remote Sensing in 1983 - 1984. This experiment was directed 
toward evaluation of the cultural resources on lands surrounding the Seedskadce 
National Wildlife Refuge along the Green River that arc under the jurisdiction of 
the Bureau ofRec1amation. The explicit goal was to incorporate remote sensor data 

into a predictive model of archaeological site locations and rheir characteristics. 


Before the zones of differential geomorphic surface processes affecting the 

archacological record in a 559,000 ha ( 1,380,700 acre) study area could be mapped, a 

data source was nceded that would provide a regional perspective while permitting 

discrimination of different sorts ofareas with resolution at culturally and archaeo

logically relevant scales. Remote sensor data, particularly those derived from 

satellite-borne scnsor~, arc ideal for this application, particularly where Iitde on

the-ground geomorphological mapping has taken place. The basic data source used 

in geomorphological mapping ofthe project area was a I: 100,000 scale Landsat 3 color 

composite visual product. Composed ofan overlay ofbands 4, 5 and 7 data from the 

Landsat multispectral scann~r, this image has:l ground resolution ofabout 80 by 80 

m and approximates a color infrared vicw of th~ imaged scene. Color infrared 

accentllates vigorous vcgetation, permiuing discrimination between areas ofgrow

ing plant cover and bare earth; this capability is particularly useful in defining 
differential surface processes. 

Mapping was initiated by overlaying a sheet offrostcd mylar on the I: 100,000 
scale Landsat scene of the study area and placing these two registered sheets on a 
Iigh[ [able. Black-and-whi[e photo prints a[ a scale of 1:80,000 and arranged in a 
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mosaic fashion were checked against the Landsat image to define the bOllndaries of 
zones of different geomorphic pron.·sses on the mylar overlay. Geology maps 
prepared by the State of \Vyoming and Soil Cons{!'rv3rion Service provisional 
county soi\:; maps for Swee(Watl~r) Lincoln, and Uinta counties wcrl~ also consulted 
during the interpretation process. 

Although the information available from the Landsat image, the aerial phoLO
graphs, and (he maps was diOe-rent, the three sources were: found to be complemen
tary. The resolution of aerial photographs is many times greater than Landsat 
resolution, ofcourse, and permits identification ofsmall-scale topographic pattern
ing. For insranct', individual sand dunes and interdunal flats could be easily 
distinguished on the aerial photographs . Once areas characterized by dunes were 
located on the aerial photographs, the same areas were checked on the Landsat 
image, and the tonal and textural qualities of those areas wert' nott.·d. By using the 
patterns identified in this way, we were able to derect additional dune areas directly 
from the Landsat image, subject to verification using the aerial photographs after 
such an interpretation was made. In some cases the geological and soils maps were 
useful in checking and placement of boundaries, although these maps wt,'re far more 
generalized than the geomorphological mapping done from the Landsat data. 
Photointl.'rpretation could have been performed using only the aerial photographs, 
but this would have required the construction of a control network (sec Ebert 1984) 
for about 100 prints, a very difficult task. Landsat data arc geometrically corrected; 
thus, these data are ideal for environmental mapping such as that undertaken in the 
Seedskadee project area. 

Fifteen of the larger geomorphological zones (Figure 9.12) were grouped, for 
purposes of discussion, undt.·r six general h('adings with assumed depositional and 
postdepositional significance: 

I. Terraces formed largely by fluvial processes. This class includes both 
presently activl' terraces and those formed in the more or less recent past
possibly as early as the Pleistocene. In the most recently active of these areas, 
channel and overbank deposition dominate the depositional processes, while 
on earlier terrace surfaces slopewash, sheetwash, and aeolian proet.'sses are 
common. 

2. Playas and Flaes consisting of relatively flat areas experiencing slow 
deposition affine-grained sediments. Deposition in these areas is facilitated by 
either internal or external drainages. \Vhen dry, these areas are subject to 
aeolian denation. 

3. Dunes, which in the study area occur nor in extensive fields but rather 
interspersed throughout badlands, flats, or along the edges of intt.·nnirrent 
watcrcoursef> \l"hcre sand is plentiful. Some dunes 3.lso occur where mesatop 
scarps CJuse the wind to drop its sediment load. Presently active dune areas, 
which form the majority of the areas included in this catc:gory, are character
ized by connected crescentic or barchan dunes; at least two areas of earlier, 
relatively well stabilized p:lfabolic dunc.:'s an.' also found in the study area. 
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Figur~ 9.12. Geomorphologic.!l mrlJ.ce unus in(crprt'{cd \'Isu.111)' from .lb.ndsl.t color 

comp0Sltt: prill! "lnd I;&O,OCJO snk ;u:ri:J.1 pholOgr.illphs in ,md Hound (he Sccdsbdct' :'\:J.tioOJ.1 Wildlifc 
RdugL' on th<.' G rl'en Ri \'(.' r, ~ou{hw('~[('m Wyoming. ThIs map W.IS com piled J. 5 pari ora dis tributi onJ.! 
arch3cologic .\1 sUfn:y of (he an'a ( W :tnd _~ nidcr and [ben \( 83). Rl' )ul (~ iod le,He [hal much 01 w\lJ.t Wt.' 

~l'C lnd bound .l it "si ll' <" ,. m:ty bt' {he rouh of reLu i\'(:ly IOC.lI dtlTl'ft."nCCS in po~ {dl'posi[ion:J.1 proct.'ssl'S 

:md 31so is probably h(';n , jly inllucnct=d b~' the surn:-y J.nd record mg methods ('mplo~'l·d. The "sift''' is 
no t .\ ro nc fct d y dclinc.l cnt ity and may bc .m in:appropriJ.[c unll ofh-'cording Jild an:ll p is; lo r purpost.·s 

of ('xpllnJlory Jrchaeology. 
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4. Badlands consisting of highly eroded ,hales with a dense and reticulate 
drainage. In most cases rhjs geomorphological class is interspersed with flats. 
dunes. Jnd small remnants of earlier surface or U mesa" areas. 

5. Mesatop areas, which are the more or less disst'ctcd remnants of earlier 
Tcniary gravel / sand bedrock surfaces. Four ml"sarop areas were distin
guished on thc basis of their landform and by the fact that at least some 
vt"gcrarion cover (dominated by Basin big sagebrush [Arrrmisia tridrnt(lta 

Iriden/tlta} and grasses) was distinguishable on {he Landsat image of these 
areas. 

6. Agricultural Areas irrigated with water from the Fontenelte Reservoir or 
the Grecn and Black's Ford rivers, which arc extensively modified and 
probably nced not be further considered by archaeologists, at least by 
archaeologists searching for surface remains. 

Archaeological data wcre collected in this study area through a nonsite or 
distributional archacological survcy strategy (described at length in Chaptcr 4) to 
rest these formul:Hion s and arc still being analyzed. One pertinent observJtion 
made during the collcction of the archaeological dara was that the scale of surface 
processes with apparent relevance to artifact distributions may be far smaller than 
the scale of surface processes that can be discerned on Landsat MS S or small-scale 
aerial photographs. More reeendy, surface geomorphological processes have been 
reinterpreted using stereoscopic phorointerpretation of I: 12,000 black-and-white 
aerial photographs of the 500 by 500 m sample units within which field archacological 
recording took place . \Vhilc the initial, small-scalc photointerprctation was 
directed toward understanding gmeral postdepositional characteristics across the 
study area, this second analysis will be applicd directly to the task of filtering out 
postdepositional processes affecting specific archaeological materials found during 
survcy. In order for this to be accomplished, it is clear that artifacts rather than sites 
must be the unit of discovery and recording. See Chapter 4 for a discussion of the 
advantages (and, I would suggest, thc neccssity) of a distributional archaeological 
approach. 

Remote Sensing and the Measurement and Meaning of Ecosystemic 
Variables for Archaeological Modeling and Prediction 

In C hapter 4 of this volume, Kohler and I havc suggcsted that one avenue by 
which archaeolog ists might move beyond the empirical, inductive gent'ralizations 
that we currently refer to as Hpredlctive modding" is by attempting to use 
ecosystemic rather th:ln simply environmental or landscape characteristics as inde
pendent variables. It is the organization of human J)'ftemJ that we must understand if 
we arc to explain the mechanisms behind mobility, the placement of activities in 
space, and the locations of discarded archaeological evidence. It was pointed out 
that at the systems level human organization responds not to the unique placement 
ofspecific resources at a single time and place) but rathcno the regional spatial and 
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temporal patterning of all resources-that is, (0 (he organization ofdH: ecosystem 
as a whole. 

There afC abundant means tor measuring simple environmemal variables 
slope angle and aspect, distance to water sources, elevation, and {he like- and this 
is probably rhe major reason why these quantities are used as variables in most 
contemporary predictive modds. Measuring or even idemifying ecosystem varia
bles is more ditlicult, and the first step in using such variables in modeling, 
prediction, and explanation will consist of research inw new measurement tech
niques. Remote sensing is one source of such techniques that is increasingly 
available to the archaeologist. An example of a remme-sensing-based approach co 
the measurement of one possible ecosystem variable-environmental diversity
will serve as an illustration of possible research directlons. 

Environmmlal dirfrsily, as the term is used here, is a measure ofsp;)[ial heteroge
neity in resources; even in a very general sense it is obvious that thjs variable should 
have consequences for the organization of human subsistence behavior. In an 
environment where many difTt:rent resource species are distributed evenly, a 
human group dependent on these reSources should minimize energy expenditure 
by being sedentary and territoriali if resources are clumped rather than evenly 
distributed, then high mobility will be necessary in order to exploit the rull range or 
resources. 

In order to examine the potential of this variable for explaining differences in 
human mobility and resource procurement, Harpending and Davis (1977:276) have 
suggested a umodel" consisting ofa one-dimensional environment along which the 
occurrence of a variety of natural resources is measured and for which the abun
dance ofeach resource is graphed 3S a continuous function. The complex continu
ous function represented by each resource can be viewed as [he sum of Fourier 
components-a series of sine waves of different frequencies added together-and 
the resulting power spectrum can be analyzed. 

Harpending and Davis initiate their model from the stance that hunter
gatherer groups seek or desire maximum variety in their diet, an assumption that is 
far from proven but one that is common in the Bushman literature and in fact in 
most literature dealing with generalist hunter-gatherers. If this assumption is 
correct, however, it is clear that people pursuing such an adaptation would seek 
areas in which to live and gather roods that had the maximum possible variety or 
rood. 

Harpending and Davis also hypothesize that the benefit that hunter-gatherers 
derive from increasing the size of their range is greatest when resources are out of 
phase-t hat is, they do not co-occur perrectly-with a cycle or redundancy oc! km 
to 100 km. \Vhen all resources occur togcther at discrete locations, the benefit from 
increasing range size should be less. Maximum range size would be expected where 
there are few rcsources and where those resources arc maximally out of phase with 
one another over distances of 1-100 kmj minimum range size should occur where 
resources show little spatial variation or where many resources co-occur. Harpend
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iog and Davis also suggest some implications for group sizes: groups with maxi· 
mum range sizes and cxrremely high mobility in low-abundance, om-of-phase 
resource environments should be relatively small with poorly defined local bound
aries (for instance, in the Kalahari Desert) . In the minimum range-size category) 
small groups would be expected with litde spatial resource variation (e.g., in 
tropical rainforests), while larger groups would occur when resource variances arc in 
phase (for example, on the north"'c,, coast of North America). 

A [cst of anthropological and archaeological implications of stich expectations 
would depend on the measurement of spatial variation in resource patterning over 
large areas, something that is excrcmeiy difficult to do. Ecologists mcasun.' such 
variation by counting and weighing types and numbers ofplants, an c:<pcnsivc and 
time-consuming process even in small tcst plots . In addition, thcre is thc very real 
danger in on-the-ground efforts of becoming "too close" to the data, of placing 
emphasis on taxonomy and the specific properties of individual taxa as Udetermi
nants," to the detriment of a wider perspective. For both economy of effort and 
maintenance ofa regional perspective, remote sensing methods may be superior to 

on-the-ground ecological measurements of environmental diversity. 

Remote sensor imagery, particularly photographic or muldspectral represen
tations of ground scenes, contains information on the reflectivity of different pans 
of a scene covering a portion of the earth's surface. Reflectivity is determined by 
ground cover, soil type, topography, and an amalgam ofother natural factors-all of 
which would correspond to a greater or lesser extent with the distribution of 
vegetation. Since animal life is dependent upon the patterning of primary produc
ers, remote sensor data should convey information about faunal resource distribu
tions as well. 

The limits of 10-100 km suggested by Harpending and Davis (1977) as a 
relevant distance for the discussion of resource periodicities among human groups 
cover a significantly larger span than do most aircraft platform images. For this 
reason, Landsat or other satellite scanner data may be the ideal media for experi
ments in the measurement of archaeologically relevant environmental diversity. 
One objection often raised concerning Landsat MSS data is its lo~' resolution, so a 
consideration of the sufficiency of these data for spectral analysis of the sort 
discussed above is perhaps in order. 

As will be discussed later in this chapter, the periodicitics of occurrenCl' of 
resources or of the landform characteristics that determine the distribution of 
resources constitute one propeny of the environment that can be measured to 
arrive at data that qualify as ecosystemic. For instance, the ecosystemic properties 
of an area may be very different if there arc five apple..' trees and five orange trees 
than if there arc 500 orange trees and 500 apple trees. A rule of thumb for the 
measurement of periodicities from serial data, the Nyquist critcrion (G illespie 
1980: 149), holds that at least ""0 samples per cycle of the highest spatial frequenc), 
information to be obtained from an image arc required. A Landsat ~1SS image 
provides a ground coverage of approximately 185 by 185 km; to detect a 10 km 
spatial period, then, (2 x 18)' or 1369 samples would have to be derived from the 
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frame. Landsat MSS imagery contains some 1.6 x 10' pixels per frame, nearly 8000 
times as many potential samples as would be required for such sampling. Data 
derived through aerial photography are even more detailed. Conventional aerial 
photos contain about 4 x 10' pixels per frame, and high-resolution images have 
several times that many pixels (Reeves 1975: 1104). 

An early remote sensing experiment carried out to assess the possibilit y of 
measuring afchaeologically relevam environmental diversity using aerial photo
graphs focused on the lower Chaco River drainage and surrounding badlands and 
mc..'SJrop areas in northwestern New Nlexico during a cultural resources survey of 
coal mining lands (Reher 1977). An initial hypothesis advanced as pan of the 
explanation of Archaic sire densities in the study area was that Archaic site densities 
should increase as a function ofincreasing diversity in vegetation (Rcht'r and \Viuer 
1977: 114). This hypothesis W3S based on the assumption that Archaic peoples 
pursued;} generalist subsistence strategy, relying on a wide variety of vegetal 
resources throughout the year. This assumption may nm be totally valid or 
realistic, based on subsequent research (Hogan and Winter 1983; Moore and \Vinter 
1980), but a discussion afthe way in which diversity measures were obtained should 
help to point the way for future efforts in this direction. 

Two separate data sources were used to measufC,.' vegetation diversity: on
the-ground botanical survey and the analysis of aerial photographs. The aerial 
photographic measurements employed 1:6000 and 1:12,000 black-and-white and 
color rransparcncy aerial photos of the study area, which were analyzed using an 
International Imaging Systems analog image analysis system. One of the capabilities 
of this sysrem is a graphic readout of density changes in the emulsion of a 
photograph placed on a light table and viewed with a high-resolution video camera. 
Such a graphic readout ofdensities of course corresponds to differences in vegeta
tion, topography (shadow), soils, and other proxies of environmental diversity. 
Each photograph from the areal coverage of the study area was placed on the light 
table in turn, and the density graph of a north-south line across its center was 
cX:lmined. Peaks in this graph with an amplitude greater (han an arbitrary cutoff 
value werc countcd, thus providing a simple, efficiently derived measure of the 
amount of vari:ltion in density across each photographic frame. The number of such 
graph peaks counted was assigned as a "diversity inde:.<." [Q the area covered by 
each photo frame (Ebert and Hitchcock 1977:212). 

A \'egctativc diversity index was independently derived from analysis ofplant 
communities and associations measured on the ground; this index was found to 
correspond closely with the rcmote-sensing-dcrived index. Correlation of both 
indices with Archaic si{(~ location data derived through transect survey indicated 
that Archaic site density was highest in areas lying immediately adjacent to high 
vegetation or environmental div(·rsity areas, but that the sites were not necessarily 
within these areas themselvt·s. A possible explanation is that high-diversity areas 
arc extremely variable topographically and have active erosional and aggradational 
regimes. Thus, such areas may be inappropriate places co locate residential sites, or 
(he archaeological rccord in such arcas may be obliteratcd or hidden (Reher and 

Witter 1977). 
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In 1979, a cooperative study to Curtller investigate the usc of remote sensor 
data, this time from Landsat MSS, for measuring environmental diversity for 
archaeological purposes was initiated by the National Park Services Branch of 
Remote Sensing and ,he U.S. Geologie,1Survey's EROS Program. It was proposed 
that this study would incorpora,,' analysis of live 500 by 500 pixel (approximately 
27.5 by 27.5 km) Landsat 3 MSS subsccnes in the Sanjuan Basin m'arrhe 1977 Chaco 
River study area described above. The derivation ofa diversity measure from these 
subscenes was to be digital, and the diversity measure so derived was to be 
compared with an extensive archaeological compu((.'r data base that had recently 
been made available by [he Park Service's Southwestern Regional Office in Santa 
Fe. 

Digital analysis was undertaken at the EROS Da,a Center, a l : .S. Geological 
Survey facility in Sioux Falls, South Dakota, using two digital image analysis 
systems, ,he General Electric Image 100 system and ,he ESL !DIMS ( Interactive 
Digital Image Manipulation System). Suhscenes were ('xtracted from a Landsat 3 
MSS tape (data collected August 3,1979) and rerecorded OntO digi,al rape. These 
data were then analyzed using a maximum likdihood cluster c1assiflt~'r on the lDIMS 
system, A 50 by 80 pixel an"a from each subscenc that was judged to be represt'nta
tive of the variation within that subscene was first selected by the operators based 
on rhe ecologic/cover-type classification of the San Juan Basin discuss(.'d above 
(Camilli 1984). This small area was then randomly sampled '0 derive a training se' of 
5 percent, or 20 by 4 pixels. A fOtal of 164 such samples were derived from the four 
subscencs. Using these samples as training sets, an unsupervised classification was 
performed, and 13 classes resulted. These classes were interpreted and collapsed by 
the operators, again on the basis ofthe previous COYl'r-type imerpn~ta[ion as well as 
intcrnalized knowledge of the area, into Sl'ven nc\\' cover types, which wcre then 
mapped as zones (Figure 9.13). 

Once these steps had been completed, the EROS Data Center's Burroughs 
7fI:YJ computer was used to pass a 3 by 3 pixel filter through thl' seven-zone classified 
image. For each nine-pixel area, the central pixel was replaced with a value of0-6, 
indicating (he number of classes other than the class represented by the central 
pixel that were found within the flItt'r. This resulted in the generation ofa diversiry 
index (Figure 9.14), but unfortunately, edge elTects relating to the direction that 
rhe pixel passed through the data set were mtroduced into the results. A((empts 
were made to corren for this, but the configuration ofthe computer system at that 
time was such that it could nor be adapted to solve tht., probkms. For thls reason the 
proposed correlations between site occurrence and the diversity measure were 
never completed, J.lthough the merhod itself shows considerable promise. 

A number of things can be said about and learned from this last a[(empt at 
measuring environmental diversity as an ccosystemic variable with archaeological 
relevance. The first is that problems ofcoordination and equipment compatibility 
sometimes make it simplt:r and more cost-effective for a manager to contract with 
an accountable sciencist from the private sector for remote sensing research than [0 

rely on cooperative, interagency agreements. 
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Figure 9.14. A digit;tlly dc:rivl'd environment"j di,,'crsity indc..'x resulting (rom further computer analysis or the..' covl.: r-typc.' d:l.:>silicdcion sh o~·n in 
Figure 9.13. Fo( :a("h pix('1 in th e classified scene: [he number o("o\'cr types occurring \...iIhin :llhrc:c:.pixd f .. dills .....as counted; [hil> score was uSl'd [0 

deri ve: a din:rsilY index. Tht, d~ukt-s( .m:as have.' the lo....cst din'[sity and the lightnt areas han: the: highest diversity. Much past systemic behavior, 
incl uding si re location choice, may be more.: 3uribut.1blc [0 ('("osys(c.'mic variables, such as divc..·rsity, than lO spC'ci fic ~'l'gt'(ation Of ornc.'I resource: 
C'omposition, as discussed in the (t'xL 
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The second observation that might be made is that the technology of digital 
analysis of remme sensor data is changing so rapidly as to make analyses that were 
not practical using million-dollar systems only a few years ago possible today on 
small, stand-alone image processors. The RIPS (Remote Image Processing System) 
that Charles Robinove (1986) used to derive his Landsat-based diversity index in 
1984 is now available to the general public as a S5000 add-on to most personal 
computers. This diversity measurement auempr also illusrrares at least one appli
cation of remote sensing in which digital, pixel-by-pixel classification of data is far 
more useful than visual interpretation of an image imo zones or areas of assumed 
significance, for it would be impossible (Q pass a filter through an image ifir were nor 
composed of pixels. 

Finally, this example emphasizes the fan that remote-sensing-based 
approaches (Q the measurement ofecosystem variables for prediction and modeling 
have nor been perfected, and that it may not be easy to perfect them. Remote 
sensing approaches, like predictive modeling in general, can only be refined 
through cooperative research and development on the pan of managers and 
archaeologists. 

The last point is one in which remote sensing can, I feel, play an especially 
important role in uniting the etTons of managers and archaeologists. Remote sensor 
data forms an integral and all-important part of most geographic information 
systems (as discussed in Chapter 10). Such systems have been undergoing intensive 
development, particularly by natural resource managers and scientists, for at least a 
decade. I see focus on remote sensing as a primary data source for predictive 
experiments in archaeology as one way of developing a common ground, an 
independent data base, and ultimately an analytical tool that can be shared by 
archaeologists, natural resource scientists, and managers. Such a common interest 
could do much toward uniting cultural and natural resource management. 
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Chapter 10 

GEOGRAPHIC INFORMATION SYSTEMS: TECHNICAL AIDS 
FOR DATA COLLECTION, ANALYSIS, AND DISPLAY 

Kenneth L. Kvamme and Timothy A. Kohler 

INTRODUCTION 

TimorlT)' A. Kohler 

By this time we have seen chac predictive modeling ofarchaeological resourC('s 
may involve considerat ion ofche characteristics ofcatchments around potential si te 
locations, of distances to various resource types from potcntialloc.:alions, and of 
various characteristics of chc potencial site locacion i[scH~ ~taps ofseveral difTt.'renr 
resource types and landscape characteristics may each need to be analyzed in terms 
ofcatchment, distance, and point characteristics. Locations satisfying certai n crite
ria on all these maps may need to be identified and located. Geographic informacion 
systems arc a computerized aid for the collection, management, analysis, and 
display of the large sets ofspatia lly referenced data required for such projects. This 
chapter begins with an overview of what thcsl" systems can do and then explains 
their various capabilities in more dt'tail. 

Beyond its obvious role in helping [Q organize, overlay, and display data, a 
geographic information system (GIS) also may help agencies to make cul tural 
resource managt'mcnt survc.."y and predictive modeling efforts both more compara
ble from project to projt'C{ and more cumula[ive in their results. At present, the 
physical modcls-maps-product.'d by various archaeological consultants arc 
drawn to different sca les, using dine-rent standards. Ifinstead models were based on 
a si ngle G IS , or on compatible systems at identical resolutions, then they could be 
readily compared, and the predictions made by one group of modelers could be 
tested by later surveys more accurately and conveniently. Moreover, models could 
be easily relined and remapped, and the result s of these relinements (and the 

differences betl>'een versions) would be readily apparent. A good case could be 

made that either agencies shou ld maintain their own GIS and require all contractors 

to work on it, or they should maintain long-term arrangements with contractors for 

the construction ofdata bases containing environmental data, site location informa

tion, and predictive models so that the cvcle of model construction, testing, 
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revision, and verification could be carried forward cumulatively, This chapter, 
however, considers only {he technical rolc, not rhe implications for policy, that 
geographic information sy stems may have in rhe predictive modeling process. 

Maps can be defined as scales for measuring th t! property of loea/ioll for some 
attribute (Lewi s 1977:3 - 10). Map data diOer from other data in that the location of 
each feature relative to all others is maintained, making properties orIoc3rion (sueh 
as distance) readily available for study. Most of the large computerized software 
systems that archaeologists usc regularly (such as SPSS and SAS) ordinarily maintain 
information in a sequentially organized data base. Location can be entered in such a 
data base by introducing variables for northing and easting, for example, but the 
internal organization of the data base usually remains random with respect to these 
variables, and analysis of locational properties is cumbersome. 

In a GIS, on the other hand, the internal organization ofthe data either mimics 
that of the map from which it is distilled or is based on other conventions that allow 
the spatial structure of the mapped attribute to be easily reconstructed. This 
facilitates various spatial studies, such as those requiring distance measures ( includ
ing catchment studies), and permits overlaying ofvarious maps on top ofeach other 
so that the spatial intt'raction of the mapped attributes can be studied. 

A working GIS consists of software (computer programs), thl' hardware on 
which that software operates, and a spatial data base, bur the term GIS is often used 
to refer only to tht' soft wan: used for data cntry, management, manipulation, 
analysis, and display. ~1any geographic information systems have separate sys tems, 
or subprograms, for these various m:ljor functional categories. There arc probably 
welI morc [han 100 geographic informarion systems in use around the world. in 
many rimes thar numb,'r of installations; access to a GIS by researchers and 
managers in universiry and agency contexrs will soon be commonplace. 

Comparative reviews of the most common systems are now available: Hansen 
( 1983) compares MOSS / MAPS with !DIMS; se veral sys tem s thaI were originally 
designed to process remote sensing: data, including VICAR :lnd IDHv1S, arc com
pared by Bracken et .1. (1 983 ); and Erikson ct al. ( 1983) discuss three 
microcomputcr-based geographic information sys tems. 7v1unro (1 983 ) draws on the 
experience ofa large corporation in suggesting how a suitable GIS can be objectively 
selected from those available. Systems used by the Dominion ofeanada and by the 
states of New York and Minnesota are described by Tomlinson et al. (1976). Finally, 
rhe American Farmland Trust (1985) tabulated costs, operating environments, and 
data entry, editing, updating, retrieval, analysis, output, and display functions for 
65 geographic information systems, include l6 operating on microcomputers. Even 
such a recent publicat ion is already somewhat out-of-dare, however, as both 
hardware and software dcvciopments in this field are occurring very rapidly. 

Training in the structure and usc of geographic information systems is availa
ble from several sources (Table 10.1 ). Articles relevanr to geographic information 
systems appl'ar regul arly in rhe journals and conference proceedings listed in Table 
10.2, and Estes et al. ( 1984) and Marble et al. ( 1984) presc nt useful collections of 
GIS-related articles. 
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TABLE 10.1. 


Stltctcd training opponunities in geographic information 5ystcms 


Orga"iz.af;on 

Training ::md :\ssistanCl' Offi ce
U,S. Gcologicll Survc:y 
EROS 0:H3 Center 
Sioux F311s SD 57\98 
(1105) 5"'·0114 

Remote St.·mi ng imritutc 
South Dakot3 SI:Hl' Univtrsity 
P.O. Box 5(J7 
Brookings SO 57007 
(605) 688-'SI4 

Y:lll" CniVC-Tsit)' School oiForcsrry Jnd Em'ironml.:ntal Studic .. 

205 Pmspcct St. 

Ncw H:m.:n C T 06511 

(203) 430-Q.l.4O 

Laoorat ory fo r Application of Remote Sf."nsing Data 
Purdue t;ni\'(~rsily 
1291 C umbt"rland Ave. 
West LJ.f3Y{·[[l~ I~ 47906 

(317) '9'-6305 

Continuing Englnecring Educltion I)rogram 
George Washington Cni\'cnity 
\V:l~ hington, D.C. 20052 
(202) 676-6 106 

C r:lphics 3nd ImaSl~ An31)' ... i _~ Group 
Computing Sen'jct: Cc:ntcr 
Washington St:m: l:nivcrslI ), 
Pullman \VA 99164- 1220 
(505) JJ5 -04 11 

U.S. Fis h and Wi ldlifl' Service 

Di\'ision of Biologic:d S cr\'icc~ 


Western Encrgy 3nd bnd Usc: Team 

Drake C rcl·ksid c O nl.·, 2627 Rcdwing Rd. 

Flo Collins CO 80526-2899 


Gc:ogr:lphic Inform ation Sy sft:ms I.abo ratory 

Cc:ntr:ll Washington Cnivc:rsiry 

ElIc.."nsburg, \V A 98926 

(509) 963-1914 

AREAS 

:V1AP 

LAR5YS 

VICAR / IBIS 

l-IOSS/ )..1APS 

G RASS 
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TABLE 10.2 

Sdectcd journals :;md conference proceedings containing morc 3dv:mced discussions of geographic 
informacion syslCm$ 

JOURNALS 

Aria 
Cflnadian Carlograpbtr 

Computcr Vil;on Grapbj(j and Imag' Prowling 
CO"'PUllrt and G(rlfdmw 
COmpUf(r~. enPironmatl, and Urhan Spf07Jl' 

EnpirOl1mffl/ 

Enpjron"wlfaIManago"nfl 

Gw 
C'ograpbj(ol Anal)'lll 
Gto-Pro(iIJing 

IEEE TranlllCl;oflt on Gtouim(( and Rtmolt SlnJi"g 
IEEE '(1'a"r(1£I;,)"1 on Pdrtall .dnalyfllllnd Machin( lntdligUfu 
rnttrna/iona/7ournal of Rima/( SIn/llIg 

Pbotogra",,,,ttri( Eng;"ur;nf. and RtmO(, Serfling 
RunO/( Smsinf. ofEnJ'"w.tllml 

Soil Sl/rJlt)' (If/d Land Era/wd/ion 

PAPERS AND PROCEEDINGS 

Inr~rnarion:J.I S)'mposium on Compuccr-Assisrt:d C:Hlogr:lphy 
Inrern:niooa\ Symposium on Cartognphy and Compuring 
hucrn .. rional Sympo-~ium on Remote Sensi ng of rhc Em'ironment 
IlHern:uional Symposium on Sparial Dat:a Handling 
Annuli Mecting of the American Society of Phorogr3mlnetry 
Proceedings of the Pecora Sympo~illm 

ABSTRACTS 

GtO Abllram, G: Runoff Stnung, Phologram",tf')'1 and Carlogrllph)' 

THE POTENTIAL OF GEOGRAPHIC INFORMATION SYSTEMS 
FOR RESEARCH, DEVELOPMENT, AND APPLICATION OF 
ARCHAEOLOGICAL SITE LOCATION MODELS 

Kenmlh L. Kpl1mme 

The Need for Geographic Information System Techniques 

In the previous chapters, several methods and models for classifying a location 
or region as sirc-likely (or sirc-type-likely) were introduced. All ofthes. procedures 
are based, at least during some stage of the modeling process, on measured data 
(where measurements can also refer to nominal-level class catcgories), and many 
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require large numbers ofcalculations. The variolls quantitative approaches require 
measurements at each si te location (e,g., ofvarious environmental phenomena) and 
also at locations of background environment wht'n.' sites are nor pr('sent, termed 
n()nsiln, if a control-group approach is used during initial model development (sec 
Chapter 8). Similarly, measured data are required for all sites (and nonsires) in 
model resting phases. Finally, [0 apply mosr archaeologicallocarional models across 
a region ofstudy requires tremendous numbers ofmeasu rements. For example, ifa 
model bas('.'d on several environmcmal variables is ro be applied across some region, 
measurC'menrs of each variable might be rt'"quired every 50 m across rhe region for 
sutlicienr resolution in application. The problems of making vast numbers of 
measurements and performing an even larger number of statistical calculations 
constitute the greatest difficulries in the development, testing, and practical 
applicat ion ofmany archaeological modeling strategies in regional cultural resoutce 
management contexts. 

For the simplest application ofenvironmentally based models, slich variables 
as slope, aspect, and distance to water can be measured by hand at a specifIC locus on 
a ropographic map. A sire locarion model could rhen be applied to rhe measure
menr s (usually requiring a few calculations) in order to asscss the Hsite likelihood" 
or "site favorableness" of the location. This approach can be quite useful to cultural 
resource managers in assessing archaeological sensitivity at, for example, proposed 
well pad locat.ions. 

As the size of the area to be assessed increases, howcver (as the number ofwell 
pads increases and as access roads to the pads arc included in the project, for 
cxample), rhe labor-intensive hand measurement and calculation requirements 
rapidly become impracticaL J\1any projects on federal lands encompass large:: areas; 
in such cases, the logical approach would be to replicate the above procedure 
systematically across the area under considerarion, performing the measurements 
(and calculations) every 50 m cast-west and norch-south, for example. The outcome..' 
would be a wide-area Hsirc sensitivity surface" depicting favorable or likdy IDea
tions for cultural resources based on model specifications. Needless to say , perform
ing measurements of multiplc variables at some point on a map is quitc tedious; 
replicating rh is process evcry 50 m or so, even over a small area, is incredibly 
rime-consuming and therefore costly. In addition, once these data have been 
collecred, rhe rime and ex pense for all of rhe calcularions required to apply moS[ 
models must be co nsidered as welL 

As an illustration of the magnirude of this problem, rhe effort rhat. was required 

to produce a Hprobability surface map" ofsite presence for a single quarter section 

utilizing manual techniques can be examined (K vamme 1983a; this map is illustrated 

in Figure 8.1). To produce this map, six environmental predictors (slopc, aspect, 

view anglc, shelter rank, vantage distance, and distance to water) were measured 

by hand at 256 points evenly spaced at 50 m intervals across [he.: quarter section for a 

total 0(1536 measurements . Next, the probability ofeach location's membe rship in 

a site-prescnt class, conditional on the measured data, was estimated by a preestab


lished discriminanr function. The mathematical operations needed to assess one 


497 



KV AMME AND KOHLER 

location required roughly eight additions, three" ~ub[ractionsl nine multiplications, 
one di\'ision~ and three l'xponcntiations; for all 256 locations approximately 6144 
calculations WCTC performed! Finally, it was necessary to produce a graphic ofrhe 
result for l'ach location, which constituted a mapping of the model; this required 
further efiort. It is clear that application of this kind of model utilizing manual 
techniques is impr3.crical for any but the smallest of regions. 

:Vhnual technique:; pose a number of probkms in rht" model developmeot and 
testing stages as well. Perhaps most apparent is the effective limitation of :iample 
sizes owing to the excessive labor requirements of measurement. For example, a 
region might contain several hundred known sirl's, bur ir might nor be possible to 
USc all of them for model development or testing because of the difficulties of 
measurement. This is even more likely [0 be the case for nonsites if the control
group approach is used, since potential sample sizes of many thousands of nonsites 
can in princlple be obrained from th(' background cnvironmenL 

Perh:J.ps a more sl'rious eflect ofh:md-measureml'ot of variables is that a large 
amount of variation can be introduced into an analysis simply through measun:
ment error. Significant differences can be: observed between ml'asurl'ments taken 
by diffcrent people or in measurements made by the same person ar different rimes, 
eVl'n for variabk's as easy to me:J.sUrl' as distance to nearest stream or slope as 
percent grade. This factor C3n introduce major variation into the outcome of a 
model and can also aficct the application of a model. 

A major disadv:J.nrage ofmanual measurement has become apparent only with 
the implementation ofcomputer-based GIS technology in archaeologicalloc:ltional 
studies. Hum3n measurement, primarily because it is slow and rime-consuming, 
actually limits the kinds ofphenoIlll·na that might potentially be examined, or eyen 
conceivcd, in site location research. For example, for:J. given locus on a map (s uch as 
a site location), or even for sevcralloci, it might be possible to esrimate a least-effort 
travel distance (as opposed to a linear dist3nce) to a nearest water source (discussed 
below), or it might be possible to calculate, as a relative measure of view quality, the 
percentage of terrain that is visible within a given area. It is not possiblc to do these 
kinds of calculations manually for many hundreds or thousands ofloCJ.tions (or, for 
example, C'vcry 50 In across a map area). In fact, since we inherently think in a 
Hmanual mode," such variables are r:J.rely c\'cn considered. This poses a serious 
constraint on archaeological locational research. 

Archacologists an: great gMhcrers of information. \Vc collect data pertaining 
to where sites arc found or even where individual artif3cts are located. \Ve gather 
inform:J.tion describing regions surveyed, th(" intensity of the survey, when the 
region was surveyed, and who surveyed it. \Ve collect data about site content, the 
locations of features and artifacts within a site, cultural affili:Hion, various site 
components, and the amount and kinds of work performed. Various ecological d3ta, 
such as environmental J.ssociations, might be recorded, as well as modern features, 
sllch as existing roads, trails, dwellings, and towns. It is important to recognize that 
much, perhaps most, ofour data arc geographically distributed; that is, they have a 
mappable component. A major problem is that it is often difficult to managl' large 
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bodies of regional information and to retrieve particular information because parr of 
the data might exist on maps while other information might be located in site forms, 
in project reports, in published articles, or even in museum collections. The 
usefulness of our great collecting efforts is thus severely compromised. 

Finally, archaeologists ha\'e been working with unmanageably large, geograph
ically distributed computer data bases, such as digital representations of remotely 
sensed images or digital terrain models, for a number of years (e.g., Green and 
Stewart 1983; Lyons and Hitchcock 1977). These unwieldy sources of information 
are often difficulr [0 analyze, explore, and manipulate, and it is not easy to arrive at 
conclusions about them (MCLeod and Jafek 1984). Various sources of data might 
occur at different scales, in several map projections, or might even be geometrically 
distorted owing to the tilted angle of a remote sensor platform, making it difficult 
not only to regill" one source ofdata to another(such that a particular point in space 
lines up with the same point in all the other data sources over the entire reglon of 
study) but to locate even a single point in space in all data sources. These problems 
are major limiting factors in [he practical use of these data bases in regional 
archaeological investigations. 

GIS technology can virtually eliminate these problem areas and limitations. 
First, computers can perform many thousands of measu rements of potentially all 
variables examined in site location studies in a matter of seconds and permanently 
store those measurement s for later usc. This virtually eliminates sample-size 
problems for known site locations and also permits us to obtain extremely large 
samples of the background environment (or nonsites) for comparative studies as 
well. Second, sllch complex cllculations as probability estimates can be performed 
quickly and in large nllmbers. Third, cartographic capabilities inherent in a GIS can 
provide maps of virtually any result quickly and at low cost. Fourth, variation in 
melsurement is entirely t'liminated: the computcr produces the same result every 
time. Fifth, depe nding on the ingenuity of the user1 the available software, and the 
software dcveloper, the porential for creating and exploring new types of inform a
tion of relevance ro archaeological n'search and problem solving in site location 
studies is limitless. LJs t, geographic informat ion systems provide.:.' 3. comprehensive 
system for the managL'ment orlarge, divcrse, and unwieldy geogf3.phic data sets 
obtained from virtually any sourcc, such as site files, aerial photographs, remotely 
sensed image!"}', or convemional maps. All types of information, despite their 
original disparity, are referenct"d to a common geographic coordinate base (such as 
longitude and latitude or the V niversal Transverse Mncator grid), providing a 
logical means for d;:tta storage, manipulation, retrieval, and interpretation . Thus, 
only through GIS capabiliries does it become possible to utilize many of the data and 
approaches toward understanding and modding prehistoric site distributions that 

have been outlined in this volume. 


The following sections describe in greater detail the mechanics behind geo

graphic information sy stems and their capabilities for archaeological locational 

research. The material in these sec tions is not necessarily limited to a discussion of 

what existing geographic information svstems are able to do. Rather, the goal is to 
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present what a GIS can poun/jall)' offeT to archaeology without the restrlc tion of 
working with exis ting systems, since few have been designed with tht' archaeologist 
in mind. Thus, the use ofa GIS £0 provide measurements ofsuch concepts as terrain 
variability, view qUlliry, vegetation diversity, or poinr-ro·poinr visibi1ity, for 
example) will be discussed. The ability [0 compu te such data, of COUIse, may not 
available in most commercially produced geographic information systems, yet it is 
these kinds of data that are vital ifgeographic information systems Jrc to be useful 
[Gols, Tat her than restrictive tools, for archaeological research. Archaeologists 
should certainly have the ability, monetary or otherwise, to influence software 
developers to provide necessary computer progrJ.ms, J.nd many J.rchaeologists J.re 
rapidly gaining expertise as computeT progrJ.mmers themselves. ~1oreovt'r) many 
governmental agencies employ programmers to meet the variolls information ne~ds 
of their personnel. Hence, there is litrle reason why archaeologists should not have 
access to a GIS with capabilities tailor-made to meet their analysis needs. 

The Fundamenrals of Geographic Informarion Sysrems 

GeogrJ.phic infotmation systems arc compu ter-based means for assembling, 
analyzing, and storing va.ried forms of data corresponding to specific geographical 
areas, with the spatial locations of these areas forming the basis of the system 
(Tomlinson et al. 1976). The teTm GIS) as used here, is restricted to computer 
systems that art~ able to interrelate sets of data representing difIerent geographical 
\'ariables, as opposed to systems that mt"Tely manipulate or map individual filc.:s of 
geographical data (Rhind 1981). As Bryant and Zobrist put it, geographic informa
tion systems "seck to capitalize on the synergism inherent in being able to 
automatically compare a variety ofsocioeconomic, environmental, and land use data 
sets for the same point on the ground" (1977: 120). 

Virtually any type of geographically distributed information from any source 
can pO[{'nti3Ily be encoded in computer-compatible form. By using a GIS it is 
possible ro extract information from digital geographic data bases, manipulate the 
data, derive new data, and analyze: this information to propose solu tions to prob
lems. Thus , geographic inform3tion systems 3re able to transcend the role ofmerely 
processing ;lnd displaying information; they also can be incorporated into the 
analysis, interprctation, and problem-solving aspects of research in geographically 
distributed phenomena and processes (Hasenst.b 1983.). 

Many types of geographically distributed data can serve as the primary 
information portion ofa GIS: elevation data; river and stream locations, vegetation 
patterns and soil types (which might be derived from satellite remotc sen sing), 
known archaeological site locations, and regions of planned construction or devel
opment arc examples. At its simpkst, a GIS can be lIsl·d to rctrit:'vl.· spatially 
distributed information that is encoded in data bases for :1 specified coordinate 
point, such as the locus of a small archaeological site. 
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Such a procedure, however, dot's nOf fully utilize a central capabilit y of 
geographic information systems-the ability to derive new information beyond 
rhat originally encoded in the data base (Collins and Moon 1981). ForcXJmplc, from 
interrelationships between known points of elevation in the data base if is possible 
co estimate, at any locus, values of slope, aspect, and a variety of local relief and 
terrain variabilit), measures, or major drainage basins can be defmed using the same 
data (Monmonier 1982:76-79). Points of vantage, such as hilltops and ridges, can also 
be determined (K \'amme 1983a). From a digital hydrology net, distances to nearest 
seasonal or permanent screams can be computed, and from digitized vegctation 
data, distances (0 a specified plant community (Lt,(' e( a!. 1984), complex indices of 
vegetation diversity, or even local caloric potemial can be measured. Li$tings of 
nearest neighbor si tes and distances can be obtained, as well as the distance to a 
cencral place village from a data "layer" containing known archaeological site 
locations. 

An important benefit of the data-generating capabilities of geographic infor
malion systems is that information thac was previou sly impossible to obtain owing 
co the sheer number of required calculations Cln be derived. J\llaximum view 
distances, measures suggesting shelter or view quality, lnd lelst-effore cravel 
distances arc all potential information classes thac illustrate this property. The next 
section discusses in greatcr detail the nature o( these various allal:fti(al SU~ra(t'f. 

GIS Analyrical Surfaces 

A cemral GIS concept is that ofamJ/)'fical Hl~ra(r'JJ which refers to the individual 
"layers" or data planes of information in a geographic data base (Na tional Research 
Council 1983:41-43). Primary sources of information necessary for the construction 
ofa GIS must bc encoded in computer-compatible.- form. For regional archaeological 
research, primary information might include environmental data, such as eit:vation 
eoncours) ri\fe r and stream locations, and vegetation and soils types, as well as 
cultural data, such as known archaeological site locations, archaeologicall)r fleld
inspected regions, access roads, and areas of planned development or impact. 

It is poss ible to obtain through the U.S. Geological Surve~t or private compan
ies many types ofgeographical data, parricularly regional elevation data, already in 
digiral form and on computer tape. For example, digital terrain tapes, which were 
originally produced by rhe Army 1vlap Service (now the Defense Mapping II gene), ), 
arc available at low cost from the U.S. Geological Survey (National Cartographic 
Information Center 1980). The digital terrain tapes were produced by digitizing the 
elevation contours on 1 :250,000 scale topographic se ries maps , lnd they arc available 
for the entire United States (Do),le 1978: 1484). As mighr be expected, rhese dara are 
somewhat crude owing to the scale of the original map sources, and recent studies 
(S tow and Estes 1981 ) point to inaccuracies in the resulcing elcvarion surfaces (e. g., 
small ridges, drainages, and canyons are und('rrepresclHcd). 
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As an alternative, lhe USGS is currently producing highly accurate digital 
elevation models (OEMs) that arc obtained rhrough digirizarion of 1:24,000 scale 
ropographic maps (Doyle 1978: 1484). Not only tho' elevarion dar a bur also other 
classes of planimetric information, including hydrologic and cultural data, such as 
road networks, arc available for these maps . A limitation of this data source is that 
only a small percentage of rhe quadrangles across the country have been digitized to 

date, although the USGS ult ima rel y plans to digirize all the 1 :24,000 scale maps. For 
a particular study region, high-quality elevation and hydrologic data, two of rhe 
most imponanr sources of information for archaeologicallocational studies, may 
already be available in digital form. It is unlikely, however, that other sources of 
information, such as vegetation and soil data, will be available in digital form, and 
archaeological data certainly will not be available. As a re.ult, it i. often necessary to 
digitize these data electronically. 

A commOn digitizing procedure utilizes a digitizing tablet and cursor (Mon
monier 1982:7; Rogers and Dawson 1979). With these devices, such pictorial infor
mation as elevation contour lines or stre:lm courses arc manually [[aced and 
encoded in computer-compatible form (Figure 10.1). The tablet may contain as 
many as a million X,)' coordinates per square:.' inch (Cakomp 1983 ); as the lines arc 
being traced the), are electronically converted to corresponding X,) ' coordinates that 
the computer is able to utilize. This procedure is, of course, somewhat labor 

Figure 10.1. il.h nu:Jl digitizing of cont our lincs through us.: of a cursor :J nd digitizing I;\blc i. Pic torial map 
inform:l.lion . 3ffixt"d to th l" tabkt. is con Vl..'rt cd toxv'coordin :tt t"s br manually pos itiotling the cros s h:J. irs all hl" cursor 
over the inc cndt:d poin t :,md press in g a bUlton. Thl..· keys on the cunor cont rol diOt-re nt functions or (lllo \'\" l·ntT)' of 
category codes. 
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intensive. For example, digitizing rhl' elevation contours on a typical USGS 7.5
minute quadrangle can take anywhere from one to six (or more) person day ::;:, 

depending on the complexity of the terrain. State-of-the-art digitizing technology 

utilizes optical scanners to digitize complex pictorial information in seconds (Leber! 

and Olson 1982). but this equipment can be very expensive. 


The primary data aTe usually derived from traditional maps, but other source5! 

suc h as preclassiiicd or interpreted remotely sensed digital satellite images, can be 

used (Shel ton and Estes 1981; sec below). However they are ocquired. the several 

primary surfaces ofdigital information that the GIS needs aTe encoded and stored in 

the initial data base (Figure 10.2). Computer programs then are able to utilize these 

primary data to derive secondary information rhat often is more uscful rhan the 

primary data (Collins and Moon 1981). For example. slope estimates. aspect esti 

mates, or distances to nearest drainages might be derived (from elevation and 

hydrology surfaces, respectively) and stored as new and distinct analytical surfaces 

(Figure 10.2). 


ORI GINAL GROUND 

SURFACE AND PRI MARY SECONDARY 


THEMATIC MAPS SURFACES SURFACES 


e 

d 

a 

Figure 10.2. Construction of:l G IS. From the origina l bnd su rface (b), YJrlom them.Hie m::.ps :1ft' producC'd, such :IS 

dt"VOltioll co ntours (c) , hydrology (d), ::tnd (Ofl'stl,.. d :m."J.$ (c ). 'I'hcsc m ;lps :Ire dIgitizcd :md converted [0 prim.uy byers in J. GIS 
reprcscuring an dention su r(,Kc (1),:l h)'drology ~ur{3Cl': (g). _lIld J fOH' s t loc3tion surf:.ct' (h). which are all rcii:n.'nct'd 10:l 
reference grid. )!ouch:1') the t)Ti\·1 grid (:1). FrO'lllhe dey,Hion :-.mCJ.CL' .;.uch sn:ond;Jry surfaces JS ~ Iopt: (i), :lSPCCI (i). :md 10(:11 

rdicf(k) migh t be obt;\ill~d. Thc hyd rology S Urf:ICC mighr provide.1 ~ ccondJry surf.1cc .showing di,)tJllce (0 n('uest dr:-..inl ge 
(i)1 and thc fon:sr iocation !iur(aCi.: might yidd a surf:KI.: showing distancC' to n(,:Hcst fore:H (m). 
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A basic principle of geographic informacion sys tems is thar the users provide 
rhe systt"m (through digirizarion or other means) with rhe minimal information char 
it needs (primary layers). The GIS itself subsequently derives secondary sources of 
data by means of variolls software techniques. Both primary and sl·condary surfaces 
can then be lIsed for analy tical or display purposes. The specific ways in which these 
data are utilized, howt'ver, depend on rhe nature of the panicular GIS. 

GIS Types 

There are two fllndamental GIS designs. A vec[Qr-bascd GIS, such as the 
Department ofrhe Interior's i\10SS (Lee er al. 1984), stores data as a se ries ofpoinrs, 
lines, or polygons that arc lIsed (Q idenrify discreee features char typically occur on 
traditional maps (vl'{{or is another word for a line between two points). A cell-based 
(sometimes called raster-based) GIS, such as the Dcpanment of the Imerior's 
MAPS (a subsystem of MOSS), superimposes a regular grid containing rows and 
columns of ceUs over the region Jnd assigns a numeric \'aille to each cell (Figure 
10.3). Each design has certain advantages and disadvantages in terms ofarchatologi
callocational analy sis and modeling. 

Valor-Baud Geographic Information System, 

Vector-based geogr:1phic information systems accommodate information dig
itized as points, lines, or polygons (i.e., mappable data; Figure 10.3). Computer 
storage requirements for this information are minimal since only the coordinates of 
digitized poims ( points along line or polygon boundaries) arc srored. A vcctor
based system is suitable for cultural resource information managr!mmt since various 
mappable entities-archaeological sites, site boundaries, surveyed regions, and 
archaeologically sensitive lones - arc easily retrieved and displayed, as are other 
typt·s ofdiscrete map information (e.g., specific soil tyPl' locations). A vector-based 
GIS Can also be used for the display ofvery simple site location models that arc based 
on a one-to-one correspondence bt't ween the locations ofsites and discrete catego
ries of information, such as plant community or soil type locations (Thompson 1978; 
sec also Cordell and Green 198]). For example, ifa site location model suggests high 
site density in pinon-juniper settings, a vecror-based system can easily present a 
series of polygons showing [he locations of high-site-density pinon-juniper lones. 

Although vector-based geographic information systems can be used to manage 
and di splay discrete classes of map data, these systems arc unsuitable for many of 
the analysis and modeling techniques described in earlier chapters. In analysis and 
modeling contexts, systematic measurements or observations of environmental or 
other features are required (e.g., every 50 or 100 m across a region ofstudy). In otht'r 
words, spatially contiguous values of the data arc necessary. In \'cctor systems s-uch 
information is not available; data values are prescn t only at point, line, or polygon 
boundaries, which constitute only a very small portion of any region. This shon
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Figure: 10.3. CllJr:-u: lt.'rinics or lTIJ I> inrorm:uion in \'C' ('" [or·b::a~l:d and Ll'lI-baM:d g:cog,raphit: informa tion 
systems (l (t t..: r U:C' l't a\. 1984 ). 

coming is further illllsrrar~d by the fact that even if continuously varying map 
information is available in digital form, such as elevation or slope values, such data 
must be tran sformed [Q line data by conrouring or by categorizing the continuous 
measurements into discn.'rc classes (e.g., level vs steep ~lopes) [Q be handled by a 
vector GIS. 

Ce/l-Bartll Geographic Illformatioll S)'itemJ 

\Virh a cell-based or raster GI S, boch categorical and continuolls map informa
tion can be: incorporated. Since a grid is superimposed over the entire region, each 
analytical surface is composed of ro\\'~ and columns of grid cells, each cell corre
sponding [Q a fixed area in real space and each containing a value for that area 
(Figure 10.3). For example, an devation surface would contain an elcvation in each 
cdl representing the height of the ground; a slope surfacc would contain a slope 
measurement in each cell; and a nominal-level surface, such as a representation of 
plant community location s, would contain a unique value in each cdl, with each 
value corresponding to a specifiC plant community class, Since a value mll~t be 
s[Orcd for each cell for each analytical surface, cell-based geographic information 
sy stems typically require large amounts ofcomputer storage , O wing to the gridding 

or ralllriUl101l of features, the quality of display of information can sulfer to some 
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extent (Figure 10.3), although this depends on the resolution (,ize) of the cells and 
of the display device (sec below). These dif1iculries arc decreasing, however, 
because mass storage and high-resolution display devices arc rapidly becoming 
avajlablc at low cose. 

Since ccll-based geographic information systt'ms can accommodate continu
ollsly \'JTying and categorical information, treating each as J surface of contiguous 
values, and since they can easily derive and s{Orc many types aC new data of 
relevance to archaeological inquiry over entire study regions, this type arGIS is well 
suited for archaeological locational analysis and modeling research. Additionally, 
with a cell-based GIS each analytical surface, regardless ofrype, can bt~ treated as an 
"image l

' (referred to as a ph'udo-imagt' in image analysis). This means that the 
researcher can make lise of the large nllmber of availablt~ image analysis, manipula
t ion, and classifica [ion rcc hniq lies (sec Chapter 9 for an overvie\v ofsome of t he-sc), 
as welIas a host ofimage-processing soft warc packages (sec Kohler's briefoverview 
later in this chapter). The following sections focus on cell-based gcograph.ic infor
mation systcms since they arc better suited for the archaeological analysis and 
modeling approaches discussed in this voluml', 

GIS Issues 

Several issues in GIS research are of imponancc to archaeological modeling 
applications. One issue is thar ofcell ,ize in a cell-based GIS (Wehde 1982). The size 
or resolution of rhe cells is extremely important because it dctermines the nature 
and quality (accuracy) of the features that can be analyzed. For nominal-level 
features, sllch as vegetation community locations, a Jargt~ grid may severely mis
represent thc true shapes and sizes of the categories, which may result in inaccurate 
bord<"r and lrea estimltes (Figure 10.4a). For continuous data, such as an elevation 
surface, large cells tend [0 smooth features of the terrain; small ridges, canyons, or 
drainages might be underrepresented, less pronounced, or even invisible on the 
gridded surface (Figure IOAb). An additional result is that any surface derived from 
such an elevation layer (e.g., slope, aspect, relief, and ridge identificationj sec 
below) will also be smoothed. 

Although small cell sizes may portray various fearures more accurately, an 
imponant consideration is (hat computer storage requirements increase geometri
cally with decreased cell size. For example, to store [he information from a typical 
7.5-minute USGS map gridded in cells 100 m on a side (about one-sixth ofan inch on 
the map) would require about 15,000 cells per layer of data; celb 50 m on a side 
(about one-twelfth ofan inch on I he map) would require about 60,000 cells periayer. 
Thus, some balance must be snuck between cdl resolution and storage rcquire-
mcnts. It should be emphasized, ho\\'ever, that small ccll size docs not necessarily 
guarantee accuracy. It is technically possible, for instance, to incrcase the resolution 
in any data plane (say from 200 m to 30 m on a side), but if the data were initially 
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B 

FiguT~ 10.4, Effects of ce ll ~izc in cell -b.sc=-d geographic in lOrm a!lon sy ~ t c- I1l ~. (A) Sizl's :m d SI13ploS of 
d i ~c r~t c Cb H(:S ~:m bl."come scn.: n.:I)' di,«)rt ~d. ( [3 ) For cont inuout data . such :I S .1n elevat ion ~ur IJ("(.", the cdl .~ i zl' 
m.J.Y be adequltl'10 di~pb.y [L'rr3 in Jc...:::Hurcs ( right ) or it m:l )' bl"in l clL'qultc, n:suh in g: in 3. smoo thed surf:lCc (left ). 

encoded at the g rosser Ic:vel of resolution the final resu ll would ofii..·r no increase in 
accuracy, 

Anorhc'r imponanr concern in J multilayered G IS pertains to rc..·gistrat ion of 
the individualla"crs ( ' ational Research Council 1983:42). One must be absolutely 
certain that a coordinate! point in onc layer lines up in real space with the same 
coordinate point in o ther layers. For a cell-based GIS this means that the borders of 
each cell in "ach layer must coi ncide (within acceptable limits) with the borders of 
each cell in the o ther laye rs. This is a particular problem when combining data from 
such diverse sources as aerial photographs, remorely sensed images, and a varicty of 
map projecrions and scales. A wide variety ofprocedures for registration of multiple 
dara sources can bc found in a num ber of standard i magc ~process ing sources (i n 
particular, Moik 1980:187-198; Schowengerdt 1983:99- 116). 
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Th. computational algorithms thar a particular GIS employs should not be 
taken for granted. Many commercially available geographic information systems 
make use of procedures that arc crucie and unsuitable (or archaeologicallocational 
research dealing with rehrivcly small st udy :l rcas or site-:spccific microenvironmen
tal characteristics. This stems, in parr) from [he fact that many geog raphic informa
tion systems are designed primarily for low-resolution uses, such as county or 
statew ide administrative planning and mapping nc.~eds. T echnical manuals rhat 
accompany most GIS packages usually provide some information about the compu
rational approaches that [he s),sH.'m uses. 

GIS Algorithms 

Primal)' SlIr/aw 

One ofrhc mos t important primary surfaces in a geographic data base, at Icast 
for archaeological analysis and modeling purposes, is the t'/tVdlio" wrfac( because this 
surface..' represents the fi)rm of the terrain in a region. A wide variety of terrain 
features, such as slope, aspect, local relief, terrain variability measu res, hilltop or 
ridge H\'antagc" locations, vicw quality, :lnd ~helter quality measures, can poten
tially be derived from this surface . This surface is also one of the most difficult to 
construct unless it can be obtaincd preestablished from some ou tside sou rces (as 
noted earlier) . In order to portray more clearly somc of (he softwarc mechanics 
behind a geogrlpbic data base..' , one way (out of many possible ways) to consrruct 
such a surface.: will be describt'd. 

An elevation contour can be represented as a se ries ofllnes betwee..'n digitized 
point~, as in Figure to.5a. In construcling a cell-based elevation surface where an 
elevation value is available for ever)" locus (cell) in the G IS region, the first step 
might be to place these digitized points in approp riate cells (Figure 10.5b) and 
connect the cells between the points (figure 10.5c) to yield a gridded or rallrriud 
image of an input contour map (Figure to.5d). In this layer ( in computer tcrms, a 
two-dimensional array ) cells (array clements) that contain a contour possess the 
elevation value of rhat contour, wh ilt· otht,.·r cells contain a zero, This array of 
elt.'vation contours must be transformed to an dL"VdltOIl WrfdC( in which cvt,.'ry cell 
contains an elevation value. 

Interpolation routines arc used to provide ~m initial estim~te of the elcvation at 
eve ry poinr (cell) where rhe ekvation is unknown (the Z{'ro cells), There are 
literally hundreds of interpolation algorithms (e.g., Delfiner and Dclhomme 1975; 
Rhind 1975; Yocli 1975:360-366); so me provide more accurate estimates of unknown 
elevations but use larger amounts ofcomputer time, others pro\' ide less satisfactory 
estimates but r<."quir<." less computation. The amount of time used by a particular 
algorithm can be an important consideration given the large number of est imates 
typically rcquired for even moderate-sized regions. Two common intcrpolation 
algorithms art' illustrated in Figure 10.6, The first, a coltlmn (or row) scan, which 
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E F 
Figure 10.5. S t(·p~ thJ.t mi glll b...· followed in the cO Il ~ lrucr ion of.In t:!c\';Hion surface. (.-\) DigirizI..'d 

points aft.:' indi c;]lcd on a com our Ji m'. (8 ) Thc dlgirizcd poi/lis ;l (l' pbccd In approp ri:Hl' grid cl ..' lh. (C) T he 
cell s \x'[w(',,:n t he digi ti zl'd n: Us :m .' lillt:d In. (U) In.1 g riddL'd or 1.I!>Il' riZ('cl \'ersion of the o rigina l conrour 
oup. contour line cells con (:li n the c: ll"\':H ion \, ;'I IUI..' o flhc- contour; cmpty ( ell s cont Jin :l zero . (E) The in;ti:!) 
surface of interpolated elcvltions is "noisy." (F) Th(" liml clC\'::Ilion surf:Jcc i$ Sllloolh c.'d. 
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( A) ELEV(O) = ELEV(6)- ELEV(2) x DIST(2.0)+ ELEV (2) 
DIST(S.2 ) 

ELEV(O)= ELEV(IS)-ELEV(J) X DIST(I.O)+ ELEV( I)( B ) 
DIST(IS.1l 

Figure 10.6. Elc\':ltion inu:rpoll lion ,J gorithms. (A) A colum n (o r rolJ.') S(:in tC'chniqul' sl'arches 
llong columns (or rows) onl y ~nd Jim':Hly intC'rprl't s unknown l,!t.:\' ,lIions (0) bC!lJ.'l' l'n point s o f known 
e1evltion (2,6). (8 ) In rh l'Sl'con d fc(hniquC'31l algorithm Sl'lfChes in l'ight di n:c tiom ( 1-8) from llocus 
(0) ofunknown dcv:uio n, finds the line oCsl l'I.:peq ch.lOge (1 .5), :md lint:a rl y int erpolates J..n elevation 
al the IOCllli. Noel' rh:ll (his procedure foll ows manu.l! imL'fpohcion tcchniqul's mon' c1osd)' rh:m the! 
scm procedure. 

searches for known elevations only along a givcn column (or row), requires little 
effort to compute bur may nor offer a good estimate of [he unknown elevation in 
some situations. The other, which searches in eight directions for kno~\'n elevations 
and uses the line of steepest inc rease as a basis for interpolation, usually produces 
more accurate results (in fact, closely mimicking manual interpolation techniques) 
but takes greater computational eITort and therefore more computer time. (This 
comparison illustrates the point made above about the importance of examining 
computational procedures. ) 

The outcome of the interpolation TOutine is an initial elevation surface (Figure 
IO.Se), which can be extremely Hnoisy, II con taining many sm<lll, artificial peaks and 
valleys. Because each elevation in this surface is interpolated independently, each 
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de varian might be estimated from known valucs that arc qlliw diJTcrcnr from the 
values lIsed (0 estimate adjacent elevations. n..·sulting in some..' disparity between 
adjacent elevation estimates. The final step in creating an elevation surface, called 
jmoolbi)l~ at tempts to remove this noise by providing a bctH.'T elevation estimate at 
each location (Allan 1978:1518; Ylonmonicr 1982:65-(6). This smoothing process 
(which is distinct from the detrimental smoorhing CJlIsc'd by large cell sizes) 
recognizes [hat elevation estimates in adjacent cells, because of their proximiq' or 
spacial autocorrelation, should also he good estimates ofeach cell's elevat ion. A final 
estimate in each cell is therefore typically accomplished by raking a v.'cighrcd 
average of each celPs elevation :lnd the elevations in the adjacent cells (with most 
weight being given (o tht, current cdl). The more familiar smoothing in one 
dimension is illustrated in Figure 10.7a, while two-dimensional smoothing is shown 
in Figure 10.7b. The resulting ~l1rfacc, without the artificial peaks and valleys, is 
illustrated in Figure 1O.5f. 

Orher primary surfaces arc somewhat easier to obtain (if not already available 
commercially). For a hydrology nl't, th<.' stream locations are digitiz<,'d in much the 
same way as elevation contours (Figure 1O.8a). The digitized streams are then 
placed in grid celb to form a rasterized image of the hydrology not (much like the 
rastcriz('d elevation contours in Figure 10.5d). The S(fcams, howevcr, might be 
coded (0 reflect permanent or seasonal warc.~r (F igure 10.8b) or Strah ler order ranks 
(Figure 10.8c; see Chap",r 8 for a description ofthe Strahler order ranking system). 

Rasterization of polygonal areas, lines, and points, which are used to describe 
discrete classes ofinformation, such as V('t;ct3{ion communities, soil types, archaeo
logical site locations, and archacologically field-inspected region s, is fairly straight
forward. Digitized polygon, arc merely transformed to a gridded version of the 
polygons (Figures 10.3 and lO.4a) using various polygon-fill routines (MacDougall 
1971: 117-126; Monmonier 1982:68- 73). Polygon cells that represent a particular class 
arc assigned a unique identification number. 

Secondar), Surfam 

An infinite number of secondary analytical surfaces of po{(.'ntiai importance to 

regional arch:leological research can be derived from the primary surfaces in a GIS 
framl"v,'ork. Two common type'i are slope and aspcn. Based on inte-rrelationships 
bl,tween the elevation of:l. grid cell and those of it~ ncar~st ncighbors in the 
elevation surface, some algorithms (e.g., \\foodcock ct al. 1980) lit a least.squares 
plane to thcse devations and find (he maximum slope and the direction ofmaximum 
slope (aspect) on this plane (Figure 10.9a). Other algorithms might find a maximum, 
minimum, or average slope (e.g., MOSS; Lee et al. 1984). 

A variety of terrain variability measures are easy {Q obtain from the devarion 
surface (see Chapter 8 tor marc detailed disclls~ion ofthe)c variables). For cxamplt', 
local relief (maximum minus minimum elevation) can be obuined within any 
defined radius ofa given cell (Figure 10.9b). Another terrain roughness measure is 
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Welghta 
Initial Grid 
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Smoothed Grid 

.05 (13) t .1 (I 0) + .05(8) + . I (20) t .4(1 9) ~ . I ( I 5) + .05(26) ~ . I (30) t .05(25)= 18 .7 

B 

Figurr 10.7. 11lu~( ranon ofsmoot hing (:Jffc:r ~lonmOl1il'"r 1983). (:\ ) Smool hillg in one dimension: t h(' origiml 
nois y trend (left ) i _~ comp:Hl'd ro Ihe s:ww tr~: nd aft t'r smo01hing (right ). (1.\) Smoothing in 1'0,1,' 0 dinH.:nsions: 
smoothl'd :\urf."IcC' ( ri ~ht ) is obtailll"d by c;tlcubting l wl"ightl'd l\'<: ragc of rht' initi l.l grid (left). 
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Figure 10.8. Encodmg ofhydro'Q~ic (.bel. (1\) Digitizt·J point s ::m' indi c.:Hcrl on a hydrology n(;1. (n ) The 
SIrC:UTl locHion~ :H(.' placed in grid eel\). Seasoll::!1water might be coded:ls "'" J.nd pt.' rm:mcTlr 1,I,' :ltcf as "2," (C) 
Strcams- might also bt.. coded according 10 Strahlt:r order ranks . 

(crmed a texture measure in image processing (Mai k 19110:232). This measure finds 
the variance or el~vations within a defined radius or ~'window'l ofa given location 
(Figure 1O.9b): high values suggest variable or rough (crrain while low values 
suggest level Of smooth terrain. Fragmentation indices (Monmonicr 1974) provide 
other analytical al[~rnativcs. 

Hilltop, mesa edge, and ridge crest vantage locations might be dt:fined using a 
variety or (echniques (e.g., Kvamme I91l3b). For example, the previously derived 
slope data plane might bc used to define alllcvd locations (e.g. , those with grades 
less than or equal to 15 percent) adjacent (0 or within a cerrain distance of s teep 
locations (those with grades greater than 15 percent ). The elevation surface is then 
used to delimit those locations (cells) above the adjacent steep locations. 

An angle ofsurrounding view, one possible measure reflecting quality of view, 
can be obr:,ined rrom the dcvation surrace simply by calculating for each cell the 
angle that encompasses all elevations in the surrounding eight cells th:u are less 
than the current cell's elevation (fig ure IO.9c). A Hvie'J.' catchment," another 
possible measure or view quality, might be calculated by fixing a 1 mi radius around 
e:tch cell and calculating the percentage orcells within that radius that Jre visible 
rrom the current cell (Figure 1O.9d; Lee et al. 1984). 

More traditional catchments might be calculated using a nominal-level vege
tation layer. Given a fixed catchment radius around each cell (Figure 1O.9d), the 
proportion of various plant communities within that radius can be obtained and 
stored in separate derived byers. Aitern;uiveiy, some index of vegetation diversity 
or complexity or some estimatc of caloric potcntial might be calculated , 

Search and distance-measuring routines can be used to derive a variety of 
analytical surfaces; the MOSS-MAPS syste m, for ("xampie, has seve ral (Lee et al. 
1984). The nearest speci fied water type (e.g., seasonal, permanem, o[ a stream of 
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Figure: 10.9. Examp!...·s ofvlriom l'ompul ;lIionli algorithm.!>. (A) A h:J .H-squ~rC' ! plane mighr b e: 
filtcd to.m elevat ion ( th~ cCTltuispherc .Uld shaded cdI) and i,,, ..:iglll n \.·:\ rt.'~l neighbor dt'\':uiotls. 
The: m~xirnLlm slo~' on this phnc: might he.: cllcuLueJ . ;llotl~ with the.: dirl'ctio ll of n1:J",jrnum slop...' 
(~spC'C(). ( B) l.oe:11 rdicf might be c:1kublcd :IS the T:J.ngl' in dCV31 iOl1s in l thn..x--by- threc window 
around 1 current elevat ion. ,o\jlCrtl:l1 i\'(' iy , I he \' arIJ11c(" of t he dcv,l1lo ns might hi.: cakublcd to dc:ri"c.: 1 

[('X\UfC ml'aSUTC. (C) ,\n lnglc of\'il'w co uld bl: c.llcui:t tC'd in:tn cle\';nion ~urfan·. (D) '\ cltchmen t 

radius (':In be fitted arou nd ,1 cd\. ArCh o r pcrccnllgcs or lhe: IClIUrt' ofint(.: rC' ~ { Clil bl' calcu lated 
wilhin tile: r.Jd iu ~. 
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specified Strahler order rank ) might be located from a primary hydrologic net, for 
insrance, :md the horizontal Euclidean distance could be calculated for each cdl 
(F igun.- 10. lOa). In conjunction with rhe elevation su rface, the vertical distance to 

the same drainag~ type might also be obtained. Ifhilltop, mesa edge, or ridge cn'st 
vantage points are already defined, search procedures can be ust:d to obtain a 
distance to nearc:st vantage within ('aeh cell or, using a vegetation community 
surface, tht, distance..' [0 a specified plant community. Linear distances, however, 
might not be the best measure: to ust: in site location studies (Ericson and Goldstein 
1981 ); bocluse there often are obstacles to cross, peop,," do not normally follow 
straight paths. Ifappropriate soft warc is available, and ddinitions ofHe lYon" can be 
made (see Turner 1978), lcast -efro rt travel distances might be estimated instead 
(Fig ure 10.1Gb). 

Geographic information sys tems can accumplish man~' ofthe same tasks using 
Hcuhural" variables as they do for environmental ones. Fur example, ifcentral place 
sites are defined in the data bast', thl'n distance fro m each cell to tht' nearest central 
place can easily be generated. Similarly, based on the locations of knou'n archaeolog· 
ical siH.'s, various ordl'rs of nea rest neighbo r site distances can be calculated. 

These examples illustrate ,he kinds or phenomena one might pot~ntiaUy 
investigate in site location s[udit's through the usc ofGIS techniques. Such investi
gations arc limited only by ourability to innovate and be crt'ativ~ (and by CPU and 
storage requirt·mcnts)! 

, 
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, I 
i 
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A B 
Figure 10.10. Jll u.!Ulrion of disl.lnc~ cakulJ,! io n lC'chn iqul's, (A) T o obuin lifll":l.r di st:lIJr..: .... !hl' com pliler ~C:l.ns 

from l currell! cdl wit h search rad ii of in(TI:J~ing length Uill il {he felt urI.' otilHCfO{ is l·llcountcrcd. (6) :VkJ:, uremcnt of 
le:u !·dTon tr:l.\·d diH :mce mit"'-Ill ct'lO ,idl.'r pJ. ths 1I1l1 l\'oid hills. 
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Geographic Information Systems and Remote Sensing 

As discussed in Chapter 9, rht, potential of remotely sensed data for a number 
of applications in archaeology and elsewhere is beyond question. Recendy) a 
number of remote sensing specialists have noted that geographic information 
systems "have significant pmcnrial (Q facilitate use of remordy sensed data" 
(Shelton and Estes 1981 :]95). A key problem in rcmote sensing, for example, is that 
remote sensor imagery is usually geometrically distorted; for these data [Q be useful 
in applied contexts the interpreted information must be transferred to a standard 
geometrical base or georefcrence (Steiner and Salerno 1975:622). Tilted or oblique 
satellite images must be rectified to a horizontal reference plane. The rectified 
image then must be geometrically corrected into a particular map projection, such 
as longitude and latitude or the UTM system, The importance of (hese tasks is 
recognized by the Jet Propulsion Laboratory (lPL), a center or state-of-the-art 
remote sensing and image processing. McLeod and Jafck ( 1984:75-76) note that 

Pe rhaps Ihe- mO,S 1 prodigiou~ Icchnolog)" introduce-d by Ih~' lab i~ th:.n of the- ge-ographic 
information:,,), ~tem, "'-' hich co.re-gisrers .I.nd :lnlly z.(:.~ a viHu::..lly limit less supply 01scnsor 
data trpe-~! :md thl'n relatc s thcm 10 kcy ge-ogfaphical qucst ions wllhin a given region. 
Alone polc oflfut· st :ttl.'"-of-Ihe-.l.rI nmge: pfocl.'"~sing, GIS is the rl'\·crsc o flhe imaging 
technique Ihat so lcly c:nh:mcl·s iOlmedial e ...·isllal recognition within a parti cular scene Of 
image data sel. Rathc.."r, GIS is )PL's answer 10 the: nn·d for anllysis ofunmanagc.l.bly 
large da[l b::..ses :U1d [he nee.:d to m;tkc: f(!" .~pomiblc decisions :toout (hc:m . 

. . . Each image.: is fir st emercd inco t he dlLI b.]sc :md gc..'Oml.'"tric;lJI)' corrcclcd bcfort': 
being registered (Q rhe "pbniml'( ric basco, or s)' stc:m afdara planes. Each image plane.: is 

again refcrenced to onl' or more gl"orcfcrencl" plal\C:~. Th(' uscr is rhus :1bk' to m.l.nipularl" 
dan from SC\'l"rll sources which, dc ~pite: their original disp:lriry, :.lf~' refl'rcnced to :1 
common ba.se. 

Since geographic information systems interrelate multiple geographic da(a sees that 
are tied to specific locations, it is clear that the JPL system, although it primarily 
uses remotely sensed da(a. meets this defmition. 

There an' other reasons why geographic inrorma(ion systems and remo(e 
sensing should logically be linked. In recent years various rorms or ancillary data, 
such as digital (errain models (see above), have bc~n incorporated into remo(c 
sensing applications. During a project (hat developed ciassilica(ion models for forest 
cover (ype based on remotely st'nsed spectral data, lor example, it was discovered 
(ha( incorporation or ancillary terrain data, slich as elevation, slope, and aspect, 
significantly improvcd the c1assifica(ion accuracy of the predictive models (Holler 
et al. 1975; Strahler ct al. 1978; Woodcock et al. 1980). Although spectral signatures 
could dis(inguish plant cover types (0 a fatT extent by themselves, i( was round that 
the distributions or many plan( groups were also related (0 such ractors as ground 
steepness, aspect, and elevation (Hoffer et al. 1975; Strahler et al. 1978:9]0), varia
bles that were not readil~' obtainable from tht' remotely sensed imagery. By 
merging digital terrain models and the rt'Olotcly sensed spectral data into a single 
analytical data set, nor only could the elevation data be ob(ained, but (hrough 
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various software techniques, cstimarcs of slope and aspect could be derived, 
allowing morc powerful predictive models (Q be developed, The success of these 
approaches has led (Q applications using morc varil'd form s of ancili:lry dara com
bined with remotely sensed imagery. i'...lissallati et a1. ( 1979) combined detailed 
geologic map data , aeromagnetic data, and radiometric data (all digitally encoded) 
with Landsat spectral information to de velop predictive models for uranium explo
ration . Loveland and Johnson ( 1983) combined remotely sensed data with digital 
terrain data and digi tal soil survey, land ownership, and pumping plant \oc3.tion 
dna to dt·velap predictive models to evaluJte irri gation agriculture. This project 
showed, as Loveland and Johnson pur it, Hthe tk-xibility of remotely sensed and 
other spatial data as input for pn,dicrivc models" ( 1983:1183). 

Geographic informl{ion systems arc potentially useful for manipulation of 
geographic dat3. regardless of their source. Recc:mly, this fact has gent'rated consid
erable intcrest in remote sensing circles (see Shelton and Estes 1981 for an ovcr
view), A new perspecti ve has lrisen that suggests that the focus of research should 
be on the r l:giol'l under investigation (rather than on panicular sources ofdatl) and 
that all relevant sources of information , rega rdless of type or derivation, should be 
sought for input into [he regional GIS. Potential data sources include traditional 
thematic maps and a vlricty of remote sensor inputs. In this context, the GIS treats 
each analytical sllrf.lce, regardless of sourcc, as simply another data pl ane. The GIS 
is able to facilitate manipulation, analysis, and modeling of these varied data types, 
treating information sources individually or in combination. 

The importance of incorporating remotely sensed dJ.ta into comprehensive 

geographic information s)'stcms is summarized by Shelton and Estes (1981:417): 


the (ull pocl."nrial of rl'ruOic st.·ming ('Jnno t and will not be: J.chie\'l'd l,\' j(hOUI co nrinue:d 

and t.·xp;m ded t: jfo rt~ (Q ldapt (he Itch no\ogy to I hI." evol\'lng ne:cds of mers around the: 

world, To th t.' t.'X{Cni Ih:ll gt'ogr'l phic inform:llion systl'm dc~ ign ~ ret1cer tho~e nccd l' . 

GIS dt.·sign oLight to bl' a rdc."YJ.nc concern in th(· dc\'c1oprnl'nI of nl'W 5:ltdlilc sy s tt.'m ~ 


and in ~stlbli.shml'nl of insti;ution:J,1 ~u r :l. ngemenI S for pro<~~ ."sing. fOTl11luing, and 

dlssemin::..ring the producl~ or n: motl' ~cnsing, 


As a final Clveat) how(,~ ver, they notc that geographic information syst ems represent 

an evolving tcchnology. Since remote sensing can co ntribure to the developmcnf of 

a GIS, e.g., by providing varied form s of data input, they conclude that full 

acceptance of bOI/; of these technologies His dependcnt on realization that the 

potential of each technology will not be achieved until chey arc integrated." 


The Potencial of Geographic Information Systems for 

Regional Archaeological Research 


GIS techniques may potcntially co ntribu te in a number of ways to regional 

archaeological sire loeacion research and model ing, and these techniques may hlve 
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numerous applications to cultural resource data base management as well. Some of 
these potential applicacions were suggested in a foregoing section on fundamental 
concepts; (he following sections will elaborate on these suggestions and add several 
additional ones. 

Spalial Dala M anag,mml 

A GIS can consolidate and merge many and diverse forms of geographically 
distributed information into a single data base. This is perhaps (he most obvious 
application ofGIS technology to regional archaeological research. Since archaeolog
ical data inherently arc geographically distributed, they arc well suited to a GIS 
context. Varied forms of archaeological data, such as archaeological site locations, 
site types, regions that have been field inspected, and culcural resource sensitive 
locations , can be merged into a single data base, together with varied sources of 
environmental and other geographically distributed data. Sources of information 
can be as diverse as traditional wpographic maps, thematic maps (soils, vegetation, 
geology ), aerial photographs, and remotely sensed spectral data (Kvamme 1986; 
Parker 1986). 

In a regional geographic data base established for the explicit purpose of 
developing, testing, and applying predictive archaeological locational models in 
southern Arkansas, Scholtz (1981; see also Parker 1985) utilized a cell-based format 
containing 3479 cells, each representing an area of4 ha (200 m sq). Fifteen biophysi
cal variables, including soil type, elevation, slope, and distances to streams of 
various orders, were measured in each cell. Once the data were measured and 
formatted within a single computcr data base, an exceedingly powerful tool was 
established for investigating environmental patterning exhibited by the locations of 
known sites and for formulating and mapping the resu lts of archaeological prehis
toric and historicallocational models. 

Hasenstab ( 1983b) developed a GIS for archaeological predictive modeling in 
the Passaic River Basin of New Jersey . This data base was established by electroni
cally digitizing a wide variety of conventional maps and aerial photographs. Envir
onmental data included soil type, landform, slope, drainage, agricultural potcntial, 
current land use, degree ofdisturbance, type of modern development, and distan~ 
ces to the nearest major river course, to confluences ofmajor rivers, to tributaries, to 
confluences of tributaries with major rivers, and to major wetland lones. Manage
ment data included the location ofknown prehistoric and historical archaeological 
sites, a gross rivcr basin division, USGS quadrangle reference, and locational 
coordinate information. Most of these data" were genl'rated from other digitized 
sources; the information was stored in 4306 gcoreferenced cells, each representing 
an area of approximately 1.15 acres. 

Digital terrain tapes were used as the basic data source in a western Colorado 
study that attcmpted to model prehistoric archaeological site locations (Kvamme 
1983b). Six secondary surfaces, representing slope, aspect, angle ofview, local relief, 
vantage locations, and distances to nearest point of vantage, were generated from 
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(he initial elevation surface for each 0[5000 cells, which measured 100 m on a side. 
Stream courses were manually digitized, and the scream locations, together with 
horizontal and vertical distances (0 nearest streams, were included in [he data base, 
as were (he iocations of known archaeological sites. Ocher secondar}' surfaces, in (he 
form of various probability surfaces ofarchaeological sire presence (based on variolls 
combinations of variables), were also g(..'ncrarcd from these data. 

The Granite Reef Archaeological Project (Brown and Stone 1982) made exten
sive usc of a GIS for management of the project's data and lor purposes of spatial 
analysis and archaeological modeling. The Granite Reef project encompassed a 
huge area of west-cemral Arizona, more than 12,000 mi', A \'ariccy ofbasic environ
mcneal data was encoded for cells measuring l.16 mi on a side, including elevation, 
slope, basin divides, aspect, major watersheds, geologic classes, soil classes, vegcta
tion classes, seasonal precipitation, and elevation-adjusted temperature extremes. 
Encoded archaeological data included the locations ofregions surveyed by archaeo
logical field teams and a variety of site types, ranging from habitation sites to lithic 
scauers, sherd scauers, rock rings, rockshelrers, rock art, and prehistoric trails. 
Based on various arguments and notions about the relative importance of each of 
the environmental factors to the prehistoric occupation ofche region, the GIS was 
used to develop a number of prehistoric land-use models that wen.~ weighted 
composites of che basic environmental data. 

Regional GIS data bases for a southern Federal Republic of Germany study 
area and a southern Colorado study area arc described by K"amme (1986; also sec 
Chapters 7 and 8) . These geographic information systems have similar characteris
tics in the naCure of rhe data planes that were established and in their purposes: 
archaeological locational modeling. Both systems include such data as elevation, 
slope, aspect, and mcasures of local relief, view quality, vantage locations and 
distances to nearest vantage, and shelter quality, along with the complete hydrol
ogy network, horizontal and vertical distances to streams of various Strahler ordcr 
ranks, and the locations and types ofarchaeological sites (approximately 200 sites in 
the German data base and 1200 sites in the Colorado data base). The German GIS 
contained ncarly 80,000 cells, each encompassing I ha, and the Colorado GIS 
contained approximately 230,000 quarter-hectare cells. Both systcms were used to 

establish arehaeologicallocational models based on logistic regression probability 
funccions; these models were stored as separate GIS surfaces. 

In the above geographic informacion systems various sources and combina
tions of management and environmental data, such as archaeological information 
about a particular site and its environmental properties or scaled maps of any surface 
or combination ofsurfaces, can be ret ricved. One ofthe chief uses of the geographic 
data bases in all of the above studies is to examine and test environmental hypo
theses abour archaeological sire locations and to dt.velop various sertlement pauern 
models, including those used for the explicit purpose of prediction. 
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Generation of New Data 

The use of a GIS makes it possible to derive new data and to explore new 
variables and measurement concepts. The abiliq' ro derive new data from primary 
information initially encoded in a geographic data base was discussed at length in an 
earlier section. The speed and accuracy ofcomputers not only allow vast quantities 
of information [0 be generated but also pennie extremely complicated and rimc
consuming measurements ro be performed. The large numbers of rneasuremcn[s of 
cleva'i:ion, slope, aspen, distance (Q water) ctc., rhar can be produced dcmonscrarc 
in pan the tremendous workload capabilities of computers. Another example 
involving [he compmation of poim-to-point visibility through [he use ofan eleva
tion surface illustrates the complexity ofcalculations that can be performed. From a 
given location (grid cell) of known elevation, one algorithm firS[ approximates the 
straight-line path through the reference grid ofcells to the dcsired point or grid cell, 
which is also of known d~vation . If cells in the straight-line path contain an 
elevation higher than the highest of the two end-poinr cells, a determination ofnu 
p;Iibilil)' is immediately made; ifthe intervening cdl elevations are alliowerthan the 
lowest ofrhe two end-point cells, a determination of p;Iibilil)' is immediately m.t-de; 
otherwise rhe standard point-slope formula is invoked to determine the equation of 
the line-of-sight between the elevations ofthe end-point cells. In this ,hird case, the 
acrual elevation for each intervening cell is compared with the computed line-of
sight elevation at that cell locus to determine if visibility is blocked (Creamer 1985). 
Performing this procedure by hand bet ween only two locations would be incredibly 
time consuming. Performing such a procedure bet~'een many hundreds ofhilltops 
is impossible without the use of a computer. 

Comput" Cartography 

\Vithin a GIS it is easy to display inform:uion using computer graphic / carto
graphic techniques. Advances in computer graphics and cartography (e.g., Edwards 
and Batson 1980) allow maps to be produced rapidly and accurately, incorporating 
uses of color, shading, and three-dimensional perspective that are unavailable in 
traditional cartography. The flexibility of computer graphic and cartographic 
techniques can increase the importance of these methods as research tools in site 
location studies. Simply by producing maps of individual analytical surfaces, a 
researcher migh' gain insights that could be useful in formulating analysis plans or 
in interpreting analysis results. In addition to traditional maps displaying elevation 
contours and a hydrology network, maps ofnew concepts, Stich as distance to water, 
aspect, terrain variability, or vegetation diversity, can be produced. Rathcr than 
simply producing a map of site locations, the researcher might create a map of an 
extrapolated site location pattern, which could lead to better insight into the nature 
of prehistoric land-use pattcrns. Animation techniques (Moellering 1980) might be 
used to portray such dynamic processes as landform erosion, air-Ilow patterns 
(Tesche and Bergstrom 1978), or changing patterns of settlement through time. 
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Certain analyrical surfaces from a GIS developed for invesrigaring prehistoric 
par terns of settlement in southeastern Colorado (Kvamme 1984) can be used to 

illustrate these ideas. Five analytical surfaces from a 2]0 mi' portion of the study 
area, containing approximately 230,000 cells, each 50 m on a side, arc ponrayed in 
Figures 10.11 - 1O.I]a. Figure 1O.lla is a slope surface. Steep locations (cells) are dark 
and level locations arc light. The surface depicting aspect Of principal orientation of 
the ground sur/ace is shown in Figure 10.11 b. In this figure, light shading represents 
sQuth.facing terrain while dark shading represents north-facing [efrain. Note that 
this surfacc tends to portray features of the topography related to the drainage 
systems. The complett' hydrologic network is portrayed as the white lines in Figure 
10.123. Also portrayed in this figure are distances to the nearest of these drainages. 
This information was computed for each of the nondrainage cells, but here, to 
facilitate display, these data arc represented by shading that indicates five catego
ries of distance. A similar map is given in Figure 1O.12b, but only a subset of the 
streams (second Strahler order or greater) is portrayed. Finally, a local relief surface 
is depicted in Figure 10.133, which portrays relative terrain roughness and offers 
contrast between locations of greatcr and lesser relief. In each cell the range in 
elevation within a 300 m radius has been dctermined; high relief values are dark and 
tend to portray high plateau rim, hilltop, and canyon regions, while low relief values 
are light and portray plainslike areas. All of these maps portray the same region, but 
each olTers a dilTerent way of looking at the landscape. 

Pt'rhaps by noting how the distribution ofknown sites corresponds with these 
and other surfaces an investigator might bener be able to select variables to 
examine or on which to concentrate in later analyses. Alternatively, an analysis 
might suggest that certain variables bear a strong relationship with known locations 
of a particular type of site. In any case, viewing a picture of the mapped variables 
(Figures 1O.11-lla) can give the researcher added insight about his or her findings. 

Evalualion ofSpalial Slalislirr 

Geographic information systems can be used to examine and evaluate sam
pling designs and various statistical models. An established regional GIS with 
known population parameters can be used to investigate (through simulation) the 
elTects of dinerent sampling designs within the region. It might be possible, for 
example, to investigate a variety ofhypothetical sampling designs prior to fleldwork 
in an effort to fine-tune a particular design to the characteristics of the region under 
study . 

In a similar vein. it is possible to investigate a variety of spatial statistical 

models and issues. For example, most statistical procedures assume independent 

observations. but it is usually not possible to meet this assumption when sampling 

from spatial contcxts owing to the presence ofpositive spatial autocorrelation (Cliff 

and Ord 197]; also see Chapter 8). Positive spatial autocorrelation has the effect of 
altering the performance of various statistical models; e.g., levels of significance 
tend to be overstated (Haggerr et al. 1977:329-377). It might be possible to use GIS 
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data bases as a means of empirically investigating the performance of v3.rious 
statistical models in spatial contexts under cooualled conditions, with known 
autocorrelation structures, pt.·rhaps allowing various model corrections (Q be made 
(for example, ClifT and Ord 1973), 

In a simulation study that used a GIS to investigate levels ofspatial autocorre
lation under various geographic sampling designs, the effects ofrhis problem with 
regard to variables commonly used in regional archaeological research were exam
ined (Kvamme 1985), The GIS-based simulation used a IO by IO km region as the 
sampling universe, and for each of live runs of the simulation a different simple 
random sample and a difTerent regular systematic sample oflOO locations (I ha grid 
cells) were selccted. Spatial autocorrelation statistics were calculated for each 
variable for each run, The results indicated extremely high levels ofpositive spatial 
autocorrelation regardless ofsampling design (some of these rcsults are prcsented in 
Chapter 8), 

Tes/ing Loca/ioM! Hypo/hem 

GIS data bases can be used to test archaeological locational theories and to 
address oth~r rcst..'arch questions. \Vhen a variety of primary and secondarily 
derived cn\'ironmentai and cultural variables havl: been previously calculated for a 
study region in a cdl-based GIS, the need for additional measurement can be 
eliminated. The locations ofall known archaeological sites in the region can be easily 
and rapidly correlated wlth en\'ironmental and other features in the data base. 
Alternatively, the relationships bctween GIS data base features and \'arious sub
samples of known sites, sites of specific functional types, or sites belonging to a 
particular period of time can be investigated. For investigators using a control
group approach as a plan for research (sec Chapter 8), very large nonsite samples of 
background environmental or cultural data can be obtained both for model devel
opment and for model testing, 

Cell-based geographic information systems are ideally suited for an analytical 
approach to site lOCH ion research that treats the individual cell (which corresponds 
to a parcel of land) as the unit of analysis, especially when the cell size is fairly 
small-e,g" the size of a typical prehistoric site or smaller, Cells that are found to 
contain artifacts or other cultural remains are simply ~~f1agged" by the computer, 
thus eliminating site definition problems since the site is no longer the unit of 
analysis, Relationships between the flagged cells and environmental and other 
features included in the data base are then examined during model development. 
Analysis might comparc characteristics of (l'lls containing no prehistoric evidence 
with those ofcells that comain prehistoric evidence, for example. Once criteria have 
been defined for identifying functional site types, site type analyses could be 
conducted by noting which cells exhibit the required criteria and by flagging cells 
with a specific sitt' rype code. Alternatively, since function is often difflculr to 

determine it might be possible to rank (or continuously measure) cells that contain 
cultural evidence according to artifact diversity or to amounts of inferred pre his

528 



GEOGRAPHIC INFORMATION SYSTEMS 

toric activity, using various threshold levels of amounts of prehistoric evidence. 
Various locacion models might then be developed in which thc dependent variable 
is an index of artifact counts, diversity, or levels of prehistoric usc. 

GIS data bases arc I>'ell suited for testing certain types of site locational 
theories. It might be postulated, for example, that certain kinds of archaeological 
sites in a study region should be located close to sources of water. A GIS data base 
could be used (Q determine empirical distances (Q water at known sites of the type 
under investigation in order (0 (cst this hypothesis. Ir should be recognized, 
however, that all parts of the study region might generally lie close to water sources. 
Hence, even if the sites [end to be located close (Q water sources, this tendency 
could be a result of the nature of the background environment rather than of 
prchisroric selectivity, for example. Measurements from the background environ
ment might yield a distribution of distances [0 water identical to that for sites, 
which would suggest no selecriviry, or the distributions might be radically differ
ent, suggesting sdccti\.it),. GIS techniques are ideal for investigating such an issue 
because they can provide many thousands of background measurements of envIr
onment against which known site distributions can be compared. 

To illustrate the power of geographic information systems for analysis pur
poses, a simple histogram is presented in Figure 1O.14a that illustrates the Euclidean 
distance to the nearest drainage ofStrahler order rank two or greater as measured 
by a GIS in 230,000 contiguous cells (50 m on a side) in central Colorado (Kvamme 
1984). This figure clearly illustrates the nature of the background environment in 
[his region with respect to this variable. Thc histogram of [he same variable 
measured only at the locations (cells) of nearly 600 known open-air lithic scatters in 
the area portrays a distinct tendency for the sitcs to be located in relatively greater 
proximity to s~cond-order streams (Figure 1O.14b). For example, 50 percent of the 
sites occur within 150 m of second-order or greater drainages, while ani), 17 percent 
of the study rl'gion as a whole exhibits a similar proximity to these drainages; 90 
percent of the sites lies within 950 m of the drainages, while only 69 percent of the 
study region lies within this distance. Since the sample of open-air sites was 
obtained through a random sampling design, the patterning apparent in Figure 
10.14 is difficult to refure and points to t:,e tremendous potenrial of geographic 
information systems for archaeologicallocational investigations. 

Localional Modeling 

GIS techniques are well suited for the development, testing, and application of 
archaeologicallocational models ofany type (see, for example, Chapter 8). The only 
limitations are that appropriate forms of geographically distributed information 
(including remotely sensed data and specialized map or aerial photograph data) 
must be merged into the data base and [hat the cell resolution or size must be 
appropriate for the modeling problem. 

In developing quantitative models based on probability or mathematical 

functions of multiple geographic variables, geographic information systems can be 
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used to obtain environmental and other variables at the locations ofknown sites (or 
site typcs) to provide the basic analysis data. During model testing, geographical 
data merged with a second sample of sitt's can be retrieved and Llsed 3S a basis for a 
varicty of accuracy tests (sec Chapter 8). Finally, geographic information systems 
can be employed to specify the results of a model across a region of study by 
applying the model (i.e., the probability or mathcmatical function) to the data 
stored in each cell and producing a map of the results. 

Figure lD.lJb illustrates a prehis[Qric Hsitc probability surface" derived 
through a logistic regression technique (see Chapter 8) for the si te class of 
"open-air lithic scatters" in the central Colorado project described earlier. This 
model is based on a sample of nearly 300 known open-air sites and a control group of 
approximately 1200 locations representing the background environment (nonsites). 
In each of the 230,000 cells in this figure an estimated probability of site-class 
membership was derived, conditional on se\'cn environmental variables within (he 
GIS data base (including those illustrated in Figures 10.11-1O.IJa). Computer 
cartographic techniques were used in Figure 10.13b to shade cells havingp-values 
nearest ro I with dark rones, to shade cells with p-values ncar 0 in light tones (or 
unshaded), and to shade cells with intermediatep-values in intermediate tones. The 
resule is a visual representation of the extrapolated paH .... rn of open-air site place
ment, based on the sample data. 

This model was also tested using a GIS. Test results from an independent 
validation sample ofan additional 300 open-air sites and 1200 background locations 
sugges t that about 95 percent of the sites (92-97 percent at an approximate 95 
percent level of confidence) should occur in all the shaded zones of the map, 
although these shaded areas constitute only 62 percent of the total land arca. Thc 
results also indicate that approximately 20 percent of the sites (16-25 percent at ca. 
95 percent confidence levels) should occur in the highes t sensitivity zone (the 
darkest shading level), which covcrs less than 4 percent of the total land area 
(Figure 10.13b). 

For deductively derived modeling approaches, model development cannot be 
carried out within a GIS framework since these approaches do not begin by seeking 
patterns in empirical data. Such models arc based on theoretical principles concern
ing human choice and settlemem behavior and consist of deductions about th~ 
locations at which human occupation should occur. Once these models have b~en 
established, however, geographic infotmation systems can be used for model 
testing and broad-area applications. 

One problem in apply ing many deducti"ely based models lics in data require
ments. For example , to apply central-place modeling techniques Uohnson 1977), 
which assert the importance of central plact:'s to a regional pattern of set clement, 
one must know the locations of comemporary ccntral places. Gravity models 
(Hodder and Orton 1976:187), which emphasize the importance of specific natural 
resources (e.g., food resources or lithic quarries) or cultural emities (e .g., road 

nccworks or c~mral placcs), r(,quire locational data for each of these phenomena. 

Models based on caloric cost-benefit or energy calculations (e.g., Castcel 1972; 
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Zubrol\' 1971) require detailed environmental information. In one modeling 
approach based primarily on environmental data, Jochim (1976) was able to arrive at 
several deductions concerning hunrcr-g:uhcrcr settlement by synthesizing a wide 
range ofethnographic and other information. Cnfof[unarely, the required data for 
application of the modd, which included detailed information about such items as 
[he food potential of several prehistoric plane and animal species, their relative 
proportions, and th(,ir seaso nal abundance) were so difficult to obtain in J reliable 
form in the time period and region to which the model was applied (the Meso1ithic 
of southern Gcrman~r) [hat it was difficult to realize the fun potential ofehe modeL 

GIS techniques may offer a solution to some of these problems, provided [hat 
the relevant data can be gathered and incorporated within a GIS framework. A 
variery of map sources or even zoological models m.ight be used, for example, to 

describe the distributions of cerrain species of inl~resr, and remoec sensing tech
niques might be used to id('nti~' prehistoric central places, road networks, major 
plant groups, favorable plant diversitr, or other features. Once the archat'ological 
locational model is formulated and made operational in computer tcrmS I computer 
mapping tt'chniques in conjunction with GIS features provide an easy means of 
applying the model across the region ofintcrest. Testing of any model demands 
similar procedures regardless of how the model is d~\'eloped (testing procedures are 
d~scribed in detail in Chapter 8), and as described above, geographic information 
systems are well suited for model testing purposes. 

The tcst study region of 19,000 grid cells thar was lIsed to illustrate the 
quantitative models in Chapter 8 can be used to indica te the pOlential ofgeographi
cal informacion systcms in an a priori model specification perspective. \Vhether an 
archaeological iocatio nal modd is derived simply through a serics of "shotgun ll 

questions put to a GIS or through a series of deductions concerning the interrela
cionships between certain environmental features and the positioning of human 
settlements in space, a GIS can be used to map the result s of the modeling process. 
As a simple example, a base model might specify that settlements should occur on 
ground surfaces with slopes less than or eqnal to a 12 percent grade(Figure 10.15a). 
The next refmcment of thi s model might (hen suggest thar settlem<.'nrs should be 
found within a fixed distance, say 1000 m, of relatively secure water, such as second 
Strahler order or greater "reams (Figure 10.15b). Finally, the model might be 
amended to inclllde (he rC<lllirement that particular settlement locations (e.g., 
chosc ofwin t(,~ r villages) will ha \'c a soul h-facing orien ta tion (Figure 1O.ISc). A teach 
stage in the development of this model, accuracy, in t(.'rms of the percentage of 
known sites correcdy classified and the percent:.tge of the region classified by the 
model as '~sitc-present," could b(" assessed by che GIS, pro\'iding ongoing and 
interactive model performa.nce indications. 
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BRIEF OVERVIEW OF THREE COMMON GEOGRAPHIC 
INFORMATION SYSTEMS 

Timothy A. Kohler 

MOSS/ MAPS 

MOSS (Map Overiay and Statistical System) is a GIS originally developed by 
the Western Energy and Land Cse Team, U.S. Fish and Wildlife Service (Table 
10.1, above). It has been in continual development over the past few years with 
cooperation from {he Bureau ofIndian Aflairs, the Bureau ofLand :\>tanagcmt'nt I the 
Forest Service, the Geological Survey, and the Soil Conservation Service ( Lee ct at. 
1984). Thus, unlike most geographic systems it is in the public domain, although a 
superset ofNtOSS is marketed by AutometricofFort Collins, Colorado, a firm rhar 
is also developing a more advanced GIS, based on MOSS, called DEL TAMAP (Reed 
1986). Most storage and processing in MOSS is in a vector or polygon format, 
although some raster capabilities arc available. 

Additional raster capabilities, designl'd in parr to allow the incorporation of 
data derived from digitized images, are available through the Map Analysis and 
Processing System (MAPS) subsystem, an extensively enhanced vcrsion of MAP, 

originally developed at Yale University. To some extent, N1APS and r..10SS can pass 

files back and forth. Input to MOSS is through MAPS; AMS, the Analytical 
Mapping System; or ADS, the AtHOmatcd Digitizing Sysrem. Enhanced carto
graphic plotting, beyond the normal capabilities of MOSS or :vIAPS, is provided by 

the Cartographic Output System (COS). 


Beyond the general capabilities or geographic information systems as de
scribed earlier in this chaptet, MOSS and MAPS have special capabilities that arc of 
interest for predictive locational modeling of archaeological sites. These include 

routines that 


collt'ct a random sample of points l lines, or polygons for further analysis 

or for input to statistical procedures 


measure the distance between any two points along a path (which need 
not be straight) or along a straight line 


determine the length ofall lines ofeach subject (e.g., f"st-order streams) 

in a line map or (he total distance around each subject in a polygon map 

identit~, locations within a specifiable distance ofa point, line, or polygon 
subject type 

produce: a three-dimensional display of any integer-valued continuous 
map 

create a map of azimuthal aspect or a slope map from a continuolls 

elevation map 
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crcate J map showing the visibility oflocarions from a specifiable obser
v:uion point or points 

create a cross-sectional image between Jny two points (usually this 
routine is used [or elevJtion data, but it is suitable for any continuous map) 

crearl' a map showing the minimum effort path [0 a targer cell; the 
analyst can assign weights to various features acting as parrial barriers in rhe 
path-finding process (an example of a fairly common GIS capability forcorridor 
analpis) 

create a map showing the steepest downhill path through varying terrain 
(essentially the path along which water would flow) from a target area 

The MOSS/ MAPS package provides very flexible routines for overlay and 
neighborhood analysis, map description, and data management . A principal advan
tage oft his package is that it is used and supported by numerous federal agencies, so 
that new feature s are being added to it >t a rapid rate. At present MOSS/MAPS has 
only very limited capabilities for inferential statistical analysis (Table 10.3). Versions 
arc available [or 16- and 32-bit microcomputers, minicomputers, and mainframes . 

TABLE 10.3. 

Statistical func.ions (beyond simpl~ descript.iv~ .statislics) available in three commonly utilized 
systrms 

MOSS/:\VfPS /DIMS P1CARIIBIS 

Sllp~r-vL~ed c1u5te. malysLs X X 
U nsupervised c1ust ~r analysis X X 
Principal componcnts :lJ1alys-is X X 
Leas( square s ;:malysis X 
Div~.genc~ calcuiJlion.s X 
Cross-tabulation X 

!DIMS 

Unlike the public-domain system MOSS / MAPS, the Interactive Digital Image 
Information System is a commercial product of the Elcctromagnetic Systems Labor
atory, Inc., in Sunnyvale, California. Like VICAR, which is discussed below, IDIMS 
is primarily an image-processing system; fqr (his reason, data arc organized in a 
raster format, and many functions rha( address problems specific to the processing 
of digit:!l images, such as image-enhancement routines, are available. Many orher 
IDIMS funcrions are useful for more general kinds ofspatial analysis, however, so it 
also warrants consideration as a GIS. IDIMS incorporates a data-entry component, 
the Geographic Entry System (GES), and the Earth Resources Inventory System 
(E RIS) for data base management and statistical functions (Electromagnetic Sys
tems Laboratory n.d.; Hansen 1983). 
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Special features beyond functions (hat are routine in an image-processing or 
geographic information system, or that might be ofspecial interest for archaeologi
cal locations analysis, include 

a procedure for overlaying up (Q 10 maps (or images) at one time, rather 
than the two at a time possible in MOSS /MAPS 

a procedure that passes a thrce-by-three-ccll moving window across a 

land-cover map (0 crcate a diversity index 


procedures for creating slope and aspect maps from digital elevation data 

a procedure for creating a shaded reliefmap from a digital elevation map 
with [he sun in a specifiable location 

a procedure for crcating a proximal map that as:iigns each cell to (he 

nearest given X,)' location 


variolls procedures for generating random samples of images for further 

analysis 


IDIMS runs on a minicomputer and is used by several large federal agencies. 
Hansen (1983) has discussed the creation ofa "generic" GIS through combining the 
most useful features ofMOSS, MAPS, !DIMS, and their various allied programs for 
data entry, management, and display. 

VICAR/ IBIS 

The Video Image Communication and Retrieval (VICAR) system was devel
oped at the Jet Propulsion Laboratory (JPL) to process image data from the 
planetary exploration programs of the late 1960, and 1970s (Bracken et al. 1983; Hart 
and Wherry 1984). Unlike MOSS/ MAPS and !DIMS, VICAR is designed to run on 
large-scale digital computers and is normally restricted (Q IBM systems, since a 
substantial proportion ofirs code is written in IBM 360/ 370 Assembler Language. A 
subset of VICAR, called mini-VICAR, was developed to run on DEC minicompu
rers, btl[ it appears that [his system is no longer actively used. A DEC V AX version 
offull VICAR is now in use atJPL, however. Like MOSS / MAPS, VICAR is in the 
public domain. With well over 100 application programs running at about 25 
installations around the world, VICAR is a very powerful and widely utilized 
Image-processmg system. 

The Image Based Information System ( IBIS) is an enhancement to VICAR also 
developed atJPL(Bracken et al. 1983; Zobrist and Bryant 1979). The IBIS programs 
give VICAR / IBIS some of the capabilities of a GIS, including overlay analysis and 
vector-to-faster convc'-sion, which allows geo-coded information nor normally 
available in raster (cell) formats (such as maps) to be analyzed. 

The majority of VICAR application programs arc specialized for image 
processing, a task that may sometimes be imponanr in predictive archaeological 

modeling-particularly when map-based data are unavailable, It is al,o important 
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to remember that most modern, map-based data are the result ofimage interpreta
tion of some sort, A few of the VICAR programs of potencial importance to 

locational modeling include 

a multivariate classifier program using Bayes's maximum likelihood algo
rithm, which yields a classified image ( map) and, optionally J a confidence map 
for that classification. This program accept s input either from a wptrviud 
classification analysis, in which the user specifies certain Htraining areasHon 
which the.: classification function is to be based, or from an unsupervised 
cluster analysis 

a mu\rivariatc classifier program that uses a combination of parallele
piped and maximum likelihood techniques, accepting input from either a 
supervised or an unsupervised analy~is 

a program for performing edge enhancements and, optionally, for mak
ing edge existence decisions 

a principal components analy sis of up to l2 input variables 

a least-squares program that 'Q,'ill, among other things, calculate and 
display trend surfaces and rt'siduals from trend surfaces 

a program that simulates the elTect of shading from a specifiable angle of 
illumination on any continuou~ image 

The !Jet that VICAR/ IBIS typically runs on large mainlrame computers has 
both advantageous and disadvantageous aspects. In installations with whieh 1 am 
familiar. VIC AR / IBIS runs as a Hbatch" program, meaning that jobs are ~llbmi[[ed, 
and the output later (possibly much later) received, with no intermediate intcrac
tion between th4...' user and the processing system. Obviously, it is desirabk· to have 
fast response to user query in an interactive modc, as is typically the case for 
geographic information sys tems running on mini- or microcomputers. There is 
great analytical utility in being able to see the mapping of some function unfold 
before your eyes, perhaps to be interrupted and modified if necessary in its early 
stages. On the other hand, some batch systems, such as VICAR/IBIS, have a huge 
variety of sophisticated functions, and their mainframe implementation allows the 
usc of very large.' data bases. As new data storage te.'chnologies, such as laser disks, 
become available, and as the cost of data storage continues to drop, one of the 
advantages of mainframe-based systems will disappear. On the other hand, as 
cheaper and more powerful local work stations begin to share processing with 
mainframes, the easy dichotomy between mainframe- and microcomputer-based 
geographic information systems will also become fuzzy, and batch sy stems wiH 
probably becomo things of the pa st. 
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MODEL DISPLAY VS MODEL BUILDING 

Timothy A. Kohler 

Earlier in chis chapter, Kyamm~ discussed many realized or potential applica
tions of geographic information systems to general spatial research in archaeology l 
including the construction, (cHing, and usc of predictive locational models. \Vithin 
[he cacegory of model building, a discinc<ion can bc made be[wecn [he proccssing 
necessary [0 build a data set suitable for inferential statistical testing and (he 
application ofinferential procedures (for example, linear regression) to discover the 
"beSt" 10eational model. 1£ is important for managers [Q realiz~ chat, in their present 
phase ofdevelopment, most geographic information systems are much berter suitcd 
[0 the first task than to the second . Constructing an inferen[ial model of site 
location inevitably involves [he application ofinferential statistics [Q surveyed areas 
[hat contain or are devoid of archaeological resources. Geographic information 
systems give unsurpassed power for the extrapolation of such models-once 
cons[ructed - to the area from which [he samples were originally drawn, but actual 
inferential statistical functions available in many geographic information systems 
are rathcr limited (Table 10.3). This is no< a fatal weakness for [he application ofa 
GIS for model building if [he GIS has [he ability [0 forma< a file for usc by a 
gencral-purpose statistical package, such as SAS or SPSS, as is usually [he case. I[ 
docs mean, however, [hac a GIS is usually no< [he only software needed for [he 
analysis of spatial daca. 

Of course, geographic information systems are an imponan[ aid in model 
construction since [hey can be used (Q collect data [0 be passed (Q an inferential 
s[adsrical analysis. As pointed out by Kvamme, anyone who has conducted a 
quantitative seulemcn[ pa([ern analysis-examining [he distances from known 
archaeological resources and random points [Q various features of dle natural 
environment and evaluating [he composition ofcatchments around bQ[h sites and 
random points-knows how tedious and prone [Q error these hand measurements 
can be. In a GIS suitable for archaeological analysis, such measurements can be made 
automatically for any of [he available data planes or maps. These measuremcnts 
constitute secondary surfaces that can be stored as new maps on which [he locations 

of sites and points without sites are replaced by measurements of catchment 

composition and distances to critical resources around these points. These mea

surements can then be passed to another system for statistical analysis, and in this 

manner the most tedious portion of model consHucrion has been automated. 

Perhaps ,,·hen it is easier (0 consider variables related to catchment values and 

disnnces (0 resources, these variables will be used more frequently and effectively 

in prcdic<ivc locational modeling [han [hey have been [0 dace. 
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IMAGINARY SESSION WITH A GENERIC GIS 

Timorh)' A. Koh!.:r 

Despite the g rowing literature about and inCrl.'l Sing accessibility to geographic 
informacion systems, theSl' systems remain mysterious (0 mos t archaeologis ts . 
\Vhar follows is a poor man's subsrirure for the only experience (hat can really 
convey both thc usefulness and the limitations of rhest' systems-a Bhands-on" 
session. This example illustrates how a GIS might be 1I5ed (Q map a model th:u has 
a/read) been developed, either by using the GIS lor data collection or by some other 
means. Limiting rhis example [Q mapping rather than dc\'elopmcnt of a model 
should help the reader who has no acquaintance whatsoeve r ".'ich geographic 
information systems to understand how they wo rk. Additionally, as pointcd out in 
the pn~"iou s section, building an inferential model is essentially a statistical task in 
which the GIS serves as a technical assistant for dat:t collection and manageme nt. 
The specific techniqucs discussed an: mo re appropriate for image-processing-based 
systems (su ch as IDlytS) than for many geographic information systems, and there 
would certainly be ma rc efficient ways ro approach this task on some systems . 

You sit in front ofa high-resolution graphics te rminal aUJched to :1 minicom 
put4c'r or a " supermicro" running a relatively advanced GIS. The most tedious and 
expensive work-digitizing \'arious maps for tht' data base, correc ting digitizing 
errors, geometrically cO,rrec ting remore sensing imagery, tying thJt imagery into 
gtound control points, and so forth - has already been done. Previous researchers 
have interpreted available Landsa[ imagery to yield digiti zed maps of vegetJtion 
type and density and of current land use. Likewise, digital elevation models 
available on computer tape from the USGS (Elassal and Caruso 1983) providing 
ciC'v3.tions for points a t 30 m intervals have :tlready been processed to yield 
secondary maps ofslope and aspect. Each of these digitized maps has been srored on 
disk or tape and is accessible to the computer, and each co nstitur{'s a data pldftf Of 

thant . Themes available to you for our imaginary GIS session are shown on Table 
10.4. These data are a\'ailablc for an area about 51 km on a sidc, the largest area your 
monitor can display at a resolution (picture dement, pixel, or cell size) of50 m on a 
side:. MOfe than a million (1024~) pixels are displayed on your s("rt:en, which shows an 
area equivalent to that portrayed by abollt 16.5 USGS 7.5-minute topographic 
quadrangles. You can enlarge any portion of [his arca to fill the whole sc reen if you 
wish to see a subset of [he area in more detail. 

Relatively low quality copies of the content s of the screen can be obtained 
quickly and cheapl), in black-and-white on a peripheral dot-matrix printer; high
quality color copies can be obtained using a peripht'ral pen plotter o r a high
resolution color ink-jet printer. The system at your disposal cost somewhere 
bc tween S40,OOO and S125,OOO and so must be shared by many ditTerent usc:rs. most 
of whom arc involved in natural re: sOUrCt'S inventory and analysis. 
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TABLE 10.4. 

Dala Ih~m~5 :I\'ailable fOT your GIS session 

Dmripuotf Org4nha:i~~ 

Arch lt:ologiC.l15ilt's with alrribu!c.s lor ty pe :md agt' 
Aspect 
Eh.-vatian 
Extt'nt of :.lrch3l'ological ,urvC'y 
Modcrn land usc 
ROlds/s trt'3.ms with :mriburc$ for typcs/ortkrs 
Soil type 
Slope 
Vcg(.·tat ion I ypt-'s 
V(,,'gctation density 

l'olygon 
Cell 
Cel l 

Polygon 
Polygon 

Linl' 
Po\)'gon 

Cell 
(Iolygon 
Polygon 

You wish CO map a simple s i[t.~ location model that predic ts, for example, that 
frequencies for two types of sites will be relatively high in locl tions satisfying two 
slightly dilTcrent sets of criteria. Rt:quircmcnrs f'Or the first site type Jre locations 
with 

less than 5° slope, 

no more than 80c0 f( elevation, and 

permanent water and pinon-.juniper woodland no farther than 0.25 km 
away. 

The seco nd class of sites is likel y to occur in areas with 

no more than 100 slope, 

se3sonal or permanent water no more than 0.25 km distant, 

no more than 7500 fr an d no less than 6000 f[ elevations, 

arabIc soils no more than 0.1 km distant, lnd 

locations at the base or a slope. 

Yo u wish to create one map showing those areas most likely to have site types 1,2, 
both, o r neither. 

There are many ways to approach this problem; details of the l'best H approach 
depend on tht.· characteristics of the particular GIS at your disposal. One Jikel~' 

approach-ignoring technical details and considering onl y t he gt'nerl.1 s trl.tcgy
wo uld be to select all locations for each site type on each data plane that arc 
favorable [0 settlement and code t hem with a I, coding all other areas \vith a O. Once 
this ope ration is completed for each releva nt data plane (that is, fo r (.'3ch map ofa 
particular variable or en vironmcnt;:d characteristic), the fou r da t a planes (in the case 
of site type 1) or five data planes (in the case of site type 2) can be electronically 
overlaid, with values from the same location on each map being summed together. 
This procedure is analogous to overlaying a series of accuratel y positioned and 

extremely detailed mylar maps to produce one new map in which each location is 
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the sum (or some other function) for that location oethe information presented on 
all the overlain maps. Thc.~ nexr step would be [0 recocle all areas that yielded a sum 
of 4 in (he first analysis [0 1, with other areas assigned 0; all areas with a 5 in the 
second analysis would be rccoded [0 a 2, with other aTeas assigned O. In this fashion 
two summary maps would be crcated, one for each site type. These, in rurn l would 
be overlaid to create a final map in which any location with a I would meet the 
criteria for site type 1only; any loc3tion with a 2 would meet only the criteria for site 
type 2. and locations with a 3 would meet the requirements ofeitht'r type. Locations 
coded 0 would be considered not to meet the requirements of either type. 

With one exception, the processing to be done 'fPilhin any data plane prior to 
overlaying the separatc data planes is simple and straighcforward. For example, the 
process of selection according to a range of t.'levation and slope criteria relics on a 
very basic abiliry of geographic information systems to reclassify or renumber data 
planes. In the analysis for sit(., type 2, for example , a new copy ofthc master slope 
map would be made in which all locations with a slope of 10" or less would be coded 
I, while other locations would take on a value ofO. 

Ot her basic GIS capa bilit ies ar<..' illustrated by t he opera tion. oflinding locations 
within a certain radius of somc environmemal feature or attribuH.· (such as within 
0.25 km ofscasonal or permanent waeer). One way to do this is to pass a "moving 
window" with a radius equal to thc maximum distance allowable from the feature 
across the pixds that constitutc the Helecrronic landscape." Any point within the 
allowable distance could be flagged on a new map with a certain value, perhaps a I, 
while other locations would take on a value of0, Another method, which is usually 
more efficient, employs a function chac expands the perimeter of the feature of 
imerest by the proper distance. These functions create a concentric zone of 
specifiable width around a poim, line, or polygon, an operation that is frequently 
useful in archaeological spatial analysis. One can, for example, specify a vegetation 
zone (pinon.juniper) to be used as a target; the width of the concenuic zone to be 
created around any occurrence of this v(:getation typej and the number~ to be 
assigned Co locations within this expanded zone. In the example discussed above) 
this expansion function would be employed twice during the mapping ofpossible 
site type I locations-once on the roads /s treams dara plane, using permanent 
streams as a target, and once on the vegetation data plane, using pinon-junipl.'r as a 
target. 

The one exccprion mentioned above to the rule of relatively simple informa
cion processing within each data plane involves the problem of finding loearions 
near thc base of a slopc. In most geographic information systems this would require 
a sever3.l-stage process (more complex rhan 'we need [0 describe here) that might, 
when completed, give less rhan perfecc ((.' sults. This example is included [0 

demonstrate that not all results th3.[ arc easy for a human to achieve (as locating 
areas 3.t the base ofa slope might be) arc necessarily casy ro achieve via aeomputcr, 
given current technology . 

The emire analysis just described might take a couple of hours with a large 
eompucer or a couple ofdays with a smaller one. In either case, the grear rime and 
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cxpcnst.· incurred in col1{'cting and digitizing the data, once completed, need not be 
repeated, and ust.'rs with difft.'rcnr goals can profit from the accumulated, organizt.'d, 
and highly accessible information in tht.' GIS. Even with a smaller, slow{'r computer, 
results 3n," achicved much more rapidly and accurately than ifrhe work was done by 
hand, assuming that the data base is in place. 

Kt.:n Kn.mmc n:itcrJ.lcs his :lcknowll.!dgmcnt o(rho~c persons and institutions nll.: n!ionC'd J.t the 
cnd o( Ch Jptt:r S. Tim Koh ler would likl' to th l nkJudy Hart, David Wht.:rry. ::J nd Robert Wright for 
comment s on an c:.trl i..:r vcrsion of hi s ponion o(this Ch;lptCr. 
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Chapter 11 

PREDICTIVE MODELING AND ITS RELATIONSHIP 
TO CULTURAL RESOURCE MANAGEMENT APPLICATIONS 

Chris Kincaid 

One goal ofrhis volume, stared in Chapter 1, is to Hexplore the feasibility and 
practicality ofprcciicrivc modeling for meeting management objectives." \Ve will 
address this goal in rhe following pages. First, however, we need to consider just 
what our managemcm objectives are, and how they relate (Q what miglH be called 
"research objectives." 

Research objective> of modeling tend to fall under the general heading of"an 
improved understanding of the archaeological record." Nlodds can improve our 
definition and recognition ofimportant types ofsirt's and our understanding ofrheir 
distribution across (he landscape. ;vlodds can clarify processes of culture change 
and interaction and provide a regional framework for unders£3nding the develop
ment and evolution of human systems. They can permit u S to undcrscand cultural 
adaptat(on to dirfcring environments and provide insight inro the nature and origin 
of social, political, and economic processes. 

V/'hile initially such information might seem abstract and removed from the 
practical requirements of cultural resource management, in reality it meets several 
critical management objectivc:s. N1anagement objectives are sometimes thought ro 
be limited to a narrow concern over Hhow many sites are where, \I and indeed, 
models can suggest what types of sites are in a specific area and where in that area 
the), might occur. Some modds can also be used to generate population estimates 
and statements concerning the probability of site occurrence in a parcicular loca
tion. These classes of information arc imporcant in management decisions about 
possible surface-disturbing actions. But the more research-oriented objectives of 
modeling are also important because such models can help to indicate data gaps and 
highlight rcscarch issues needing additional work. In thi~ way the use ofmodels can 
help us to focus sc.:arc(.' agency dollars on the collection of the most necessary and 
important data and reduce waste caused by repetition. Such models can help us to 
learn more from existing data and, in some cases, can expedite and streamline 
inventory programs. \Vhile some products or applications of models arc morL' 
important in either a research or a management context, in a broader s(~nse research 
and management objectives overlap a great deal, and both stand to gain from a 
model that is reliable and adequately explains as well as predicts site occurrences. 
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In the following pages we will explore the application ofspecific theore tical and 
methodological approaches described in preceding ch-apters to modeling in a man
agement serring. The di sc lission is organized around the topics of preparing for, 
implementing, and evaluating a modeling project, Practical considerations aTC 
foremost. The goal here is to highlight the benefits of using modeling in cultural 
re source manageme nt, whilt.' at the same rime indicating some of rhe potential 
limitations a fit s usc. The desired end res ult is a balanced and responsible applica
tion of modeling concept s to management situations. Alth ough discllssions are 
key ed ro land management iss ues, we have tried not to limit them to a single
agency perspecti ve. 

Questions have been raised as to whether in vcnrory and evaluation sna[egies 
employing modeling [('chniques meet the intent of the National Historic Preserva
tion An, Section 106. This legisl ation requires a determination of the etTen of 
federal agency actions, or federally pt.·rmined or licensed actions, on all properties 
listed in or eligible for listing in the i\'ational Registe r of Historic Places. 

Under thc provisions of this legislation, decisions about appropriate invcntory 
and evaluation strategies are made through consultation between the federal 
agency and thc State Hisroric Preservation Oflicer (sometimes also including the 
Advisory Council on Historic Prescrv ;ltion). There are no set criteria for deciding 
what is appropriate; rather, propriety is defined on a case-by-case basis through the 
consu ltation process , within the broad strucrure of the regulations, The decision as 
to whether or not modeling should be parr ofan invenrory :md cvaluation approach 
depend s on individual circumstances. A decision to use modeling complies with the 
regulations if it was reached in accordance with the consultation procedures. For 
this reason, compliance questions are nor addressed further in this chapter. 

WHAT ARE MODELS ABOUT? 

As analytical {Ools, archaeological resource models arc especially well-suited to 
applications in land management, Among other things, they idt.·ntify panerns in 
spa tial relationships bet\\'('cn sites and their physical locations and rhus indicate 
potential relationships between the natural or social environment and the locations 
of past human activities. A causal relationship is envlsioned: environmental factors 
influence where human activities occur. Measurement s that define or describe 
controlling aspects of the natural or soc ial e nvironment arc called independent 
variables, while measurements of affected human activities, observable in the 
archaeological record, arc call ed dependem variables. 

The development ofmodds centers around three main tasks: classification of 
independent variables, classification of dependent variables, and expression of the 
relationship between them. Sinn.' different cult ural groups interact with each other 
and their environment in difTerent way~, the critical independent and dependent 
variables and their relationship can vary widely from cultllral system ro cultural 
system, The goal of this kind of modding is to produce reasonably accurate 
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representations of selected interrelationships for particular cuhural systems. A 
successful model or series of models allows LIS to organize \\.'hat we know 3bour 
sites-their function, location, and cuhurai affiliation-into a series of affirmative 
statements about human behavior. Coder controlled conditions, these starcmC:fi{S 
can be applied {Q unknown areas to provide predictions abom resources located in 
these areas. 

OUT goal is to correctly identify imporranr aspens of the natural or social 
environment that influenced the location of human activities, and to interpret the 
archaeological record as the result of a set of functional, temporal, spatial, and 
behavioral responses (Q a varied environme:n.t. \Ve may, in effect, try ro reconstruct 
(he Hrules" of lnteraction bctween rhese two components. The reiarionship 
between sites and their natural environment s is not as casilv discoverable or as 
direct as the relationships among natutal phenomena. Although governed (Q an 
extent by the demonstrably regular and consistent rules that apply to all living 
systems, human behavior is o rganized inra culrural s),srems, which C.~xe rr additional 
influences on that bchavior beyond rhose ofnatural forces. T here is good reason to 
believe that site locations cannot, in general, be fully predicted from environmental 
variables alone. 

Because of the influence of cultural variables on human behavior, models of 
cultural systems are subject to many more so urces of error than those: for nawral 
systems. The cultural rules that govern how human groups interact with their 
social and natural environments are not easy to identify, even tor modern cultures. 
Studying and identifying such relationships tor cultures that hav t,' been extinct for 
thousa nds ofrears is an even more diflicult task. In land management applications, 
thererore, models of natural phenomena and models of cultural phcnomt..'na should 
not be considered equivalent. :Nfanagers n('ed to have a realistic understanding of 
what models can and cannot do in order to US(' them efTectiveiy . 

WHAT CONDITIONS ARE FAVORABLE FOR 
MODELING PROJECTS? 

Conditions 

Before a decision is made to embark on a modeling project to saris/)' eith er 
research or management objectives, several co nditions must be mer. Frequently, 
these conditions relate to circumstances, such as thl~ bOllndaril!5 oflhe study area, 
lime, finan cial conscraints, etc., that arc.' beyond the control of the project manager. 
For ('xample, the size of the potential modeling project area is imporrant. As a 
general rule, modeling is nor fea sible for small projects covering less than 5000 to 

10,000 acr('s. Models art' most easily interpreted and underHood if they relate in a 
defined way ro cultural boundaries or to major environmental zones. \Vhen only a 
small portion ofa culture area or environmental zone can be analyzed, only a pan ion 
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ofa cult ural system might be examined. Observed site patterning in the study area 
may be responding to [aecors that arc ' ~ uncontrolled" in the terms of the model 
because they arc a response [0 forces or events located oU(side the study area. The 
chances of developing an accurare and inrerprerable model are greatly reduced by 
this circumstance. 

In designing small madding projects, difficulties often occur in meeting 
minimum sample-size requirements for statistical analyses. Altschul and Nagle 
address rhis problem in some derail in Chapter 6. In general, rhey advise rhat for 
cluster ;malysis of sile types, J minimum of 30 sample units (nol including empty 
units) is necessary, a condition frcquendy not met in sample inventories. Unfortu
nately, the number of sample units necessary for a valid analysis cannot bt' antici
pared prior to ticldwork. Additional inventory may be required to reduce sample 
variance if a majority of sample units do nor contain ~itcs while the remaining unit s 
contain many sites. 

The configuration of the modeling project area is also important. Linear as 
compared (0 areal projects lTC generally mOTe difficuh [0 model because.." linear 
projects tcnd (0 cross-cur several environmental and cultural zones, each of which 
may be poorly represented as regards total acreage. Morc complex models, or 
additional modds, may be nceded in these cases. 

Another import am factor is the amount of time allotted for the modeling 
project. i\1odeling is lIseful as a long-term technique for organizing and structuring 
data and data collection priorities. It is less useful under a short time frame that docs 
nor aUow for r~sting and refinement phases. 

Often the nature of the archaeological record itself can indicate that special 
straregies will be needed for modding dTons. For example, if 75 percent of the 
known sites in an area are classified as undiagnosric lithic scaners, neither chrono
logically nor functionally specillc models can be developed. Under rhese circum
stancl.'S, care should be taken in designing any new sample inventoril.'s in rhe area (Q 

assure that derailed information pertaining [0 atrributes of anifacts is collech.'d. 
This data could be crucial in the definition of site classes during postinvcnrory 
modeling efTorts. 

Sometimes the environment determines whether modeling will be::' easy or 
difficult. In Chaprer 4, Eben and Kohler distinguish berween environmental 
variables (which measurc..~ a singl~ aspect of the environment, e.g., slopl.') and 
ecosystemic variables (which measure systemic attributes reflective ofintc..'racrion 
among environmental variables, e.g., c.dTective temperature, spatial periodicity, and 
environmental diversity). The::"' most usable ecosystemic variables for predicting site 
locations are those that monitor spatial availability of resources (e.g., degree of 
patchiness) and temporal availability of resources (e.g. , degree of constancy, con
tingency, and predictability). Ebert and Kohler conclude rhar, in general, hetero
geneous environments in which critical resoutces are temporally predictable and 
occur in highly concentrated and overlapping patches arc apt to be best tor 
locational modeling and prediction. Conversely, a basically homogeneous environ· 
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ment, in which critical resources arc dispersed and only sporadically available, will 
be more difficult to model. For example, sire locations may be more difficult to 
model on a desert creosote flat without major drainages or comrasting landforms 
than they would be on a flat broken by large dry washes or bench lands, where 
critical vegetative resources arc apt (0 occur. 

Also, changes in the earth's surface may have taken place after (he deposition 
ofarchaeological materials (sec discussion ofpostdepositional processes in Chapters 
4, 6, and 9). Postdepositional processes might include movement of sand dunes, 
deposition of alluvium, erosion by \vind or water, etc. Large ponions of a project 
area may have been covered over or scoured away as a result of these processes. In 
areas undergoing active alluviation, for example, exposed surfaces may be no older 
than 200-300 years. The possibility offinding prchistoric sites under such conditions 
is greatly reduced, and modeling eJTons directed to prehiS[Qric site locatjons ..,:ould 
be unproductive. Under these circumstances specialized strategies (such as invcn
tories focused on road cuts, arroyos, erc.) may be appropriate. 

Administrative Concerns 

The risks ofembarking on a modeling project should be evaluated realistically 
at the onset of a project and weighed against sllch administrative constraints as 
project schedules and costs. To develop a model that meets a specified level of 
precision, additional testing and analyses may be needed, sometimes causing delays 
and increased costs. Clearly, the importance of these concerns will depend on the 
type of modeling project envisioned and its use. 

Time should be allowed for model testing and revision during any project. In 
Chapter 6, A ltschul describes a multistage survey design, a useful means for staging 
sample-based fieldwork so that the maximum benefit is derived from each succes
sive stage. \Vhile a multistage approach may seem more time-consuming, expe
rience has shown that a single data-collection phase is seldom adequate for model 
development (depending, or course, on the size of the initial sample and the 
availabiliry of relevant historical, ethnographic, and other data) and may be less 
efficient over the long term. 

If a model is being developed to reduce the cost of field inventory, various 
hidden costs should be taken into account. Short-term field inventory costs are 
almost always less for partial covcrage than for full coverage, cven allowing for the 
substamial field time needed to locate dispersed sample units, but the cost of 
developing a predictive model is not limited to the costs ofthe sample inventory. In 
any given modeling projcct, time and funds also should be allocated for such tasks as 

I. the derailed analysis of existing information, 

2. pn.'paration of environmental data, 

3. development and exccution ofslIccessive phases ofmodd testing (using 

independent data), and 
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4. collection and processing ofsupplemental information about site variabil
ity (through various combinations of detailed recording, surface collection, 
testing, excavation, and laboratory analyses). 

Planning for these additional cous is nor casy. Exact estimates as {Q the amoum of 
work {hat will be needed to devdop J model of the required precision cannot be 
made before a project is even begun. 

Perhaps the most cos{~dTe({ivc comexr for model development is within {he 
framework of general planning by a land-managing agency or a local government. 
Thl?se programs can dC\'e!op and sustain long-term approaches that arc funded 
increm('mally and result in cumulative :lnd refined data bases. Such data bases, and 
the models based on (hem, may take years to dt"vdop and tesc. The end result, 
however, is a powerful and effective managt.'ment too!' 

WHAT KINDS OF MODELS ARE THERE? 
WHEN DO WE USE WHICH TYPE? 

y!odels are c1assilied in many different ways. In Chapter 2, lor example, models 
are compared with respect (0 their foclls (systemic, representing a cultural system; 
analytic, reOecting the analysis of archaeological data), their logical origin (induc
ti\'ciy or deductively derived), and the level of m("asurcmcnt (nominal, ordinal, 
inren-al, and ratio scales). Figure 2.1 prc:sents tht, structur(" of this discussion. 

In Chapter 3, intuirive models art' distinguished from objective models on the 
basis ofwhcther or nO{ components can be operationalizcd or measured. Objective 
models arc thcn broken down further on the basis of geographic precision (arc 
predictions specific to points or to areas?), on procedural logic (inductive versus 
deductivc reasoning), and on rhe relative emphasis given ditTcrent \·ariables. A 
summary of this approach is presented in Table ].1. 

Chapter 5 contains a discussion of various statistical techniques that have been 
llsed to classify models (e.g., linear regression, logistical regression, and discrimi
nant funnion analysis). Kvamme, in Chapter 8, distinguishes between models 
based on trends in "location onlyl' (defined solely in terms oflocational coordinates 
x and)') and models ba::,ed on trend~ in "locational characteristics," or J wide range 
ofenvironmental attributcs of these locations. He further divides models pertaining 
to the characleristics oflocltions according to whether they are- based on parametric 
or nonparametric statistics. 

How does the cultural resource manager know which type ofmodcl is best? Is 
it not possible to define one type of model that is best for cultural resource 
manage-ment purposes and apply this typ(,' to all situations? 

To understand tht· significance ofthe- modeling te-rms used in various portions 
or this volume, v.'e lohould vicw them not as designations oft~-pes of models but as 
descriptive labels for variolls traits or attributcs of modC'is. A cultural resource 
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manager seeking the best model for his or her purpose~ must ask first, what ;j Iht' 

opera/! objU/;l'" OIdtvdoping a modd? If there is a need that only ont' type ofmodel will 
fill, then clearly this type of model mllst be sought. Niore often, a manager simply 
sc~ks the most precise, detailed, extensible, and accurate mode l affordable. Such 
considerations as the nature of the existing data base, environmental complexity, 
erc. (see discussion in the previolls section), ultimatdy intt' rv("ne [0 limit tht.' 
quality of the model obtainable with given dara. 

One of the broades t and most useful classifications is the one based on 
procedural logic, di stinguishing betwec.:n inductive and deductive approaches. Th(' 
relative merits of these strategies have been debated throughout this volume. 
Briefly, a deductive approach, j.e., one proceeding from theory to data, ofren 
explains why a model works. This is neces sa ry, especially if the model is to be 
successfully applied to other serrings. The major drawback ofdeduct ive mod<ls is 
the difficuhy in making them ope rational. For example, deductive models often 
contain general propositions, such as upopulation growth leads to more intensive 
resource utilization." The archaeologist must determine how "population" and 
Hresource utilizat ion" will be mea!Jured to show growth and increased intensity. 
Abst ract concepts such as these may be dif1icuh to measure in tangible terms from 
archaeological data, especially if thtsc data are sparse, as is often the case. 

In contrast, inductive models proceed from data to theory; observed correla
tions in the..' data arc used to formulatc general hypmheses. If, for example, several 
major village sitc:.-s in a particular area are located nearoron nne particular soil type, 
one might hypot hesize that large habitation sites [end [Q be located close to this 
particular soil type. Such conclusions may be readily derived through data analysis, 
but model s that depend on them arc often criticized for not explaining \vhy the 
observed correlations occ ur. Most models de..·veloped for cultural resou rce manage
ment purposes arc inductive . 

Ck'arly, managers should understand why a model works, but in addition they 

need an approach that is operational. Joseph Tainter (personal communication, 

1982), in comm('nting on one of the in itial drafts orthis volume, oflcred the following 

observarions on this mJ(ter: 


Thl' cruci.l! question is not whC"ther:.a model is derivcd deductively or inducri~'dy ) bUI 

Whl',hl'r it focuscs on t'xpl:lining pJ.![l'rn s or ml'H:i), projl·cring Ihem. Explanations em 

precede or foJlou.' dua collect ion) but mll~t be dl'vc\opl'd J.( som(.' poin t. 


One way ofachieving this may be to structure the rr~odcl ing process to be su re 

that both deductive and inductive phases arc included. 


In rc:.-alit)" in the lon g- tcrm time frame or Cliitural resou rce management 

programs, the dist inC[ ion between deductive and inductive approaches becomes 

blurred. The model building and refinement process is based on a continuous cycle 

or data colleceion, analysis, and model refinement. The results orone cycle of field 

eest ing and analysis arc used to re{ine the mod el , which then guides che next phase 


of data collt·ction. The eventual ffil.'rging ofdeducti vc:.- and inductivt' st rarcgit·s may 
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be the direction of furun.- modding approaches in cultural resource managemem 
contexts. 

How does a manager know which specific type of modd is needed for a 
particular application? If a model is needed for a limited, short-term application to a 
rdatively small projt.·cr area (for example, in connection with the processing of a 
right-of-way or an energy development application), a relatively limited range of 
models will be appropriate, For more general, long-term applications in the cultural 
resource program, a wider range of models could be applicable and useful. 

Given the comple~i(y ofcultural resource managemcnt, virtually every type of 
model has some utility. Both inductive and deductive models aTe appropriate in 
varying degrees, dcpending on (he circumstances. Deductive models have the 
grea{{'r utility in de\>doping inventories and in such program activities as site 
interpn:tation. Inductive, correlatlve models usually have the statistical precision 
needed to de\'dop quantitative esdmates of sitt' populations, dl'nsitit's, and distri
butions and are currently the better source of such estimations. Both types of 
models may be needed in a comprehensive cultural resource managt'mcnt program. 

HOW CAN WE PREPARE FOR MODEL DEVELOPMENT? 

Model development is a repetitive process of inventory and analysis that is 
most e!Tective as a long-term strategy, In general, rhe quality of the model depends 
on the quality of the data; better data bases yic.:ld more precise and accurate models. 

Even before beginning the modeling process, the cultural resource specialist 
can takc many steps that do not require large-scale or expensive sample invcmories. 
Since the beginning of cultural resource management programs, managers have 
recognized the need to make full usc of existing information, Chapter 7 specifically 
addresses model-building requirements and techniques to de"elop good data bases, 
As a first step, the cultural resource specialist should accumulate and screen all 
available information on the study area's history and ethnography, and on previous 
surn."y work in the arca. The quality of data on previously recorded archaeological 
sites and other historical properties should be carefully reviewed for locational 
accuracy and complcreness, and sites for which information is poor should be set 
aside fot later C'valuation. Checking selected sites in the field may be necessary to 
evaluate recording practices and improve information. 

The second step should involve assembling information into a coherent, usable 
format. If the equipment and expertise arc available, this might include automating 
the site data base. Several regions and states have systems for managing site data, If 
onc of these is not available, a data base can be set up on an oflice comput{'r. 
Automating the da[a base allows the specialist to review the data easily and 
informally, and to cvaluJ[e them apart from any ongoing modeling project. Ana
lyses of existing data for furure modeling projccts will be much simpler and less 
C'xpensive than curren[ m<:thods. Subfiles can be: used to store more detailed site 
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and artiract dara speciric ro individual sites. These subriles can be created easily and 
accessed as needed during derailed analysis. 

All surveyed arcas should be mapped on base maps. The type and complere
ness of survey coverage must be carefully scrutinized. Using informacion provided 
in project rcpans, [he specialise should separate projects in v.,hich coverage appears 
[0 have been biased, incomplete, or otherwise suspcn from those in which survey 
and recording practices conform [0 acceptable standards. Only survey data that are 
relarively complere can be used conridently in studies orspa rial distriburion. While 
data recorded during less rigorous, nonstandard surveys may be \'ery useful for 
site-level analyses, methodological biases thac dis[on apparent spatial distributions 
make thesc dara unsuirable ror modeling purposcs. 

Documents summarizing existing data in an area, such as Class I inventories, 
statc plans, and regional research designs, can be especially useful as a preliminary 
source of site distribution information whhin a study area. Research designs should 
summarize what is kno\vn about an arca in [he form of model-like statements or 
hyporheses, which can rhen be rested when new data are collecrcd. These studies 
can be comple[ed on a connan basis, generally a[ relatively low cost. 

The definirion or sirc rypes reflecting remporal, runcrional, and cultural 
diffcrences is perhaps one orthe most userul tasks rhat can bc perrormed ro prepare 
ror model building. (Procedures ror rhis rask arc discusscd in Chaprers 5 and 8.) Site 
types or other similar classification schemes are one of the primary components of 
models. 

Environmenral dara arc also needed ror model building. To be userul, how
ever, rhey should be or a consistcnr qualiry and scale rhroughout the study area. 
Land-managing agencies rypically expend considcrable efforr in collecting a wide 
range of environmental data for land·use planning and environmental impact 
considerations. This is done through field inventories, analysis of aerial photo. 
graphs and orher remore sensing dara, GIS developmenr, ere. The manager should 
ensure that such data collection projects take imoconsidcrarion [he unique needs of 
the culrural resomce program. Thcse needs (e.g., ror dara perraining [0 rhe 

paleoenvironmenr or identifYing postdeposirional processes) should be anticipared 

by rhe managcr and, where possible, collected as parr ororher specialized studies. In 

areas ofadjacent or mixed jurisdiction, opportunities for interagency development 

of environmemal dara can be explored to reduce costs. 


Once the requisite data bases have been assembled, screened, and organized, 

several kinds of preliminary analyses can be performed to evaluate and characterize 

rhe dara. This step is acrually rhe beginning orrhe model-building process, which 

will be discussed rurrhcr in rhe rollowing secrion. These preliminary analyses are apr 

to be biased and inaccurate, however, because the existing data used at this point 
probably do nor represent rhe study area as a whole. 


This docs nor mean rhar trial models developed ar rhis stage are unusable, only 

rhar rheir usc is limired, and rhar rhey should be used wirh caution. Trial models 

provide a check on rhe adequacy of field recording procedures. Even an inirial 
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modeling exercise may point out the need for additional detail in artifact recording, 
for subsurface testing, for an increased level of site examinations, for a shift to 
interval or ratio-scaled data, etc. 

Appropriate changes made in site recording techniques can greatly increase 
the chances of successful modeling elTorts in the future. Even deficient models can 
help to identify gaps in inventory coverage and highlight new data needs. Similarly, 
future large-scale modeling elTorts may improve substantially if preliminary small
scalc projects can first be applied to areas for which we have relatively little 
information. 

Statistically representative data arc not necessary to develop a model; if new 
data collection if planned for purposes of model development, however, these arc 
certainly the most effective data to collect. Model Ufting, on the other hand, docs 
depend upon the availability of unbiased data that are representative of the study 
area, most often data that were collected using some form of random sampling. 
Until a representative sample of data is obtained through a carefully designed 
inventory project, any model developed for the area must remain essentially 
untested and should be used accordingly (see the section on model evaluation, 
below). 

HOW DO WE PLAN A MODEL? 

Should funding beeome available for a modeling project, several measures can 
be taken to ensure that management needs will be met and that the project will be 
as sueeessful as possible. To begin with, in what might be called a preplanning 
phase, the goal needs to be clearly defined . The purpose of the project should be 
carefully considered, recorded, and reviewed by managers and other resource
program stalTmembers. Both long-term and short-term goalsshould be considered, 
including all potential management applications of the product, as well as imme
diate uses. The possibility of phasing the project over a period of years should be 
considered, depending on whether one-time or continued funding is anticipated . 

Two important decisions to be made arc the sizc of the target study area and 
the type and resolution ofdesired model products. For large study areas, entering 
into joint projects with agencies or others (e.g., Indian tribes or local governments) 
who manage adjacent lands may be advantageous, especially if the eombined land 
base more nearly addresses a meaningful cultural or environmental unit. Establish
ing two study areas may also be advantagcous-a larger one to be used during the 
analysis of existing data and a smaller, more limited one to be used in definition of 
the target population of inventory sample units. 

The full range of available model products and their limitations should be 
weighed to ensure that initial e.pectations match the results. Possible types of 
products include statements about relative site distributions, population estimates 
(e.g., estimated numbers of sites in unsurveyed sample units, numbers of unsur.. 
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vcycd sample unit s without sir~s, and total site population), correlations between 
certain environmental factors and the locations of certain types of sites, and 
probabilit y statements (e,g" the probability offinding a site in an yone sample unit 
or the probability that the observed result would occur by chance alone), 

In many cases, the value of the results depends on the detail of the environ
mental data recorded for each sample unit and the levels and types ofmeasurement 
used in recording the data, These factors should be addressed during the planning 
phase of the modeling projeCT and should refleer the managcmcm constrain ts, 
goals, and limitations identified during the preplanning phase, 

After the manage ment need s have bet'n clearly deiincd, a modeling project 
plan should be developed , The purpose of a project plan is to break down the 
modeling process into a series of review and decision points, whereby the manager 
or specialist and the individual implementing rhe project ( in mosr cases a contrac
tor) can review progress and jointly participate in key decisions. 

The first step in the development of the plan should be a review of existing 
dara and formulation ofa trial model for the srudy area. Plans to test this trial model 
should be described in a research design that clearly spells out research issues, data 
gaps) and priorities (or collection of new data during sam ple inventory work. 
Stateme nts should J.ddress data-collection act ivities: selec tion ofinvenrory areas; 
data recording (or micro-and macro-environmental data; and recording o( si te, 
feature, and artifact attributes. Each recording activity sho uld be carefully 
reviewed to ensu re that the most powerful measu rement sys tem will be used, a 
critical factor ifinvem ory results arc to have rhe maximum applicability to model
ing c1Torts. 

Derail concerning the rationale for selec rion of sample invent ory units should 
be provided in the sample design, The sample design should clearly describe any 
proposed stratification schemes and the ir goals, plus the configuration of the sample 
units and the method of their selection, It should also evaluate the need for multiple 

survey strategies (e,g" a mix of random and judgmental samples), 


At a minimum, the result s of the initial dara rev iew , the rrial model, and the 

da ta-collec tion proposal should be included in a preliminary report prepared prior 

to initiation of fieldwork. The manager and specialist can thus determine at this 

preliminary stage whether maximum use has been made of existing dat a and can 

ensure that the first stage of field inventory is directed toward a model testing 

cHart. Pee r review of this report may be dl'sirable. 


The plan should next address the second step of the project- the fieldwork 

phase, Detailed information about the proposed field methods, including rates of 

inventory, recording standards, collection strate gies, and schedules, should be 
provided, 

The third step of the project plan should address analy sis and preparation of 

the final report. In this part of the plan, proposed approaches to data preparation 

and analysis should be described, The relationship bet ween proposed products of 
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analysis and the original management goals should be discussed, even though at this 
stage the former might be tentative. Ultimately, the results of fieldwork
including the number, variability, and distribution of sites-will have a principal 
role in determining thc level ofanalysis possible. The anticipatcd artifact studies or 
other laboratory analyses designed to distinguish site types and functions should be 
described as well. 

The final report should be structured to present the model, describe the uses 
of the data, explain differences between the initial trial model and the final model, 
and describe its limitations and appropriaH.' applications. An explicit statement 
should also be included [0 detail how the model could or should be tested, 
regardless of whether additional invcntory is cnvisioncd in thc near futurc. 

Specific technical information on (he most effcctive ways ofperforming model
ing tasks has been prcsented throughout (his volume; this information should be 
read carefully by any culrural resource specialist responsible for ovcrseclng or 
monitoring a modeling project. A description of the overall modeling process from 
the perspective of the land managing agenc), is provided by Altschul in Chapter 3. A 
critical discussion c~plaining types of measurements and thcir importance to 
modeling is presented in Chapter 5, followed by an extcnsive treatmcnt of the 
mechanics of the model-building process, including development of site classifica
tions, Specific topics such as sampling strategies, parameter estimation, the empty 
unit problem, phased sampling and survcy, and data-recording strategics are 
covered in Chapter 6 by Altschul and Nagle. Kvamme, in Chapter 7, analyzes the 
use ofexisting data in trial model formulation. In Chapter 8 he looks more closely at 
different types ofmodels and compares their output and applicabiliry to manage
mcnt situations, Chapter 8 also comains a review of rechniqucs for model testing 
and refinement, addressing such topics as parametric and nonparametric statistical 
analyses and assumptions about the data, testing, and confidence intervals. 

HOW DO WE APPLY MODELING IN CULTURAL 
RESOURCE MANAGEMENT? 

!Vlany aspects of cultural resource management can benefit direcdy or indi
rectly from the usc of modeling techniques. Even if a formalized model is not 
developed, the techniques used to prepare cultural resource data for a modeling 
exercise (see the section on preparation for model development, above) can have 
useful side benefits. Some of these arc discussed belo"'. 

Invenrory 

f\1odels can be used in the design of comprehensive inventories specific to a 
defined land base or land-use area. \Vithin this arca~ information concerning site 
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types, site locations, and environmental characteristics can be ordered as either 
dependent or independent variables and (under an inductive approach) analyzed to 
deteer patterning in the data. Through this process, additional data needs (e.g., for 
more detailed sire data, for inventory coverage in specific places) become evident 
and can be prioritized. Even in preliminary modeling efforts (deductive or induc
tive), new types ofinformarion, such as sireless locations, paleoenvironmental data, 
and information on postdepositional processes, arc ofren needed. 

Models can also drive inventory efforts when information is needed to leU 

( rather than develop) the model. While models can be created from a diverse and 
nor rigorously representative data base, they can only be rested properly using an 
unbiased data base, i.e., one that represents the study arca as a whole. Because of 
the overall utility of models, the collection of sample inventory data for model 
testing and refinement should be a high inventory priority, regardless of whether 
these data arc selected within an administrative land base (e.g., a resource area or 
forest) or a limitcd study area within that adminisnativc land basc. 

Because ofiimited funding, somc managers may consider turning to modeling 
as a substitute for, or as a way of iimicing, new invcnrory d3tacollection. This is not 
a cure-all approach, however, because rhe resul£s ofa model are only as good as rhe 
data on which the model is based. For this reason, models sometimes do a poor job of 
predining variability and may not bc reliable or precise. \Vhile each casc must be 
evaluated on irs own mcrits, rhere are sevcral criteria thar culrural resource 
managers should consider when deciding how to use modeling in field inventory 
effons. Onc imponanr consideration is the possible repcrcussions if scarce inven
tory dollars are spent to develop a model that cannot perform to the desired level of 
accuracy. The purpose for which an inventory is conducted will determine how 
serious this problem will be . The type ofmodel being used must be evaluated with 
respen ro the application under conside ration. The analytical origin ofthe model is 
important, as is rhc qucstion of whether it has been resrcd. (Marc specific crireria 
for model evaluarion are included in the next section.) 

Th e types of sites in the study area are also an important fanor . It is one thing 
to limit invcntory in an arca thought to contain homogeneous archaeological 
remains, such as small sites with limited variability, no depth, and shared attributes. 
It is quitc differcnt to limit inventorics in an area known to contain complex, largc, 
or stratified sitcs; a heterogeneous site population; or what Alt schul and Nagle 
(Chapter 6) refer to as magntl sites (sites thought to influence the location of other 

sites). 


The scale of resolution of the model is important. Zonal models perform 

differently from point models and generally cannot provide specific site-likelihood 

indications for designatcd loca.tions. 

Land managers should guard against the improper use of intuitively derived 
models in influencing invenrory efforts . Archaeologists who work frequently in an 

area often develop a Hfcel" for where sites should be found. Occasionally, these 

intuitions have bcen used as a basis for limiting invenrory to cc rtain areas without 
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testing others. A danger in this approach is that if sites are sought only where they 
are thought to exist, the prediction mal' become a self-fulfilling prophecy. Potential 
results can include destruction of significant resources or introduction of a strong 
bias into the data base. 

Intuitions should not be dismissed, but neither should they be equated with 
scientifically verified information. They should be formalized, expressl.'d in terms 
chat can be measured and applied in the invenrory process, and subjectcd (0 a 
rigorous tcsting program. In this way they can be of vital imponance in effective 
model development. 

E val ltation 

In evaluating an archaeological site for managcmem purposes, tWO major kinds 
ofquestions are asked. One has to do with a site' s significance (general1y expressed 
in terms ofeligibility lor the National Register of Hi static· Places). The other has to 

do with determination of it s most appropriate use(s), toward which further man
agemem actions should be directed. Jvtodeling can contribute to both kinds of 
cvaluation . 

The significance ofa 5itl' can be measured by its potential to contribute to our 
understanding of the hisrorical and prehisroric past. On a broad scale, model s can 
help ro clarify these research issues, thus providing a more consistent regional 
coml'xt for site evaluation. 

By focusing research on the location of sites, as well as on the I)'Pil of sites 
expected to occur in specific locations, the modeling proct.'ss can help ro increasc the 
accuracy and precision of functional~ temporal, and spatial qualifil'fs. Modeling 
helps (o define major similarities and differences among sites and reflects the 
information poremial for both identified and projected sites within an area. 1n 
cvaluating whether a particular site is pott'nrially significant, rhe specialist often 
relics on prev lous experience with other si tes of the same type. 

Th(,., importance of a site cannot be equated solely with its membership in a 
particular site type or class, however; clearl)', the rare or unique site, which fails to 
appear as a scparare type during statistical analys t.' s, ma), be rhl' most significant site 
in an area. These sites are of(("'n nor amenable to identification through sample 
invenrory, but they can be successfully integrated into pr(,.·dictive model s if suffi
cicnt information is known about thl' m. This issue is discussed further in {he next 
section, 

It is important to consider the physical characteristics ofa site as well as its class 
m(,~ mbership. For (,~ xample, a broad class labeled "habitation si res" might include 
sites with or without structures. Some large sitt's might be in poor condition, wirh 
vinually no r("'Olaining information potential, while some small sites mighr contain 
substantial undisturbl."d deposits. Clearly, significance assessment must address 
individual site characreri,S tlcs, as well as class membership. 
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Detailed information about the relative scarcity, n:iarivc rt.:sc.:arch imporrance, 
and locations of archaeological sites, v.·hcrhcr they have all been discovered and 
recorded or not, can help in the determination ofrhcir appropriate: uses. Examples 
of possible uses include ongoing or potential sciemific study, maintenance ofa social 
and / or cultural group's traditional Jifc\ll,'ays, public education and inrcrprccuion, 
and exp('rimental management studies. By relining ideas about all of the archaeolog
ical remains in a target area, model s can be extremely valuable for focusing and 
organizing use and allocation dt'cisions. 

Protection 

t\nother imporranr program component where modeling can be applied is in 
the art'a of protection. Proteerion refers to measures taken to reduce natural or 
human·caused impans to the significanr qualities of cultural propenies or ro the 
arrainmenr of their appropriate uses . ~1easures may include information signs, 
physical barriers, patrol and surveillance, monitoring, dctailcd rC4-:oIding, cxcava
tion, stabilization, and administrative measures, such as access restrictions, with· 
drawals from other bnd-use anivities, lvoidlncC' during construction, etc. 

The princiPll way in which modeling can contribute to protection is by 
helping to establish priorities among sites for specialized treatment. In general, 
land-managing agencies arc interested in protecting and preserving a Hreprescnta· 
tive array" ofsitl:s and site data. It is useful ro visualize trus arr3Y in terms of types of 
sitesj all sites ofa like type constitute a finite site pool. Theoretically, protection and 
preserv ation efforts should be directed roward maintaining a representative site 
pool ofeach site type for future needs. Modeling provides a basis for detcrmining 
tht, array ofsite types in a particular area, as we have seen, and in some ca!les can be 
used to gt'ncrarc population estimates for various site pools . 

Models Cln also help to define reselrch issues. This information can serve to 

guide data collection priorities for data recovery efforts and can help to establish 
which sites should be selected for these efforts. Models can be used to identify 
project areas likely ro contain the types of sites most arrracrive to vandals, thus 
indicating priority areas for patrol and surveillance. 

Planning 

Pt'rhaps onc of the most valuable applications of modeling is in the :He:I of 
planning. Planning for the management of cultural resources can takt' pbce during 
the development ofland-use plans, environmental assessmen( s, statewide or area
wide progr3m plans) or site-specific plans. Models arc especially suited to planning 
applications, because they focus on broad-scale, generalized trends, ;]ctions, or 
information. The main weakness of models, the inability to consistently produce 

derailed site-level specific statements, is usually not critical in a pl anning situation. 
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Modeling can help to plan how to reduce or anticipate adverse effects on 
cultural resources. For examplc, a model may predict the locations of sites that 
because of their complexity or their cultural or religious value to a Native American 
group may not b4.." suited to data recovery. On the other hand, a model may predict 
[he locations ofsites that art suitable for data recovery of various kinds; estimates of 
potential costs and time needed for data recovery can then be derived by projecting 
site distributions in the planning area. Potential long-term and cumulative impacts 
to site pools by a proposed action can also be estimated, based on modeled 
populations of various site types. Modeling projections ofso-called sensitivity areas 
have been widely used for planning purposes. 

HOW CAN MODELS BE EVALUATED? 

There are realistic limitations on the level of accuracy we can hope to achieve 
in locarional madding, owing primarily to the complex nature of the behavioral 
factors influencing site location. Models are simplified constructs of a complex 
universe that are seldom clearly right or wrong; rather, they are best viev.'ed as 
being more or less useful. Often a model will excel in one application but fail in 
others. It is important for a manager to know what criteria of success are most 
important to the proposed application of the model, before embarking on a model
ing project. While it is unrealistic to expect models to work with I'pcrfect n 

predictive accuracy, it is not unrealistic to expect to know how well a particular 
model works and why. Indeed, this information is critical in deciding: how the model 
should be used. 

Sever;l\ authors have discussed various criteria for model evaluation. In Chap
ter 2, Kohl('r prt"sents an extremely useful discussion of inductive and deductive 
models, addrt."ssing their application, complexity, internal consisrency, and preci
sion. The appendix by Thoms carries this approach further, extensi\reiy comparing 
22 models. 

Undoubtedly the most important critenon to consider in evaluating a model is 
whcther or not it has been tcsted. As notcd earlier, untested models can be 
developed and rormalized by using existing data. much of which contains biases. 
Simply because a model is formally stated, however, one should not assume that it 
h<ts been rested or that its performance has been evaluated. \Vithout testing or 
evaluation, a model is littie more than a guess. 

One of the main reasons for resting a model is to control for spurious or false 
correlations bctw{."en site locations and the environment in a particular sample. 
Such ('orrclations can be minimized by reducing chances for bias in thc units 
selected for model testing. i.e., by avoiding artificial constraints and by selecting 
sample units randomly. Consider, for cxample, a sample inventory in which only 
sall1ple units falling within 2 mi of a modern road have a chance of being selected. 
Analysis of site locations might reveal a marked correlation with geographical 
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variables that actually have morc to do with road engineering requirements than 
with past human settlement preferences, 

Establishing aconrroi group to be used in model testing has been discussed in 
Chapter 8. This procedure is useful for model testing because it provides a 
background or baseline picture of the study area as a whole, against which modd
generated statements can be evaluated. If, for c:xampJe, it is noted that 90 percent of 
recorded sites are located within 5 mi of water, (his observation could be very 
significant. If90 percent of a comrol group of sireless locations in the project area 
were also found (0 be within 5 mi of water, however} the model would have told us 
nothing of significance about site locations. 

Another reason for model testing is to determine the nature and snengrh of 
relationships that may have been discov(.'n:d. Often several environmental pheno
mena occur together in nature (a relationship known as autocorrelation). Testing 
can help us to undersund which of the co-occurring variables t'xerts the greatest 
influence on site location, and this information in turn permits us to evaluate the 
explanatory potential of the model. Perhaps the most obvious reason to test a model 
is to determine its overal1 accuracy rate. Accuracy rate and precision arc generally 
inversely rebted. The more precise a model-like statement, the less accurate it is 
apt to be. This relationship is treated below in greater detail. 

The procedures used in model testing have been treated extensively through
out this volume. Procedures for model validation and generalization arc presented 
in Chapter 5. Various strategies for testing models based on existing data are 
presented in Chapter7, along with techniques for integrating new data. In Chapter 
8 the discllssion covers several quantitative methods that can be applied to data 
collected through some form ofprobabilistic sample and carry with thcm some form 
of reliability meaSlirement, such as confidence intervals or probabilities. The gain 
statistic is suggested as a useful measurement for comparing accuracy rates among 
models. Three rypes of testing procedures are described in ord(~ r of increasing 
precision. Two, referred to as split sampling and the jackknife method, arc based on 
testing the model against some portion of the original data used to develop the 
model. A third involves collecting new and independent data from the project area, 

Several discussions of management concerns and model testing occur in this 
volume. In Chapter 3, Altschul distinguishes between wasteful errors (where a 
model predicts a site and none occurs) and gross errors (where a model predicts no 
sites and sites occur). In the latter case, the potential for inadvertent site destruc
tion in many management applications is increased. 

In Chapter 8, Kvamme discusses reduction of gross errors by adjusting the 
cutoff point ofa model's decision boundary Ca mathematical boundary), an approach 
that applics only to quantitative models, As an example of the rclationship between 
gross and wasteful errors, perhaps a model permits us to say [hat 80 percent of the 
sites in a study area will be located on 50 percent of the land surface in that area. This 
represents a substantial reduction in the amount ofbnd surface to be addressed 
further, but it also carries with it the potential for gross errors affecting 20 percent of 
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the sires. Using the Same model, bur adjusting the cutoff point, we may be able to 

say that 95 percent of the sites will be located on 70 percent of the land surface. This 
reduces the risk ofgross errors, while increasing the possibility for wasteful errors. 
The implications of this discussion for management applications arc significant. 
Reducing study area size by 30 percent would represent a substantial and desirable 
increase in project cHiciency, especially ifir could be accomplished with litrle or no 
risk to the rl'source. 

In Chapter 3, Altschul cautions against passing the point of diminishing 

returns in model testing. This occurs when substantial increases in collection of new 
in\'cnrory data result in Jittle increase in accuracy. There a[c many possible causes 
of this phenomenon, including the influence of such social factors as prCst~ncc of 
large habitation sites, trade networks, :lnd kinship groups, which override the 
influence of factors of the nJnlral environment in dctermining site location and 
which arc not addressed in the modeling effort. 

An important consideration for evaluating models is their ability [0 take into 
account rare sites. These sites constitute a very small ponion of the site population 
either by virtue of their own characteristics or by virtue of their location in [( .. larion 
[Q the environment. A site tyPt~ can be rare without being impossible [Q model; 
most models do not addre.ss these sites, however, because tht~ir low numbers make 
most statistical techniques unusable. 

The r:lre-site problem increases when sample inventorics at low sampling rates 
are used to generale the data base for modd development. \Vhen only a sm all 
percentage of the surface area is sllrn'yed, the chances for discovering a rare sitt~ 
clearly are reduced. rf(/1/)' sites ofa rare typt· are known in the study area, specialized 
inventory strategies can sometimes be de vised to increase the potential for discov
ering more of these sites. If large village sites have been found only in riparian areas, 
for example, riparian areas could be samplt'd at a higher rate than other areas to 
increase chanCt~s for discovering this type, and compensation for the higher propor
tion of riparian areas surveyed in an otherwise random sample can be achie\'ed 
during later analyses of the data. 

Several other factors, anyone of which could seriously afTect a model's validity 
and usefulness, should be taken into account in evaluating a model. The manager 
should carefully analyze the appropriateness of all statistical procedures and anal y
ses used in model developmenl. Common problem areas include biases in the 
.sampling procedures, failure to meet statistical assumptions about the data, and 
inappropriate use of environmental data. Oft<..'n, for projects incorporating 
3.dvanced statistics, the services of a professional mathematician will be needed. 

Models should be evaluated for their completeness. Did they address changes 
in the environment through time? Arc there biases in the sample design that might 
a/Tect the reliability ofthe data? Also, the resolution of the model is important. If the 
management need is for statements specific to qllarter-section parcels, broad zonal 
model s may not be useful. 
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Inductivt.· or correlative models have limited explanatory value because they 
do nO( account for observed correlations between independent and dependem 
variables. For example, empirical analysis may demonstrate thar a cenain type of 
site in a sample is always located within a limited distance ofoutcrops of a panicular 
geologic formation. While [his information may be very useful in cenain contexts, it 
has nor been demonstrated that (he presence of outcrops actually i"jlutnad site 
loc3tions. Independent evidence, such as the presence of specialized features or 
artifact types, is needed to suppOrt such an interpretation. This does not mean that 
the observed correlation is or is not validi it means that we cannot explain why it 
occurred and thus we are no closer [0 an understanding of the broader cultural 
system that we arc attempting to model. The utility of the model is limited to the 
observed study area. Thc need for independent testing to establish a noncoinciden
tal relationship bct\\'cen the independent and dependent variables, in this case 
outcrops and site locations, is especially important because of the strong tendency 
for autocorrelation among environmcntal variables. Corrdatlve models are useful 
because they direct these independent tests. 

Field procedures are anocher factor to consider when modeling projects are 
being evaluaced. For instance, the spacing of crew members and procedures for 
defining and recording sites can significantly affect the kinds of data that are 
available for analysis. Biases in field procedures should be explicitly stated in project 
reports, and their impact on the results of the modeling etTorts should be evaluated. 

Finally, the interpretability of the model is important. Is the model simple 
enough to be understood and explained in anthropological terms! Docs it relate 
environmental and site variables to the everyday world? If not it may not be usable 
by future rescarcht.·rs in a cultural resource management context. 

FUTURE DIRECTIONS 

Predictive modding holds much promise for cultural resource management in 
land-managing agencies, even though it is currently in a highly experimental and 
rapidly changing state, The information in this volume is not intended to limit or 
confine this development; rather, the intent is to crystaUize issues and focus 
discussions on a common ground, [0 the benefit of both the agencies and the 
proft:ssional archaeological community. 

At the prescnt time, no major policy directives have been issued by a large 

land-managing agency concerning the development and use of models in cultural 

resource management programs. Many would argue that such directives would be 

premature, Many others would arguc, however, that modeling has ceased to grow 

and contributc to Ollr understanding in the way that it should because of a lack of 

focus Jnd purposc in agency cOons, Altschul summarizes this concern in Chapter 3: 


Perh:J.ps dH~ most sigll ific:J.llt criticism th;at C:lll be mlde about predictive modeling 


programs in most cull ural resourc(' IIlJnagcmcnt contexts is that {here- is no consensus as 

fO t he ovt.'r:lll object IVc o ( (hest: programs. 
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Current efforts are seen 3S diffuse and lacking in momentum and direction. 
Rather than working toward refining existing models or developing new types of 
information or methods, agencies sometimes develop new models that sufTer from 
the same limitations as previous ones. Short-term goals are being pursued exclu
sively, perhaps because long-term goals have never been clearly defined or because 
incremental, long-term funding has never been available. 

The information in this volume should help agencies to identify means of 
increasing the efficiency and effectiveness of their modeling efforts. The: first, of 
course, is (0 develop the existing data base so that maximum usc can be made of 
previously collected information. In addition, agencies need (0 augment the exper· 
tise of their stafTs so that they will be able to evaluate and participate more fully in 
the modeling programs. This might involve specialized rraining courses in the 
evaluation and application or models and especially in the usc of sampling tech
niques, Although advanced statistics will no doubt remain beyond the reach of the 
average srafT person, some basie £raining courses in the types of models and their 
assumptions and requirement s may be helpful. Only through this kind of stafT 
development will agencies begin to use modeling effectively and creatively to direct 
and develop projects meeting specialized data needs, Only through this process will 
modeling be used as a long.term strategy, where it can be most effective and 
efficient. 

There is 3 clear need to develop new ways to measure and defln(, both 
dependent and independent variables. This can involve manipulation of tremen ~ 

dous amounts ofinformation, for which remote sensing technology and geographic 
information systems are essential. Excellent and detailed discLlssions ofthese topics 
are provided by Ebert (Chapter 9) and Kvamme and Kohler (Chapter 10). Agencies 
should be aware of the potential contribution ofgeographic information systems to 
cultural resource modeling and make special efforts to ensure that the needs of the 
cultural resource program are met in the design of these systems. Because the 
potential contribution of a GIS is significant, consideration should be given to 
funding specialized research projects to explore possible applications of this new 
technology, 

Finall)', agencies need to focus on the development ofexplanator)' theory, The 
kinds of information that can be obtained through traditional cui rural resource 
surveys arc limit ed. Surface obsl'rvations made during the course of these surveys 
arc based on Bbcst guess" estimates of limited types of information. \Vhile this 
information is useful in the formulation of ideas and hypotheses about prehistoric 
societies, qualitatively diirerent types of information are often needed [Q develop 
and test explanatory thl.'orics. This information, on topics such as dict, environ
mental exploitation patterns, technology, etc., can often only be collected through 
subsurface testing and excavation, accompanied by detailed laboratory analy ses and 
studies, and through analysis of pertinent ethnographic, historical, and other 
nonarehacological data. These approaches involve additional costs and for this 
reason are often not included in standard inventory approaches . 
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In order to funher the devclopmcnr ofexplanatory theory and to increase the 
accuracy and usefulness of modeling efforts on a larger scale, age_neil's should 
seriously consider sponsoring research projects design ed to measure complex social 
and economic paramcters as they apply to the archaeological record. In Chapter 4 
Ebert pre se nts an excellent discussion of an innovative approach known as Hdist ri
butiona'" archaeology. Here, traditional sire types arc Set'n as artificial constructs 
developed by archaeologists, which at best only poorly reflect behavioral systems. 
Analy sis is focu sed on distribution s of artifacts across J landscape :IS they rclatc [0 

larger patterns ofland usc. Experimental work using this technique has taken place 
aln:ady in several land management context s, and it appears to hold much promise 
for future Jdvances in explanatory theory. Efforts such as these should not only 
s<.: rve to advance the state of predictive modeling, they should incrcase the effi
ciency and effectivencss of cultural resource management programs as well. 
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AN APPRAISAL 

W. James Judge and Daniel W. Martin 

In December of 198 1 the Bureau of Lan d IVlanagcment issued an inst ruc tional 
memorandum encouraging the d('\'ciopmenr and use of predict ive modding in 
cultural resou rce' maoagem(·nt. In itial offic ial interest in mode ling by the bureau 
was in conjunction with the timely process ing ofB Applications for Permits to Drill" 
(APDs) for oil and gas . The oil and gas indu st ry had recommended that the bU[('au 
initiate Hregional re views to identify a rClS ofhigh and low probability for significan t 
culwral resources, as a means for eliminating unnCCl'ss ary surveys," The assump
tion was tha t "given an adequate data base. informed decisions can be made about 
where ro concen trate ad ditional identification and pro tection endeavors, ro the 
exclusion of cenain other arcas" (Burford 1981). 

The direc{ion gi\TCn by BLivl headquarters at tha{ time was as follo ws: 

5 1:H<::; .....,ith hc,wy APD ",,'orkloads 3r<: l'n collr:tgcd to ('on ~ idl'r dC:\'c'°loping pred ictiv e: or 


..t"n ~ iti\'ily modl'l~ for ,\reas ""' herl' it appe;j n t h;H cult ural re~ourcl' de n ~i t y Jnd di ..tribu

l ion lend rhl'msl'lv cs to the: :tpprolch. Any ~uc h C'!lon ~ ll hould ~, dircCll'd prlmlril)' 

t llwlrd afl'as with high dC'mand, whe:fl' th<:re is ::Il so an l's i~ ting basis for the e:X Pl'Cl :ltion 

o f a rdati ,'<:!Y low sit<: po pula tion, n:gubrir~' of sir e sit u::Ilion, simibnr y of sill' inforrn :l

lio n pOI('ntill , or Ol ht'r rl' ~\son s lor <lmicip:lI ing th :lt thl' C'xercist" will lead (O:l product 

th :u :al lcviates the: CU h Uf;jl reso urcl' idcrn ific:tt ion dem3nds on 61..\1 an d indllStry, 

",.·irho ur l:Te.3.1ing :\n unacce:puble ri~k to cu hll ral rl' ~ o urccs (Burfo rd 1%11, 


In anempting to implement {he memorandum, resource managers found {hat 
predic{ive modeling \\'as being employed in a wide variety of ways and that there 
was little mutually agreed-upon theory, method, or policy to guide the use ofrhis 
technique. As a result , a proposa l was developed by the BLM to fund a project that 
would address these issues. The project was approved and funded, resul{ing in the 
production of this volume. 

The proposal established the following goals fo r the project: 

I, to evalu ate trends in the· dc\'dopmt'nt and application of predic tive 

modeling critically, using knowledge gained through pas{ research dToft s; 


2. to t:'xplo re the feasibilit y and practicality of predictive modeling for 

meet ing management objec tives; 
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1. to analyze and define the components of the model-building process, 
particularly with respect to cultural resource managemem; 

4. to develop a set ofstandards for archaeological and environmental d:ua to 

be used in modding efrorts; and 

5, (Q provide BLM fLdd officers with information on data collcC{ion for 
modeling purposes and statistical manipulations of {hose data. 

The process by which {he Jurhors, editors, and advisory commiucc were 
selected and {he lengthy course of peer and federal review to which (he draft was 
su bjected have been discussed in Chapter I. In this chapter we will (a) evaluate the 
volume in regard {Q irs success in achieving [he goals ourlined :H {he beginning of 
{he project, (b) summarize {he results of {he peer review, and (c) discuss what we 
consider to be several imponam issues raised by this \"olume. 

EVALUATION OF PROJECT GOALS 

In general, the five goals presen ted in the initial project proposal were realized. 
The first, that of critically evaluating {fends in the development and application of 
predictive modeling, is thoroughly addressed throughout the volume. 

The second objective, that of determining the feasibility and practicality of 
predictive modeling as a useful technique for meeting federal management objec
tives, is addressed extensively in Chapter II and will also be discussed later in this 
chapter. \Ve may note in passing, though, that to a ccrrain c~tcnt apparent 
"success" in meeting this goal depends on how those federal management objec
tives arc perceivcd. For some managers in 1983, predictive modeling was viewed as a 
technique that was going {Q rescue them from the burden of compliance with 
Section 106, permitting them (Q get by with minimal field survey and thus minimal 
expenditure of very scarce funds. To those individ uals, the- results of this volume 
may well be disappointing. To those who were looking for the satisfaction of more 
general, long-range objectives, the resuits will be recei\'ed much more favorably. 

The third objective, ,hac of analyzing and defining ,he components of ,he 
model-building process as the), apply [Q cultural resource management, is also 
addressed in detail in this volume. Ie is apparent that model-building is a very 
complex and rime-consuming process. Nevertheless, there.is freedom ofchoice as (0 

how to proceed with modeling, and some ways of putting it all together may be 
mort.' effective than ochers, depending on the situation and the needs. Again, 
Chaptt:'r II olTc:rs step-by-step considerations to guide modeling eflorts for {host.' 
with bnd managing responsibilities. 

The fourth goal, to develop a set of standards for the archaeological and 
environmental data required to prepare predictive models, is somewhat more 
difficult to evaluate. In the literal sense, little in the way of a set of standards was 
developed by any of the authors. Their -reluctance (Q provide a Bcookbook" 
approach - which is implicit in the concept of standardiza(ion-is understandable, 
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given the variability in modeling approaches and management objectivcs, as well ~s 
regional physiographic and cultural differences. If, however, we consider Hstand
ards" to be a set ofguidelines for data requirements in the model-building proce:ss, 
then the goal was met since the dna requirements are standard in the sense that 
those agrced on as acceptable are presented in dctail. For example, tolerable level s 
of error for data entry, choice of appropriate soil survey detail (e.g ., Soil Surve),s I, 
Il, Ill), and appropriate cell-size choice for DEM (Digital Elevation Model) data arc 
among thc Ustandards" presentcd. Imporcantly, it is noted that each of the choices 
made must be tailored to a specific objective and phase of the modeling process and 
to specific regional circumstances. 

In one se nse, groundwork for dcvelopment of more standardized data is 
provided in this report. Perhaps the best way to establish such standard s would be 
to develop them from data used in acrual field and management applications, 
Standards developed in this way would thus be based on act ual management 
succcsses and would minimize the possibility of error. 

With respect to the final objective, that of recommending types of field 
inventor), data to be collected and of developing specifiC procedures for field office 
use, only the initial part of this goal has been met in detail : reco mmendations 
regarding field inventory data are found throughout the volume , The second part is 
left quite open) again because of our reluctance to provide a cookbook approach, 
and also to enable field offices to pick and choose among techniques themselves so 
that local management needs are addressed by thc most efficient ,means. 

In our view, then, the objectives of the project were eff<':ctivcly met, particu
larly when one considers the complexity of the subject matter, and the absence ofa 
well-developed bod )' oftheor), and method for predictive modeling when the goals 
werc established . 

AN APPRAISAL OF THE REVIEW COMMENTS 

This volume benefited from extensive peer review. The invitation to review 
was extended to numerous organiz.ations in order to create a document th~t 
representcd participation from a broad spectrum of the professional archaeological 
communit y . Comments were received from the following organizations: Burcal.! of 
Land Management offices, State Historic Preservation otliccs, the:- National Park 
Service, the Depa rtment of the Army, the Bureau of Indian Affairs, thc Advisory 
Council on Historic Preservation) the Bureau of Reclamation, the Forest Service, 
the Soil Conse rvation Service, the Society for American Archaeology , and a number 
of universities. T he responses provided substantivc comment s on theoretical, 
methodological, technical, management, procedural, legal, Jnd regulatory issues 
presented in the draft version. Even the most critical reviewers felt that the volume 
was an important contribution and should be published. 

Many of the comments suggested that thc dichotomy bcrw(,.'cn correlative and 
explanatory modeling was artificial and that rhe importance of explanatory models 
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was over-emphasized (especially as being superior to correlative models). Some felt 
[hat the dichotomy bct\l,'ccn rhe kinds of models was useful primarily in a heuristic 
sense, while others supported the research commitment to explanawry madding 
but felt the important role of the correlative approach in the dt·vl.·lopment of 
predictive models should be acknowledged. Somt· comments noted that in the 
normal sc ientific process such contrasted approaches are actually compk'rncntary, 
bue that tht' empirical search for parterns may well precede the qucsc for explanation. 

!\. majority of the reviewers felt that the report was (00 negative about the 
pocencial of modeling in CRivl contexts. Most orthe federal reviewers felt that the 
eady chapters were unnecessarily lIacademic" or pedantic, and that more pr::actic::al 
advice was needed (Chapter I I was not available with the review draft ). Some or the 
polemic regarding distributional archaeology (Chapter 4), (or instance, and the 
extended debate regarding inductive and deductive issues were felt to be oflltcle 
value by this group of reviewers. 

Archaeologists with management responsibilities feared that the suggested 
potential of predicti\'e modding was [00 limited. They were looking for practical 
methods to provide bencr information about culLural resources in order to make 
realistic rccommendations to management. Archaeologists wichoU[ management 
responsibilities appeared to fear that the technology, if allowed to go unchecked, 
would be applied by the government in an irresponsible manner. In this vein, 
federal reviewers felt that the orientation of the volume appeared [0 be toward 
archaeologists without management responsibilities. 

All in all, the pecr review comments, which themscivcs comprise hundrcds of 
pages, proved to be extremely helpful in guiding the development o( the final 
volumc in a direction most useful to the diversity of thc anticipatcd audience. 

THE ISSUES RAISED 

A number of kcy issues have been raised in this volume regarding the 
relationship between an emergent technology based largely in theory and practical 
everyday management needs. Here we will summarizc four ofthc issues that we feci 
arc extremely im portant to thc ropic ofpredictivc modeling for both archaeological 
research and cultural resource managemem. 

The first issue is that of the complexity of the process; modeling past human 
activities is not a simple task. Humans, fortunately, do not behave mechanistically, 
and thus generalizations about their behaVior arc difficult to derivc and can never 
be comp letel y accurate. The relationships among humans, their activities, and past 
landscapes are very complex to begin with, and this complexity is incr<."ased by 
subsequent ch:lngcs in those landscapes, by a deposit ional record that is both 
inco mplete and complex, and by the diOiculty ofthe quantitative methods that onc 
must employ to model (hese relationships-methods that are frequentl y beyond 
the expertise ofthose who wish to use them. Modeling is a tool, but it is by no means 
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a simple [001 and it is not a panacea. As a complex tool, its uses are limited, and it 
requires expertise to implement correctly. As with any tool, modeling can be 
abused, and th(,.· value of the result s diminishes accordingly . Used properly) hov.'
ever) modeling can be of inestimable \'aiu{' to both the manag".'r and che research 
archaeologist. This volume, we feel, present s the complexity of the modeling 
process well) and Chapcer Il details it s appropriate uses in the managemem 
context. 

The second issue raised is chac of the role of predictive modeling in the 
complianet' process, that is, in droft s to comply wich Sect ions 106 and 110 of the 
National Hi storic Preservation Act. This, of course, was one of the key concerns 
that scimulated the project in thc first place. Nlanagers were almost desperately 
seeking some way to address compliance problems in a cost-cOeccive:' manner that 
would also protecc the resources. Arch aeologists may have felt that cosc
effectiveness waS taking precedence over resource proH~ction, but many managers 
saw the situation differently, Shortly after the rdease of the BL~1 instru ctional 
memorandum noted at che beginning of this chapter, a project waS propost."d by 
BLM staff that was (Q US"." 

statistical discrimin::lOt analysis t('chni(luL' s (0 develop l mudd to predict thl.' probabilit y 
of cult unI Tl.'SOU TCI.: QCeurr('nc(' from I:nv ironmenral par:tm~'t('r~ lnd C:V.uUltl'll11' utility 
of this methodology a.', a tool in cuhur:\l resource as_~l'ssm\,:nt on potemiaioil ~hal(' ;md 
coa!Il'J,se lr~J:i.... Once tht"ln odl,,'! i .. dc\'c!opl·d and leHl.'d it on be turned on"r to thl.' 
District o r Arca Oniec Arc hl'o logi~t \\·hen° it can b\.· used (lpe rationally to predic t t he 
probabi lity of site occurrencc on rights-of-w3Y ;1ppiiotion5, .KCt"SS corrido rs and d rill 
pad c1l'arances. Ifin this ') tagl' high probabil itIes an..' pfl'sl'nt) the corridor could 'tx: moved 
to a!owl'r probabilit y zo ne . In other c.Hes, the: prob3.bility could be 1I';'l'd to casc the 
rc-qu irl"lncllt to hJVC J. sitL' \.. isi t prior to ck~HJ.nct" IG:lfral1 l(nl2 ]. 

Clearly, managers were having problems with [he compliance proce~s, and 
expectations that predictivc modeling would solve or lessen those problems were 
high. 

In Chaptcr II, Kincaid poims out that Sec tion 106 compliance decisions are 
made on a case-by-case basis through the consultation process l and that there arc.: 
no set critl'ria for determining appropriate inventory and evaluation strate:gies 
apart from such consultation. In brief, there can be no "cookbook" approach to the 
role of modeling in that process. \Ve can, however, summarize the value of modeling 
in the inventory process in general, wht'cher it bc for research or management 
purposes. 

Predictivt· modeling of archaeologic:tl site locations can never be a complete' 
substitute for actual field inventory (i mensive survey) .. As noted above, not only is 
human behavior too comple x to permit this kind of modeling accuracy, but too 
many variables hlve intt'rvencd betw{'cn the time thlt the behavior {Ook place and 
{he prt'sent to allow us to achil'vc through modeling the accuracy available with 
fic:ld inventory .. For {his reason, it is unlikely that predictive modt'ling could, in the 
foreseeable fu turc, be: suniciently accur:l[C to satisfy the idcncilicat ion reg uireffit'nts 
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in 36CFR800.4 (the implementing regulations for Section 106 of the National 
Hiscoric Preservation Act; see also Secretary of the Jnrerior's Standards and Guide
lines, Federal Register 48(190):44721-44723). By the same token, predictive model
ing is unlikely to satisfy the needs of a research archeologist whose research design 
requires accuracy :n a similar level. 

Modeling can, howevcr, provide research archaeologists with estimate:; of 
probable site densities in unsurveyed areas, and this same capability is of great 
potential benefIt to the manager. As noted in Chapter II, the role ofmodeling in the 
planning process is perhaps its most \'aluable contribution. In the shOT{ term, for 
example, the ability of models [0 project areas of low sire density Of to indicate 
probable locations of sites not suited for data recovery can be extremely helpful to 
the manager, not as a substitute for inventory but as an aid in designing cost
effective inventory. 

iv10deling's greatest strengths, however, lie in its contributions to the long
term plannjng process. It is here that models de\'e1oped with resource planning, 
interpretation, and evaluation in mind can be of tremendous value to the establish
ment of management priorities and to the integration of cultural resource manage
ment with other resource management responsibi1ities. Further, such model-based 
management can facilitate research, qllitc apart from the preservation and protec
tive responsibilities of the manager. Si.nce a fundamental purpose of cultural 
resource preservation is to maintain the scientific potential of the resource, that is, 
to prest'rve its information con£t:"nt, modeling as a component of long-range plan
ning is of panicular value to managers and researchers alike. 

The rhird major issue raised in the volume has to do with the theoretical basis 
of predictive modeling. Certainly rhe volume provides a critical summary and 
evaluation of current perceptions about the relationship between modeling and 
theory. Aspects of theory dealt with include exam ina cion of the systemic, archaeo
logical} and analytic contexts, as well as site formation processes. Normative \'s 
processual theorc::tical approaches as they relate to modeling efforts are <lIsa 
detailed. 

The most fundamental theoretical issue to emerge, however, is that of the 
dichotomy between correlative and explanatory models. This dichotomy arises 
from the contrast between inductive and deductive logic, although the terms 
d~'duCliz't' and ap/analor), and the terms induClire and (orr(./alir't' arc not synonymous. 
Technically, models themselves are either explanatory or correlative; the tcrms 
deductive and inductive refer to how the models are derived and to the kinds of 
arguments involved in their implementation. Correlativc models tend to be induc
tively derived (bur not exclusively so), and explanatory models should contain 
arguments of both types. 

In Chapter 2 this theoretical dichQ{omy is discussed with respect to rhe various 
contexts in which archaeological investigations arc carried out. 
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The challenge for inductivc models is 10 build I he bridge 10 the systcmic concext by 
making t ht.' analytic mCI hods (including discovery) as "transplrcm" (non-bias-m.lking) 
lS FW>ssible and hy controlling (or thc dTl'CtS o( depositional :.Ind posrdeposilion:ll 
processcl) in Ihe :In:haeological COU ll·Xt. 

Deductive modd~ , on thc other h:md, begin with .~ome theory pn'ilicting human 
behavior, in the systcmic context. The ch:allcngl' to r deductive models i .~ (Q build the 
bridge to [he ami)' tic cOn(e:(l , ",·hich i.~ where I he outputs orthc sys(('m Cln be observcd. 
This bridgc-building-whl·thef irom the systC'mic to the ;lnal),!ic conte:(1 or ... ice: 
versa -is refcrred 10:t.~ nplaltation .... Expbnltory modds ... ;arc inhcrentiy Ilc:irhcf 
inducti\'c nOf deductive. Instcad , they arc models Ih:lt lucmpr to build Ihe bridge: 
bet Wl'en thc dynamics ofl he living s),s tcm and its observed out put S [Kohh .. r, C IIl,ptcr 21. 

As noted in Chapter II, the contrase between correlative-inductive and 
explanatory-deductive modeling becomes somewhat blurred in field modeling 
applications. ]n actual practice, correiative models arc generally easier to develop 
and in specific situations may be more accurate in their predictive potential. These 
models are criticized, however, for their lack of ability to explain the phenomena 
predicted. ArchaC'ologists arc concerned about the explanation of past human 
behavior, and there is general agreement that wc should not be satisfied with only 
the demonstration of correlations, but that we must also provide t..""planations for 
those correlations. Even ifit is ackno..... ledged that archaeologists consider explana
tion to be the goal ofmodeling, however, a fundamental question still remains: how 
necessary is such explanation to the actual everyday management of cultural 
resources? This, in itself, is a key issue raised by this volume. 

As noted above, archaeological resources are most often preserved for their 
information content. There is no question that the inherent information can best be 
cxu3cted through the explanatory process, and correlative models, because they 
are derived inductively, cannot contribute as much to the extraction of this 
information as models with a consciously explanatory orientation. But rhis is nor the 
central question in cultural reSource management. ]n that context we must ask, 
what is the best technique to preserve the resource? \Vhat is the most cost-effective 
means to achieve preservation, and to what extent is c"pianarion necessary for 
eOe-clive management? By Hpreservation" here, we refer to the full complement of 
rasks involved in resource managemc,.'nt, including disco\'ery, recording, evaluation, 
conservation, and protecrion. There arc no simple answers, but we may otTer some 
comments. 

Basically the issue is this: should tht.· manager select a correlativc model, 
which is easieno design, takcs less time to develop, and is initially more accurate, or 
should he or she plan to use an explanatory model, which is more complex and 
difficult (0 develop and may not be as accurate a predictor? At first glance, the 
answer would seem (0 be simple: go with rhe correlative model, and let archacolo
gists with research intcrests develop their own explanatory m<?dels at some time in 
the future. ]n that way, the resource will have been protected in a cost-effc.:ctivc 
manner. After all, management is under no legal obligarion (0 provide explanation 
as parr of rhe preservation process. 
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Yet the decision is not that straightforward. Correlative models are not 
immediately "tran~fer3blc)n that is, when developed for one geographic location, 
they do not necessari ly work in ano[herj there is no logical rcason [hey should. The 
question then is wherhc:.-r ir is morc cost-efTective to redevelop (or at least refint' and 
reaffirm) the correlative modd (or lise in a flew area or [0 develop tht' explanatory 
model in rhe first place, si nce the bnt'r wou ld be applicable in a variet y ofareas and 
would address other management needs (interpretation, l·\·aluarion) at the same 
rime. Ultimatel y, this question can only be resolved on a case-by-case basis where 
all the variables to be considered can be evaluated properly. But cerrainl), prior to 
inveSTing rime and funds in the developmt.·nc o f an cxplnatory model, the manager 
mu st determine whether it anually would be as easily transferable as claimed and 
wherher it will be accurate enough to satisfy resource preservation and protection 
requirements. \Ve fed (hat research and management archaeologists alike would 
agree that, if one has the time and funding, explanatory models will be more 
generally productive in the long H.'rm, and thus ultimately morc cost-effective. But 
such decisions must bt· made for each specific insranCt: by managers, employing the 
best information possible a( [he time. 

One fllrrher aspect oftht· dichotomy between the (\\'0 types of models is the 
supposition that explanatory modcls may serve management better in thl...· process 
ofsire evaluation. There is little question that the derermination of the significance 
of a site, or ctass of site~, may be enhanced by tht· deductive process inregral to 
explanatory mode-l development. Yet at times significance may have [0 be deter
mined on the basis of the resource's potcntial, rather than the demonstrated 
contribution of information. This is true in arch;leologYl where sites frequc".·nrly 
cannot be excavatt'd, and thus the information content can not be fully demon
strated through dt'ductivl' testing. In such cases, the potential significance is 
assessed from surface indi cat ions, and at rhi s le-vel ofevaluation, correlative models 
may bt' as effective as their explanarory counterparts in indicating a resource's 
pocenrial contribution to scientific knowledge. Again, the cosr-efTectivcness of 
redeveloping corrclat ive modt·l s for usc in other areas may be the key decision (hat 
managers ha\'e to make. 

A lourth issllc raised in chis volume was that ofthc technology and expertise 
necessary to implement modeling effectively. Sophist icated hardware and softw-are 
capabilities are requisite, as well as well-trained and informed individuals at all 
managerial and support 1e\'els. 

For example, it has become clear that successfu l application ofccrtain,.!}1.odcl s 
may require the lise of a geographic information system (G IS). The quantit ), as well 
as the quality of analyses necessary require automated spatial analysis or data. 
Remore sensing techniques provide a source ofdata for GIS analysis. The availabil
ity of multispectral, high.resolurion digital imagery opens lip (,xciting possibilities 
for pattt'rn recognition tech niques presented in [his volume. The dramatic leap co 
10 m resolution by rhe SPOT satellite is only rhe beginn ing; far more detailed 
resolution will be available in the future. The $cale of measurement of the instru
ment has been one limitin g factor, along with limited processing capabilities for 
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gigabytes of data. These technologies are improving, and the speed of this 
improvement provides an insight to the level of refinement we may expect from [he 
modeling process in the future. Th<.' basic statistical, modeling, and pa([ern recog
nition theories, methods, and techniques presemed herein provide the foundations 
upon which to build powerful new instruments of measurement and analysis. At 
present too few people in management and support positions have [he requisite 
skills in geographic information systems (Burrough 1986), statistics) Temotc sensing, 
and modeling to exploit the technology available currently, let alone develop fut ure 
applications. 

Another problem is that ofobtaining access [0 the most capable systems and to 
adequate data bases. Access (Q such sysrems with diverse data themes and regular 
data maintenance is most readily available to persons who work for, or have some 
formal connection with, large land.managing agt"ncies. Such systems require an 
organizational support structure difficult to justify for single·purpose analysis. 
Large land.managing agencies are supporting such systems on the basis of their 
utility to overaU land management analysis. Included in such support is providing 
quality software and hardware, software development) management, and various 
levels of sufT skills, training, and technical assis(ance. 

These are some, but by no means all, oCrhe issues raised in this volume that we 
feel are extremely important to both research and resource management as they 
relate to predictive madding. The issues that have not been summarized here may 
have equal significance in particular modeling applications. One of the purposes of 
this volume has been to bring a wide range of issues in the domain of predictive 
modeling to the fore. 

CONCLUSIONS 

Predictive modeling can clearly be a worthwhile component of cultural 
resource.' management, if for no other Tc.'ason than that it injects rigor into the 
management process and serves to integrate management with archaeological 
research. The process of modeling and the preparation and development of models 
arc extremdy valuable assets to management, regardless of the ultimate "success" 
of the models. 

After a thorough review of predictive modeling, this volume reaches some 
conclusions that contradict past attitudes and expectations held by land.managing 
agencies. The Bureau of Land Managemem's proposal nmed previously (Garrau 
1982), for example, dealt with only a part ofan overall process. We have learned that 
the application ofHs(atisrical discriminant analysis techniques" to environmental 
variables is not sufficient to develop a usable model. Certainly, the proposal maue 
the process sound too easy and neglected much detail. \Ve ha\'c learned that we 
must be sensitive to the facts and theoric..·s ofsite formation processes) and that it is 
necessary to incorporate theory from anthropology, archaeology, and other social 

scientific disciplines because site distribution is a reflection of human behavior 
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interacting with physical phenomena in an ecosystem. Again, caUing attention ro 
the complexity of predictive models and the modeling process IS an nnportanr 
contribution of this volume. 

Further, we have learned that modeling is a cyclical process of ongoing 
refinement, rather than a om.·-timc event, and thus models cannot be developed by 
outsiders and then simply Hturned over" ro agency field office archaeologists for 
Happlicarion," For many reasons the field archat.·ologisrs and managers need to be 
full participants in the modeling process. \Ve can conclude that predicti ve model
ing, as defined and dcveloped herein, is potentially the most cost-effective way to 

combine sound managemenr practices with valuable research programs, Both are 
necessary ingredients l'Or cultural resource preservation and interpretation in this 
country, 

It may well be that the most cost-etTecrive and appropriate manner ror 
managers to implement the techniques discusst..'d in this volume would be to focu s 
on the development or correlative models initially and then work toward refining 
their accuracy, This will demonstrate the potential ormodeling and its efTectivent·ss 
as a tool for cultural resource management, But the correlative-inductive approach 
should nev~r be considered an end in itself. Instead these initial models should be 
specifically dc::;igned as intcgrJI components of the dedunive approach to model 
development and as pJrts of the long-range planning process necessary to achieve 
the full potential of prt"dictive modeling in resource management through ultimate 
reliance on explanatory models. 
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Appendix 


A SURVEY OF PREDICTIVE LOCATIONAL MODELS: 

EXAMPLES FROM THE LATE 1970S AND EARLY 1980S 


Alston V. Thoms 

The purposes of this appendix arc to expose the reader to a range of projects 
th at have developed predictive models and to provide succi nct comparative sum
maries of these projects. A variety of geographic areas, archaeological manifesta
tions, and modeling approaches arc represented. Twenty-two projects were judg
mcmally selected from morc than 100 repons. The longer list was not exhaustivei it 
reflened the interests ofche authors of this volume and was generated by combin
ing lis ts of references provided by the aLlthors and by the project advisory team. 

The projcC(s summarized here represent a range of approaches and arl' lIut 

limited [0 th e best or most successful example:); indeed, but and mail w eecH/ul arc 
terms that would be diflicult to define in a manner acceptable to an readers. Projects 
employing state-of·the-art approaeht:s and some earlier examples of predictive 
models arc included , as arc examples of the less successful approaches. Information 
about the characteristics of what may be unsuccessfu l predictive mod els can bl~ 
useful in providing the reader with a broJ.d data base J.gainst which the usefulness of 
predictive models under a wide range of conditions may be t..'valu3tt'd. 

Among the 22 projects summarizc:.·d here are stud ies from many portions of the 
Unired States (Figure A.I), from projects in Delaware (Custer ot al. 1984) and 
Georgia (Kohler ot al. 1980) ro those in Washingron (Mierendorfet al. 1981 ) and 
Alaska (Ebert and Brown 1981). The emphasis, however, is dearly on the western 
states (e .g., Bradley et al. 1984). Included in the "mplc arc models that predict the 
distribution of sites that are visible on the su rface (Larralde and Chandler 1981), of 
sites that arc deeply buried in flood basins (Muto and Gunn 1980), and ofinundated 
sites on the contine ntal shclf(Barber and Roberts 1979). Predictions ol", ite distribu
tions are made for relatively undisturbed areas of the Great Basin (Tipps 1984) and 
for highly developed areas along the eastern seaboa rd (Hasensrab 1983). There ar" 
modds for predicting the density of sites in areas occupied by mobile, montane 
hunters and gatherers Ul'rm~nn and AJ.berg 1976), and models concerned with more 
sedentary Anasazi farmers (Woodward-Clyde Consultants 1978). Much of the time 
span of human occupation in North America is represented by these models. There 
are predictions for the locations of sites occupied by the earliest inhabitants of the 
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Figul'"c A . I . ivl3P ot":-";ortl1 America showing approximall" iocuions ofprt.'diC't iv l" madding 
projects di scussed in the Appendix. 

Ozark highlands of Arkansas (Sabo et ai. 1982) and predictions for the locations of 
recent Euroamcrican ranches in the Salmon River Mountains of Id3ho (Rossillon 
1981). 

The projecr summaries encompass deductively derived models (Thomas 1973) 
and inductively derived models (DeBloois 1975), including a deductive economic
decision-making model rhat predicts proportional use of the landscape (Hacken
berger 1984) and an inductive landform-analysis model designed to predict rhe 
general location of significant sites (Wildesen 1984). Some of rhe models can be 
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tested with future sllrvey data (Kemrer 1982), and other projects were developed as 
tests ofexisting predict1vc models (Thomas et al. 1983). Finally, the selected sample 
includes predictive models made by simple extrapolation from known [0 estimated 
site densities in large environmental zones (Plog 1983a) and very complex models 
developed using multivariate statistics and geographic informalion systems to 

generate probability estimates for site presence/ absence in areas covering less than 
I ha (K vamme \983). 

Once the selenion of project reports to be summarized had been made. it was 
necessary to develop a list ofattributes or variables chat could be monirorcd for each 
report. The attributes monitored are (a) project location and size, (b) inventory 
method, ([) analytical techniques, (d) the nature of the model used or developed, 
and (e) the success of modeling elTons. The evaluation ofeach project also includes a 
discussion of other relevant topics introduced elsewhere in this volume. Toward 
these ends, the report s were examined in some detail. What might be called a 
""mcneal regression analysis ll was performed to identify those variables that could 
be monitored with reasonable consistency and related to the topics discussed (and 
to the terminology employed) in the various chapters ofthis volume. On the whole, 
the terminology used here corresponds most closely with that utilized by Kohler in 
Chapter 2. 

The results of this survey of project reports are presented in two parts. The 
first part includes det ai led informat ion presented in a series of tables designed to 
facilitate comparisons of the various approaches. Summaries of each modeling 
projt.·([ arc presented in the second parr, along with a few briefcomments about the 
approaches used. Comments focus on the relationship between modeling objectives 
and results, as well as on innova tive aspects of the methods employcd. The overall 
discussion ends with some general observations about the nature of predictive 
modeling as represented primarily by the selected sample of project reports. Some 
of the comments are particularistic because they refer to a given aspect ofa specific 
project. Other comments about a given project arc made because that project is 
characteristic of a general approach to predictive modeling. 

TABULATED SURVEY RESULTS 

Descriptive and evaluative information about the reviewed projects is sum
marized in tabular form. Table A.I provides information on general characteristics 
of each model-location, type of model (inductive or deductive), objectives, 
claimed accuracy (high, low, or percentage estimates), mode of presentation 
(tables, maps, charts), and verification approach (how the model was tested). This 
table also includes a general assessment or cvaluation ofeach model. The evaluation 
critcria-Jalri{iabilif)' (can the model be disproved? ), comirlrnC} (is it mathematically 

and logically sound?), rimplici l} (is it parsimonious?), and gen"aliz.abili/y (can it be 

applied to other stlldy areas and to human behavior in gencrall )-are essentially 

the criteria defined by Kohlc..'r in C hapter 2. An assessment is also made as to how 
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thoroughly the environmental and culturJl data were evaluated betare they were 
used in [he model. This assessment includes such questions as whether there was an 
eITon to reduce redundancy, whether the reliability of map-based information was 
discussed, or whether other statistical techniques were considered. Results of this 
systematically judgmental assessment arc presented as scores on a scale from 1 
(lowest) to 5 (highest) . 

Table A.2 charJcterizes the models in terms of their general data bases and 
predictions. It presents information regarding the kind ofsampling procedure used, 
the number ofsites or cells included, and the size ofrhc cells, transects, or grid units 
used to subdivide the sample. Levels ofmeasurement (nominal, ordinal, interval, or 
ratio) used [0 define or describe environmental variables arc also listed, as is the 
nature of the predicted resources (site type, sile density, or site presence). The 
manner in which the survey area was classified into landforms or environmental 
types and into site density zones or site present/absent units is also summarized. 
The spatial resolution (e.g., block areas,landforms, grid units of various sizes) of the 
predictions and the nature of the predictions (e.g., site density, site presence, sit e 
significance, or site type) are characterized under the heading HResolution of 
Predictions." An evaluation ofrhe thoroughness of the procedural discussions in the 
report is presented 3S a score on a scale from 1 (lowest) to 5 (highest). 

Information related to the environmental variables used in the models is 
presented in Table A.l. The listed physiographic divisions within which the 
projects are located follows Hunt's (l974) classification. Major types of con tempo
rary land usc arc also listed, as is the size of the project or study area(i.e.) the ext ent 
of the spatial population for which predictions are made). Environmental variables 
used to classify or to subdivide the project arca (e.g., landform type, soil type, 
distance to water, elevation, and slope) are listed, as is (he sOllrce ofthat information 
(e.g., various kinds ofmaps) field observation, and literature search). The modeling 
projects arc rated from I to 5 assessing (a) the degree to which changing paleoenvi
ronmental settings arc considered and (b) the degree to which the effect of various 
deposicional environments on (he discovery of cultural resoun:es and/ or on our 
understanding of past human behavior is taken into account. The same scale..' of 
ranking is used (0 assess the level of discussion about the ecosystems within which 
humans operated. In other words, the scale provides a comparative measure of how 
well the investigators discuss the spatial and temporal distribution offood resources 
that mal' have been used by past groups of people. 

Cultural variables used in the mode1ing projects (e.g., site type, site size , 
artifact / feature types, or simply site location or presence/absence) are su mmarized 
in Table A.4. The culture area designation follows Driver' s (1961) scheme. Termi
nology used for known and predicted site rypes usually is taken from the referenced 
report. The sources ofinformation about these cull ural variables are also tabulated. 
The models are assessed on a scale from I to 5 according to the level ofconsideration 
given (0 understanding the human land-use systems represented by the debris on 
or in the ground. 
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Table A.S characterizes the nature and results of field invc..'srigarions con
ducted to develop or test the models. In some cases fieldwork was not part of the 
modeling project; rather, existing survey data were used to build and/ or [cst the 
models. For [hose projects for which new data wcre collected, information is 
provided regarding how the field data were used, the size ofthe survey area, and the 
general met hods used to discover and/ or record the resources. Some ofrhc results of 
the..' fieldwork-number, types, and densities of sites discovered in the survey 
arca-arc tabulated. The general nature of the fieldwork is assessed by evaluating 
the reports (again on a sealc rrom 1 to 5) according to the thoroughness or the 
discussion of consrr3ints and limitations imposed by field methods. For example, is 
there a discussion o[[he kinds of sires that potentially remained undetected when 
subsu rface deposits were not exposed (e.g., by clearing ordulT or leaves, digging or 
tcst pits, or cleaning of existing cutbanks)? Did survcy srrategie..'s result in the 
detection of the rull range orknown or theoretically expected site rypes? What were 
the..' c.:1Tc.:cts of excluding arcas from the survcy or of arbitrarily dist inguishing 
between si tes Jnd isolated flOds on the basis of artifact density? 

Project rcpons arc listed in chronological order in the tables and in [he 
following summaries in order to afford (he reader an opportunity to assess develop
mental trends. They span the time period rrom 1973 to 1984; 15 or the 22 were 
published arter 1980. Reports that were published or printed in the same year arc 
listed in alphabetical order. 

SYNOPSIS OF SURVEY RESULTS 

The summaries presented in this sl.'nion providc a bricf synopsis of modeling 
compont..'nts of t he 22 project reports. This information is intended to fill in some of 
the gaps in the tabular summaries and to provide coherent descriptive statements 
for each model. Additional information is also provided about the institutional 
affilia tion or the investigators and the runding agency ror each modeling project. 
Attention is drawn to any special qualities or potentially undesirable aspects of the 
models. The concluding paragraph in each synopsis is essentially a narrative 
assessment of how well thc modeling project achieved its statcd or implied goals. 

Reese River Ecological Project An Empirical T est for Steward's Model ofGrcatU 

Basin Settlement Patterns." David Hurst Thomas. American Antiquil)' 
38: 155-176.1973 

The Reese River Ecological Project was conducted by the American Museum 
ofNatural Hisrory and funded, in part, by the National Science Foundation and the 
University or Calirornia (Thomas 1973). It is one or the rew research projects, as 
opposed to cultural resource management projects) selected for summarization. 
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ell.ltC'r, \d,., IIO , III 01 ~'plcnlK "Ie IOCllloru from rI,e- IlI e t:f"ot1'",1 ~ reb Ol,..jll in (u. I :B.B ,JJJ) IIjllu~(fn~ .. .(h fe-Jull ' o( ,1C13,{cd 
,"c'mlu, oInd ( .:.nrc>.! ",nelccnlh cnHury n 01 lind Jumll"lc" r ..-,1uk- ;md ' e:lSl,/u l nn~:(' u .:h;' .l.1 M",IId lC' lor 
VoItlr-y 11\<",1n . oi ixilil.Ulot' ' lie 'hccp-r-amnr; 'I{O (p. 70) "rubtllbill'y" .. nd j~rrmlc.ld lotulOn-'t ur ll".....1 
~OWlCIO dutovcry oI t1d ~t I moJd " prcat((ed " hly lucoMio.., . ... !r . 

cOr futu n' l(·'t.n~ 	 prod.rroDP (ar U ti le ~rtJ 
' hn:p with in unih ca . 
..m by ~ III {n o 2JJ 
km') 
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SummaI"}' of general charactenn;cs of the seltcted predictive modcl projeccs 
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K;aib~b ( J.') ~nd Cub.i (C) Stud)' A~a Pro~a. ( PIDK, 19l1lh lQ&]b) 

K: NOI'lh · K nd C: K: T o IlK" I'" .umpk ;and K: NkO, bUI 10"" It: : T;&bk~ lnd pbn ,-ic'" K: Comr~n: 1"(";l.Ih ~ of ''''''' K:j K:J K:J K:~ K:l 
('m enl Ariron:.> Inducri,'c lop:ic pl;al'lniflf,. d~(~ 10 ~iI: .. (p. bS); mOlp' (C"~ . 1: 160,l5OO}; ~ uf\' (' P; C : I C:') C : ~ c:s C:I 
(CQ,:".x.ino ill ~ I\ ~n;!,I Y l ic pr.. dkc rcIU and (Q we o;>!~r c: d~ (..1 '("ule in " ,p. C; T<"u ,md pbo , '1 0:'" C: U rll ('~t(d. btl l iX>II.1d to.:
Count y); .;-ontel! un'C)' ~Jt;a co dl"tnmin .. ,k-'M .. ddini( ...." .;0( :)0 mJ.r~ (C lI , 1;.12,240) ("",(cd " .. .. " 0.:'" tU f>"f:') ~r. 
C: North how Jt:'O: lI UC~ p r ~.ti.:li.,rll ..Ippn~uth 1\.,r lin.h nt: I II 
ccnl r..ll NC"'o .... !M rld h~H' bn'n, ';1 _' ;m l,[e, wllh Icn-cb:m 
MCl i..'O ( R 1Q ~);pc rimcnnl pr..dkci.·.. Im' C"nlory I-II: ' v(')' ..I) (mt' 

Arriba moJcl lppraach; clI n ,m:.>r;ln r " {po ~) 

c.ounty) C: , ',)cnmtl'K Icurbi}J!~ 01 
doing prl'dlwvc 1'1"KI!dc1\1\1. 
..,(k lv~llbk dJc:l. :u .In 
('Jj"pt'omC'nc~ prcdr.::c "'e 
mod..1 af'ptOKh 

Fon Bc:nning 2200-.Aer.. Survey ~.::[ (T hoinaJ t' t .II. 19!1 ) 

W u(-c.. nfr;al InJu'[1¥C bi...· To ,'OJ1dUiCT ~n .....Ilullio n 01 \)ll,(' ri mu'llI'U ~"')' )I~ Tl_*~ . m~p( I : 1I,1.50) f. 1ICpc-..rcd Jrl .. loK.. ttofU 

G~I:a : in ;a n In.llyu(" 'LlI(Llr.iI rnotlrc.., in f h ... lIo;(J7 eo rf('('rl y rcd,,,jMli..d 00'1 il1Ilj[ulin): 5011 (.kNlt)' br lOne) . 'crc 
{;hlcI:.&hoochee .::om~1II IU pra,crr ,lITc;a on Ih.. h:.\r~ o ( Q)n ~nd Iyp"" '~O'O""bi~ su.. ~'Cn('t:ued (rl!PlTl rre~lOuj. 
COLlnlY <1(.1 IQIIIt. judgm.. m.ll ,'I"": .. r di.).l inj!:unh(.",I ,rt l' louuo.u ,n ".Jr"': ~ 37C' ~ ~d (" "hl n ..( ;al 19W) 

umpk and ro tcn :;m n rhlcr l..::r.QnO.,ll f/ocn n';JMI( '(' ..00 ~ n't)r.. dC'l~,ltd m:.&p ;and n .. ~ .Ire lol ....·ne 
modd (In Kohl"r Cl .II. 1l1l:I) k)t:;tuoru..-M CUf fn- tly (i 1:!S,00J) ,howtnl. r(,J ul" , un'cyrd; fhen t un'...}' rnul!' 
'01' m::uug .. m... m PUl P'<*"' r .. cinsl!iC'd ~or lhe (ptoirl( pMl ~) o( ,1o'('H' IU.:-d in l.)('Tln of 

"I OU (pp, \17. Il9) J iKrimiflJ.n1 :lnlolp .1 t("J1 dil.:nm rnlll[ uuIYJ<' rhlr 
of IT"IO<Ik I ~,,*IJHI 1.: 0(1"1'1 rdin...... .1 rlrot'r madd :.md ( r .). 1 

~ir<: ~nd ,irdC'*" koc~"on.; it 3~~HU.C k.noll' n lonfi('l n) In 

~cud~' ~rr;a 

CiKO On.. n Pro;C'cl ( lJuJ\l- )o' (' I;al. 1?fi.4. ) 

EJ'!' .<·n(r~1 Il'Id ud"'[ koQ,... T o ~OIuIt [lO: 1 (l(td,('! il'" S.III modd }Kld('d Tabl ... anJ m~r U~ t t.uJcj.ri Ioun't")' co c ... " 
CI.lh; (;r~r.d ,1'I :1n ;m"IY IK mudd ot' IIU: .uld 111'Jfl,ire rt~dlcu~ C' ;tccur:lr) r~IC'_' illu~ lr:;tln.,;oi 1 c~' pr l .ilc p rtdinil;rn. indl<:Jled fl om 
Count)' (.ontc:~! ",reloJ u)..I'I): ('X!~l<ng ,!J ll.l11,j !r" llI 00 1I).liYJt. (NL ~. lkMJ iI ("I IQ r ! ~ .' n l ,r(' ('X ..;:{ inJ; '1I f\'C')' d~! ~; u ((,d 

10 In " II With r('1 ull J o( 1i'! );diKf'\mrrur.t t..~o ue~ ( I :24 ,OX1.r,d dOOrm in anT ""ruJ)"Iu lO 
"Ir.... y 10 idcntrf)' functIOn. mO(kl y~IdN r(',ju(('d ,' .. re.loOfU lOr duti nx u.ljn "1 ....00 )il o:b' 
C'n vironmenf~\ \'.t.rUhJ('1 ,h"f ~e(ur-~y r~tn \('.)..\ Ih~n feu ); -:34.;. drKl"imtnlnl .atC'b; tr)N[~1c:'d rC'l ulo ()/' 
X eUrJlc-I)' predic l 1.1 1 .. ~ (p, 915) fUI)L[~ <::lM'iTl£.lC'nb 10 odlC'r prC'\' iolU .Ju,.....~~a f O 

l oc~riQnl 3Tld deline,)" .. ~ ru, ('~lcu ll(" probl.bllilt('~ for ptC'd io.:tioru 10 !:('nrr~l" 
C1no.... ,i l" okn,it y .or m .. location in 16 h~ ( 40 ac-C'uraq' ralC) fur "oil modc-l 
m3na~emf'nr pll rpoH" XT(, ) ar('u 



Route 13 RdidCorridor P,..n 

C'"Olf:U InJ....: r" C" 1..0;:1'>' 
I)d~ ... uc, III ~II ~rtJ. l ) II': 
C urk- JnJ , .,flleX I "'1111 
"' .:nt 1 '~III11 ' C> .-]C I'lIC Tl O , >/.' .. 

.I" I'.':I"'C 

(CWlt·( e t 41 19I!-I) 

10 ..km,r, UO/"I("\ ""t~lIn l!lc 

Ih....tl iri'"J II~d.,. to 'Of'lt ..tn 

~ll'-m/it;' 1I1 f'tcnu-wl'o(".nJ VI 

huwr,,,1 roolfr>:r, 1;"0\ 
pt~nllin~ " 'lI llIun~ctI1.C{I( 

' pr('ml(" rno..k l, pl ll])(J'OC"'o 
'...., ~1CCU.II)" k.f 
1'11(Intlll')' 
t· .• dung .. ) II{,' 

Montane Hun(Cf"-G:llhcrcr Projc:.", (I r K"-cnbn~cr IQ&.I ) 


e :~lI l r.. l l d~ho; 1)"d'I, li'T Ilrp.: 'rode-ln",1"" .... >. ,·lhrr 

C Ullf!. l .L.hll, In, ')' \ f~ mi," 
l.("n,llI, .I tnl ( Vr'HoI 

V ::aJIC)· 


(')llm l':> 


T:H S.:and. Projc("( (T.pp' 1'Ilt-I ) 

SOUlh.:• • ( tndUC!l H' ~1' 
l:nl"l; C u lidd, m ~n urolhh, 
I: mel). lnd ,'"nlt'XI 
S:on JU.l n 
,' ,,"nllO 

Ccnt... 1Oregon Proja;:1 ( \\' Ildn m 

Cnl{r:.t1 IndIK IW(' !otIC" 
Orq:un; 1I1 .K1 ll'l~ I )' I\ ~ 
C H>(,k , ( On l(":o.1 ""uh) 
1)('"K h tn C"), ........ dcd lKIIIo"c 

I !;aroc) , .. nil ckmcn,. (<,. r- " 
1.;o I<I·\:<ll.nht. ,, ~ ~ of 

~ln l1(l):r~ pJ!I.

.I nl.l"Io1' ) 

p lI'f'Ofl iulul rCI-UIIT('C 11K r~n 
bt· p(~i..,nl h ~' T1Ir~)tI(n 01 

InOl.lfl' \b}oIYJ, l~'llrC1non 
~1f'''''I"):,I('' ' U, h) r ('"~IIK(' 

d uf rl b<. ,l l('tl l .111(1 «(I 
dC rnl1l11 K" ..... hc:- Itlo("r 
:4f'(·f,:K"(100,;. I(";11 d.llJ (""In 

... d.lfC"4 Ihl ' Inoilkn] 

1'" ,1n-l'lol'_ 1( .' 1, .. nJ (,'1; ",' 

.t "'t" kK- ..oolI.l1 modd bunt 
" nC"alTrI.tllarn. brl .... ct·o 
rll '"lrOnn'<:"nl ..1 th.. r.t<;l t· fI , l,n 
~nd I<.oo.. n ..ire ionIhOIl) li)T 
pbnlllnF; I >tITPOO)("~ 

1984) 

10 dc-nldy .1100 'IrJtl l'·/.tndJ. 

M'd} to r~(.l'.n "~t"lI li\-.tll1 
prr lli~loTic li rn r~uJT1n); 

"~ili 'm .. I I"(· m},IU:J;cmCni 

«"1'1011" ,mi In mnti')' bll.t~ 
1\(01 hl<.dy 10 N nI .Iom 

",:mr"I,".ml ,iln "'-l Ihe .. ,:c-ney 

(~n '''rnpl)' ""ilh I h.· 
N"lion~II-lh IOf1( 

I'r«.:rn(ltln A(t by 
CDnc-rOir.:au"tt lh 
Inln"'l;emcnr ,=t1orl;, on .. il(" 
....,i,h ... itnlrlonl " ~"'M 

e;"...·" ..<f~.Ju.· I rllmn~ 
~o;(' l~ :j:rw."ld ,m"hffi 
I. ,toNOS-",· l llu.. , 

d"'J.1llto.- .. t lAl I~ 11'7,," 
,Io("nIUlt· (~ , !!ti):,,1lJ UI\!' 

p rnblbthr ,c' p:1 . ". 
f " -,,el ~Ie " Id,:.r.bk .. nli 

KCtlr~lc <'l UIl\J r N" 


( p _ I KJ) 


fr. d~l ,n· d rc( o 0) ( 

fnO~l r (,· Jnlr-Iburil)r, ... 

~"d dUJ~(,' '" , hc o. ih, 
(hut.::(,J 11( 'li e- \00( 11101"10 

~ rr IlTr~'cr {h.u, " r!ffH 
til' , j, Ikr.·n\ 11I~""C" "I' 
IlU klnF- derlllOn,. (p. 14 1) 

Dl .....LI l llllr' ~"1 ".1..-1 
d..l) ,, (jc<l 0 )'40 (lo\ rhl; 

.qU.l<lr" IJ ..... ,\\' 'JI("'\ 

( I" IOJ); I.A N I>S.\T 
."nodrl U u {i( '11"I1..nll~h· lr 

1 ";KtlC~1 (of I'II..n.q:o: rr Il:RI 

I' Ulptm"I ( p rn J 

7J "i. of "ie~ I~ "Ul I:£bk 
('(.o r ( (ln llll" iIf:: I('II ~( I 

.'!I"J "\lh jlgnllj(o~nI 
111 fCH11I1I "-'4"oi ~) '-0"..1, .., 
QJ IIlI; ofd\c: . lttdy:aK"r.. 
( '":Ii. J97,SS J hI ) ...,," b0:
re-mov ed from Ihe 
pol("llI i .. 1ohh b~)f ( p. ~) 

T:. bln, e-h~rr l. rn,,~ 

( U " .OCO) de-pitt 11',1' 
pn"lb.. lllh,)' ~[jol'tn :1"" 
~lIll1l~llr (rrF.. rJ ln~ 
U\tl"Il.loiAm ilnnce-); :IlK. 
I!r....f4:h~<'d protubtlll Y 
..; l l""'~I'·i tOr ,u, ' 
plner"l(c ("'CI 2.1 In ar!'J 

T~bIM _ durr., ~ nd 
,,~ ... 1n.f"I1 (r ... 
l:ltJ J,.lH); ~Y"''\ I ', .. , 
... n'l(""::* ~Iuur~u' 

~'~ n~j( y 01' Y~O(1U' iOoCOd 
r ~ ' ''-'h r(~_ >("uo,,~Uy 

;; ...."'Ilblo: nl(l~\, 
prC-dlrt("o') propt)rI'IonJI 
\>·,m cI ..... o f " np, I ~ I{"' 

\; ,1' cx"h ' !S2Il l>y ' 82Il III 

~fI(l ...nll (1.1..1 km") 

-J :lIbkJ 10'111-1 prc-dklcd 
'II" ..kru.I(~S PM 65 I,~ 
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", "d~ I lX I . Jnd l~bu l J I 

I'n'.s.cmJ l lbrI ..,fl hc 

dIKf( n"nJM1 ",odel fnr 

,11 (" .. nd .'l"ln> 'lLl ~dtJI' 

Tr~l , U bic-I. gr~plu, ] 'I\d 

m]rs- ( ~('"Jk NRO ) of 
~ ror-:u ',,,,I n "n.~h 
proh ) bjln r 1~ ,u1I;)fm~'- ; 

(Ornp"l('f prlmou" 
cn .·jronn\"II~1 dJt~ lor 

..II lYC... ' 

F(lrllul 1<' \1 ./;i,l'l.e moo:kh 

I-'Tl'i('t.I1C"J H(, I'KJI (Qndl,c h.-d, 

bllr pl('dlr"':m, lIe r()mpl~.d 
LV mhcr l1,o.;kh ;l,J ~n 

In(clrl'lUI tC)1 -Uld fmu rr 
,uryey~ O:~JI Ie-II lIi'Odd 

"r(h..t~;\·~1 ;I"·C" ,;:;],,,..,, 
I1f I fr,' 10(-,,,,(1(1, ' '' o,(l(lf<"t 

u ~ lli ~~l""", ~ (),l lCl( knH"nt 

"'" .nc d"('lflx-.,f .. ,til 
r q:;~l I~ \., IO:'('0fi; d[,<: '~IL," 
nMJodch.; !,j"'I\')~1 ~n.1 (~n t:. 
IlUdc ...· ll ), I"X lJ ttJ\]o;, ~Id 'J I 

\k'" I"'\-CY (1~1 ~ 
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' rhl' ) 1(0;" <k- Ibllr n~"lI:O'" C 
.... t:T"e I'I(I( rr~' ed, b UI Ihc 
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l('lIN.lIW ,d '1-..-d "'-1110 l" 
 -: '" .:acld Il Klrt..1!I'l\- (.,n-) .lmpk oJI'Id tl lC J'n~1 rt\Ud..1 ..... 1 ." 
b:oud on lb<· 1 1l'~ ( om bttK-d 
J..Irrlpk, II ....:teI ~0.(1 rcl,nj "" 
",th l r.lIilt Hmrk '" o'" n 
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l :11fCJtC'd, but ~I h <IU Uj <" ' 1 C(,o I n / I',1i' ..·jlh 
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TABLE A.2. '" 
Summary of Char..lClc.-ristic5 of data bast: and prcdicrions from sdcctl-'<i prcdiclivc model projecrs 

I'..lmr_iN~J Dr r.r~ljJ'" ~I
S;:. ,.t!t Sn( 

. \f,~(&"'_"', ,,, I'1fIrn/"", 
SlIn Sf4IU! tiM. TJ1"I_f S"",,/r MfAitl 1J/'("'{ f'rrJ.mJ .It"...,,, Prnid,--!I;I/l_'...", P'lIuJ.rn fl rw!It.(MIft.{ ",Nut, ... (Sr.lr J"j J 

R«",c Ri\' ~r I':colOWic:ro1 rroject (T hom:u 19iJ) 

NK O ',!Q,,:u_, 
"1'1 u(ifKI): 
t(-.!lUrn 

140 500 b)' 500 m 
tu(t ~ l o)(~ljr.p, j~ 

ha (~!> .KrQ ) 

1 ()';"''' fr~lilM:d 

rJndol11 ""'m pk (Ii 
"rid unil.J 

Nomtn:..1 A,,;r:)(1 .ukl fl"~tulC' 
dimlbuliom by grid 
unit 

c.omputrr .. ,mutor,OIl 1(1 rTtOdcf 
C'1pct:"l cd ~ 1( lr:.lct .. ...(':.tIllIC 

di)tribu,,":m 

500 by SOO m r;rid mut, (25 hl), 
"'itn p r<U'("l i."lrIl lOr InJlr1l al 
dClUiri.e-, .. nd di,pC'~iom 

Elk R i d~~ Proj,w (Dd:'l looil I97'S) 

6" COmpl.lltf 

~im ulullOLl nm) (Of" 

);ud 1.1111 1., ('i\l" 150 
try ISO m l() 120) b~' 

1lOOm 

Simpk r,ilndo;.m 
.QmfY(' 1;1(';1(1 
I",;thill IJ ~IOTm 
l ~ pC"> 

i'101n in~I , 

ordm~1 

S'l r dC'n),,)" bi' ~,id 
un,( 

S,mpk n\~p"bnC'd ("1;,1J iric..Hion 
or" HC'" imo 1..,".1lolrl'11 

SIU' dc-n,,'y b~~rcu Dnginj.: 
lro l'll (sO by 150 In to 1200 b t' 

1200 m 

utt Koocanuu rtojCCI (il'rm~nn ~rn:l A~~r); 1Q'7(i) 

21 2J trlll:" l., c~ch Ii04 m 
... uic but of \' ~I'~' ;nl' 
k'itjlllfw ( :'IIn f'om S 
10 22$ hil) 

l~r'Incd 1(I(lb 
) 1 r", ti(l('d '~ndc.m 
~mpk, but riling 
bkC' k,'cl, limitro 
D,·cr.. 11 to\'cr~);c [0 J 

O.I r:'t' ~ml >.Imrk 

Nomin:>1 S;lc dcn,il)" br II>;lC rrcdic-Ie.:l tklUi t ic. (..I!~ uL..rcd by 
mulr if'l)' irtt: ).:no ,,·n ck,uit)· per 
Ilnil .t n('"~ by fQIJ.1 are~ pe r 
IIr.&tnm 

Silt" demir)" porI 10po):l~ph,~ 
'rl:&{lIm( .... , iouJ )'7..... ) 

C0'll"ro~cl (\\".'d...·lrd-Clydc (:onHtlt :lIlf .• 1m ; J..mn ("I ,,1. 1<:1)0;)) 

NRO · , b UI<;(.(l 
~('Ih ( In by 
In m) "I(I, 
~11I'~ 

1700 112 by In m 
(l·~ . 1.5 hl}(~lh 

tot..ll,~ (J:~~ h.. 
(6lf".I9 ~r",) 

NRO; 1700 rC'll ~ 
lC'prC"~m lIbou r lot. 
Or' tM Irudy .HC"..I. 

NO{l1.lru l, 
Ofdl.(1 ...1, 
" ·UIO.1 

S,);n i llo.:~. n{ ,\1('" 

pot .:" mll1 b)" I: rid 

'lnl l 

Mult",pk- t"egrClIo."Yn ~ nUr'» 
lL'l"d 10 lutd <:""rr(" I~lion 1lot{"'C'C'(I 
l"m· ir Ci>l\mrMlif .... arubk,. .Ind .ile 
1(IC~t~ 

SltC .i.:ni "'K~ncc meU UICI lor 
112 by 122 m grid unll, 

Contine-nlll Shelf ProjC'("1 (IUrbtT Ihd RUl", dl I97'J) 

OC(() V~1l0U' All ;nil:JJ;,IC' d~r~ on 
tin '" 

I NdlJo'"ri vc: 
N()nlfn.~ 1 to 
rll.: 
O~dtl'1, ."... ; 
non1ln..l1 

IN :md DE : ,<iIC 

"ll", ..kmlly, ".nd 
1~'PC tJ)' z.ont 

brgcl)' m~p-b.i) C'd dD5iflhlion 
o( :lIU by envlfonm("nl~' 7.0J1('"J 

and judgm<:' m.J d tiJ ili tat;an o' 
.'te t )' pc'1. rhen dl.l"« t 
ntr.JIQIJl lOn to .J,r1Iibr 
inulI.:brt-d ~~ 

IN : CclK"u .li/.... d prooabl l;t ~· ( 10"', 
high) ()( IIrc"()' pC' ~~t;otJ t.y 
bndrorm in zDnCi Qf unoUI ,ito; 
DE: Grnt"rll h7.cd prrd" lion (If 
inr cmil)' or OK ,n ~ gi"cn woc 

fon tknnin~ 400(1"Acrc Projecl (K,lhkr C' I ..1.1. Is«l) 

II One block, (~ 
h..l. 

1620 )udgCIK"nlilUy 
teki(cd bl.t.:: k ;o.1l"4 

Nomin~l, 

Itrdillll i 
Inlcrn., 

r:..loo 

Sue dcn.it}· b)" ""nl' 'Wan..bIo drr~Il11I"hI1g .ile 
IOC.l:l lon ...·ter.,. idcn l if...-.:llJ1111S\ 

aruolpll (Ii' \'arUnc-.. .lind o!hcr 
bi~'ari31t" ,i~n,itnf\C'e- I("llt 

Cen~r:.. li 1.C·d prob~btlllr (.r 

., ill"-lIkeli hood ~ rlf,l: (~wd t.n 
~il!;" de nl illC j in ~Ihr Hlf"n'cd 
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Summary of gcn~r:ll characteristics of field investigations conducted in conjunction with selected predictive model projects. 
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Basin and range topography, arid sagebrush flats and pinon-juniper woodlands 
arc characteristic of the 77,730 ha project study area in the upper Reese River Valley 
of central Nevada, Steward's (1938) ethnographic model for the Reese River 
Shoshone subsistence patterns was tested using archaeological data, Ethnograph
ically derived seasonality, resource use, activity, assemblage, and settlement infor
mation was quantified, and the resulting data were used in a computer-based 
simulation model. Initially the model was used to predict the nature of food 
procurement and maintenance acrivitics in different environmental zones. Ulti
mately, the model also predicted artifact and feature distributions and densities in 
four Hlifezones." 

The simulation-generated predictions were tested using new survey data. The 
project area was stratified on the basis ofvegetation communities or microenviron
mental zones that were exploited differentially by the Shoshone, A 500 by 500 m grid 
was superimposed on the study area, and a 10 percent sample was selected from each 
stratum, The resulting 140 grid units (25 ha each) were surveyed, and the locations 
ofindividual artifacts and features were plotted on maps; these artifacts and features 
(rather than clusters defined as Hsitcs") served as the unit of information. Artifact 
and feature distributions and densities derived from the survey data (sec Thomas 
1975) were compared with distributions and densities predicted by the simulation 
model. Finally, statistical significance tests (e,g" chi-square and Mann-Whitney U) 
were used to examine the relationship between expected and observed values. 
Ste,,'ard's model was supported by the survey data in that 75 percent of the 
predicted frequencies were verified by the archaeological remains, 

Given the stated objectives, this project was a successful predictive modeling 
effort, and the results contributed to existing knowledge because the nature and 
distributions ofcultural resources were defined and partially explained, The ptoject 
also employed an innovative survey strategy-the nonsite approach-wherein the 
distributions of artifacts and features across the landscape rather than concentra
tions of materials (sites) are monitored. That approach circumvents some of the 
adverse effects that can result from using observed densities of artifacts to distin
guish arbitrarily between isolated finds and sites in an attempt to understand past 
human behavior. The model is subject to criticism, however, for its hea\'Y reliance 
on the ethnographic tecord, That approach can only be justified insofar as it can be 
demonstrated that relevant aspects of the ethnographically documented land-usc 
systems arc consistent with human behavior in the area during the last 4500 years. 

Elk Ridge Project Th, Ellt Ridg' Archatological Projtct: A I'm o[Random Sampling; in 
Archatological Sun>rying;, Evan I. DeBloois, Cultural Resources Report No, 2, 
USDA Forcst Scrvice~ Intermountain Region. 1975 

The Elk Ridge Projcct was sponsored, in part, by the Forest Service's Inter
mountain Regional Office as a feasibility study for determining the validity and 
reliability of random sampling designs in archaeological survey, It "'as carried out 
initially by Forest Service personnel and subsequently by individuals representing 
Brigham Young University, Its objective was to determine whether a predictive 
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sampling strategy could be designed and implemented as an interim step in the 
(0(31 inventory of a project area, The author was interested in investigating L~(hl.' 
reliability of sampling in predicting attributes of the larger population," and 
specifically in addressing the qucstion of ""how many sites can be expected in 
such-.nd-such an areal" (DeBloois 1975:4, 126). This project clearly has 
management-oriented objccti\·cs, but it also had research objectives as a study of 
(he utility of sampling in culcural resource management. An carly version of (he 
study was a dissertation project at the University o[\Vashingron. The information 
summarized here is from DeBloois (1975). 

The study focused on a Ill/i)l ha area in southeastern Utah comprising 
ponderosa pine, pinon-juniper, oak-serviceberry, and cottonwood vegetation 
lones. Some 640 sites were recorded during rhe survey of a 4495 ha sample of the 
project area. Almost all of the sires were either habitation or special-usc sites 
assigned to the Basketmaker/ Pueblo sequence. Environmental (e.g., vegetation, 
soil, and landform types) and cultural (e.g., site size, type, and cultural affiliation) 
data for the study arca were coded using a Topcart digitizer. Various random 
samples of different proportions and quadrat sizes were drawn from the area 
surveyed and used to calculate the total number of sites. Resulting estimatcs werc 
compared with the actual dat3 base and asscssed using the chi-square test. Assess
ments wl!re made in ::In anempt to measure the accuracy of different sampling 
techniques and sizes. Simple random sampling was found to be a reliable predictor 
of total population but not necessarily of the distribution ofcertain site characteris
tics. \Vhen survey of an "unknown area" was simulated and a random sampling 
scheme was applied, units between 600 and 800 m sq (ca. l6-64 quadrats) were found 
to be most effective. Because of the Hdangers of improper stratification of an 
unknown population" it was concluded that simple random sampling might bc a 
Hbencr choice ll for initial surveys (DeSIoois 1975: 126). 

The Elk Ridge Project was one of the earliest attempts to apply the concepts of 

sampling and predictive locational modeling to federally mandated cultural 

resource management. Given that this project served as a prototype, the relatively 
simple (largely univariate) statistical approaches used cannot be expected to com
pare favorably to more recen( modeling effoTts, with their rigorous use of complex 
multivariate statistics. As is the case with many predictive models generated using 
data bases where known sites represent only the last few thousand years of 
prehistory, one is left wondering about the locations of sites representing the 
preceding 10,000 years of prehistory in the Elk Ridge area. 

Lake Koocanusa Project Archaeological ReconnaiHa1l(( in the Libb)' Reservoir-Lake' 

Koocanuia Area, N.orthwestern ,Hontalla. Jerry V. Jermann and Stephen Aaberg. 

Department of Sociology, :Vlontana State University. 1976 

The Seattle District Corps ofEngineers sponsored the Lake Koocanusa recon

naissance project, which was carried our by personnel representing Momana Scate 

University. It was funded because Corps personnel discovered a number of pre

viously unrecorded sites in the denuded drawdown zone of Lake Koocanusa in 

609 



THOMS 

northwestern Montana. The primary objective of the project was (0 obtain esti
mates for the total number, nature, and distribution of sites that might be present 
in the reservoir drawdo<;l.'n zone UCTmann and Aabe rg 1976). 

For sampling purposes the 4806 ha, 80 km long study area in the Kootenai Ri,'er 
Valley was subdivided on the basis of topography . A series of survey tracts 800 m in 
width, and of various lengths, were selL'cerd Tandomly from each topographic 
stratum. The tracts represented between 3.6 and 8.2 percl"nr ofrhe eight subdivi
sions and totaled about 3J9 ha or approximately 6 percent of the project 3rea. 
Twenty-one prehistoric sites, identifted as spanning the early l\:tiddle PrehistoflC 
(i.e., Archaic) to the Late Prehistoric periods, were documcnred. Euroarncrican 
sires were also recorded. Sitt" densi ty figures were calculated for the surveyed 
ponions of the various topographic su bdivisions, and th<::sc figures were multiplied 
by the (Otal art"a in each stratum to estimate tht" total number ofsires in the project 
area. It was estimated tha t as many as 400 sites might be prt"sen t in the drawdown 
zont". 

This project is an early example of what might be tt"rmed the IIdirecr cxtrapo· 
Iarion of site density" approach to predictive modeling, or what Kohler and Parker 
(1986) call proj(Clion. Although very simple in its approach, this application can be 
considered successful because with this projection of high sire densities the Corps 
was able to justify funding intensive surveys. In an area where the vast majority of 
known sites represent only the last few thousand years of occupation and arc 
situated in vallt'), bottoms, tht" detection and prediction of older sites located well 
above the \'alley bo[{om is recognizably a contribution of information important to 
our understanding of local prehistory. 

Wasson Field-Denver Unit C02 Project Predicting Site Significance : A Man· 
agement Application of High-Resolution Modeling. S. E. James, R. Knudson, 
A. Kane, and D. Breternirz. Paper presented at the 48th Annual Meeting of the 
Society for American Archaeology. 1983; '~Appendix E," in TVell Fit,ld D~'f'd(Jpmt'n' 
Plan for I/;( 1-1/a HOfl Fie/d-Dorptr Un;, C02 Proja' Ellvir01lmolfal lmpaa Rt'por,. 
Woodward-Clyde Consultants . 1978 

The Wasson Field - Denver Un it C02 predictive modeling project was funded 
by a private oil company as part of its effort to devdop an environmental impact 
statement (EIS) for a carbon dioxide well-field project in southwestern C olorado. 
The cultural resources portion of the EIS was necessary in part becaust" the Bureau 
of Land ivlanagcmcn[ n.oquircd a right·of-way permit. Personnel representing 
Woodward-Clyde Consultants were responsible for preparing a planning srudy that 
would improve wcll·field lay out by minimizing impacts to significant archaeological 
si tes. Information summarized here is taken from two draft documents (lam<::s et 31. 
1983; Woodward-C lyde Consultants 1978). 

The 263, 158 ha project area comprises plareaus and canyons, agricultural land, 
rangeland, and fore sts. Environmental <md cltltural data were en tered, compiled, 
analyzed, and displayed using a geographic information system. Map-based infor· 
mation for land use and soil associatlon, prehistoric farming areas, topography, 
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roads, archaeological sites (including data on period ofoccupation, size, type, and 
condition), biological communities, and geologic materials was coded and digitized 
for 175,000 cells, each representing ca. 1.5 ha. Site significance was identified as the 
dependent variable and defined in part on the basis ofage, type, size, and number of 
components for hundreds of known Baskermaker, Puebloan Anasazi, and post
Anasazi sites. A fundamental aspect orrhis defmition ofsignificance was described as 
the Hsubjcctivc attitudes of professional archaeologists" (\Voodward-Clydc Con
sultants 1978:E-4). The investigators developed a seven-point scale that they 
believed conformed to uprevailing opinions of [he professional archaeological com
munity!! Uames cr al. 1983:17). Ultimately, three: independent environmental 
variables-soil, drainage rank, and slope-were used in a step-wise multiple regres
sion, with the computed sitc significance values serving as the dependent variable. 
Sets of surveyed cells without sitcs were also includcd in the analysis. The analysis 
yielded significance values for each cell, and the scaled values were then color coded 
and plotted on 1 :24,000 scale maps. A total of 140 randomly selected cells were Geld 
inspectcd as a means ofverifying the model. The model was supported to the extent 
that the Hstandard error of predicted-lO-observed value was identical to the 
standard error of the model" Uames et al. 1983:23). 

This project serves as an example of a management-oriented model designed 
to minimize uncertainties and delays in the permitting process. It is innovative in its 
attempt to define significance by relying on the expertise ofindividuals knowledge
abl~ about the most abundant kinds of sites in the project area, namely those 
considered to have been occupied by Anasazi groups between AD 450 and 1250. 
What might be of concern, at least to archaeologists who specialize in hunter
gatherer studies, is that Archaic sites and Baskctmaker II sites werc assigned the 
same code t'Or period of occupation. Furthermore, therc is no other provision for 
isolating site types that may represent some of the limited Hcvidence ofscasonal and 
sporadic presence of peoples from the Paleo-Indian and Archaic periods (10,000 
BC-AD 450)" (Woodward-Clyde Consultants 1978:E-8). 

Continental Shelf Project Archa<alog;y and Paleulllolog;;. Summary and Analysis of 
Cultural Resource Information on the Continental Shelffrom the Bay ofFundy 
to Cape Hatteras, Final Report, Vol. II. Russell Barber and Michael E. Roberts. 
Insrirute for Conservation Archaeology, Peabody j'I.·luseum, Harvard Univer
sity. 1979 

Personnel representing the Institute for Conservation Archaeology at the 
Peabody Museum conducted the Continental ShclfProject for the Bureau of Land 

Management. The project was designed primarily to provide the BLM with 

informarion about known or expected prehistoric sires and historically important 

shipwrecks and to generare predictions about whcre specific types of sites will be 

found. Information presented here focuses on rhe prehisroric sires portion of the 

study by Barber and Roberts (1979). 

Continental shelf, coastal, and nearb)' low-elevation terrestrial areas between 

Maine and North Carolina constitute this project's 32,388,664 ha study area. 
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Inductive site-Iocational models wtre generated from the site records for dry land 
areas similar to areas on the continental shelf. Deducrivt"': models were gcnt:ratcd for 
the intensity of settlement in a given zone by relying on knowledge lnd as!lump
[ions about human foraging beha\,ior and rt"lcvant paleoenvironmental conditions. 
General and specific predictions derived from both kinds of models were combined 
to form a final model. This model was based on the results of a generalized 
asseSSiOent of goodness of fit between predictions. The final model presented 
generalized predictions (i.e., high, medium, medium-low, very low likelihood) for 
sire size, sire d(.'nsity, and site type for each of six 3000-year periods and four 
environmental zones. The time periods correbee roughly with different sea levels 
and the resulting changes in the positions of the coastline. These changes differen
tially affected the distribution and n.:Hurc of the estuarine, inland vaHey, upland, 
and coastal (.'n\'ironment;.)l zones in each of the three ident ified subareas - wbine, 
southern New England, and Mid-Atlantic. The model's end product is presented 
on a series of I :250,000 scale maps that illustrate 122 archaeology zones, each of which 
is characterized by time period for predicted site types as well as generalized site 
frequencies and si te sizes. 

The authors' claim that the project represents an advance in the state of the art 
of predictive modeling for the nature and distribution of prehistoric sites is justifia
ble, although the spatial resolution of prediction is low. By combining existi ng 
site-file data for some 6600 sites with the theory of optimal foraging st rategy and 
including information derived from environmental reconstruction, paleoclimarol
ogy, and other disciplines, the invcstigawrs were able [Q predict and partially 
explain the distribution of cultural resources. They have provided planners with 
information on the predictt:d nature and distribution of sites in a vast area within 
subdivisions as small as 50 km 2• At the same time, the approach is reasonably 
compatible with contemporary theories, and it affords the opportunity to discover 
previously undocumented kinds ofcultural resources (for additional discussion, see 
Chapter 2). 

Fort Benning 4000-Acre Project An / /rchaeologicdl SUrJ't)' ofSckaed Art'cJI oflhl' ForI 
BcnningAfilildY)' Rt'IO-l'lllion, AldbcJm" dnd Glorgia. T. A. Kohler, T. P. DesJeans, C. 
Fciss, and D. E. Thompson. Remote Sensing Analysts. 1980 

Remore Sensing Analy sts, a privare firm based in Tucker, Georgia, conducted 
the Fort Benning project for the U.S. Army. The scope of work and contract were 
developed and administered by the Heritage, Conservation and Recreation Service, 
Interagency An.:heological Services, Adanta. That agency was responsible for 
selecting the survey traer and specifying the development of a predictive' model to 

serve as an interim management tool. The source of information for the site 
predicti\'~ model summarized here is Kohler et 31. (1980). 

Fort Benning, located in the Fall Line Hills portion ofeast-central Alabama and 
west-central Georgia, encompaSSt~S coniferous and miX(~d forests, scrub oak and 
brush, and swamp vegetation zont's. A judgmentally selected 1619 ha art.'a was 
surveyed, and 31 sitC's were identified. Of these sites, 10 had historical nonaboriginal 
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components and six had historical aboriginal components; rhret.' had ~lississippian 
components; three had Late and Middle Woodland components; eight had Early 
\Voodland and late Archaic components; and three had middlt: and early Archaic 
components. Analysis of variance, goodm.·ss of fir, lnd {-tests were used to idcnti(v 
soil type, slope, lnd distance to water as variables that v.,'cre correlated with site 
location. Sc:vcra\ soil types, slopes of less thall 10 percent, and an:as between 75 and 
225 m from watn werc identified as fa vorable sire locations throughollt the project 
area. These locations were ploned on 1:25,000 scale maps. The locations of pre
dic((!d sire-likelihood strata (maximum, intermediate, and least likc1y to contain 
sitcs) were defmed on the basis of the number of intersecting favorable states and 
Wt' re planed on other maps. For example, areas with Cahaba sandy loam soil on 
slopes of less rhan 10 percent and betwecn 75 and 225 m from water were identifJ{'d 
as part of the maximum likelihood stratum, whereas areas with si milar soil:, but on 
steeper slopl'~ and lying more [han 225 m from a creek were defined as pan of the 
zone least likely (ocontain sites. The model also included site-density estimates for 
the unsurveyed strata, and it included probability e stimare s for encount<:~ring a sile 
within any given randomly sell'ncd area. 

The project can be considered successful in that a readily tcstable model was 
generated to predict the probability ofencountering a site anywhere in the project 
area. It is noteworthy that this project represents an carly and comparativl'iy 
rigorous attempt to use starisriCJ.l approaches along with new field data generated as 
a result ofa sys tematic surface and subsurface survey. As in tOany ofthe indul'tivc or 
correlative models, most of the si te-type information, which can be informarive 
ab ou t the potential ofa site to yield important information, i:, lost when the various 
kinds of prehis[Qric sites are mcrged to generate a sire/sireless dichotomy for 
prcdicri\'l' purposes. Although the concept of site signif,cann' is not directly dealt 
with in the model, there is an implication that maximum site likelihood zones have 
the highest probability ofcontaining signi1icant cultural rc.'sources) especially larger 
residential sites. Other kinds of sites that may have potential to yield important 
information aTt' likely to be encountered in the zones that are lea~( likely to contain 
sites} and by implication these sitt's are nO[ as likely to be discovc.~ red. For example, 
some types of vegetal procurement sites might be expected to occur on stony soils 
far fro III water. 

Tombigbee Early Man Project A Stud)" o(Lal' ifl.ualal/(lry Enl';rOl/mcnlf al/d Early 
Afan Alung fhe TOTllbigbu RiPfr, A labama and l\1irsilrippi, PhaSl' I. Guy R. Muto and 
Jocl Gunn. Benham-Blair and Affiliates. 1980 

The environmental division of Benham-Blair and Affiliates, an architecture 

and engineering firm, designed and impk'mented the T om bigbee Early :o..1an 

Project. It was funded and partially administered by the Corps ofEngineers, but the 

scope ofwork lnd project review were primarily the responsibility of tht· Heritage, 

Conservation and Recreation Service, \\.'ashington, D.C., and Interagency Archeo

logical Services, Arbnta. The draft reporl (Muw :md Gunn 1980) was the sourcc.' of 

information summarized here. 
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The 77,7]3 ha project area lies within the Tombigbce River Valley ofeastern 
~'1ississippi and western Alabama. Forests and agricultural crops cover the alluvial 
rerraces, and swamp vegetation occupies rhl' extensive flood basin. The project's 
major goal was [Q develop a modd that would predict the loc3tions of Paleoindian 
and early Archaic sites. Since most of the Early ~1an sites were l"xpencd to be 
deeply buried in larc Pleistocene and /or carly Holocene deposits, ~m imponanr 
aspect of the project was the prediction of locations of landforms old enough {Q 

comain early sites, Toward that cnd, a generalized "empirical" site-location model 
was developed based on the known distribution and n3[Urc of Early Man sites as 
well as on inferred Picis(Qccnc and early Holocene environmental conditions. Using 
the resulting Iocational criteria (e.g., inside of river bend, near confluence, ncar 
wetlands) as predictive variables, the rescarchl' rs visually scanned topographic 
nups for likely site locarions; 620 such loc3tions, termed §Zuaurnnr')' projuhom, were 
identifIed. 

A second inductive model was developed using a computer-based uprospect
ing technique" known as kriging (Muto and Gunn 1980:4-18; see also Chapter 3). 
The kriging model prediered the location of landforms or areas likely [Q contain 
early sites. Toward that end, during the kriging operation the computer searches 
its data banks for grid units encompassing landforms with environmemal character
istics like the landforms known to contain sites. The program provides probability 
estimates for the likelihood that a given grid unit may contain the appropriate 
landform. Those grid units prcdictc·d to contain sites on the basis of the kriging 
model WCfe termed machin( pruj~'ct;om. 

Both models were tested by on-the-ground examinations of a sample of the 
Quaternary proj(,~ction locations and machine projection units. Techniques 
designed [Q dt"tect buried sites in lowland :lnd swampy environments were used to 
determine site presence and absence at the sampled locations. These techniques 
included the USl' ofsoil augers capable of penetrating and recO\'ering several meters 
of clay-rich sediments, which were examined for the presence of artifacts and 
chemically tested to detect paleosols or those deposits with the potential of 
containing cultural ffiHerials. A total of 56 Quaternary and machine projections 
were selected and tested for the presence ofculcural matcrials. Ofthose, 34ioc3tions 
were selected using a proportional stratified random sampling scheme. Strata Wl'rc 
defmed as combinations oflocationai criteria. For example, onc stratum included 
only locations ncar stream confluences and wetlands while another scra[Um 
included locations with {he samc criteria plus being on the inside of a rivcr bend. 
The other 22 locJtions " 'erc selected on a judgmental basis for on-the-ground 
tcsting because they exhibited unique environmental characteristics or becaus.." 
they filled spatial gaps in the random sample. 

The overall approach achieved some success in that slightly more than half of 
the randomly selected Quaternary projections yielded cultural materials. This 
success rate is actually quite high gi\'en that fl'w of the sites would have been 
detected by C'xamination of surface or near-surface deposits. An important contri
bution of {his project to predictive modeling is its exrensi\'e usc of paleocnviron
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mcn(al data and its atremian [Q deposirional processes [hat alter the shape of the 
landscape and bury archaeological sites. Although more chan 6(X) locations were 
identified and almost 10 percent were testcd, (he n:sulring data were not employed 
[Q calculate probability estimates for dcrC'aing a site at any given location or within 
any stratum. The greatest problems cncountcft"d in summarizing this project from 
the information presented in the draft repon were thac the derailed discussions of 
some of the project methods were difficult to understand, and the relationships 
between these methods and the results of the project were not always clear. In 
addition, the lack of a detailed discussion about the derivation and usc of the kriging 
model was disappointing. These organizational problems may be a re-suh of the 
draft status of the project report and could be resolved as part of the editorial 
process. 

NPR-Alaska Project "Remote Sensing in the NPR-A Cultural Resources Assess
ment." James I. Ebert and Galen N. Brown. In Anthropological and HiJlor;c 
PU!crvatioll Cooptratipf Park Sludit'J Ullit Occtlf;olJal Paper No. 25, pp. 349- 419. 
University of Alaska. 1981 

The National Petroleum Reserve-Alaska Project was sponsored by the 
National Park Service, Washington, D.C., and implemented largely by personnel 
representing the Anthropology and Historic Preservation Cooperative Park Studies 
Unit of the University of Alaska. Remote: sensing components of the project were 
carried out by personnel from the NarionalPark Service's Remote Sensing Division, 
Southwest Cultural Resource:s Center, Albuquerque, The objective was to use a 
remote sensing approach to correlatt' environmental settings with known site 
locations in an etTort to increase the accuracy and cost eHicit..' nc), of the cuhural 
resource assessment of the 9 million ha project area. The repon on the remot e 
sensing aspects (Ebert and Brown 1981) provided the information summarized here 
(see also C hapter 9). 

Moist tundra, wet tundra, alpine: tundra, high brush, and waterways consti
tute the basic ecosystems in north -central Alaska, where rhis project was located. 
The area includes portions of the Brooks Range, Arctic (7oothills, and Arctic Coastal 
Plain physiographic provinces. 

Landsat an d high-altitude color infrared imagery data were used ro defme ~ix 
l'cologic!cover types and six transitional types. These 12 st rata and all previously 
recorded archaeological sires were plotted on 1:250,000 scale maps. Area measure
mentS were made for each stratum, and the amount ofland that had been surveyed 
within the various strata was calculated. ;'\Jcxt, culrural, landform, and ecologic! 
cover-type data were recorded and correlatcd as a means of characterizing rhe 
oeeurre-ncl' or nonoccurrence of site-spc::cific culrural and landform data in each 
stratum. For predictive purposes, the observed site density in the surveyed por
[ions of each stratum could be multiplied by the: area of aoy unsurveyed parcel (in 
the same stratum) ro dctermine a site--frequency estimHe for that part of thc 
project are-a. Us ing similar extrapolation techniqut's l the project personnel gener
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ated sample data to estimate the relative frequencies ofsite types and the expected 
content in unsurveyed areas. 

The model is appealing largely beeluse of irs simplicit y and probable COS[

effectiveness as a flrst-s(ep approximation ofthe nature and distribution ofculwral 
resources in a vast area. It provides an idea of the number, content, size, and other 
characteristics of sites that might be expected in an unsurveyed area-information 
critical [0 realistic estimates of the time and money required to conduct on-the
ground surveys. As recognized by the authors ofehe repon, however, [he predic
tions arc conditioned by the quality ofehe data, which vJried from survey to survey. 
Funhermore, [he approach is unlikely to be panicularly useful in predicting the 
presence ofrhcorctically expected but as yet undocumented kinds of sites bl,.·causc 
it relics enrirely on information about previously discovered site types. It is also 
apparent that the model would not be of great use in gaining informarion about past 
environmental or cultural conditions or about why cultural materials are distrib
utcd across the landscape in particular patterns-limitations also recognized by th e 
authors. 

Seep Ridge Project Archaeological Invmtory in th, Sup Ridg,· Cultural Study Tract. 
Signa L. Larralde and Susan M. Chandler. Nickens and Associates. 1981 

The Bureau of Land Management funded the Seep Ridge Project, which was 
carried out by personnel from Nickt.'ns and Associates, a privatt~ archaeological 
consulting firm in iv10ntrose, Colorado. Objectives of the part oC the projl,.·ct with 
which this summary is concerned werc ( a) to derive a formula that would dt.'terrnine 
the probability of site occurrence at any point in the project area, and (b) to 

delineate for management purposes areas suspected to contain an extremely low 
density ofsites. The authors noted the possibili,y that "project-by-project cultural 
resources clearances may not be necessary" in some portions of these extremely low 
density areas (Larralde and Chandler 1981:1 ). 

Semiarid canyons, ridges, eroded buttes, and dune fields are chafact t'ristic of 
the 44,292 ha project area, as are juniper, sagebrush, grasslands, ;md some de sert 
ripari:tn vegetation, The BLM used a 10 percent nonsrratified, systematic random 
sampling scheme [0 preselect 27416 ha tracts for survey. \\lithin that area, 40 sites 
and 106 isolatt"d finds were recorded; these rt.'mains represent all major occupations 
of the area, from Paleoindian [0 Euroamerican. A discriminant function analysis was 
used to compare the relationships between site and nonsit(~ locations on the basis of 
environ mental attributes-presence/ absence of sand dunes, viewspread, distance 
to vantage points, distance to juniper forest, and a measure comparing site or 
nonsite vegetation with surrounding vegetation. High, medium, and low sensitiv
ity zones were delimited, primarily on the basis of positive correlation between high 
density and increasing proximity to juniper trees and sand dunes. 

The discriminant equation used in this projt.'ct is described as a "powerful 
management tool I! because it requires data from only six variables and because 
values for these variables can be measured for any point on a USGS topographic 
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map. \Vhen values for these variables are "plugged into" (he formula, the result is a 
probability eHimatc for site occurrence. The authors suggest that Hifrhe probabil 
ity of sitl' presence is low, archaeological clearance could be granted without the 
necessity ofa field check. If, however, the probability of site presence is ncar the 50 
percent range, a field inventory would be in order" (Larr.lde and Chandler 
1981:1]6). The authors stress that their results arc intended as an example of the 
power oCthe technique and that this particular equation should not be used in the 
planning unit "until the function is strengthened by [he inclusion of more data" 
(Larralde and Chandler 1981: 1 36). 

Given the 97.1 percent Haccuracy ratc" claimed for onc version of the discrimi
nant analysis, which classified only one of the 34 sites as a nansire (Larraldc and 
Chandler 1981:lll), the modeling project appears to have successfully achieved its 
stared objective. There are, however, several potential problems wirh the model, 
twO of which arc noted here. The first problem is that thc preselected one-half by 
one-eigh th mile (ransects do not represent a random sample of thc landscape in the 
project area because the central portion of each quarter-section had no chance of 
being sclected (Berry 1984). The linear transects were "situated in quarter sections 
so that cadastral monuments could be used to maximize location control. ... Each 
samplc unit was systematicaHy placed in its quarter section to extend ftom scction 
corner to quarter corner" (Larralde and Chandler 1981:4). 

The second potential problem concerns the equation of zones of low site 
dcn~iry with nonsignificancc, that is, with areas that merit no futthcr attention. 
Because of this equation thl're is no opportunity to determine whether scientifically 
important cultural resources are present in the low-density lone. It is clearly 
possible that low site-density zones were occupied J.( some point in the past when 
environmental conditions were different and human population was low. Given the 
procedures summarized above, there would be little chance that old and rare sites 
would be discovered. 

Okanogan Highlands Projecc A Cultural RilOurm Pred;";,, Land Uu Mod" Jor Ih, 
Okanogan Highland!. R. R. Mierendorf, T. K. Eller, D. Carlevato, and P. A. 
McLeod. Cultural Resources Group Report No. 100-2. Eastern Washington 
University, 1981 

The Bonneville Power Administration, Ponland, Oregon, funded the Okano
gan Highlands overview/predictive modeling project for an area in north-central 
Washington. The project was designed to evaluate possible disturbances to 
archaeological sites along proposed transmission lines, and it was implemented by 
the Bonneville Cultural Resources Group, Eastern \Vashington University, This 
summary, based on Miercndorf et al. (1981), focuses on the prehistoric and ethno
graphic aspects of the land-lise model. 

Low, forest-(overed mountains and steep-walled valleys wi..th steppe vegeta

tion are characteristic of the 2,166,200 ha study area. Existing site-file data were 

available for 4'i9 sites representing all major period, of occupation (Paltoindian 
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through c.r1y historical). A predictive model ofprehistoric l.nd usc was dC\'elopcd 
based on the seasonal and spatial distribucion of resources and on ethnographically 
documented Native American serdcmenr patterns and subsistence practices. In the 
repon the model is presented as a series ofmaps that delimit seasonal acri\'iry areas 
and expected site densities (high to low); [he latter are based on known site 
densities in similar areas. Examples of zones delimited on maps include Hwimcr 
residence areas with moderate sire density" and "'summer hunting and garhering 
areas with (he lowest site density." A sensitivity analysis was conduer-ed (0 (valuate 
consuucrion impacts; it llsed the predictive model to assess potential sitc signifi
cance according to numeric values assigned for regional research signiftcance l site 
density, and known impacts to cultural resources. Six sensiti\'iry lones, which 
corn.·spond to generalized geographic strllta, were plotted on maps. 

The model provides considerable information about the general location of 
different kinds of sitcs but almost no information about the probabiliry of encoun
tering a site at an~' specifIC location. Even so, it permitted initial estimation of 
possible disturbance to sites that would result from construction of a powerline 
across the project area. The.: authors nore that important sites could occur in the one 
Blow site densityllow scnsitivity zonel! and in two of the low density / moderate 
sensitivity zones that they have defmed, but they consider the probability of 
encountering such a site along a powerlinc to be low. They expect that "furore 
sutveys [in the low density Ilow sensitivity zone IwillloC:He sites that are regionally 
important" (Micrcndorf ct.1. 1981:117). 

Reliance on the ethnographic record to pre.diet prehistoric land-use patterns 
considerably reduces the generalizing power of the modeL The authors recognize 
one aspect ofthis problem when they suggest that changing resource distributions 
might have caused changes in the location of:.lctivities. \Vhat they do not seem to 

recognize is the probability that at times in the past, especially when human 
population densities were much lower than those of the ethnographic present, it is 
likely that different land-use systems operated. For examplc l one would expect 
different distributional patterns for different site types depending on whether 
people spend the winter near stored foods or depend on frequent moves among 
areas where tood resources are aV:.lilable. In the tatter case, winter village sites might 
not be located in the riverine lone, and fishing sites might not be nearly as common 
as they were during the ethnographic period. If (hl' prehistoric winter pattern was 
onc of frequent residential moves, a number of small, shan-duration residential 
sites might be located at some distance from the river. O\'erly heavy reliance on the 
ethnographic record in developing predictive models could result in cultural 
resources representative ofa very different land-use system remaining undetected. 

Salmon River History Project An Opt'rvjnr HiflOr)' ill ,ht' Drainage Basill of'ht' }"fiddle 

Fork of ,Ix Salmon Ri'Pa. rvlar~' P. Rossillon. Cultural Resources Report No.6. 
USDA Forest Service, Intermountain Region. 1981 

Historical research conducted for the S:.llmon River project was done by 
personnel representing \Vashington State University and the University ofldaho. 
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The srudy was spon sored as ajoint vcmurc involving these universities, the Idaho 
Stare Historical Society, rhe Forest Service, and the Idaho Stare Historic Prescrva
tion Omce (Knudson et al. 1982). Early in the projec t the researchers recognized 
that litrle information was available about rhe srock men's culture in the ccntral 
Idaho area, As onc means of acquiring that information, a model was developed to 
predict rhe locations of nineteenth-century srock raising-associated sites. Inform a
tion summarized here was taken from Rossillon (1981). 

Moumains and upland valleys are eharac tcristic of the 320,())() ha study area. 
Coniferous forest, some of which is rel at ively open, is rhe dominant vegetation 
zone, followed by grasslands and meadows. The entite study area was subd ivided 
imo 3 by 3 km grid units, and each unit was characterized according to its distance 
from a local market, the palatability of summer and winter range for cattle and 
sheep (a calculation based on the percentage of readily accessible fodder), and 
expected hay production (based on the number of cattle and sheep that could be 
supported). High-use areas-those with the greatest potencial for grazing and hay 
production and those with the longest growing seasons-were located and mlpped. 
\Vintcr caute Jnd sheep grazing arCJS ~'ere predicted to be associated with perma
nent log structures ( ranch headquarte rs), and summt'r gtazing sites (temporary 
camps) were predicted to be associated with limited scatters of historical artitJcts 
and perhaps with less -permanent structures (e.g. , simple corrals). 

The model provides insight into the probable distribution of sites created by 
stoc kraising activities, and it provides a framework for assessing the significance of 
such si tes. Although irs spatial resolut io n is low, it docs provide a way ofestimating 
.~ite prescnce for every 900 ha area, and it illustrat es that the site:; tend to be nt.'ar 
creeks. It could be argued, with some jus tification, that the model is overly 
simplistic . This project should be recognized, however, as onc of the earliest 
a((cmpts to deal with Euroamcrican ranch si tcs as a resource of concern to cultural 
resource managcrs and as a potential data base for acq uiring important information 
about regional history, Viewed from that perspec tive, the model was sliccessfui. 
This model and the one developed by Hackenbcrger (1 984; sec below) have a similar 
procedural logic , and both were an outgrowth of a Forest Service reconnaissancel 
predictive modeling project (Kn udson et al. 1982). 

Bisri-Srar Lake Project Archat'O/ogica/ f/ahabi/it), within lht' Birti - S!ar Lakt' Rl.:gion. 
Meade F. Kemrer, editor. ESCA-Tech. 1982 

Archaeological inves tigat ions for the Bisti -Sta r Lake Project were funded by 
the Bureau of Land Management and carried Ollt by personnel representing the',' 
Albuquerque omce of ESCA- Tech, an environmental consulting firm. The model
ing objectives for the project were to develop and refine methods capable of 
predicting the presence of si tes with specific cultural and temporal characteristics. 
That information would then be used to generate formal predic tions concerning the 
density of sites of various types throughout the project area (Kernrer 1982). 
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Sagebrush, rabbirbrush, grcascwood, lnd other semiarid vegetation is charac
tcristic oCthe dissected plateaus in the 31,413 ha project area, which lies within [he 
San Juan Basin of New Ntcxico. Landsat data were generated and coded for the 
project area in 2 by 2 km grid units (400 ha each). Seventy-two environmental 
variables, consisting of different combinations ofeight cnvironmenral classes (t·.g., 
Avalon-Sheppard-Shiprock soil association and major washes), were derived from 
Landsat data; onc data set (prest"nce/absencc of variable states) contained all the 
uniqu{' two-way interaction . ., between environmental classes. The archaeological 
data base for (he initial model consisted ofexisting site-file data from surv eyt"d areas 
within and adjacent to the project area. Site type and coment data as well as 
informatlon on cultural/ temporal afliiiarion werl' examined for more than 450 
components. Eight site classes were developed using analysis of variance tech· 
niques. A backward step-wise multiple regrl'ssion was used to reduce the number of 
environmental variables, and other linear equations were used for modeling site 
component densities, Projected site densities for the 2 by 2 km grid units were 
plotted on maps, 

The project area was then subdivided into a number of leases, and a sample 
totaling abollt 4600 ha (ca, 15 percent of the total project area) was jlldgmentally 
selected and surveyed, Choice of pared, to be included in the judgmental sample 
was based, in pan, on land ownership, size of sample units, and predicted cultural 
resourct" variability, A total of92 sites and 213 isolated finds were documented. Some 
Paleoindian and Archaic sites were found ell of319 components), but most remains 
were classified as Anasazi, Navajo, historical, or lithic scatter sites. Resulting data 
were: added to the existing site-fde data base as a means of testing and rt"fining the 
initial model. A regression analysis approach was again used to produce the refined 
modd. Wht"n the augmented cultural resource data base was analYZl'd with 34 
environmental variables, figures showing the percentage ofexplained variance were 
generated fot l'ach of the site types. Mean site-frequency predictions were gener
ated for more than 800 grid units and plotted on eight maps, one for each of the 
following site rypes: lithic sites, Anasazi sites, prc~19B Navajo sitt's, post-1933 
Nayajo sites, toral Nayajo si tes, and total sitcs. 

The overall modehng approach yielded information on (he range ofyariJbility 
in cultural/ temporal components, sitl' types} and site densities. The ml'ans by 
which this was accomplished and the overall reliability of the results arc not always 
obvious. Much oftht: discussion on model development is difficult to comprehend, 
and decisions about selection of areas for survey were highly judgmental. The 
project area, the area from which tht: l'nyironmental data were extracted, and the 
survey area were all different, and the size of survey units differed from subarea to 
subarea. These factors ma~' have affected the rt:sults of the statistical analysis. 

There are also potential problems with the manner in which field information 
was gathered and analyzed, These problems make it difficult to replicate the overall 
approach and may well have caused tht, model to yield arbirrary ft'sults, Isolated 
finds, for example, were excluded from site density estimates. Unfortunately [he 
criteria used to distinguish isolated finds from sitt~s were not rigorous, In fact, 
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considerable overlap is likely given that ditTerent survey teams and ditTerent 
individuals operationalized the site and isolated find definitions: 

Sitl'j \I.'en: diITcfl'mi:ncd from i_~ol.1t("d cultural occurrences on the b.l$is olin(ormation 

potcnt ial. ,\ ~itl' \10'.1.'. ddinc-d as :l!OCIlS manifC'sting the Olltcomes ofpaH human bt:hJ.\'ior 

which cont:1incd more: idcntili3bk or potential scic-ntific d:Jt:l values than could be.: 

l'iTl'cti\'l"\y l'xtr:1C lcd :1{ the time of survey. Isolated occurrt'nces wt'rc defined 3S tho.~e 


cultur:ll manifcst:ltions whose scient ifie dat:!. va\Il(O\" could bl' adequ:ueiy documented by 

thl.: sun·I,.·Y !Cella 1982:75). 


Another factor that might have led to arbitrary results has to do with the 
manner in \l,/hich sites were classified as to type. The most ob"iolls case is the 
merging ofidenrified Paleoindian and Archaic components with unidentified lithic 
components to create a single type. That procedure probably masks a significant 
port ton ofthe observed cultural / temporal and site type variability, yet detection of 
that variability was one orthe major goals of the project. 

Ozark-St. Francis National Forests Project A Cultural RlIources Ore;p;tw of tbe 
Ozark-SI. Fran,ill'lalionai Foml" Arkama,. George Sabo III, B. Waddell, and). H. 
House. Arkansas Archaeological Survey. 1982 

Arkansas Archaeological Sun'cy personnel conducted this overview project in 
the Ozark -St. Francis National Forests for the Forest Service (Sabo et al. 1982). The 
principal objectivC's werc to assess the potential nature and distribution ofprehis
toric and historical sites in unsurvcyed areas and to provide predictions concerning 
the nattlre and distribution of cultural resources. This information was to be 
incorporated into multiple resource management plans. 

The 461,000 ha project area encompasses two national forests in northwestern 
and east-central Arkansas. As a means ofgenerating C'xpectations for the nature and 
distribution of cultural resources, a series of deductive adaptational models were 
developed. FOllr temporal periods were defined jointly by adaptation type and 
paleoenvironmental type: Late Pleistocene/Early Holocene hunting and gather
ing; Middle Holocene hunting and gathering; Late Holocene (post-Hypsithermal) 
hunting, gathering, and plant husbandry; and Late Holocene horticultural, hunt
ing, and gathering. Initial narrative predictions were made concerning the distribu

tion, content, and types of sitcs within each of four major environmental lones: 

river bottomland, upland slopes, blutT lines, and upland plateaus. A similar 
approach was used to define seven major and seven supplementary historical 
adaptation-typ<' models. Examples of these ethnohistorically and historically 

recorded types include Osage (AD? -(804), Creek (1794-1828), Spanish (1673-1803), 

pioneer hunter/ herder (1803-ca. 1840), Civil War (1860-1875), resorts (ca. 

1860-present), and Forest Service (1908-present). 


Biophysical data, including elevation, soil types, topographic settings, physio

graphic subdivision, and vcgetation types-, were coded for 259 known sites that 

could be plotted reliably on USGS quadrangles. Q-mode cluster analyses were 
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performed separately on prehistoric and hiscorical sites. Univariate: and bivariate 
statistical procedures were used to determine which variables correlated best with 
site locations. The important variables weTe topographic setting, soil capability, 
distance to water, and eleva tion. The resulting inductive models yielded fOlif 

clusters. These were qualitatively compared with expectations derived from the 
adaptation-type models. It was concluded that the inductive, Q-mode analyses 
generally supported the deductive models. Site likelihood zones based on topo
graphic setting for historical and prchisroric sites were plotted on maps, and 
generalized sirc-dcnsiry-poremial values (h igh to low) were assigned [0 each zone. 

As is the case with most dcdunive predictive modeling approaches, the cnd 
result ofrhis project provides only limited spatial resolution for the predictions. In 
this case, most of the zoncs comprise thousands of hectares, and avai1able data do 
not permit a finer resolution of density and/or potential anywhere within a given 
zone. Furthermore, this kind ofmodel is difficult to falsifY, largely because ofits low 
spacial resolution and generalized treatment of site content data. It does, however, 
meet its objective in that predictions are made for the potential nature and 
distribution ofcultural resources. The approach also allows for , and in fact encour· 
ages, the discovery ofsite types that are undocumented but theoret ically l'xpected 
in the s tudy area. Examples include most of the Pleistocene site types and types 
representative ofseventeenth-and eighteenth-century adaptations. Furthermore, 
the issue of site significance is di\'orccd from the concept of site likelihood 
zones: the authors note that Hsignificancc must be determined on a case-by.case 
basis ... , and a site in any likelihood zone could easily turn out to be highly 
significant" (Sabo ct al. 1982: 188). 

Passaic River Basin Project A Prt/imina1)' Cultural Reraura Smsiti'Pit)' Ana/pis for fhi 
Propoud Flood Comrol Facilifin ConsfruCl;oll in fhe' PaHaic Ril't r Basin OINtl1' ]/ru)'. 
Robert Hasenstab. Soil Systems, Inc. 1983 

The New York District Corps ofEngineers funded the Passaic River Project; 
Robert Hasensrab (U niversity of Massachusetts, Amherst) implemented the pro
ject through a subcontract with Soils Systems, Inc., an environm~ntal consulting 
firm based in ?\1ariena, Gcorgia. The project's objectives 'O.'ere to estimate the 
quantities of cultural materials likely to be affected by proposed Oood-control 
facilities and to dcfmc areas with a high probability of site occurrence (Hasenstab 
1983). 

The 1619 ha project area extends 160 linear km along the Passiac River, cross
cutting ridge and valley, piedmont, coastal.plain, and tidal/ estuarine areas, Urban 
and commercial developments occupy most of the impact zone, but 42 percent is 
either agricultural, forested, or classified as wetlands. The project area was subdi
vided into a high-resolution grid of0.47 ha units (pixels) for which various environ
mental variables were coded; all manipulation and mapping utilized a GIS. Univar
iate statistical tests were employed CO determine which environmental variables 
were most useful for their power to Hrctrodict" known site locations. Significant 
variables were found to be soil drainage, distance to nearest river, distance to minor 

622 



SURVEY OF PREDICTIVE LOCATIONAL MODELS 

tributary confluence, and distance to a major tributary/river confluence. G rid cells 
were assigned a sensitivity rating by summarizing the various cultural cornponcnt
variable ratings. The: sensi tivity models were then tested and revised using data 
derived from a survey of 300 pixds (ca. 140 hal representing a stratified random 
sample of the project area (wit h some modifications). O"erall, the sample fraction 
was about 6.5 percent of the impact zone. The survey techniques included limited 
but systematic subsurface testing within judgmentally selected pixels. Twenty
eight historical sites and 16 prehistoric sites were recorded. A series of computer
generated maps illustrated the final model on a pixel-by-pixel basis in terms of 
prchi:;roric archaeological sensi tivity (high, medium, or low) based on the cultural 
component-variable ratings) and a combination of historical and prehistoric 
sensltl\'Hy. 

The author concludes that the GIS approach " has greatly enhanced the 
capabilities for archaeological prediction and land-use management, ... [but it] 
cannot be taken as a final solution to all cultural rc:source management problems" 
(Hasenstab 1983: 13 ). Th,' land managers did learn something new about the 
distribution ofsites, bu t not much about their nature. Hasenstab's (1983:i-ii, 14-16) 
self-critique warrants close attention, since the problems he identifies arc shared by 
many models: (a) the grid resolution may have been roo coarse to detect important 
\'ariablcs (such as small sandy knolls), (b) no attempt was made to deal with 
problems of spatial autocorrelat ion, (c) no consideration was givcn to understanding 
the effects of different variables on different site types, and (d) the fieldwork was 
probably not ofsufficient scope to assess the model adequately. The approach is also 
problematic because it lumps togecher all prehistoric sites and thus tends to obscure 
the variability that is represented by thousands of years of human occupation. 

Like some of the other models discllssed hcre, this one also equates high 
likt.'lihood zones with a high potential for the occurrence of significant sites. 
Furthermore, it equates low sensitivity with nonsignificance and with a lack of 
nccessi{y for legal prolC:ction. This is demonstrated in the following statements 
from a subsection of [he report entitled nSynthesis of Cultural Rl'solt rc l'S 
Sensitivity"; 

f.'in.llly, 20 percellt of [h~' projr.:ct an:a could be "written-off" k·gitimatl:ly. The 10 ~\' 

historic i low prc..:historic sc:nsit ivicy s tr::HUOl (10 pen:t.'nt of tht.' project area) would yield a 
vt.'ry low ft.'(Urn on encountered cultural remurces. The m<:dium historic! 10 ...... prehis
LOrie ~t.'ns ici\'i()' :i (r3[lIm (10 pC'rcen c), as menriont.'d .lbove, could be sacrificed, as l 

~ubstanci.ll portion of tile mt.:dium scns itiviry)tr:Hum will already h:J.... t.' been sampled 
[H:l.senscab 1983:13..aj . 

Such a conclusion does not see m compatible with a prr:liminar)' cultutal resou rcl' 
sensitivity analysis, which the title of the report indicates that this was intended to 
be. Neither does it seem to be compatible with the author's recognition that thl' 
sample survey may not have been ofsufficient scope to permit adequate assessment 
of the modd. 
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Grand Junction Resource Area Project A Nbnual for Predictive Site.: Location 
Models. Kenneth L. Kvamme. Draft report submitted to the Bureau of Land 
Nlanagcmem, Grand Junction Distric{' 1983 

The BLNt funded the GrandJunction Resource Area Project as an overview of 
statistical classification procedures for predicting archaeological sire locations. This 
summary emphasizes aspects ofrht· project rdated TO the development and testing 
of models in the GrandJunction Resource Area. For {hat area, the objective was [Q 

develop quantitative models that could be used to predict likely locations of 
prehistoric sites (Kvamme 198]; sec also Chapters 7,8, and 10). 

The project area encompasses some 4]8,9% ha of western Colorado uplands. 
Vegetation types characteristic of the arca include desert grasslands as 'IZ\,'ell as 
pinon-juniper woodlands and spruce-fir forests. The subareas of the disrric[ were 
stratified into five major biotic communities considered to occur in significant 
proportions across thc landscape. A stratified proponional random sample of65 ha 
quadrats (quarter sections) was select~d from the physiographicaU)' defined sub
areas. One hundred quadrats were selec£ed for survey, specifically (0 provide the 
data base for generating the models. The surveyed area amounted to about Irl 
percent of the project area. Environmental data wete coded for site and nonsite 
locations. Through a series ofstatistical analyses, the following variables were found 
to be important in distinguishing between site and nonsite locations: biotic zone, 
vertical distance to permanent water, vantage point distancc, slope, view, expo
sure, shelter within 100 m, and shelter within 250 m. The models were developed 
through a pattcrn-recognition approach using various multivariate analyses as 
classification [0015, the most successful of which was logistic regression. Depending 
upon the particular approach used, GIS-based probability surface maps were 
generated to provide/ illustrate predictions for sites Jnd siteless loci in unsurveyed 
areas covering from 0.6 to I to 25 ha. The accuracy of the various models was tested 
independently using site-file and nonsite data, as well as split sampling techniques. 

Kvamme's approach to predictive locational modeling is statistically and 
computationally more sophisticated than that exhibited by other projects summa
rized here. The report is clearly an important contribution in that it provides a 
thorough overview and many examples ofa wide variery ofstatistical approaches to 
developing and testing inductive, or correlative, models. The project did not, 
however, achieve the goal stated by the author l namely "to model the locations of 
all sites, regardless of type, because all sites are of potential interest to Cultural 
Resource Management" (Kvamme 1983:69). 

This suggestion that the GrandJunction Resource Area report failed to model 
the location of all sites is based on three observations. The first concerns the 
apparent paucity of sites in 38 percent of the project area. Kvamme suggests that 
the low density ofsites (four were known) in the high-elevation community (which 
comprises 15 percent of the resource area) is a result, in part, of Hthe dense 
vegctational cover occurring at high elevations which inhibited site discovcryH 
(1983:62). At the same time, onl), a few sites (26) occur in the desert community, 
which represents about 24 percent of the resource area (no explanation is offered for 
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this low density). Since 85 percent of the sites are in the pinon-juniper community, 
which constitutes only 62 percent of the project area, it W3S determined that 

BCC:lUS~ ofthc: paucity ofsites in all but [he pinyon-juni~r communities, if \\'ill nOf hi: 

possible [0 make meaningful comparisons ofsite \ocalioo patterning between communi

ties in (he analy ses that follow although this was originally intended IKvamme: 1983:62\. 


Because twO major lones with very different resource potemiais for aboriginal 
humcrs and gatherers were effectively excluded, it seems likely that potentially 
imporrant site types were not modeled accurately. 

Anothcr aspect of this rcsearch that hampered modeling of all site locations 
was the exclusion of rockshchers from the analysis owing CO the assumption that 
Hthcir locations cannot be predicted because of the idiosyncratic geological proc
esscs that rcgulate their presencc" (Kvamme 1983:68). Although idcntifled rock. 
shelters represcnt only 2.5 perccnt of the recorded sitcs, thcy have considerable 
potential to yield important information. 

A fmal point concerns the arbitrary distinction drawo between sites (10 or 
more artifact s in J 20 m diameter area) and isolated occurrences (fewer than 10 
artifacts in In area of the same size). 

In order to mlke the :all:alysis of sill' locltionli p:Htcrning more m::mlgc:ablc lnd llso 10 


reduce the idiosyncratic loc:arioll:al vuia(ion undoubtedly exhibited by isolated occur

rences ofan if:llci S (in mall)' insunce:.), on ly "concentrations" of lnif:acts were recorded 

l.S si tcs ::lind In:U)'led here [KYlmme 198J :6i l, 

l\·!any archaeologists might arguc that sites are often represented by fewer than 10 
pieces of pottery or chipped, ground, or batrered stone. Another potentially 
important site type - small, low artifact density-was therefore excluded from the 
model. 

Kaibab and Cuba Study Arta Projects Th,o')' and Modtl BuildinJ(: D'fininJ( SUn'')' 

Siraugia for Localing Prehifloric Hlrilage Rtrourus. Linda S. Cordell Jnd Dee F, 

Green, editors. Cultural Resources Document No.3. Forest Service, South

western Regional Office. 1983 


The Kaibab and Cuba study arcas are part ofa project sponsored by the Forest 

Service as a collaborative eflort amoog archaeologists from academic and federal 
communitics (Cordell and Green 1983 ). Specifically, participants in the cndeavor 
werc asked to formulate trial predictive models that could be refmed and tcsted. 
The information summarized here is from two model-building articles, one about 
the Tusayan District in the Kaibab National Forcst (Plog 1983a) and one about the 
Cuba District in the Santa Fe National Forest (Plog 1983b). 

Study Area I, the Tusayan Ranger District of the Kaibab National Forcst, is 
located in northern Arizona. It is on an upland plateau that is dissected by 
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inrcrmiuenr streams and covered by pinon-Juniper, ponderosa, and sagebrush 
vegetarion communities. Known sites in the area arc the results ofArchaic, Anasazi, 
and Cohonina occupations. The obj('ccivcs for the Kaibab study area were to usc 
previously derived information from a I percent sample survey (designed for 
planning purposes) to make predictions about site densities across the landscape 
and [Q ~'test" the predictions by comparing them with the results of intensive 
surveys conducted in ncarby areas. 

For the sample survey the 4858 ha study area was divided into zones based on 
drainage basins and vegetation types. Using the results of the I percent sample 
survey, the researcher estimated site densities for the various zones. The estimated 
densities were found to difrer considerably from thc observed densities in nearby 
intensively surveyed areas. The differences were judged to be the result of the 
nonquantitative fashion in which the estimated density figures were generated 
(e.g., there was no rationale for dividing the area into drainage basins, and zones 
without sample data were assigned zero dcnsity values). In thc case of this trial 
formulation, it was concluded that "had SYMAP or some other spatial smoothing 
program been employed, a successful predictive model might have bcen gener
ated" (Plog 198Ja:66). 

The Cuba District study area (Study Area 4) is a 3427 ha block unit in the 
forested upland zone of north-cl~nrral New t\1exico. In this case the objcctivc was (Q 

examine the feasibility ofdoing predictive modeling by drawing upon the results of 
intensive surveys of the block area. The study area was surveyed in part by a Forest 
Service crcw and in part by a contractor's crew. A (Qtal ofl42 sites, all dating to the 
Gallina phase (AD 1150-1250), were documented. These included sites with surface 
structures, pithouses, towers, and check dams. An analysis of the survey data 
revealed that 96 percent of the sites werc located on ridge tops, while this (Qpograph
ic feature constituted only 23 percent of the survey area. Even though few sites were 
found on the valley floors (and all of these were found by a single crew), it was 
recognized that these si tcs could potentially pro\·ide Himportant and unique 
evidence" about the area. 

The researchcr concluded, therefore, that if survcys in this study area were 
focu sed on the valley floors and ridge tops, coverage could be limited to 38 pcrcent 
of the study area and almost all the sites would still be discovered. It was also argued 
that once a number of valley floors had been surveyed it should soon be possible to 

distinguish the characteristics of those valley floor ecosystems that would have 
associated sites from those that would not have sites. The author concludes his 
study by stating that Hdata from this study area result in as clear a definition of an 
approach for finding all sites with less than invcntory survey as one can imagine" 
(Plog 198Jb:78). 

Both trial formulations of predictive models are presenced in a briefJnd simple 
fashion. The models arc mapped to illustrate the locations of high site-density zones 
within the outlines of the study ar~as. The lack of background information about 
these study area projects makes it difficult to understand how data were gathered. 
N1uch of the information necessary to compare this approach with others is nor 
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readily obtainable from the report. It appears that the underlying purpose of this 
project was to determine wheth(:r or nor porrions ofrhc areas could be exempted 
from on.rhe-ground survey by relying on the results ofprc\'ious :iurvcys in similar 
environmental settings. In the ease ofrhc Kaibab area, for example, it is argued that 
had the appropriate "spatial smoothing program" bt'en used, Hrhe predictive 
model generated in the planning document would have allowed a no-survey 
decision to be made" (Plog 198Ja:65). 

\Vhat remains unexamined in these trial formulations is the reliabili ty of the 
existing survey datl. The problems atuibutcd to a HnonquantitativcH approach in 
the Kaibab study area can be alternatively cxpbined by arguing that difTerent 
people conducted the surveys for diffe rent reasons and that, conseq uently, the 
resul ts are likely co be different. The uncritical acceptance of the survey results in 
the Cu ba area-which indicated that throughout prehistory the area was inhabited 
only lo r a lOO-yea r period, between AD 1150 and 125O-is also questionable. Could 
past erosional conditions have filled the valley floors so thar on ly relatively recent 
sediments are exposed, t hus masking evidence that the area was also used or 
occupied by other groups of peoplclls it possible that ground cover obscured all btl t 
the most obvious (i.e., architectural) culrural features? The information that one 
su rvey team found all the recorded valley floor sites indicates the potential for 
problems in dat a reliability; other things being equal, one might logically conclude 
that different survl'y methods were used. \Vhat may be needed here is not merely 
refinemlmr and testin g of trial formulations, but a reformulation o f the approach to 

predictive modeling, one that recognizes the complex variation inherent in the 
archaeological record. 

Fort Benning 2200-Acre Survey Project A n InUns;pe Surpq of a 2,200 Acr,' TraCl 
'fJJilbin a PropO~t'd "JaTlturer ArlO al Ibf' ForI Benning JHililar), RtJcn'{lIion. P. M. 
Thomas, Jr., L. J. Campbell, M. T. Swanson, J. H. Altschul, and C. S. Weed. 
Report of Investigations No. 71, l'\:ew \Vorld Research, Inc . 1983 

The Department of Def"nse (C.S. Army Infantry Center and Fort Benning 
Nhl itary Reservation) funded this project, the second project carried out within the 
confines of Fort Benning to be summ arized in this appendix. This st udy was 
administered by the Archeological Service Branch, Division of Nationai Register 
Programs, Na tional Park Service, Southeast Region (Atlanta) and carried ou t by 
personnel representing New \Vorld Rescarch, an archaeological consulting firm 
based in Pollack, Louisia na. This project was designed to conduct an intensive 
survey and to test and refine a predictive model developed for the area three years 
e,dier by another consulting firm (Kohle r e t al. 1980; see above). Information 
presenred in this summary is from Thomas et . 1. ( 198]). 

Pine forests, oak and oak/hickory uplands, bottomland hardwoods, wooded 

s\\'amps, and mixed pine / hardwood fores ts are charactcristic of the 8907 ha proposed 

maneuver area that was the focus ofthis project. A block ofland amou nting to about 

10 percent ofthe project area (ca. 891 hal was preselected and surveyed to provide a 

data base for e valuation of rhe larger maneuver area and for rhe resting of the 
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existing predictive mode\. Thirty-seven sites were identified: 20 prehistoric, 15 
hi storical, and 2 with both prehistoric and historical components. Site locations 
were ass('ssed according to a predictive model based on soil type, slope, and distance 
to water, which was devcIop~d by Kohler l't al. (1980). The model was found to b~ 

basically sound but in nc-cd of~ome refinements, including a more accurate mapping 
orthe distribution ofsoil types. In an elTon to refine the model and determine which 
\'ariables best explained tht: observed variation, a discriminant analysis was under
taken. Data for 10 environmental variables, including some information from a 
hyputhetical catchment area with a 225 m radius, were coded at the 37 site locations 
and at 40 sireless 1ocations. Ultimately, combinations ofthe variables were identified 
that could be used to define very high, high, low, and vcc)' low probabilities for 
encountering prehistoric and/ or historical sitts at any given location. A second 
discriminant analysis was performed on a data set from other portions of the project 
area; this data set consisted of207 known sites and siteless points, including the 77 
cases from the surveyed area. The discriminant analysis successfullr reclassified 
more than 96 percent of the cases. 

The project achieved its stated goals of testing and refining the existing 
predictive model. The refinements took the form of more accurate mapping of soil 
types and of the gene-ration ofa discriminant function that permits calculation of the 
probability ofencountering a site at any given point on the landscape. Although a 
vcry low site-density zone is defmed, it is neither tied to any significance determi
nation nor lIsed as an argument to exclude the area from future surveys. Like many 
of the other correlative or inductive models, this one masks mllch of the important 
variability in the archaeological record by lumping all prehistoric site types into one 
group. 

Cisco Desert Project ./1 C/aB II Survq alld Prtdia;vt Model ofSt/ceud Artas il1 tbe Cisco 
Docrt, GrandCormt}, Utab. J. E. Bradley, \V. R. Killian, G. R. Burns, and M. A. 
N1anorano. Cultural Rt'sources Report No. 10. Goodson & Associates. 1984 

Goodson and Associates, a private consulting firm, conducted the Cisco Desert 
Project for the Bureau of Land Management. The project's modeling objectives 
were to usc existing data to construct a predictive model for [he location ofsite and 
sitcless areas and to test the model with results of a sample survey (Bradley et a1. 
1984). 

The 32,389 ha project area lies within the Colorado Plateau region of ea,,
central v tah and js characterized by desert .shrub, greasewood, and juniper wood
land vegetation communitie:s. Although the plan was to [cst an existing model, it 
soon became apparent that the existing model was inadequate for the project area, 
both because the project area had a much higher site density and because sites were 
found in many microcnvironmental zones (e.g., dunes ::md rockshelters) that were 
not present in the areas for which the original model had been developed. The 
solution adopted was to build a model using information from a 5 percent sample 
survey conducted as part of the project, and rhen ro test rhe model on data collected 
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during previous surveys. One hundred 16 ha (40 acre) tracts were selected for 
survey using a simple random sampling technique; an additional 17 tracts were 
selected on what amounted to a judgmental basis. A total of 126 sites were recorded 
within rhe randomly sampled 1619 ha area; 15 sites were historical and III were 
aboriginal, rcprescming early Archaic through prorohisroric occupation ofthe area. 
Eighty-eight sites (40 lithic scatters and 48 campsites) and 51 siteless locations from 
within (he 5 percent sample were employed to construct four discriminant analysis 
models (two for each sire type) using either Hrradirional'l modeling variables, such 
as slope, distance (Q water, vegetation, etc.) or soil unit variables. The soil unit 
models were found to be more accurate and easier to use. Sensitivity ratings for 
high, medium, low, and unknown (the sample for one soil type was roo small for 
predictive purposes) chances ofencountering a site were calculated on the basis of 
the various soil units. Soil unit/projected site density values were mapped for the 
entire project area. The overall results were judged to compare favorably with those 
generated from an existing model derived from a 10 percent sample survey of58,705 
ha in adjacent areas. 

Although the manner in which the models were developed and tested ditTcred 
from the original plan, the overall objective was achieved. 1\10re specifically, an 
environmental variable-soil unit-was identified as an accurate predictor of site 
locations, and areas oflow site density were delineated for management purposes. 
An obvious shortcoming, however, is what the authors refer to as the lack of an 
adcquate data base for making prcdictions in Soil Unit 9, which constitutes 7.8 
percent of the project area. Too few transects were surveyed in areas with this soil 
unit, and too few sites were discovered in those transects to permit confident 
inferential model construction. 

Bradley et al. (1984:88) draw the reader's attention to the fact that many of the 
sites misclassified in the discriminant analysis (ca. 15 percent) were in Soil Unit 2 
(48.3 percent ofthe area and 0.95 sites per mi' in surveyed areas). Many ofthese sites 
were also located within 1287 m (0.8 mil of an area ofSoi! Unit 3 (1].4 percent of the 
area, 27 .35 sites per mil). Given this situation, their recommendation with regard to 
additional survey of Soil Unit 2 areas is as follows: 

If survey requirements in this zone are waived by the BU,,'I, i.~ob[ed eligibles-ites 1m)' be 
end:wgered. It is recommended that all area~ within .8 mIlL: of soil units 3, 5, 8, and 9 
cominue to be .~urveyed in order to protcct these ~itcs and further [eH (he model's 
:lccuracy. This .8 mile bufTer includcs sires miscl.ls~ifi(:'d by t he soils modl'lj Bradley <.::[ al. 
1984:96 1. 

Continued survey in the buffer zone would test the model only in regard to site 
density in the bufler zones; it would nor be a test of whether National Register-eligi
ble sites arc present in the other portions of Soil Unit 2. This approach accepts the 
possible loss ofan unknown number of sites in approximately 25-30 percent of the 
project area, and it recognizes that some of the sites may be eligible for inclusion in 
the National Register of Historic Places. By its reliance on modern environmental 

distributions, it potentially jeopardizes the opportunity to discover and investigate 
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sites that may ha\'e been utilized and/ or occupied at times in (he distant past when 
the desert shrub stratum) including Soil Unit 2, was more like laday's juniper 
stratum (i.e., Soil Unit 8). 

Route 13 Relief Corridor Project A Cultural Rt'fOurUJ RaOn1la;Hanct' P/all11ing Stud), of 
tbe Propoft'd RI. 13 Rdil!Corridor, New CaJlk and Kml Coun/;er, Ddawan', J. F. Custer, 
I'. Jehle, T. Kiatka, and T. Eveleigh. Univcrsiry of Delaware. 1984 

The Route I] project wos funded by the Delaware Department ofTransporta
tion wit h the objective ofidcmifying zones \vithin a proposed highway corridor that 
were likely to contain signilicanr prehistoric and/ or historical resourct.'s. The 
project v,'as conduc£cd as an overview/ planning study by personnel representing 
the Center for Archaeological Research at the L'niversity of Delaware (Custer et al. 
1984). 

Wetlands, agricultural iJnds, and urban areas occupy most of the 64.4 by 11.3 
km project area (ca. 72,772 ha) in north-central Delaware. The predictive model was 
developed within dif1crl'.nt contexts: one for the environment and the other for 
regional cultural hismry. It relics heavily on the results of previous overvicws. A 
numberofsite types (e.g., macroband base-camps, procuremcnt sites, quarry sites, 
and industrial, commercial, lnd [fan sponation sites) were recognized for various 
prehistoric and historical periods. Site types were charactcrized according to their 
cnvironmental settings, and the information was summarized in rabies that repre
sent a generallocational model. The general model was compared in a narrative 
with the results of a Landsat / Odessa terrain analysis (pixel size ~ 2.3 ha) that 
incorporate:d site locational information. Logistic regression anal),sis was used to 
correlate environmental zones with site presence. i\'laps were produced to illustrate 
known site locations and probabiliry zones for different ages and kinds ofprehistoric 
sites. Tables providt information about the relative potcntial for encountering 
significant historical sitt's in individual pixels. A separate and very general deduc
tive model was developed to pn.'din and explain the distribution ofAdena mortuary I 
exchange: sites. A second series of maps \1,'as generated to illustrate the high, 
moderate, and low sensitivity zones in terms of their potential for containing 
signifIcant sites. In essence, high probability zones had the greatest sensitivity and 
the greatest potential for containing significant sitt'~. 

This project considers a wide range: of site types in terms of their predicted 
10c3.tions and potential significance. The concept of significance is defined in a 
manner such that small, disturbed, and plow zone sites are largc:ly excluded. 
Considerable :utention is given to an assessme:nt of the quality ( i.e., reliability) of 
the information in existing site files . For most zones the available information is 
rated as '"'poor" or H fair. " Given that kind ofdata the value ofdt·veloping a series of 
{"orrcirttive models for a wide variety of prehistoric and historical site types seems 
questionable. High probability zones and/ or big sites with large quantities of 
artifacts are viewed as potential National Register properties and small procure
ment sites, as well as plow zone sites in general, art' considere-d " not likely" to be 
eligible. The authors clearly state that their assessments are preliminary, however. 
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They also note that the data presentcd should not be viewed as a substitute for site 
locationlidentilication surveys anywhere within the project area. Although "no 
specific fieldwork was carried out as part of this study'l (Custer ct al. 1984: I), some 
of the predictions made in the studv were apparently field tested in 1984 and 1985. 
Results from this recent work were not included in the present review effort, but 
according to Custer (n.d.), "field tests of the predictions showed a 00 percent 
accu racy ratc. n 

In general, the project fulfills its objective in that it succeeds in identifYing 
zones that are likely to contain significant sites. The connecting links among 
regional prehistory/history, the existing data base, and the predictive models are 
difficult to follow, however, owing to [he somewhat disorganized nature of [he 
repon. 

Mon(ane Hun(er-Ga(herer Projee( Cultural Ecology and Economic Derision tHaking of 
Alontam' HU11la-Gathar:n in Cmlralld(J/;o. Steven Hackenberger. M.A. thesis, 
Departmen[ of An(hropology, \Vashington State University. 1984 

The I\tion[ane Hun[er-Ga[her Project is a master's thesis submined (0 

Washington State University. It was developed with the objectives of(a) determin
ing how well proportional resource use by montane hunter-gatherers could be 
predicted by comparing hypo[he(ical decision-making strategies with observed 
resource distributions, and (h) determining whether archaeological data could be 
used to address the problem. The work is a by-product of a 1978 reconnaissance 
survey/model-building project (Knudson et al. 1982) funded in part by the Forest 
Service and [he Idaho State Historical Society. Information presented here is from 
Hackenberger (1984). 

The 1,216,800 ha project area is drained by the yliddle Fork of the Salmon 
Ri\'er and can be characterized as a forested montane environment with parklands 
and meadows. Environmental data-distribution of vegetation units, yields of 
browse vegetation, and distribution of plant, fish, and ungulate resources in terms 
of available calories for humans-were encoded for 520 2J.J ha (9 mi') grid units. 
These data were llsed to develop general predictions for hunter-gatherer settle
ment location, proportional resource use, and winter popularion aggregation. 
LaPlace, Savage, and Wald decision criteria were used in computer simulations to 

model long-term choices of site loea[ion based on resource density and yields. 
E[hnographic data provided analogs for modeling economic decision making 
among historical and late prehistoric occupants of the region. 

These analyses indicated [hat models based on resource distributions or 
changes in distributions were more successful at predicting site location [han 
models of various decision-making processes. Preliminary archaeological data were 
compared with predicted settlement loca[ions and population sizes. Some of the 
predictions (e.g., locations of winter village sites) could be supported with available 
archaeological data, but in general, the researcher found that more survey would be 
required to provide data to test [he models adequately. 
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This approach to predictive modeling, particuilrly the aspects that focus on 
moniwring distributions of food resources, is promising because it otTers the 
potential for predicting and explaining the distribution ofcuhurai reSOLITce S, As the 
model now srand!i, however, its application is limited to the rime periods for which 
ethnographic land-usc data arc available. Since spatial resolution is low and predic
tions are difficult to quantify the use ofthe approach is limitcd to the earl y planning 
stages of cultural resource management. The model s are [estable, howe\'er, and 
with refinement they could become more readily falsifiable. \Vhat is particularly 
promi si ng about the approach is that predictive modeling for purposes of cultural 
resource management can be conducted in the context of problcm-orientc..'d inves
tigations that arc likely to yield information important in prehistory and history. 

Tar Sands Project Tht' Tar Sands Proj(rt: Cultural Rt'fOurcc' in f'(Tl{{Ir), and Prt'dicrive 
lHodrling ill Caaral and Southern Utah. Betsy L. Tipps. P-Ill Assoc iates. 1984 

The Tar Sands inventory/ modeling project was funded by the Bureau of Land 
N13nagement and carried out by individuals representi ng P-Ill Associates, an 
archaeological consulting firm based in Salt Lake Cit y. The project' s objecti ves 
included (a) implementation of a 5 pcrcen t inventory of each tract in the proj<:ct 
area, (b) development ofa site locational model that would correlate cnvironmc;'ntal 
characteristics with known site locations , (c) jnvemory of an addit iona15 per((~n t of 
each project area tract and usc ofthe resulting data to tcst and refine the;- model, (d) 
dcvciopm e;-nt of projections of si te density distributions and diversity of c ultural 
resources based on the result s of the 10 percent combined inventory, and (f) 
dcfinition of the factors that determincd cultural resou rce site ::-.eiection and have 
explanatory value for predicting the location ofsites. Information su mmarized here 
is from Tipps (1984). 

The 69,6]5 ha study area lies in the Canyon Lands section of the Colo rado 
Plateau and exhibits typical Great Basin vegetation patterns: shadscalc, sagl'brush. 
and pinon-juniper zones. Two 5 percent simple random sa mples (wit h some 
modification) of65 ha quadrats were drawn for survcy purposes from each of four 
large tracts. Including ubuffer lones,n some 7400 ha were survey ed and found to 

contain 155 sites (167 components) as well as a number of is01atcd finds. The sitcs 
represent occupations from the early Archaic to the historical periods. Prehi storic 
si te density estimates with confidence intervals were made for each tracr. 1vlap
readable environ mental variables were corrclated wirh si£l'locations in three of the 
four tracts usi ng a discriminant analysis applied {o data from one 5 peret.'n{ sample. 
T he result s of the first analysis were tested and refined using the additional 5 
percen[ sample data and 1 set of sireless areas. A final discriminan r analysis was 
based on the 10 percent sample. Using six environmenral variables- relief, elcvl
[ion, distance ro water, distance to nearesr river, drainage, and quadrat vegetarion 
cov(.'r-t he analy sis correcdy classified 71 percenr oft he quadrats in to categories of 
no si tes} one site, and two or more sites; when these carcgories were combined, 93 
percent of the quadrars ~vith sites were classified correctly. Anorhl'r predictive 
model was generated using Landsat imagery data and cluster analysis to classify the: 
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area and provide probability estimates ofsite occurrence. Its utility [or management 
purposes was found to be limited, howt'ver, because all the strata had similar 
probabilities of si te occurrence. 

This projec.::t achieved most afits goals, especially those rclatt'd ro the sample 
surveys and to finding correlations between environmental variables and site 
locations. In fact) this study represents one of the more sophisticated and better 
presented versions orehe now-familiar correlative approach to predictive modeling 
(e.g., L3rralde and Chandler 1981; Kemrer 1982; Kvamme 1983; Bradley et.1. 1984). 
The discrimination of three classes of grid units-those with no sites, chose with 
one site, and those with morc than one site-may be an improvc..'mc..'Ot over 
approaches that only distinguish between site-present and site-absent quadrats. h 
is also noteworthy that during dlC..' course offieldwork an efrort was madt' in some 
areas to determine whether there were buried cultural materials. Existing road cuts 
and cut banks were e:-.amincd, and a few buried sites were rccordcd. This practice 
scems advisable in areas noted for their long histories of high rates of t~rosion (e.g, 
the Southwest .nd the Great Basin). 

One shortcoming of the discriminant and Landsat models was that the White 
Canyon tract was excluded from the analysis. This exclusion is unfortunate because 
even though this tract represents only 6.1 percent of the project area, it has an 
average density of2.86 sites per quadrat. The discriminant model and the Landsat 
models arc subject to other criticisms frequently made of projc..~cts using a correlative 
approach (see Bt:rry 1984), including criticisms of arbitrary distinctions between 
sites and isolated finds. 

The project was much less successful in achieving the goals of defining and 
explaining factors that determine site location. For example, the following parrial 
explanation was offered for the success oftht, discriminant function in distinguish
ing quadrat s with only one site: 

the ~ ln glc si t t:s in Ih~~~ qUldrJts gene rally represen[ smail, I;m ite-d :JCtivit)' sites that 
occur in 3. loo liud anomalou s portion or the qu~drat. The- qu;\draH in whic:h rh esl: 
isoLul:d site, ne; found may reprl.'''enr .ue:lS whl:rl: more specialized or limited Iyp~) 01 
activitie s Wefl." occ urring sw;h as hunting or pl.lTH gathl:ring or materi;11 prOCtHl"ml'nr. 
For such ~i(l:~ \'lri:Jbll:s such as d istJnct' to wale.:r, pl'rcenr ofquadfll cover, e tc., lllly no t 
be.: kl:f I:\('.wrs in sitl·location at alL Wt' norc, a.s. do previous rese;Hchl:rs, rh:H site type ig a 

criri<'.:lilactor in undl:rstanding ! hl: site select ion procl'SS for prl'his!oric pl:oplcs [Tipps 
19B4,158 J. 

These statemenlS rt.'cognizc the problem that lumping site types obscures impor

tant dincrences, but (he), do not explain why distance to water and vegetation type 

should be less useful for predicting the locations ofhunting or vegetal procurement 

sites (hall for bast.·camps or other multiple activity sites. These cxplanations 

assume, as most co rr~lation-ba scd explanations do, that groups who used these 

anomalous quadrats (35.6 percent of all those with sites) for thousands of years all 

did so in essentially the same manner, in spitt, of significant changes in human 

population densities and technological developm~nts, not to m~ntion climatic 
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changes that surely affected the distribution of food resources. Even if such 
redundancy ofland u~e could bt, demonstrated, it too would require considerable 
explanat ion. 

Central Oregon Project Locating Significant Archaeological Sites by Landform 
Analysis in Central Oregon. Leslie E. Wildesen. Draft report su bmitted to the 
Bureau of Land fvhnJgemeut, Oregon State Office and Prineville District 
OHice. 1984 

The central Oregon predictive modeling project was funded by the Bureau of 
Land Management and conducted by personnel representing \Vildescn Associates, 
a Portland-based archaeological consulring firm. The project's objectives were to 
identify lands likely to contain significant prehistoric sites requiring Haffirmative 
management action!! and (0 identify lands not likely to retain an important 
archaeological record. The purpose of identifying these land categories was to focus 
cOons on sites that are subject to the requirements of the National Historic 
Preservation Act. Information summarized here was taken from a draft document 
by Wildesen (1984), which wa s circulated widely for review purposes. 

The overall project encompasses an area comprising almost I million ha, of 
which 427,787 ha are managed by (h(.3 BLM. Characteristic vegetation communities 
include sagebrush and grasslands as well as juniper and ponderosa forests. \Vithin 
the larger area, 364 pre-historic sites were documented in existing site fdes, and 244 of 
these arc on BLM land. All sites in the project area and all lands managed by the 
BLM were used to develop the model. The si tes were judged to represent the full 
"functional and descriptivc" range of site types known from the Desert \Vest. 

The concept of si te significance was an imponant clement of this study. 
Wildcsen followed a previously established working definition for the concept of 
"imponant information," which was defined as 

~ub~lantiYr: m:w inform:nioo on north~rn Gr~3.t B:J. ~ in £~Hkm~n! or ~ lIbsis ll'ncl' pat
terns, chronology. toolkits or tl..·t.:h nology, art, or inl~TculturJl Tcbtions: (including traYl·1 
or Hade) 113L~t 1982, cired in Wildescn 1984:2]. 

\vildcSCIl (1984:3) goes on to note that, by implication, significant sitt's 

- will show evidencc of morl' th:tn a nI..' kind OrU51..·, or !nOrl' than ant: use eVl'lll; 

- u,'ill conlalll diJ.gnoslic lOollypl'S, compar:ilik with cxi .~ !ing typo logies:; 

- will exhibit physi cJ.l int egrity over more thall 50 pl'Tccnt ofcheir surface JII':.I; 

- m:ly contain in!Crnlil y strarilil·d sediments or cultural byersj 

- Inl)' cont:l.in aniflcts or Ill an ufact uring d('bri~, ll unal r ~nt:J. ins, or constructed fcJ.! ures 
(cairn.~) pit s. painted or pecked rock;\ft pal1l'J.~, or walls); or 

- 10:1)' be re l:\(~ d [0 5imib r OT dillerent ~i[ I..'s within J specilic gco{.;Taphic area (i. e., 
comprise pan or l ~ :Hion:l,J Rcgi.<,ter Dis tricr) . 
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Ethnographic data were employed to identify the kinds oflandforms used by 
Native Americans for various activities. Five..' landforms were identified a~ having 
been used ethnographically and as having the potential for containing sediments 
with "high physical integrity,lI These landform~ arc noted as having already 
yielded uarchacological sites with substantial scholarly values. n These five land
forms, along with two other landforms Hknown to contain archaeological remains of 
significant interest" (Wildesen 1984:4), were classified as high probability landforms. 
These seven landforms wefe calculated [0 represent only 7.3 percent of the project 
area. The model is presented in the form of text, tables, graphs, computer print
outs, and maps that illustrate the locations of high probability landforms. 

Explanations for and potential applications of the modeling approach were as 
follows: 

By focusing [he analysis on where na[ufal pfocesse~ ;HC nor likely [0 have pre)l'rv(~d 


int:.lct :uchlcologicall.'vidence, as much as 93 pefcem o/[hl.' study area CJn be femon:-d 

from the porentia! data base:. This docs not mean [hal some evidence ofprl'historic use 

m:.l)' not be pn:senr on those aCfC:S, or [h:l.[ [ho~e acre) wefe nor used al.wmetime in tht' 

P:.lst. It dac.~ mt:an thaI l'vidl'ncc ofusc is likl'ly to be dl.sturbed, inconclusive, or mi.ssing 

entirely from tht: fecord. L~ndef such circum)tances, it is very unlikdy that [he afcha('o~ 


lagio.l \':.I!ucs of lny ~it('s located on [he,l' lcrcs will \v:ur:mt substant i..! ;lrch:l.l'ological 

r(~saurcc managemcnt activity, or will require ~igni!ic:.lm etTon to resolvt' conllic!s wah 

other rl'sourCl' m3n:.lgCnlcnt acrivitie:> iWildesl'll 19S4:5-6]. 


This project succeeded in identif),jng lands likely to contain significant prehis
toric sires, but the methods used to accomplish these goals are problema ric. First, 
there seems to have been no systematic attempt to evaluate the quality of data in 
the site liles. If the Oregon site files are similar to those in orher parts ofrhe Cnired 
Srares, ont' mighr suspect thar they need [0 be "cleaned" before being used ro 
construct models. Second, the model relics heavily on cthnographic analogy. Use of 
ethnographic information to define the areas habitually exploited by human groups 
for thousands of years and during dilTerent climatic regimes seems to be oflimited 
value. 

Of greater concern is the approach [0 defining "significanr" sites. Caregorical 
crit~ria are established for defining significance, and rhey virtually excludc small, 
disturbcd, and plow zonc sitcs, which have long been argued to be potentially 
significant (Talmage ot a!. 1977). Furthermore, the criteria do not acknowledge the 
potential !or some site types (e.g., task-specific sires or small residencial sices chac 
might havc been disturbed by natural processes) to concribuce important informa
tion regarding significant research topics (e.g., land use systems for mid-Holocl:ne 
hunter-gatht·rers). Removal of a 396,559 ha area encompassing an undecermined 
number of cultural resources from the potential data base may be premature, 
especially if this is done on the basis ofexisting, but unevaluatcd, survey data, The 
significance criteria outlined in \Vildcsen ( 1984) imply that significance is related 
directly to the degrc(, (0 which 3n archaeological site can be considered to cncapsu
late an undisrorrcd view of the past. Binford h3s responded to tho~ (' who share thi" 
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expeccuion by noting that useeking J reconstructed Pompeii is an unrealistic and 
unprofitable goal in the light of knowledge we have and the data available [0 us in 
Ithe archaeological) record" (Binford 1981:206). It may be possible [0 construct a 
predictive model chat can be used [Q ~\wri(c oiP' Jreas because tht.·y contain only 
insignificant sites, bur in (he draft document summarized here, Wildescn (1984) 
docs nO{ present a convincing argument [hat (he data base in question is adt.'q1l3rc 
for this pu fpose. 

CONCLUDING COMMENTS 

This survey of predictive locational models is intended ro present information 
on a range of approaches (0 prcclinivc models in different areas and for dine-rent 
kinds of cultural resources. This appendix diners from the other sections of this 
volume in char it is a sample inventory of what has been and is being done in 
predictive modelingj it is nor an evaluation ofhow predictive modeling is expected 
to be done or how it should be done in the future. The concluding paragraphs in the 
synopses of the projects are narrative assessments ofhow well the projexts achieved 
stated objt.·ctives and, as such, arc more judgmental than descriptive. 

The goals of this survey wt,'re (a) to summarize projects representative of the 
known range ofvariation in approaches, geographic settings, and types of resources 
being modeled; (b) to provide a descriptive summary and assessment of the 
individual models; (c) to present data that facilitate comparisons among the difTer
('nt models; and (d) TO provide enough information to permit the reader to make an 
independent assessment of the predictive locational modeling approaches 
reviewed. Although this survey was not designed to be a synthetic statemcnt 
concerning predictive modt·ling, nor a critical review of individual projects, it docs 
seem appropriate to end with J few comments of a more synthetic nature. Those 
oflcrcd here art: based mainly on the detailed examination ofrhese 22 project reports 
and on a perusal of many others. 

The following discussion is imended to address two general qut.'srions. Do 
existing models contribute substantially to {he management ofpo{emially signifi
can{, nonrenewable cultural resources? And do they contribute information impor. 
(ant (Q our understanding of history or prehistory? It is clear that some of {he 
predictive models contribute information imponanr to history or prehistory. Those 
with the potential for explaining aspects of human behavior are likely to be of 
special interest to archaeologists. Othcr prediC(ive models pro\·ide probability 
estimates for encountering a particular kind of site at a specific place on the 
landscape, and that information is ofspecial interest to hnd managers charged with 
protecting significant sites. None of the modds assessed here have both explained 
significant aspect s of human behavior and predicted the probabilir:' of iinding 
evidence ofspecific behavioral patterns at specific places on the landscape, however. 
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GiVl;n the Vo,jdesprc:ld perception tha r cu\wral resource management and 
research goals arc scparatt' J. nd no t especially compatible, thi~ lack of models that 
meet both goals may nor be surprising. It is not inevitable, however, because 
predictive modeling has the potO/ria/ to contributl' information important to both 
managing and undersfJ.nding cultural n:SQurccs. G ranted rhJ.t predictive modeli ng 
has not been perfected, what has it contributed during the past decadd 

In the first pb.cet morc sites arc being discovered and doc umented in J. wider 
range ofen vi ronmental settings than would ha.n' been the case 10 ), cars ago. This is 
panially because sampk· survey s tha t provide rhcdatJ base for predicting the (Ota! 
number of sites arc often design~d specifically ro dc.:tect the range of site types in 
diffc.:rem seu ings. At the same time, thc.:re is an increased awareness that a high 
proportion of the extant archacological materials is like:l), (Q be found in a small 
proportion of thc landscape. Convl'rscly, the..'re is rl'cogn ition of 1he po tent ial that 
importan t culcural reso urces will be discovered within those portions of the land
scape with lower site den sities, Furthermore, it is becoming c1l.'ar that there are few, 
if any, areas without an)' evidence of utilization by human groups. These contribu
tions mean t hat cult u ral resource specialists, whether managers or archaeologists, 
are in a position to better understand the nature of cultural resources in a givl'l1 area 
and the distribution of ditTere..'nt kind s o f archaeological materials on the landscape, 

Dc..'velopment and use of predictive models also has focu sed attention on the..' 
intl'rrebtionships between environmental factors and site locations, The search t'or 
significant spatial correlations has identified man y key environment·al variables 
useful in predicting site locations, By knowing which l.'nvironme..'ntal settings :1rl.' 
likely to have certain kinds ofsites, managers can determine how those areas can be 
managed with minimal efTect on cultural resources, The correlations also provide 
data bases useful in assessing site function and testi ng modds about land-use 
systems, Inclu sion of information about ptlff environmental settings is likely to be 
particularly useful in understanding how and why prehistoric groups used the 
landscape in a particular fashi on. 

Ano thc..'r contribution o f predictive modeling has been the c.:ompilation of 
quantitative, as o pposed to qualitative, data bases, \Vith info rmation on the 
estimated density and distribution of cultural r~sources, land managers can develop 
more effective plans for tht·long-tcrm conse rva tion ofsignificant cultural rt.'SQu ru's. 
Given reliable s-urvcy methods and quantitative results, int cr- and intraregionJi 
comparisons of site distributions can be made, along with comparisons of densities 
or other measures of the intens ity of usc. In (u rn , the data from these comparisons 
arc useful in testing models about many aspects of past human behavior. 

The predictive modeling approach has also resulted in a numbcroftf(:nds that 
may not contribute substantially to the acquisirion of import ant information about 
his tory or prehistory. Some of the trend s may actually hamper the wl·ll-informed 
managemen t of nonrenewable cultural resources, Of potential concern are the 
modds that provide probability estimates for encountering a gt'neric site-onc chat 
could be ora ny type..' or age-at a particular point on the landscape. T he gennic :,it(' 
approac.h can imply chat all sites arc ofequal importance, when clearly tht: y an: no(. 
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Land managers must protect onl)' the significant ones. This suggests the need to 
become mOfe discriminating about what is bc.:ing predictcd. 

Although predictive modeling has focused attention on the interrelationship 
between environmental fac(Qrs and site locations, there is considerable variation 
among environmental variables that ostensibly predict site loc3tions. Among the 
morc common predicto rs are specific valucs for vegetation type, proximity co water, 
landform, solar exposure, soil type, slope, and elevation. Site locations and behav
ioral patterns that led to the deposition of materials probably correiate spatially 
with many other key environmental factors. Regrcrcably, the reader is often left 
with no information as to the significance.: and explanatory value of these correla
tions. The imporrance of correlations is manifested in their ability to predict site 
locations, especially those judged to be significant in terms of National Register 
criteria. In turn, site significance is determined by the resource's potential to 
contribute importam information. That determination often requires understand
ing of why environmental variables correlate highly with site locations and /or with 
the kinds of human behavior that account for the site locations. 

Identifying key environmental variables without explaining how and why they 
correlate with site location is tantamount to making predictions in a cultural and 
behavioral void. A review of the project summaries presented here illustrates a 
tendency to predict where sites should be found without adequately addressing the 
question of how humans used the environment. There is little discussion about 
relationships between the nature and distribution of basic food and nonfood 
resources on the one hand and complex human land-usc systems on the other. A 
detailed study of some predictive models might convince the reader that the 
primary goal is to predict the distribution and density of prehistoric thingr on the 
landscape. Such predictions may be useful, but usually only in conjunction with 
other data that allow greater discrimination among the things predicted. 

The tcndency in many predictive models to 3void explanation and to make 
predictions in a cultural and behavioral void probably is related to a trend toward 
development and utilization of new technologic.:s. Computers arc the focal point of 
the new technologies because many ofthe modeling approaches depend on complex 
statistics and massi\·c data files. GIS and Landsat arc examples of new technologies 
that facilitate reliable point predictions. There is a danger, however, that these 
technologies could become the end product, rather than serving as a source of 
information useful in managing and under:itanding significant cultural resou rces. 
Given an emphasis on new technologies and the finite amount oftime aOG money 
allocated to cultural resource management projects, there seems to be little time to 
study why the archaeological record appears as it does. Natural and cultural 
transformation processes are seldom discussed, and examination of human land~use 
systems is the exception rather than the rule in the predictive models reviewcd 
here. It should be recognized, however, that the use ofGIS, Landsat, and multivar
iate statistics is rclati\Tely new in predictive loeational modeling. As with many new 
technologies, they can be expected to be used as a means to more informative ends 
as the science ofprcdiccive modeling matures. 
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In some cases there is an overreliance on current vcger:llion :lnd young 
landforms to predict the occurrence of sites. An example would be (he presence of 
sand dunes formed 4000 years ago as prcdiccors oflocations occupied by people 5000 
years ago. Although these (Wo event s could be related, the underlying mechanisms 
arc seldom discusscd. Equally bewildering would be the significance ofhigh positive 
correlations between rhe location ofa 4OOO-ycar-old pinon-juniper forest and rhat of 
a hunting site occupied 6000 years ago, when the area may have been dominated by 
grease wood and sagebrush. It would seem more appropriate to identity environ
mental variables that arc useful in predicting sire locations and explaining rhe 
relationships. 

Sand dunes, forests, and other aspects of the environment oftcn Jct [0 bury or 
obscure cultural materials. Although this statcmem is an axiom to cultural resource 
specialists, most predictivc models are not concerned with the discovery of buried 
or otherwise obscured sites. Discussions about dcpositional processes and thc ages 
orlandforms are seldom included in predictive models. In general, thcrc is a paucity 
of discussions about the visibility of cultural matcrials on the surface, and discus
sions of survey methods rarely include:1 section on tcchniques used to find buried 
sites. Only a few ofthe models reviewed here address the relationship between the 
theoretically expected tange ofsi te typcs and the range ofsite types recorded in the 
region or in specifiC survey areas. Fluvial and aeolian processes clearl y act to bury 
older sites in many areas, and forest litter obscures hundreds ofsitcs in other areas. 
If predi.ctive modeling is designed to provide uS(:'ful information on the distribution 
and density of all site types, the models should incorporate information on deposi
tional and crosional processcs and their etTec{ on the archaeological record. 

Anothe r factor that limits the potential contributions ofpredictive modeling is 
an ovcrreliance on the ethnographic record in predicting prehis toric site distribu
tions. Invest igators often assume that thc settlement and subsistence patterns 
documented in the ethnographic record are manifested throughout the archaeolog
ical record. In other words, the investigators assume that by knowing something 
about settlement and subsistence pattcrns during the "ethnographic present H thcy 
also know where people camped and what they ate during the previous millennia. 
Detailed discussions of the time depth for thc ethnographic pa((crn arc uncommon. 
There arc equally few in-depth discussions about ,he kinds ofland-use sys tems that 
may have operated before human populations reached historical levels, or before 
they were decimated by European diseases, or before the density and distribution of 
large land mammals were reduced by environmental factors and/or human agents. 
Secn from this perspective, the ethnographic record may not providc information 
useful in predicting the locations of sites representativc of land-usc systems u'ith 
very ditTcrcnt settlement and subsistence patterns. In fact, overreliance on the 
ethnographic record is likely to inhibit detection ofche range ofsite types present in 
the archaeological record. 

Finally, there md)' be a growing tendency to Hwricc Oil",l large tracts orland by 

not recommending an inventory-level survey. Although the sample of models 

summarized in this appendix is not s{JtistiCJlly representative of the universe of 
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predictive locational models, it is informative to note that about 23 percent of them 
include statements that either open the door (0 Hwriring olP' large tracts ofland or 
actually recommend it. None of the repons written prior to 1980 make such 
recommendations, but at least one report written that year makes that implication. 
Two such recommendations were made in 1983, and (Wo others in 1984. \Vhcther or 
not there is hard evidence for a growing tendency (Qward such recommendations is 
debatable, and in any case (here may be justifications for some ofrhose recommen
dations. 

The decision to not recommend an inventory survey is usually made on the 
basis of sample survey data and/ or information drawn from 3 review of available 
site-file data. Areas arc usually written ofT because no sites are expected to occur 
there or because those that do occur there are nOt expected to be significant. The 
main problem with this procedu~e is that the reliability of the data base used for 
making the recommendation is usually questionable. The reliability ofthe data base 
depends upon the soundness of survey methods andl or upon the approach used to 
determine site signifIcance. A second problem is that recommendations to write off 
an area without conducting an inventory survey tend to be based on the distribu
tion of sites of known types, sites that were discovered using methods designed to 
lind the best-known kinds ofsites. This approach does not encourage the discO\'ery 
of unknown but theoretically expected site types; rather, it focuses on refming 
established models. Generally, this encourages additional discoveries ofsites of the 
best represented kinds at the expense of older sites and site types that are not 
readily visible on the surface. Exempting large areas of the landscape from inven
tory survey without assessing the reliability of the data base has the potential of 
ensuring that the range of site types remains undocumented. 

The use of data generated by predictive locational models to legitimize 
no-survey recommendations is of particular concern because of the nature of 
cultural resources. Cultural resources are potentially important to many people for 
many different reasons, and they are nbnrtneTPablt. Once nonrenewable cultural 
resources are written off, they are likely to be excluded from further study, 
regardless of th~ validity of the rationale for this recommendation. In fact, the 
legality and ethics of writing off resources, especially on the basis ofdubious data, is 
now being questioned. This is evidenced by lawsuits being brought against agen
cies that have cleared areas containing archaeological materials and by the increas
ing national dialog among archaeologists about this subject (Darsie and Keyser 1985; 
Tainter 1984). 

Overalllh~re is considerabl~ variability in approaches among predictive mod
els, both among those conducted in the systemic context and among those carried 
out in the analytic context. All of the models reviewed here were developed [0 

provide information useful in thc management ofsignificant, nonrenewable cultural 
resources and lor information important to our understanding of history or prehis
[Ory. Although there are examples of models that provided information of special 
use to land managers and of models useful in explaining aspects ofhuman behavior, 
none of the models assessed here were successful in providing both kinds of 
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information. Even so, it seems clear that predictive modeling, as used in cultural 
resource management, has the po/ential to provide both kinds ofinform arion. Given 
the relative recenc), of predictive loeational modeling as a scientific approach in 
cultural resource management, borb um alld abu", orit should bt, expected (Ambler 
1984), Likewise, it should be anticipated that the potential to contribute a wide 
range of useful information will be realized as the science of predictivr modeling 
matures. This volume was designed [Q provide the reader with information abour 
how that potential might bc realized, 

Several pcoplt' worked with me (0 bring this appendix (Q its prc~cn[ form, and r ""'ould likc [0 

Jcknowledge their assiuJ.ncc. Bcth MiksJ ht .. lpcd to compile tht: descriptive information summarized 
in the tables. Eileen Duper drafted the figureo Lorna Elliot[ willingly typed s(.'verai versions ofth~ 
duft mOlnu.script and p;uientiy formatted and refo rmatted the rabies. Dl'bor.th Olson voluntecrl·d hl'r 
assist:lncc in proo/ing the manuscript. Tim Kohler consuucti\'ely criticizcd l'.ulier ver.~ions o( the 
manuscript and helped me tocl:uifr some oiehe points I WaJi trying to mah-, Dan Martin and dll' oehl"r 
8LM and Forese Sl'rvice personnel involved with the project, as well as the chapter aUThor~ and th~ 
editors, freel)' shan'd their ide;:as about prc:dicti\'e locational modeling and alTered useful :.uggcstions 
for how one..' might go about summarizing, comparing, and assessing thl' resu lts ofdiITl'rC'nt modeling 
e/Tons. They also pro\'jded refnences for dozens ofpn:dictive loc:'Jtional models. I ....'ould espl'ci:lily 
like to thank the :monymom rnie....'ers for pointing out inconsistencies in the review draft. Fimlly. 
June..--cl Piper and Lynne Sebastian merit spl'ci.ll acknowledgml·nt for their diligenct' :md hard work In 

tr:msforming my fin:.! draft into ~omcthing signilicantly marl' prescDtlble. Although thoH~ who 
assisted me de:sl't\'e- en'dir for the..-ir ideas and other contributions, 1 bt'ar the responsibilitr for the 
contents of this appendi.'<, including an)' errors it may concain, 
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Mini-site, 146 
Mobility patterns, 4, 109-111, 146 
Mode, s{a{is~ical, 189 
Model building 

definition of process, quantitative predictive models, 204 
steps, 76 

Model performancc, 16,242,244,247,302,303,314-316,322,327,344,347,353, 355, 357, 
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disr:mcc costs, 21 

di srriblll ion of r('sources, 20 

('conomic, 21, 26, Tl 

environment al, 21, 23, 28, 42,137 

l:xpbnltion Jl"ter-the-fJct, 29 

historical d('ba[(' on, 22 

imparlance or nonfood r('sources, 32 

int ensi ty of cultivation, 20 

interaction of variables, 29 

noncnvironmcntai,20 

policy lnd cd ucuion, 23 

poiitical / go \'c rnme mal, 20, 23 

p roductivit y of the soi l, 20 

reg ional large-scale cOrn.:: I:llions, 26 

se:t.son:llly predinablc, 28 

sPJcing of s(.:ulemenrs, 20 

tailored,27 


technologv, 26 


INDEX 

665 



INDEX 

Sire loc:ltion explln:Hion 
{csring, 1:7, 31 
theological, 22 
fOpographical, 20 
rr:msportJ.cion, 20, 21 
type of agriculture, 20 

Site types, 28, H, J9~41, .to,50,68, 82,115,122,134-136,1)9,142,205,258,260,264,269,286,29], 
314,316, 317,321,331,345,381.384,417,518,528,531,541,552,557,560,563,564,569,584, 
585-611,612,616,618,620,622,625,628,630, 6JJ-635, 637, 639, 640 

Site visibilitYJ 28, 86, 112,116,119,121,127,133, US, 138, 142, 143, 152, 184,259,276,281,289, 
305, 306, 313, 321, 389, 429, 434, 46], 639 

Site(s ) 
chssification, 68, 70, 71, 74,81, 85-87,174,204-206,208,264,265, 286, J14,350,370,384,385, 

390,403,410-412,414,415,531,552,560,620 

clusters, 309 

concept of, 133, lJ8, 175,144,282,284,289, ]01, 304, 326,621 

di:,covcry r3tcs, 276, 304, J08, 31 J 

historicJ.i, 66, 205, 330, 441, 457, 621-623, 628, 630 

multiple occupations, 32 

org:lniz:uional chJ.ractl'nstics oC J2 

prcdic[J.bilit y,28 

sample unit accessibility, 86, 273, J05, 306, 309, 563 

situation of, 3 I 

sizL', 43, 48, 109, liS, 119, 120, 175,264,281,288,584,609,612 

survivability , 275 


Skewness, statistical, 44, 189, 197,200, 206,264,265,267, 275 
SIofK' variable, 352, 358, 364, 440, 479, 497, 518, 613, 624, 629 
Smith,21 
Snake town, 258 
Sociall3.ctors, 80, 110, 327, 332, 345, 356, 566 
Social variJ.bles, 21, 29, 205,338,356 
Soil Conservation Service (SCS), 79, 433, 454, 476, 535 
Soil-geomorphic model, 82 
Soil variJ.blcs, ]45,440,442,455,518, 613,622,629 
Southwest (sec American Southwest) 
Southwestern Anthropological Research Group (SARG), 31-H, 79, H8 
SpJ.tial refcn~n[, 15,63 
Spatial n::solution (sec aha Remote sensing), 41, 47, 51, 432, 434, 436, 584, 612, 622, 632 
Spt.:'cificiry, 10,50,83 
Spencer, 24 
Spiro, 258 
SI)OT (sec al so Remote sensing; DJ.ta, satrclite), 
SPSS (Statistical Package lor the Social Scic:nces), 224, 247, 311,494,539 
SSCP/ slims-of-squarcs-cross-producrs mJ.trix, 210, 224-226, 235 
Standard deviation, 189, 197,198,200,201,220,227-229,267,269,357, 3n 
State Historic Prt:scr,'ation Ollice(s) , 11,619 
State Historic Preservation O nicer(s), 34, 550 
Srltisric::al 

analysis of archacologicJ.\ n.: cords, 175 

666 



INDEX 

Sl3tisriCli 
analysis packages, 244, 247, 273, 292, 311, 364, 382,539 
and cnvironmemai conccpr :md measurement, 84 
applic:uion SlIccess, 303 
approaches to modding, 16, 181 
associations, 3l 
assumption oflin~"r relationship, 85 
assumptions about data, 181, 183,214,221,273,314,351,560,566 
classification procedures, 2Q.I, 233, 372 
comparison'), 32, 41 
compound procc$ses, 195 
con fidl:ncc, 99 
contfol-group approach, 314, H6 
dcscriplivc techniques, 174,200,251,313,317,345,386,387 
discllssion, 14, 303 
estimation proccdurl', 195 
fit (see also Goodness-DC-fir), 
group idcntiftc:uion, 74 
indcpc:ndcncc, 67, 203,352,393 
inductive procedures, 156 
inferential techniques, 31, 174,200,247,260, 303, 351, 352, 355, 536, 539 
m:mipuia(ion, 10, IS , 497 

mel hod s, 38,76, 173,325 

models, 39, 75, IH5, 203, 218, 251, 405, 528, S40 

nonparJmelric techniques, 174, 199,200,203, 320, 364, 3n, 554, 560 

outliers, 45, 201, 202, 229,373 

parametric techniques, 174, 183, 199,200, 203 ,364 ,554,560 

pan ial corrc:brion, 203 

per/ormanct!, 327, 393, 400 

probabilit y, 174,260 

procedu res, 71,84,181,251,313,400,402,405 

regularity of ,hJnCt..' phenomenon, 176 

relationship to scak- of measurc:mcm, 184 

sample size, 197, 198 

scales of measurement review, 173 

sophist icarion not leading to Sllccess, 75, 76, 181 

stability of relative frequencies, 176 

su mmary techniques, 386 

technique, 10, 16, 17,69,85,87,638 

terms discu!iscd, 44,62 

test of fit, 21 8 

theory , 84,173,303,314 


Statistical validation, 41, 242, 243, 246, 247, 355, 386, 393, 394,531,565 
indepcndcm dara, 87, 174,242·244,247,250,257,392,395,403,407,553,565 
jackknife test, 220, 244,315,316,395,396,399,403,414,565 
sUnul:.I[ed dan, 246 
split-sample datl., 174,243,316 

Stepwise forward / backward selection procedure, 45, 237,362,363,456 

Steward, 15, 19,26-28,31,79,145,585 


667 



INDEX 

S(("warr,26 
S[Qchastic vari:lbk', 186 

Scorag~', J9, 40, 109, 114, 120, 130, IB- 135, 138, 139, 141,292,499,504-506,515,535 
Structure coclTlcien[s, 229, 231 
Subsampling, 65, 244, 716,308,309,312,316,317 
Subsurface obs{'rv;uions, 82,124-126,151,159,275,276,281,294,330,467,469,554,558,568, 

585,613,614,623,639 
Sullivan, 32, 33 
SupL'rorganjc, 24, 26 
Surfact' 

palco, 84, 260, 275, 276, 293 
Surface ObSl:'rv3tions, 82, 123-127, 145-148, lSO-153, 159, 184,205,206,259,260,274-276,281, 

286,289,330, 333,337,430-433,440,451,453,454,467,469,470,475,476,478,480,501,505, 
553,554,565,566,568,581,613,614,626,634,639,640 

Survey biases 
lCCt'SS difficulty, 305 
disproportion:Hl' :Hcas, 312 
n:gion underrepresented, 312 

Survey inccnsiry, 86, 27i, 280-282, 293,304.305,453 
Survl'y univL'rse (sec also Sample univl'fse), 16,261,264,274, m-279 

ddinition of, 278 
SystL'mlc contL'X{, 3, 8, 37, 38, 41-43, 47, SO, 51, 82, 577, 640 
Systl'mic perspL'clivl', 30 

T 
t-distriburion, 196, 198,214 
t-tL'st, 317, 318, 358 
Taphonomic procl'ssl'<; (sec also Posrdepositional processes), 115, 123, 146, 147 
Target context, 35, 37, 64 
Tl'orihuJcan, 20, 258, 259, 274 
Terrain variable, 349, 357 

Testing (sec also 7vlodel tt'sting) 
null models, 32 
statisical comparisons, 32 

Theory, 19-22,24, 37-39, 41,42, 46-48, SO-52, 64, 69, 72, 81,84, rn, 98, 100, 102, 117, 128 l 148, 156, 
158,260.264,272,277,280,286,303,314,332,338,349, 355, 367, 386, 404, 612 

Thomas, Ii 
Tipps, 43, 44, 71, 265,279,581,632,633 
Topographic variable, 351, 442, 622 
Trade, 7:7, 33, 132, 134, 135, 137,566,630,634 
Tr;m~t'Cc (set' SJmpic units, transl'ct) 
Tr:mslormation processes (see also Posldeposirional procL'sses) 

natural ::md culrural, 638 
Trend-surface analysis /mapping, 80,181,330,339-341,344,378,538 
Trigger, 28, 3D, 31 
Turgor, 24 
T ylor,24 
TypL' I and Typt' II errors 

dt'linition of, 62 



INDEX 

U 
Ullman, 20 
Uncorrd:Hcd variables, 204, 211, 212 
Underground radar, 126 
Univariate statistical techniques, 174, 181,200,313,320,609,622 
Usc imensity, 4 
USGS (sec Geological Survey) 
Utah, 43, 79, 265, 267, 278, 416, 444, 456, 609, 628, 632 

V 
Validation (sec Model validation; Statistical validation) 
Variable(s) (sec also Cuhural, Environmental, Dependent, etc.) 

correlations among, 185 
definition of, 183 
selection of, 16, 185 
spatial disrribU[ion of, 69 

Variance, statistical, 74,155,157182,189,194,196,200,202,210-212,214-216, 218, 222, 225, 237, 
241,246,262,268,270·273,279,311,313,333,355,358,360,364,370,372,402,442,454,456, 
480,513,552,613,620 

Vegetation (sec Ecosystcmic Vdriablcs; Environmenlal variables; Pbnt community variables) 
Verification (see Model verification) 

VICAR (Video Image Communication and Retrieval), 537 
View variable, 357, 358 
Viru Valley, 30 
Vira-Finzi,31 
Von Th unen, 20 

W 
\Vashingron (state), 39, 40, 609, 617, 618, 631 
Wasteful error (sec also Type J and Type II errors), 62,347,390,565,566 

\Veber, Alfred, 21 
\Veibull distribution, 196, 199 
Weighted 

analysis, 65, 308, 311, 316 

least-squares estimation, 218 

sample mean, 31 I 

variance, 311 


Whice,26 

\Vhirc Mountains, 27 

\Viidesen, 34, 582,634-636 

Wilks's lambda, 233, 241 

\Villey,30 

Williams, 30 

Winterhaldcr, 29, 47 

\Vissicr,25 

Woodland, 613 


Z 

x-scores, 352 

Or: u.s. GOVERNMENT PAINTING OFFICE;1 __ 576-9011S524~ 669 






	Quantifying the Present and Predicting the Past
	LIST OF CONTRIBUTORS
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	ACKNOWLEDGMENTS
	Chapter 1 PREDICTING THE PAST: CORRELATION, EXPLANATION, AND THE USE OF ARCHAEOLOGICAL MODELS
	MODELS AND ARCHAEOLOGY
	THE PROBLEM OF EXPLANATION
	Explanation in Archaeology
	The Value of Correlative Models
	The Limitations of Correlative Models
	The Value of Explanatory Models
	The Limitations of Explanatory Models

	HISTORY OF THE BLM PREDICTIVE MODELING PROJECT
	THE PRODUCTION OF THIS VOLUME
	THE STRUCTURE OF THIS BOOK
	General Orientation
	A Preview of Coming Attractions


	Chapter 2 PREDICTIVE LOCATIONAL MODELING: HISTORY AND CURRENT PRACTICE
	THE WIDER HISTORICAL DEBATE: HOW AND TO WHAT EXTENT DOES THE NATURAL ENVIRONMENT INFLUENCE HUMAN BEHAVIOR?
	Julian Steward and Cultural Ecology
	People in Their Ecosystem: Post-Stewardian Developments
	THE EMERGENCE OF SETTLEMENT PATTERN STUDIES IN ARCHAEOLOGY
	THE ERA OF PREDICTIVE MODELING
	A Taxonomy for Predictive Locational Models
	Examples
	A Predictive Land-Use Model for North-Central Washington
	A Hierarchical Choice Model for Site Location
	An Inferential Model for Site Location in Central and Southeastern Utah
	An Optimal Foraging Theory Model of Site Location for the Northeastern Continental Shelf
	Discussion

	CONCLUSIONS
	REFERENCES CITED

	Chapter 3 MODELS AND THE MODELING PROCESS
	TYPES OF MODELS
	Intuitive Models
	Objective Models
	Associational Models
	Areal Models
	Point-Specific Models

	THE MODEL-BUILDING PROCESS
	Identification of Objectives
	Data Collection
	Data Synthesis and Evaluation
	Model Components-Dependent Variables
	Model Testing
	Model Refinement
	REFERENCES CITED

	Chapter 4 THE THEORETICAL BASIS OF ARCHAEOLOGICAL PREDICTIVE MODELING AND A CONSIDERATION OF APPROPRIATE DATA-COLLECTION METHODS
	PREDICTION, MODELS, AND THE SCIENTIFIC FRAMEWORK OF ARCHAEOLOGY
	Explanation in Archaeology
	Modeling and Prediction
	What Do We Want to Predict and What Do We Need to Model?

	THE NATURE AND ORGANIZATION OF HUMAN SYSTEMS: SETTLEMENT, MOBILITY, AND TECHNOLOGY
	A Systems Perspective on Prediction
	Systemic Mobility/Settlement Organization
	Some Examples of Variability in Reuse of Places
	Implications of Variations in Settlement/Mobility Patterns for the Archaeological Record

	TECHNOLOGICAL STRATEGIES, DISCARD BEHAVIOR, AND THE ARCHAEOLOGICAL RECORD
	Modeling Technological Organization
	Curated vs Expedient Technology
	The Reuse of Places and Intra-Assemblage Variability
	Interassemblage Variability and Mobility
	The Explanation of Intra-and Interassemblage Variability
	Technological vs Ecosystems Organization

	NATURAL FORMATION PROCESSES AND THE ARCHAEOLOGICAL RECORD
	Deposition: The Coincidence of Natural and Cultural Events
	Postdepositional Processes
	The Scale of Depositional and Postdepositional Processes
	The Usefulness and Integrity of Surface Remains
	Natural Processes and "Independent Environmental Variables"

	ECOSYSTEMS VARIABLES AND ARCHAEOLOGICAL EXPLANATION AND MODELING
	Human Systems Within Ecosystems

	DISTRIBUTIONAL ARCHAEOLOGY
	Approaches to Congruence Between Theory and Method
	Background: Nonsite and Off-Site Archaeology
	Distributional Archaeology: Paths Toward Theoretical/Methodological Congruence
	The Seedskadee Project
	The Navajo-Hopi Land Exchange Project
	Artifact Coding and Analysis
	Analyzing Data from Distributional Archaeological Surveys
	The Solution: Dedicated Research Using Distributional Data
	SUMMARY
	REFERENCES CITED


	Chapter5 AN OVERVIEW OF STATISTICAL METHOD AND THEORY FOR QUANTITATIVE MODEL BUILDING
	MODELING SITE LOCATION
	The Problem
	The Conceptual Model

	VARIABLES AND SCALES
	Variables
	Types of Distributions
	Descriptive Properties of Distributions

	STATISTICAL DESCRIPTION AND INFERENCE IN THE MODEL-BUILDING PROCESS
	DEFINING SITE CLASSES
	Temporal and Functional Variability
	Defining Site Types with Cultural Resource Management Data
	Heterogeneity of Sites and Nonsites
	Defining Site Classes and Reducing Heterogeneity

	MODELING TECHNIQUES
	General Linear Regression
	Logistic Regression
	Discriminant Function Analysis

	MODEL VALIDATION AND GENERALIZATION
	Validation
	Generalization

	CONCLUSIONS
	REFERENCES CITED

	Chapter 6 COLLECTING NEW DATA FOR THE PURPOSE OF MODEL DEVELOPMENT
	PLANNING FOR FIELDWORK
	SURVEY STRATEGIES
	Probabilistic Selection
	Purposive Selection
	Depositional and Postdepositional Processes
	DATA COLLECTION IN CRM CONTEXTS
	Survey Universe
	Survey Intensity
	Data Recording

	DATA PROCESSING
	Preliminary Considerations
	In-Field Data Recording Options
	Laboratory Data Recording

	CONCLUSIONS
	REFERENCES CITED

	Chapter 7 USING EXISTING ARCHAEOLOGICAL SURVEY DATA FOR MODEL BUILDING
	USE OF EXISTING DATA FOR SITE-LOCATION MODELS
	PROBLEMS AND BIASES IN EXISTING SITE SURVEY DATA
	PROCEDURES FOR REDUCING DEFICIENCIES AND BIASES IN EXISTING DATA
	Subsampling
	Weighted Analysis

	EVALUATION OF SITE-LOCATION PATTERNING AND MODEL BUILDING WITH EXISTING DATA
	Assessing a Model and Determining Additional Data Needs
	Collecting and Integrating New Data in Model Development

	EXAMPLE ANALYSIS
	REFERENCES CITED

	Chapter 8 DEVELOPMENT AND TESTING OF QUANTITATIVE MODELS
	VARIABLES USED IN LOCATJONAL RESEARCH
	Environmental Facrors
	Social Factors

	ASSESSING PATTERNS IN ARCHAEOLOGICAL LOCATIONAL DATA
	Approaches Based on Trend in Location Only
	Approaches Based on Trends in Locational Characteristics
	Example Analysis Based on Locational Characteristics

	APPLICATION COMPARISON OF QUANTITATIVE LOCATIONAL MODELS
	Robust Classification Models
	Some Simple Classification Models

	COMBINING MODELS FOR LOCATIONAL CHARACTERISTICS AND MODELS FOR LOCATION ONLY
	MODELING INDIVIDUAL SITE TYPES
	INTERPRETATION AND EXPLANATION OF DATA PATTERNS
	ASSESSING MODEL PERFORMANCE
	Adjustable Accuracy Rates
	Model Validarion Procedures
	Statistical Tests
	Base Rate Probabilities

	MODEL REVISION
	REFERENCES CITED

	Chapter 9 REMOTE SENSING IN ARCHAEOLOGICAL PROJECTION AND PREDICTION
	FUNDAMENTALS OF REMOTE SENSING
	Platforms, Recording Devices, Data Types, and Analyses
	Scales and Resolution
	Remote Sensor Data for Projection and Prediction
	Remote Sensor Data Analysis Methods and Techniques

	CONTEMPORARY APPLICATIONS OF REMOTE SENSING TO ARCHAEOLOGICAL PROJECTION AND PREDICTION
	A Taxonomy of Predictive Archaeological Remote Sensing
	Archaeological Projection Through Visual Analysis of Remote Sensor Data
	Digital Approaches to Archaeological Projection
	"Predicrions" of Site Occurrence/Nonoccurrence or Site Densiries Based on Remore Sensor Dara
	Archaeological Prediction and Visual Interpretation
	Archaeological Prediction Through Digital Analysis
	Remore-Sensing-Aided Archaeological Predicrions: Some Comparisons and Commenrs

	POTENTIAL APPLICATIONS OF REMOTE SENSING WITHIN THE EXPLANATORY FRAMEWORK OF ARCHAEOLOGICAL MODELING AND PREDICTION
	Remote Sensing and the Measurement of Depositional and Postdepositional Processes
	Remote Sensing and the Measurement and Meaning of Ecosystemic Variables for Archaeological Modeling and Prediction
	REFERENCES CITED


	Chapter 10 GEOGRAPHIC INFORMATION SYSTEMS: TECHNICAL AIDS FOR DATA COLLECTION, ANALYSIS, AND DISPLAY
	THE POTENTIAL OF GEOGRAPHIC INFORMATION SYSTEMS FOR RESEARCH, DEVELOPMENT, AND APPLICATION OF ARCHAEOLOGICAL SITE LOCATION MODELS
	The Need for Geographic Information System Techniques
	The Fundamenrals of Geographic Informarion Sysrems
	GIS Analyrical Surfaces
	GIS Types
	GIS Issues
	GIS Algorithms
	Geographic Information Systems and Remote Sensing
	The Potencial of Geographic Information Systems for Regional Archaeological Research
	BRIEF OVERVIEW OF THREE COMMON GEOGRAPHIC INFORMATION SYSTEMS
	MOSS/MAPS
	IDIMS
	VICAR/IBIS
	MODEL DISPLAY VS MODEL BUILDING
	IMAGINARY SESSION WITH A GENERIC GIS

	REFERENCES CITED

	Chapter 11 PREDICTIVE MODELING AND ITS RELATIONSHIP TO CULTURAL RESOURCE MANAGEMENT APPLICATIONS
	WHAT ARE MODELS ABOUT?
	WHAT CONDITIONS ARE FAVORABLE FOR MODELING PROJECTS?
	Conditions
	Administrative Concerns

	WHAT KINDS OF MODELS ARE THERE? WHEN DO WE USE WHICH TYPE?
	HOW CAN WE PREPARE FOR MODEL DEVELOPMENT?
	HOW DO WE PLAN A MODEL?
	HOW DO WE APPLY MODELING IN CULTURAL RESOURCE MANAGEMENT?
	Invenrory
	Evaluation
	Protection
	Planning

	HOW CAN MODELS BE EVALUATED?
	FUTURE DIRECTIONS

	Cbapter12 AN APPRAISAL
	EVALUATION OF PROJECT GOALS
	AN APPRAISAL OF THE REVIEW COMMENTS
	THE ISSUES RAISED
	CONCLUSIONS
	REFERENCES CITED

	AppendixA SURVEY OF PREDICTIVE LOCATIONAL MODELS: EXAMPLES FROM THE LATE 1970S AND EARLY 1980S
	TABULATED SURVEY RESULTS
	SYNOPSIS OF SURVEY RESULTS
	CONCLUDING COMMENTS
	REFERENCES CITED

	INDEX



