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Chapter 1 

PREDICTING THE PAST: CORRELATION, EXPLANATION, 
AND THE USE OF ARCHAEOLOGICAL MODELS 

Lynne Sebastian and W. James Judge 

MODELS AND ARCHAEOLOGY 

One of the more interesting developments in the field of archaeology in the 
recent past is the emergence of predictive modeling as an integral component of the 
discipline. Within any developing and expanding field, one may expect some initial 
controversy that will, presumably, diminish as the techniques are tested, refined, 
and finally accepted. We are still very much in the initial stages of learning how to 
go about using predictive modeling in archaeology, and this book represents an 
effort by some of the leading experts in the field to present a comprehensive and 
detailed examination of this approach to understanding how people in the past used 
the landscape in which they lived. 

There are probably as many definitions of the term modelas there are scientific 
disciplines; several will be suggested in subsequent chapters ofthis book. We would 
like to offer a definition presented by David Clarke, who noted that models are 
"hypotheses or sets of hypotheses which simplie complex observations whilst 
offering a largely accurate predictive framework structuring these observations" 
(1%8:32). There are two key aspects of this definition. The  first is that models are 
selective abstractions, which of necessity omit a great deal of the complexity of the 
real world. Those aspects of the real world selected for inclusion in a model are 
assumed to be significant with respect to the interests and problem orientation of 
the person constructing the model. This is an important concept, since it indicates 
that there is no such thing as a truly objective model, be it inductively or 
deductively generated. Thus all models reflect, to a considerable degree, subjectiv- 
ity on the part of the observer. 

T h e  second key aspect has to  do with the predictive capability ofmodels. Note 
that by this definition models have predictive content, and thus the termpredictive 
modeling is somewhat redundant. We will employ this term here, however, since it 
has been widely accepted in archaeology. 
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This emphasis on the predictive aspects ofmodels brings us to a more detailed 
examination ofthe concept ofprediction itself, which the dictionary defines as "the 
ability to foretell on the basis of observation, experience, or scientific reason." One 
might even say that prediction is the essence of science because it allows us to 
formulate expectations about the future state of a system that are based on our 
knowledge of such systems or of similar ones (i.e., models). The  point is that 
prediction is important, and that it is achieved scientifically through the generation 
of hypotheses that can be tested against the empirical record. Thus the method of 
prediction is essentially a deductive process, regardless of the form ofgeneration of 
the model itself. Although the degree of formality might vary considerably, nearly 
all archaeological research today is based on a fundamentally deductive methodology. 

Verification of formal predictive statements (hypotheses) through empirical 
testing against the archaeological record frequently involves techniques of sam- 
pling. In one sense all archaeology involves sampling, since we are never confronted 
with the complete record of past human behavior. Realizing this, archaeologists 
distinguish between relative degrees of sampling, as in "100 percent inventory" vs 
"sample survey." In this case, even though the results ofboth surveys are acknowl- 
edged to be samples, the latter term refers to a formally articulated, specific 
sampling strategy that guides the character of the inventory. 

We mention sampling at this point because in the past formal sampling has 
frequently been confused with, and at times even identified with, predictive 
modeling; in the eyes of some, the implementation of a sampling design actually 
constitutes predictive modeling. Unfortunately, this confusion of sampling and 
predictive modeling has led to erroneous interpretations of the capabilities of the 
latter. Some researchers have even assumed that simply by adopting formal sam- 
pling techniques they would be able to predict archaeological site loci and thus 
satisfy legal compliance requirements without having to undertake expensive, 100 
percent inventory surveys. 

We would emphasize that sampling and predictive modeling are not the same 
thing and that formal sampling is neither required by predictive modeling nor 
limited to that approach. Sampling is simply one method of verifying testable 
hypotheses (albeit a very important one). In the strict sense-i.e., as a technique of 
data acquisition-formal sampling is no more (or less) related to or important to the 
modeling process than is 100 percent inventory survey. 

One of the most unfortunate results of this confusion is that land-managing 
officials are at times led to believe that it is relatively easy to predict where all sites 
should be, and that by sampling a few of the predicted sites the archaeologists can 
do their jobs while saving themselves time and effort and saving the taxpayers a 
great deal ofmoney. Realizing the distinction between sampling and prediction is a 
valuable first step in understanding how very complex the process of predictive 
modeling really is. 

Both archaeologists and managers can and should be interested in refining 
attempts to model human behavior and in refining the sampling techniques used to 
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gather the data needed to verify such models. But neither models nor sampling 
should be viewed as a panacea destined to solve all the problems of management of 
archaeological resources and of compliance with existing legislation. This is a 
methodological fact of life that will be demonstrated repeatedly throughout this 
book. 

T H E  PROBLEM OF EXPLANATION 

Explanation in Archaeology 

In the process of maturation, perhaps all scientific disciplines pass from a 
basically descriptive stage to a stage in which true explanation is attempted-a 
process of development that is sometimes painful and often divisive. The archaeo- 
logical profession has been experiencing this transition for the past two decades, and 
the process has been both difficult and variably successful. 

Twenty years ago, archaeology was a discipline in which most of the activity 
was directed toward describing the data that we recover. Since that time archaeolo- 
gists have increasingly made conscious and consistent attempts to explain the 
changes in cultural process that were documented during the prior descriptive 
phase of archaeological research. It is obvious that such documentation must take 
place before explanation can be sought, but it is equally apparent that a discipline 
such as archaeology cannot remain at the descriptive level if it is to realize its full 
potential in contributing to scientific understanding. 

Thus archaeologists who are undertaking the inventory and excavation of 
archaeological resources today are not simply concerned with accurately describing 
the artifacts and other data they find; they are equally concerned with placing those 
data in the context of explanation. That is, once they have determined what the 
things they recover are (or, more accurately, were) and how those things changed 
through time, they become interested in determining why such changes took place, 
in the explanation of such changes. In terms of the current jargon of our profession, 
we have progressed from dealing strictly with the archaeological context ofthe data 
to exploring their systemic context and finding means of linking the two realms. 

As it has matured, archaeology has changed from a descriptive, documentary 
discipline to one that attempts to understand certain aspects of human behavior 
with reference to independent events and variables known to have occurred in the 
past. It is this attempt to understand human behavior that has given archaeology a 
new direction-a new sense of purpose, perhaps. Some would even say that this 
effectively legitimizes archaeology as a profession that is dependent in large part on 
public funding, but such a statement would evoke considerable argument among 
archaeologists themselves. In any case, most archaeologists would agree that we 
have progressed as a discipline, and that the new sense of purpose arising from 
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explanatory research emphases should be ofconcern to  both archaeologists and land 
managers. 

It is in the context of this transition from description to explanation that an 
important dichotomy apparent in this book arises. Those who read large sections of 
this book rather than using specific parts as a reference volume will soon notice that 
some authors focus on models that are deductively derived and attempt to predict 
how particular patterns of human land use will be reflected in the archaeological 
record while others are working with inductively derived models that identitjr and 
quantitjr relationships between archaeological site locations and environmental 
variables. T h e  latter models, which we term correlative, are by far the more common 
in current modeling practice. It is our contention (and one that is shared by some 
but not all of the volume authors) that this emphasis on descriptive models will and 
should eventually be replaced by an emphasis on models that are derived from our 
understanding of human behavior and cultural systems, models with explanatory 
content. 

The Value of Correlative Models 

This call for explanation and explanatory models should not be taken as 
disparaging research that focuses on empirical analysis. Description, classification, 
and inductive generalizations are basic building blocks in any science. It should be 
clear from the sheer weight ofinformation on correlative models in this volume and 
from the material presented in the management-oriented chapter (Chapter 11) that 
correlative models are informative and extremely valuable in many contexts. 

In Chapter 11 Kincaid suggests that for some applications, simply knowing 
where sites are likely to be located relative to various environmental variables is 
sufficient. For large-scale planning purposes, for example, this level of knowledge 
about the distribution of archaeological resources may indeed be all that is needed 
for immediate purposes. But as suggested below, it may not be a wise use of 
resources to plan a research project solely to produce this level of information. 

Several of the concepts introduced by Kvamme in the model applications 
chapter (Chapter 8)-those ofactivity space and use intensity in particular-make clear 
a second important contribution ofcorrelative models. If a research project requires 
information about thegeneral nature of human use of a landscape, correlative models 
provide invaluable data. It is both intuitively obvious and clear from the ethno- 
graphic record, for example, that human groups employing different subsistence 
strategies make use of their environments in very different ways. Their mobility 
patterns vary enormously, and the particular resources and proportions of those 
resources used are equally variable. In the archaeological record these differences 
will be reflected as differences in the scale of redundancy in distributions ofcultural 
remains, that is, how big an area must be inspected before patterns in the archaeo- 
logical record begin to repeat. Likewise, the nature and strength of correlations 
between cultural remains and features of the environment will be strongly affected 
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by differences in prehistoric resource selection. If we wish to monitor variability 
among human systems on the large scale, correlation models can provide a quantifi- 
able and easily displayed measure of differences and similarities. 

The  Limitations of Correlative Models 

Despite the utility of correlative models for planning purposes and for certain 
research applications, their general usefulness is limited for several reasons. T h e  
first is that no matter how carefully designed, methodologically sophisticated, and 
thoroughly tested a correlative model is, the end product is simply a series of 
statements about correlations between the occurrence of cultural remains and 
particular parameters or conjunctions of parameters of the modern environment. 
Correlation does not tell us anything about causality. We do not know, and cannot 
determine from the model, why this relationship between cultural materials and 
environmental factors exists. Worse yet, from an archaeological perspective, we do 
not know and cannot determine anything about the human system that created and 
deposited these cultural materials other than some very general notions about the 
distribution of their activities on the landscape. 

T h e  second limitation grows out of the first. Because correlative models are 
designed to tell us where sites are located (relative to various environmental varia- 
bles) and not why they are located as they are with respect to  those variables, even 
when they work exceedingly well, we do not know why they work. T o  the manager 
who only needs to know where sites are this may not immediately appear to  be a 
major limitation. But ifwe do not know why a model works in one particular study 
area, we will not know whether we should expect it to work in the next valley or the 
next county or in a similar but distant environment. Thus correlative models are 
not truly predictive, but consist ofprojections ofan observed pattern from a sample 
to the whole universe. When the focus ofattention shifts to a new data universe, the 
process ofprojection must begin anew. As will be discussed in the next section, this 
lack ofgeneralizability in correlative models should make this limitation ofconcern 
to  managers as well as to the professional archaeologist. 

T h e  third limitation arises because correlative models require measurable, 
mappable data. For this reason, they depend heavily on environmental factors to 
provide their independent variables, and because of this they are most successful 
when applied to  societies whose movements, group size, and activities are highly 
regulated by aspects of their environment-generally hunters and gatherers. With 
a shift from food collection to food production, human societies enter into a different 
kind of relationship with their environment (characterized by Kohler in Chapter 4 
as one ofincreasing intensification). This does not mean that settlement locations of 
formative level societies cannot be modeled or that they are unresponsive to  
environmental factors. But the relationship with environmental factors is probably 
more indirect and is certainly more complex and interactive. Additionally, with 
increasing sedentism, social and political factors come to have an increasing impact 
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on the distribution of activities and thus of sites, lessening the correlations with 
strictly environmental variables. 

Finally, because human groups with different subsistence orientations and 
different levels of technology use the landscape in very different ways, correlation 
models based on environmental variables are difficult to build for areas that have 
been occupied over a long period of time. In the American Southwest, for example, 
where the same area may have been used by Paleoindian, Archaic, Puebloan, and 
Athabaskan groups, a single correlation model of the relationships between cultural 
resources and environmental variables would be of very limited value. In such cases, 
an entire series ofseparately derived and tested models might be necessary, one for 
each major adaptation type. 

The Value of Explanatory Models 

The  discussion above of the transition to explanation in modern American 
archaeology makes clear the importance of explanatory models to the archaeological 
profession and suggests that explanatory models are central to whatever value 
archaeology has for society as a whole. As anthropologists, we are interested in 
human behavior, in cultural variability and similarity, in cultural stability and 
change, in the adaptation of humans as cultural beings to their natural and social 
environments. As social scientists, we have an obligation to add to the store of 
human knowledge about humanity, and as archaeologists we have a unique oppor- 
tunity to contribute knowledge about the long-term history of humankind, about 
adaptational successes and failures, and about the evolution of the complex social, 
political, and economic systems that order and dominate our lives. 

If the value of explanatory models to archaeologists is clear, the value of these 
models to  landholding agencies and to individuals involved in the field of cultural 
resource management is far less obvious. Because correlative models are relatively 
straightforward to develop and because simple environmental variables are rela- 
tively easy to measure, these models are viewed as cost-effective and objective. And 
in the short run they often provide the kinds of information needed. This has 
sometimes led to a perception on the part of managers that explanatory models are 
an unnecessary luxury. There are at least two reasons, however, why such models 
may, in the  long run, prove to be critical to the very people who now question their 
utility or at least their cost-effectiveness. 

The  first reason has to do with the lack of generalizability for correlative 
models that was discussed above. Ifwe do not know why a model works in one study 
area, we have no way of knowing whether it will work in a new study area; however 
much we may believe or expect that it will work, we cannot know. In order for a 
cultural resource manager to use information derived from models, even for the 
most general planning purposes, he or she must know that the model works within 
specified levels ofconfidence and precision. With correlative models, therefore, the 
process of model development, testing, refinement, and retesting can never be 
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short-cut: every new situation will require the development and verification of a 
new model. 

With explanatory models, on the other hand, eventually we can hope to be 
able to offer general models that can be demonstrated to be applicable in any 
situation characterized by a specified set of cultural system and ecosystem variables. 
T h e  key word here is, of course, "eventually"; as noted in the next section, 
explanatory models are extremely complex and difficult to build, and it may be a 
long while before we can be consistently successful in doing so. But that does not 
alter the potential value to resource managers of such powerful and truly generaliz- 
able models. 

T h e  second reason why explanatory models are potentially of great value in a 
management context has to do with the basic foundation of cultural resource 
management as it was envisioned in the National Historic Preservation Act (NHPA). 
One of the more colorful senior members of the American archaeological community 
admonishes his students not to lose sight of their major research objectives and 
become bogged down in trivia by reminding them that "It's hard to  remember that 
you started out to drain the swamp when you're up to your [anatomical reference 
deleted] in alligators." Cultural resource management (CRM), especially as it is 
practiced in large land-managing agencies, tends to have the same problem. 
Sometimes we become so bogged down in the minutia of finding sites and protect- 
ing sites and mitigating impacts to sites that we lose track of the reason why these 
things called "sites" have any importance, any claim to protection under the law. 

A great deal of time and energy is devoted to  compliance with Section 106 of 
the NHPA, the section that mandates consideration of the impacts of federal 
undertakings on cultural resources and avoidance or mitigation of those impacts 
where possible. Sometimes this attention to  Section 106 causes us to lose track ofthe 
requirements of Section 110, which charges federal agencies with the larger task of 
locating, inventorying, and nominating to the National Register of Historic Places 
the eligible properties under their control and instructs them to take care that these 
properties are not "inadvertently transferred, sold, demolished, substantially 
altered, or allowed to deteriorate significantly." In management terms, so much 
energy is going into the support program that the primary program gets slighted. 

Probably the most commonly cited criterion for claiming National Register 
eligibility for a prehistoric site is that it has "yielded, or may be likely to yield, 
information important in prehistory or history" (36 CFR60.4). It is their information 
content rather than any intrinsic value that gives archaeological sites significance and 
thus a legal right to protection, and it is because ofthis information content that the 
landholding agencies have been given a mandate to manage these resources. 

It is the long-range goals ofsection 110 compliance that can most benefit from 
the kind of understanding of the archaeological record that could be gained from 
explanatory models. For most archaeological sites discovered during the course of 
CRM-funded surveys, the survey recording and analysis will constitute the only 
scientific attention ever accorded to those sites. We would suggest, therefore, that 
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by calling for archaeological models that emphasize explanation rather than correla- 
tion, managers would maximize their return on realizing the information potential 
ofthe sites under their jurisdiction and find themselves in a better position to fulfill 
their responsibilities under Section 110. While correlation models might eventually 
become powerful and sophisticated enough to meet some of the requirements of 
Section 106 compliance, explanatory models could, in the long run, come much 
closer to  meeting the need of compliance with Section 110. 

The Limitations of Explanatory Models 

T h e  limitations of explanatory models are discussed by Altschul in Chapter 3, 
but his evaluation of the problems can be summed up in one short sentence: 
explanatory models are extremely difficult to create and validate. T h e  length of the 
method and theory chapter (Chapter 4) and the complexity of the arguments 
presented therein by Ebert and Kohler make clear the dificulty ofidentifying the 
linkages and warranting the arguments in a model that is based in anthropological 
theory. T h e  length ofthe model applications chapter (Chapter 8) and the complex- 
ity of the techniques discussed by Kvamme make it clear that currently correlative 
models are far ahead of explanatory models in methodological sophistication and 
mathematical expression. 

T h e  other serious limitation ofexplanatory models is one that is common to all 
attempts at explanation in archaeology. It has to do with assigning meaning to what 
we find in the archaeological record. In building an explanatory model we use 
information derived from the systemic context-often from ethnographic or ethno- 
archaeological research, but sometimes from geography, ecology, or other fields- 
to generate hypotheses about the archaeological context. If we build these hypo- 
theses into models and test them against the archaeological record and find that the 
results tend to confirm the model, then we assign meaning to the archaeological 
remains based on our interpretations of the systemic context. 

T h e  danger here is that our understanding of the systemic context will be 
incorrect. If we say that finding x in the archaeological record will mean that y 
happened in the systemic context, and if our ideas about y are wrong, then no 
matter what we find in the archaeological record our interpretations will be flawed. 
For example, until the late 1960s most archaeologists believed that hunters and 
gatherers lead an extremely difficult and precarious existence, teetering constantly 
on the brink of starvation and devoting every waking hour to the quest for food. 
Given such a perspective it seemed obvious that any hunter-gatherer group that 
had the opportunity to do so would immediately adopt agriculture, which was 
viewed as an easier and more secure way oflife. Subsequent research demonstrated 
that hunting and gathering is, in fact, a rather stable and secure means ofmaking a 
living and that agriculture is, in fact, both a more laborious and (in many environ- 
ments) a less secure subsistence strategy. Most of the early archaeological research 
on the origins of agriculture was based on these incorrect notions about the 
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systemic context of hunting and gathering, and the results were, therefore, wrong 
or at least inadequate. 

Although this danger of being fundamentally wrong is certainly an important 
limitation of explanatory models, it is also in a sense an indication of progress. As 
long as archaeologists concentrated solely on description and documentation it was 
nearly impossible for them to be wrong in any but trivial matters. But when they 
took the major step of attempting true explanation, they had to accept the risk of 
being profoundly wrong along with the rewards of gaining knowledge. The  same 
relationship exists between correlative and explanatory models. Although there 
may be arguments about how to test for correlation or how to measure the strength 
of a correlation or assign confidence limits to it, once those are resolved the only 
question that remains is whether a correlation exists or not. With explanatory 
models the risks of being very wrong are much higher, but the potential gains in 
knowledge are correspondingly increased. 

In the final analysis, we would suggest, a willingness to accept the risk ofbeing 
wrong is one of the requirements of science. Scientific explanation consists of 
theories, statements about the way that we believe the world operates. An individ- 
ual scientist offers an explanation that he or she believes accounts for as much 
variability in the phenomenon under study as possible. Subsequently this scientist 
and others test this explanation against data concerning the phenomenon, and the 
explanation is refined and revised to cover yet more of the variability. Empirical 
generalizations concerning the data can serve as one source ofexplanatory hypoth- 
eses, but those hypotheses cannot subsequently be tested against the same data. 
And empirical generalizations based on the archaeological record can never gener- 
ate explanations ofhuman behavior. We would argue that while correlative models 
are valuable in several contexts and explanatory models have several serious 
limitations, the ultimate goal of archaeological modeling, whether carried out for 
research purposes or to meet management needs, should be explanation. 

HISTORY OF THE BLM PREDICTIVE MODELING PROJECT 

In May 1983 a group of Bureau of Land Management (BLM) state archaeolo- 
gists and Forest Service regional archaeologists from the Rocky Mountain states 
were meeting in Salt Lake City as part of a multistate task force designing 
procedures to deal with oil and gas development on public lands. During the course 
of these meetings, a number of informal discussions took place about the potential 
and problems ofpredictive modeling. It soon became clear that this was a subject of 
both great interest and great concern to the task force members, and a decision was 
made to begin a group project to study the ramifications and requirements of 
predictive modeling and to coordinate modeling efforts throughout the Mountain 
West. 

As it  happened, the Colorado State Office and Service Center of the BLM had 
recently initiated a predictive modeling study project, and with the support and 
cooperation of many people in the management hierarchy of the BLM, the newly 
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organized group of state and regional archaeologists was able to secure permission in 
~ e p t e m b e r  of 1983 to expand the scope of this already approved project to encom- 
pass an in-depth, state-of-the-art study of predictive modeling in archaeology. All 
those who had been at the task force meetings recognized that such a study was 
necessary if the problems encountered as a result of previous uses of predictive 
modeling in resource management contexts were to be avoided. This volume is the 
first product of the BLM Cultural Resource Predictive Modeling Project, but it is 
not the only product being planned. A training program and a technical assistance 
service for field personnel are planned, along with a set of demonstration models, 
which will be developed in future phases of this project. 

In their proposal to  expand the predictive modeling study to make it as 
comprehensive as possible, the Project Advisory Team (PAT; that is, the BLM and 
Forest Service archaeologists) pointed out that several predictive modeling 
attempts that had recently been carried out in management contexts had been 
highly controversial and of limited utility. They went on to  add that since knowl- 
edge about this topic was limited among cultural resource professionals-both 
within the government and outside it-the lack of standards, guidelines, and 
procedures was hindering effective and eficient use of modeling for resource 
management. 

T h e  specific failings ofpast modeling efforts that they noted included failure to  
address management needs, lack ofspecificity, poor use ofexisting data, ineffective 
or biased sampling designs, inappropriate statistical analysis techniques, failure to 
collect inventory data suitable for the development ofa predictive model, develop- 
ment of models using nonreplicable techniques, lack of comparability of and 
inappropriate use of environmental variables, lack of phasing to  allow for model 
testing and refinement, and failure to use such technical aids as remote sensing and 
geographic information systems to streamline model development. 

The  stated goals of the expanded predictive modeling project were 

1. to evaluate trends in the development of predictive modeling critically, 
using knowledge gained through past research; 

2. to  explore the feasibility and practicality of predictive modeling for 
meeting management objectives; 

3.  to analyze and define the components of the model-building process, 
particularly with respect to cultural resource management; 

4. to develop a set of standards for the archaeological and environmental 
data to be used in modeling efforts; and 

5. to  provide BLM field offices with information on data collection for 
modeling purposes and statistical manipulations of those data. 

T h e  most important step in meeting these goals would be to  contract with a 
team ofoutside consultants-archaeologists with national reputations in the field of 
predictive modeling-to produce a comprehensive, publishable report on this 
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topic. In addition, this project would have considerable input from BLM personnel, 
from a volunteer advisory group consisting of archaeologists for other federal 
agencies and individuals from State Historic Preservation Ofices and the National 
Advisory Council on Historic Preservation, and from the professional archaeological 
community, including private contractors, representatives of professional organiza- 
tions, and personnel from universities and museums. These individuals are named 
in the Acknowledgmentr at the front of this book. 

To ensure that the profession at large would have the opportunity for a high 
level of input, several steps were taken. Once the expansion of the predictive 
modeling project had been approved, the PAT met at the Nevada State Ofice in 
Reno to determine how to organize and implement the project. As part of this 
meeting, the PAT met with representatives of the Society for American Archaeol- 
ogy (SAA) in an effort to secure society input and support for this project from its 
inception. The  project team also corresponded with the society's president and 
executive committee, outlining the goals of the project and requesting suggestions 
for potential contractors and comments on the initial chapter outlines for the 
proposed book. In addition, members of the team met with regional representatives 
of the SAA to discuss the project and secure input, and the Procurement and 
Personnel Committee of the PAT held an open meeting for potential contractors 
and other interested persons at the 1984 annual meetings of the SAA in Portland, 
Oregon. 

From the beginning of the project the BLM's Washington ofice provided 
normal intra-agency coordination among Washington, D.C., agencies. The PAT 
provided project briefings in Washington for top-level management and for senior- 
level agency archaeological program heads. Useful project direction was offered by 
these individuals, and most agreed to organize and provide a formal review of the 
initial draft document by their respective agencies. 

Preliminary chapter outlines for the proposed predictive modeling book were 
prepared at the November 1983 meeting in Reno. Once these had been reviewed by 
the various advisory groups, final outlines were prepared, and requests for proposals 
were sent to potential contractors suggested by the various advisory groups and by 
members of the PAT. Those who wished to bid on one or more chapters responded 
with proposals that included detailed revised outlines for the chapters of interest. 
Successful bidders were selected on the basis of separate cost and technical propos- 
als, with technical merit being more important than price. Since quality perform- 
ance was considered vital to a successful project, the government reserved the right 
to award a contract on other than the lowest-price basis if a higher-priced proposal 
was rated higher in quality. The  revised outlines submitted by the successful 
bidders were once again circulated to the advisory groups for comment, and then in 
August of 1984 the entire book-production team-authors, editors, and PAT-met 
in Denver for a prework conference. 
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THE PRODUCTION OF THIS VOLUME 

At the prework meeting the authors and editors were given a cram course on 
the history and goals ofthis project, and then we attempted, in the course ofseveral 
strenuous but exhilarating days, to give structure and coherence to this exercise in 
authorship by committee. We dealt ruthlessly with redundancies, struggled with 
what proved to be an insurmountable dichotomy among the authors in their view of 
the very nature of predictive modeling, and shifted the content and order of the 
chapters so many times that everyone (except the technical editor, who was 
keeping score) lost track of the "new" order by the third day. 

One of the most dificult tasks of those days in Denver was to get a group of 
largely academic- and contract-oriented archaeologists to think in terms of man- 
agement issues. Indeed, the very phrase "management concerns" produced mock 
groans by the end of the first day. Wedid gradually become more aware of the whole 
gamut of problems implied in the concept of management concerns, but it also 
became apparent to everyone that in writing and editing this book we could only do 
what we knew best-produce a book about predictive modeling; the real grappling 
with management concerns would have to be done by those who understood them 
best-the federal archaeologists of the PAT. At that point Dan Martin and Chris 
Kincaid, charter members of the PAT, agreed reluctantly to write the management 
issues chapter of the book with heavy input from the other team members; 
subsequently Burt Williams bowed to similar pressure and "volunteered" to be a 
coauthor on this chapter. By the end of the Denver meeting we had developed a 
final outline for the book and for each of the chapters, and the authors' difficulties 
began. 

Between August of 1984 and January of 1985 most of the material in Chapters 
2-10 of this book was written-an impressive feat given that all of the authors had 
simultaneous major commitments to teaching or to other contracts and writing 
responsibilities. In February of 1985, after we had a chance to at least skim most of 
the manuscripts, the editors and the PAT met to discuss the "product" and to 
make various editorial decisions. It was again clear that the main body of this book 
was not as management-oriented as the team members had hoped, but it was also 
clear that the manuscripts before us were the raw material ofan invaluable resource 
volume-containing comprehensive, up-to-date treatments of the theoretical, 
methodological, and technical issues facing those who attempt to do archaeological 
predictive modeling. And again, this meant that the burden of meeting "manage- 
ment concerns" was going to lie wholly on the PAT members who were writing the 
management issues chapter. After this meeting, the editors' difficulties began. 

In a slow, collaborative process between editors and authors (and taking the 
written comments of the PAT closely into account) we gradually shaped the 
individual manuscripts into the chapters of a generally unified book. As noted 
below, we made no effort to impose an artificial consistency of viewpoint on these 
authors. Archaeological predictive modeling is a field in which no consensus has 
emerged: that is one of the main points that is demonstrated in this book. When 
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the authors and editors had reached agreement on draft chapters, the book was sent 
out for a detailed and extensive peer review in October of 1985. 

The  reviewing agencies and organizations are also listed in theAcknowledgments. 
T h e  review comments were compiled by the PAT and the volume editors, who 
carefully considered all comments and then summarized them by areas of concern. 
Minor questions or comments were handled by the editors; more substantial 
comments were forwarded to the authors, who responded in whatever way seemed 
appropriate and incorporated changes based on points raised by the reviewers into 
their various chapters. T h e  results of the review are discussed in Chapter 12. 

It was at this point that we hit the only major snag in the whole process of 
producing this volume. T h e  Washington office of the BLM was not satisfied with 
the management concerns chapter and did not release it for review along with the 
rest of the book. Through a very long process of discussions between the PAT and 
the Washington ofice, it eventually became clear that Chapter 11  would have to  be 
completely rewritten. Chris Kincaid once again accepted this task, and in 1988 she 
produced a draft of the chapter as it appears in this book. Chapter 11 and Chapter 
12, the summary by Judge and Martin, were sent out for comment to a smaller 
corpus of reviewers selected from the large number of people who reviewed 
Chapters 1-10. 

We have included this detailed discussion ofthe history ofthe BLM predictive 
modeling project and of this book because we, as editors, feel that this volume - -  - 

represents the culmination of a remarkable cooperative effort-something that we 
can say because the credit for those noteworthy aspects of this project lies with 
others. T h e  determination and far-sightedness of the PAT members who conceived 
the notion of a large-scale, comprehensive, and high-quality effort and then guided, 
coaxed, and coerced the project into becoming a reality were certainly remarkable 
and commendable. Special merit accrues to Dan Martin and Chris Kincaid, who 
kept the project going during the long Chapter 11  delay and who wrote and rewrote 
the new Chapters 11 and 12 to solve the problems. 

Finally, this book represents a remarkable degree of involvement and coopera- 
tion on the part of many people from all sectors of the archaeological profession. 
This has certainly contributed substantially to the quality of the book, but equally 
important, this level of cooperation seems to us to indicate that the often decried 
isolationism of academic, federal, and contract archaeologists may, like reports of 
Mark Twain's demise, have been greatly exaggerated. 

THE STRUCTURE OF THIS BOOK 

General Orientation 

It will probably be helpful to the general reader to know four things about the 
overall orientation ofthis book at the outset. T h e  first ofthese is that this is a book 
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about modeling in the context of prehistoric archaeology. While many of the 
principles suggested and techniques used would undoubtedly be of use to archaeol- 
ogists studying classical and historical societies, particular problems and concerns of 
those scholars and techniques that would be especially helpful to them are touched 
on only in passing in this book. This orientation is a reflection of the background 
and experience of the authors and editors, and it is also a result ofmost of the extant 
predictive modeling studies having been concerned with prehistoric cultural 
remains. 

The second thing, while we are on the subject of the intended audience for this 
volume, is that we have tried to maintain a balance between materials that would be 
of most interest to landholding agency managers and federal and state archaeolo- 
gists and material that would be of interest to the archaeological profession in 
general. Certain chapters, such as the method and theory discussion by Ebert and 
Kohler in Chapter 4, will certainly be of greatest interest to professional archaeolo- 
gists, while other chapters, such as the management perspectives chapter by 
Kincaid (Chapter 11) will be of greatest interest to managers. Still other chapters, 
such as the statistics discussion by Altschul and Rose (Chapter S), will probably be 
viewed by readers of both persuasions as a resource document to  be consulted as 
needed. The  result of this effort to balance the book among somewhat disparate 
audiences is that nearly all readers will find some parts of the book more interesting 
than others. We have attempted, through our discussion below of the subjects 
covered in each chapter, through frequent cross-referencing, and through the 
production of a relatively detailed index, to enable the reader to identify quickly 
those subjects and discussions that are likely to be of interest to him or her. 

T h e  third thing to be noted is that even though some of the volume authors 
are strongly committed to the necessity for constructing explanatory models with 
major deductively derived components (see especially Ebert and Kohler in Chapter 
4), by far the largest part of the book consists of information on correlative models 
derived largely or wholly through inductive means. These conflicting conceptions 
of the proper nature and direction of predictive modeling in archaeology are clear 
throughout the book; there was some discussion about the advisability ofattempt- 
ing to impose an editorial "synthesis" on the two camps of authors to  create a 
theoretically and methodologically unified book, but we felt that this was artificial 
and premature. The  division that is apparent in this book between those who are 
building sophisticated and fascinating correlative models and those who insist that 
archaeology is explanation or it is nothing is a reflection of the state of predictive 
modeling in American archaeology today. We felt that if this book was to be a fair 
summary of "the state of the art," the unresolved theoretical conflicts as well as the 
exciting technological and methodological advances should be explored. We have 
offered our own ideas on explanation and correlation in archaeological models in a 
previous section of this chapter, but we tried not to impose those ideas on the 
authors during the editing process. 

The  final point that we should raise about the general orientation of this book 
is that it is heavily biased toward models for hunter-gatherer societies. It was not 
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planned that way, and we tried to decrease this bias after the first draft of the book 
was finished. But we found that it was not that simple. In large part this emphasis on 
hunter-gatherers is a reflection of the emphasis on correlative models. As was noted 
in the discussion of the limitations of correlative models above, these models are 
most successful when applied to societies with a food-collecting subsistence base 
and relatively simple and fluid forms of social and demographic organization. In 
addition, this emphasis on hunter-gatherers seems to be a result of the interests of 
many of the researchers carrying out archaeological modeling projects today, so in 
this way the book is again a reflection of current developments in the field. We see 
this lack of modeling interest in middle-level or formative societies as well as 
historical societies as unfortunate, however, and would like to think that an 
increased interest in this topic will be one ofthe trends in future modeling projects. 

A Preview of Coming Attractions 

The  main body of this book contains information that can roughly be divided 
into four topics. Chapters 2 through 4 present general discussions related to the 
modeling process. In Chapter 2 Kohler first reviews the intellectual history ofwhat 
we today call predictive modeling, tracing the changing views of the relationship 
between human societies and their environment through time. He  then discusses 
the contributions of the culture ecologists and especially that ofJulian Steward to 
our thinking about this relationship. Finally, he describes the growing interest in 
predictive modeling in recent years and suggests a set of general criteria for 
evaluating models-generalizability, simplicity, internal consistency, precision, 
and falsifiability-using a group of example modeling projects to illustrate these 
concepts. 

In Chapter 3 Altschul discusses models in general and the process ofmodeling. 
He  suggests a typology of predictive models based on the spatial referent of the 
model and provides archaeological examples of the various types. He  also discusses 
the methodological pitfalls of the various types of models and their strengths and 
weaknesses. Finally, he provides an overview of the model-building process, touch- 
ing on data collection, synthesis, and evaluation; selection of independent and 
dependent variables; and model testing and refinement. All of these topics are 
addressed in detail in Chapters 5 through 8. 

Chapter 4, by Ebert and Kohler, deals not with modeling as such, but with the 
theoretical and methodological considerations that must underlie all modeling 
efforts if the resultant models are to be faithful replications of human systems. 
Although the material presented is sometimes difficult, the concepts under discus- 
sion are, in the long run, just as critical to the success of modeling efforts as are 
questions of data collection or statistical manipulation. The  authors discuss the 
organization ofhuman systems and the implication ofvarious organizational princi- 
ples for the nature of the archaeological record produced. They also consider the 
relationship between human systems and the ecological systems ofwhich they are a 
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part. Finally, they discuss the archaeological record itself-the way it is formed and 
the processes that affect it after the cultural materials are deposited-and offer 
suggestions about the implications of these formation and transformation processes 
for archaeology in general and for predictive modeling in particular. 

Chapters 5 through 8 cover the details of the modeling process presented in 
overview in Chapter 3 .  In Chapter 5 Altschul and Rose discuss statistical approaches 
to modeling, particularly the theoretical and methodological considerations that 
must be taken into account in the course of building quantitative models. This 
chapter is not a cookbook ofstatistical techniques, but rather presents information 
on the general types ofquantitative models. They discuss techniques ofprediction 
and classification, emphasizing the strengths, limitations, and underlying assump- 
tions ofeach, and describe various procedures for verifying the resultant models and 
generalizing from them. 

Chapter 6, by Altschul and Nagle, covers the strategies and techniques 
involved in collecting new data for use in model development. The  impor tx t  and 
complex topic of sampling and the attendant problems of unit size and shape, 
sample size and means of selection, and techniques of parameter estimation are 
covered in detail. The  authors also present a valuable discussion of the particular 
problems that arise when data must be collected within the constraints of cultural 
resource management surveys, where the survey universe and often the survey 
intensity are prescribed on the basis ofconsiderations that have nothing to do with 
modeling requirements or research needs. Finally, they discuss various considera- 
tions of data recording, especially those imposed by "no collection" surveys. 

In Chapter 7 Kvamme discusses the use of already collected data for model 
development, a topic ofconsiderable importance given the quantity ofexisting data 
and the cost of data collection. As the author points out, the major problem with 
using existing data is that they very often are biased, and usually the type or types 
of biases present in the data base are unknown. He discusses the most common 
types ofbias and suggests the effects that such biases will have on models developed 
using these data. He  then offers a series ofprocedures for reducing deficiencies and 
minimizing the effects of biases. Finally, he describes ways of evaluating models 
built with existing data and means of determining what additional data must be 
collected in order to create a satisfactory model. 

In Chapter 8 Kvamme goes on to discuss the actual steps in model building, 
beginning with the selection of variables and describing in detail various quantita- 
tive techniques for pattern recognition and assessment. He  then considers the 
difticult problem of assessing model performance, discussing various means for 
measuring accuracy rates and assigning confidence limits to model results and 
providing a comparative analysis of several kinds of quantitative models. 

Chapters 9 and 10 present information on types of technical aids that are 
available to assist researchers in the development ofpredictive models. In Chapter 9 
Ebert summarizes the field of remote sensing, describing the devices used, the 
kinds ofdata that can be derived, and the types ofanalytical procedures commonly 
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applied to them. He then discusses the general potential of remote sensor data for 
predictive modeling applications and describes and evaluates several archaeological 
modeling projects that have involved the use of such data. 

In Chapter 10 Kvamme and Kohler discuss a very exciting and relatively new 
technological aid, the Geographic Information System (GIs). A GIs comprises a set 
of computer programs, the hardware on which the programs run, and a spatially 
organized data base. In a GIs, data are derived from maps and similar sources of 
information on spatial relationships, and these data are stored not sequentially, as 
they are in most data base management applications, but in a form that retains the 
organizational information of the original data as well as the actual values of the 
variables. The  applications of GIs discussed by Kvamme and Kohler make it clear 
that the potential of these systems for aiding in the predictive modeling process is 
enormous. 

Finally, Chapter 11 is concerned with the federal management perspective on 
archaeological predictive modeling. The  chapter is organized around a series of 
commonly asked questions, e.g., "What kinds of models are there? When do we use 
which type?" Kincaid summarizes relevant conclusions reached by the various 
authors and describes the potential usefulness of models for such central tasks of 
CRM as inventory, evaluation, resource protection, and planning. 

In Chapter 12 Judge and Martin offer an appraisal both of the relative success or 
failure of the project in meeting the goals set for it originally and of the massive 
review process to which the draft manuscript was subjected. They then suggest 
several major issues raised in the course of this volume that they feel should be 
central questions in future modeling efforts. 

T h e  final section of this volume is an appendix compiled by Thoms, which 
presents an annotated review and assessment of a number of important and 
representative archaeological predictive modeling projects that have been carried 
out in recent years. The purpose of this appendix is to provide additional informa- 
tion on the kinds of projects that have been done, on the types of data that have 
been generated, and on the successes and pitfalls of such projects in the past. 

We hope that this book will become a major reference volume for the archaeo- 
logical profession as a whole as well as filling its original role in providing compre- 
hensive, up-to-date information on topics related to predictive modeling for federal 
archaeologists and land-use managers. We feel that the blend ofinformation offered 
here on modeling concepts, mathematical and statistical techniques, technical aids 
(such as remote sensing and GIs), and concerns about the relationship between 
modeling and archaeological method and theory will go a long way toward meeting 
the needs of researchers who are interested in this form of data analysis and 
interpretation and who wish to construct informed, sophisticated models. 
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Chapter 2 

PREDICTIVE LOCATIONAL MODELING: 
HISTORY AND CURRENT PRACTICE 

Timothy A. Kohler 

In a volume primarily devoted to predicting locations of archaeological mate- 
rials on the basis of factors in the natural environment, it seems important to spend a 
little time examining the anthropological underpinnings for such endeavors. In the 
first part of this chapter, relevant portions of the history of anthropological thought 
up to the 1940s are reviewed briefly and the contributions of Julian Steward are 
discussed in greater detail. Steward's work is emphasized in this historical section 
because, I will argue, most proponents of predictive locational modeling adopt- 
though not always consciously-both a cultural ecological position on the nature of 
culture and the cultural ecological causal approach to understanding. 

In the second major division of this chapter the development of archaeological 
settlement pattern studies is discussed as it relates to these developments in theory; 
many settlement pattern studies differ from predictive locational models only in 
their lack of explicit extrapolation to a spatial population. This specialized discus- 
sion does not attempt to summarize the entire history ofsettlement pattern studies; 
see Parsons (1972) or Ammerman (1981) for a more comprehensive review. 

Finally, the potential uses of predictive locational models from both manage- 
ment and research perspectives are set forth, followed by a few examples from the 
literature. These examples are meant to illustrate the diversity of approaches 
currently in use and some of the most obvious issues that these approaches raise. 
T h e  reader interested in additional examples of recent locational models is referred 
to Kohler and Parker (1986) and to the appendix of this volume. 

An important premise of this chapter is that predictive modeling as it is 
presently practiced is fundamentally about environmental determinism. That is 
why, in the next section, we briefly recapitulate the increasingly sophisticated 
forms this paradigm has taken. Why are the social, political, and even cognitive/ 
religious factors that virtually all archaeologists recognize as factors affecting site 
location and function usually ignored in predictive modeling? 

One obvious reason is that most models are constructed inferentially, starting 
from a sample of archaeological sites in a region and generalizing to an unknown 
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population of sites in that same region. This is made possible by resorting to  maps 
displaying environmental categories across the total region with which site loca- 
tions have been empirically correlated in the sample. At the same time, a total 
mapping ofsites (the remains of the social and political network) is not available, or 
a predictive model would not be necessary. 

~ l t s c h u l  is clearly correct when he says, in the next chapter of this volume, 
that "magnet sites" may significantly affect settlement density in their neighbor- 
hoods, presumably for reasons that go far beyond factors of the physical and biotic 
environments. In his example, the density of settlements around major Hohokam 
sites in the Santa Cruz River Valley ofsouthern Arizona was greater than predicted 
on the basis ofenvironmental features. And yet, it is possible to  find examples in the 
archaeological record where precisely the opposite effect has been documented. In 
some periods of its history, for example, Teotihuacin in the Basin of Mexico seems 
to create a vacuum around itselk in others, sites seem to be denser in its vicinity 
than elsewhere (maps associated with Sanders et al. 1979). T o  further complicate 
matters, such changes may be due in part to changes in the area's role in a much 
larger, supra-regional system (see Paynter 1982:xi) that may be poorly understood. 
On a smaller, simpler scale, the large Pueblo I site ofGrass Mesa in the Dolores River 
Valley of southwestern Colorado also seems to have created a partial settlement 
vacuum in its vicinity during the peak of its occupation (Kohler 1986:37). 

This brings us to a second reason why nonenvironmental variables have not 
been used in most predictive locational models: archaeologists simply don't know 
how to  use them. It is reasonable to believe that our sister disciplines, such as 
geography, might have solved such problems, particularly for the non-hunter- 
gatherer societies that they have emphasized. This is not the place for an exhaustive 
review ofgeography, but it is worth mentioning two approaches commonly used in 
the geographic literature :o see whether they might help us. 

One such approach with deep roots is the well-known central place theory, 
conceived by Von Thiinen in 1826, expanded by Christaller in 1933, and introduced 
to the English-speaking world by Ullman in his famous article, "A Theory of 
Location for Cities" (1941; in Boyce 1980). Among other things, the theory predicts 
that cities will arise in the centers of productive areas; that they will be larger as 
their tributary areas become larger; that when a region is packed with cities the 
"tributary" spaces will be best described as hexagons; and most important, that a 
hierarchy ofcity size occurs, with centers in each class being predictable in number 
and in distance from each other. Ullman noted, as have many others, that the actual 
location ofcenters may be distorted by the distributions of resources and transpor- 
tation routes, and that 

the type of scheme prevailing in various regions is susceptible to many influences. 
Productivity of the soil, type of agriculture and intensity of cultivation, topography, 
governmental organization, are all obvious modifiers. . . . 
The system of central places is not static or fixed; rather it is subject to change and 
development with changing conditions. . . . 
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Christaller may be guilty of claiming too great an application of his scheme. His criteria 
for determining typical-size settlements and their normal number apparently do not fit 
actual frequency counts of settlements in many almost uniform regions [in Boyce 
1980: 176-~nl. 

Given the subtleties and especially the fluidity of the sociopolitical environ- 
ment, is it any wonder that archaeologists have chosen to concentrate on those 
relatively stable, "distorting" factors of the natural environment for locational - 
prediction? In general, the central place model appears to  be more valuable for 
analyrir of a total spatial pattern of contemporaneous settlements than it is for 
prediction of the total distribution from some small subset ofit. Nevertheless, i t  does 
have potential within a predictive context if enough of the settlement system is 
known to enable discernment of levels of size-class hierarchy, typical spacing of 
settlements within levels, and degree of influence of the various environmental 
factors serving to distort the ideal pattern. (For more discussion of central place 
modeling see Haggett e t  al. 1977 and various articles in Smith 1976.) 

Another possibly relevant line ofinquiry in geography is the study ofindustrial 
location. Let us assume for a moment that there are enough similarities between the 
problem of minimizing transport costs in the placement of factories and in the 
placement of relatively stable residential locations to make such an analogy worth- 
while. Economic assumptions have thoroughly permeated this field so that, at least 
until very recently, profit maximization, in the context of perfect and complete 
information and thorough predictability of future circumstances, has been the 
single goal guiding analysis. In Alfred Weber's "least-cost" mode1 (1929), the goal 
was to minimize transportation costs per unit of production, although benefits of 
agglomeration and labor availability might slightly distort the location predicted to 
be ideal on this basis (Gold 1980:217-23 1). 

Later refinements of Weber's approach concentrated on correcting overly 
simplistic assumptions about transport costs, market demand, and methodological 
factors, and it  was not until the 1970s that analysts began to question its reliance on 
economic factors in general and distance costs (as opposed to other costs) in 
particular (Gold 1980:218). Now, to  judge by Gold's recent review of this area, 
interest centers on questions that were previously ignored, including how decisions 
are made in industrial organizations; how the wider industrial, business, and 
sociopolitical environments affect locational decisions; the extent to which attitudes 
about regions predispose locational behavior; and how locational searches are 
actually conducted. Gold concludes that such research is at an "exploratory stage" 
but  that previous (exclusively economic) theory put forward "a model of behavior 
which, by its inherent assumptions, says little about the processes by which 
real-world locational decisions are reached" (Gold 1980:230-23 1). At this point it 
appears that archaeologists can profit from reading this literature but will not be 
able to  find here a working, realistic model that will solve their own problems. 

While archaeologists must redouble their efforts to build workable models 
with predictive power that take into account how social and political variables as 
well as those of the narrow economic environment affect location, and while 
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questions as to how locational decisions are reached in relatively small scale societies 
need more attention from archaeologists, the field as it presently exists-not as it 
perhaps should be-is the subject of the remainder of this chapter. 

THE WIDER HISTORICAL DEBATE: HOW AND T O  WHAT 
EXTENT DOES THE NATURAL ENVIRONMENT INFLUENCE 
HUMAN BEHAVIOR? 

Attempts to explain differences among human societies are as old as the 
recognition of that diversity. The  role of environmental factors in creating this 
diversity has been a subject ofinquiry and debate since antiquity. In classical times 
these inquiries ranged from abstract questions about the origin of the earth and of 
humankind to the search for 

rational explanations for the existence of both health and disease, explanations which 
called for consideration, among other factors, ofthe nature and direction ofwinds, the 
effects of swamps and damp places, the relation of sunlight and of the sun's position in 
the heavens to the proper siting of houses and villages, and which, by extension, 
encompassed investigation of the effects of "airs, waters, and places" on national 
character [Glacken 1%7:7-81. 

An early example of this perspective is the Histories of Herodotus. Written in the 
fifth century BC and primarily concerned with the struggle of the Greeks to free 
themselves from Persian influence, the Histories also provides sketches of some 50 
societies with attention to their geographic location, environment, dress, food, 
dwellings, form of selfdefense, and prestige as judges among other peoples (Hodgen 
1964:23). 

Yet in the Mediterranean world following the collapse of the Roman Empire, 
this comparative, cross-cultural tradition of inquiry that included environmental 
factors within its scope lost ground to theological interpretations of cultural diver- 
sity. Diffusion of the original Adamic culture, as outlined in the first chapters of 
Genesis, followed by local degeneration was generally considered to be sufficient 
explanation for diversity through the fifteenth and sixteenth centuries (Hodgen 
1964:254-294). 

A prominent dissenter was Jean Bodin, a French jurist writing towards the end 
of the sixteenth century, who argued that 

a sound solution to the problem of cultural diversification was not to be clouded by 
controversy over the early peopling ofthe world, or by a theory oforiginal sin, migration, 
or the breakdown of tradition among the bearers of the Adamic tradition. Leaving all of 
this to one side, he elected to take man as a given, concentrating on the relation ofseveral 
cultures to land, to climate, and to the topographical features ofthe several geographical 
regions. . . . 
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T h e  physical constitution of men, or their humoral makeup, determined their moral 
aptitudes or dispositions. Environment, climate, the conditions oftime and place, did all 
the rest, reacting on men through their bodies [Hodgen 1964:276,278]. 

For example, Bodin characterized people from hot climates in the northern hemi- 
sphere as being small of stature, weak, dark-haired and dark-skinned, fearful of 
heat, sad, hardy, mutinous, solitary, sober, and philosophic. People from cold 
regions were supposed to exhibit the opposite qualities (Hodgen 1%4:279-280). 

Grand schemes seeking to establish causal connections on ethnic, regional, or 
even continental scales between environmental factors (especially climate) and a 
wide variety of racial and cultural characteristics became more prominent in 
eighteenth-century Enlightenment thinking. Even the Baron de Montesquieu, 
although he was particularly prone to considering the form of government as the 
factor affecting all other aspects of society, did not ignore the influences of climate 
and environment. He was also willing to accord different factors causal primacy 
among different societies: 

Nature and climate rule almost alone among the savages [people with no nonlocal 
political structures and no domesticated plants or anihals]; customs govern the Chinese; 
the laws tyrannize in Japan; morals had formerly all their influence in Sparta; and the 
ancient simplicity of manners once prevailed at  Rome [Evans-Pritchard 1981:7]. 

We may conclude that even in the humanistic, rationalistic eighteenth century 
some natural philosophers took the position that, at least for some societies, causal 
initiative was to be found in the natural environment rather than in the mind. It was 
in reaction to such views that towards the end of the eighteenth century John 
Adams was led to complain, 

The  world has been too long abused with notions that climate and soil decide the 
characters and political institutions ofnations. The  laws ofSolon and the despotism of 
Mahomet have, at different times, prevailed at  Athens; consuls, emperors, and pontiffs 
have ruled at Rome. Can there be desired a stronger proof, that policy and education are 
able to triumph over every disadvantage of climate? [Glacken 1%7:685]. 

Montesquieu in particular, and to a lesser extent some ofhis contemporaries, clearly 
saw the interrelationship and interdependency among all aspects of a society 
(Evans-Pritchard 1981:4), thus laying the foundations for a functional view of 
culture that is one of the building blocks for modern cultural ecology. Although 
sweeping generalizations establishing connections directly from climate to human 
personality sound remarkably odd today, they represent unsophisticated precur- 
sors to modern cultural ecological positions that differ mainly by invoking a more 
credible and restrained chain of causation. 

On the whole, however, eighteenth-century environmental or geographic 
determinism was a minor thread in a fabric that 
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stressed the factor of conscious rational choice as the key to explanation of sociocultural 
differences. . . . [Enlightenment theoreticians] could not see a superorganic system 
interacting with the natural environment and responding with adaptive evolutionary 
transformations, which were neither comprehended nor consciously selected by the 
individual members of the society [Harris 1%8:51]. 

A necessary prerequisite to the techno-environmental perspective as espoused 
by Harris was a credible theory of evolution, supplied for biology in the mid- 
nineteenth century by Darwin, even as Spencer was elaborating a similar theory for 
sociocultural evolution-a theory already expressed in part in the earlier writings of 
Turgot, D'Holbach, and others (Harris 1968:123). The  goal of the great anthropolo- 
gists over the last half of the nineteenth century (Spencer, Tylor, and Morgan) was 
to develop cultural evolutionary sequences using data from archaeology and from 
contemporary primitive societies. Their comparative method used modern "survi- 
vals" ofearlier forms, not necessarily as exact replicas ofstages through which other 
groups had progressed but as models from which something could be learned about 
earlier adaptations. 

In geography at this time the focus of interest continued to be on the sort of 
geographic determinism espoused by Jean Bodin and reflected in some of the 
writings of Montesquieu. This view is strongly expressed in the writing of the 
nineteenth-century German geographer Friedrich Ratzel(1896-1898). Ellen Sem- 
ple, who helped to interpret the ideas ofRatzel to the English-speaking world in the 
early 1900s and who is often regarded as an extreme geographical determinist, wrote 
of the effects of environment and climate on human stature, musculature, pigmen- 
tation, vocabulary, economy, population density, and migration, as well as of the 
"physical effects of geographic environment" (Semple 191 1:40). 

Interesting counterpoints to such views also appeared in the nineteenth 
century, however. The  reciprocal nature of the relationship between people and 
the i r  environments-ignored in simple environmental o r  geographic 
determinism-was beginning to be appreciated in some quarters. George Marsh, in 
Man and Nature, or Physical Geography ar Modijied by Human Action (1864), reasoned that 
many important influences emanate not from nature to humans but rather in the 
opposite direction. 

In the early years of the twentieth century, historical particularism, most 
purely exemplified by Franz Boas, constituted a rebellion against the largely 
unilinear cultural evolutionary sequences of the nineteenth century and against the 
comparative method used by Morgan, Spencer, and others. Nor did this new school 
of anthropological thought have any use for the simple, mechanical, large-scale 
correlations among environmental features, race, and culture that were still being 
promulgated by some geographers. One ofBoas's most prominent students evalu- 
ated the causes behind the historical particularists' avoidance of environmental 
factors in the discussion of cultural phenomena: 



PREDICTIVE MODELING: HISTORY AND PRACTICE / 

In part this represents a healthy reaction against the old naive view that culture could be 
"explained" or derived from the environment. For the rest, it is the result of a 
sharpening of specific anthropological method and the consequent clearer perception of 
culture forms, patterns, and processes as such: the recognition of the importance of 
diffusion, for instance, and the nature of the association of culture elements in "com- 
plexes." Most attention came to  be paid, accordingly, to those parts of culture which 
readily show self-sufficient forms: ceremonial, social organization, art, mythology; 
somewhat less to technology and material culture; still less to economics and politics, and 
problems of subsistence. Much of the anthropology practiced in this country in the 
present century has been virtually a sociology of native American culture; strictly 
historic and geographic interests have receded into the background, except where 
archaeological preoccupation kept them alive [Kroeber 1939:3]. 

Ironically, in his ethnographies Boas remarked on environmental factors influencing 
site location, as in his astute observation that the distribution of population among 
the Central Eskimo was strongly related to conditions of sea-ice favorable to 
hunting the ringed seal (Damas 1969: 1). In his later, more general work, however, he 
downplayed the role of the environment as a determinant of human behavior. 

Another ironic feature of the impact of historical particularism on anthropol- 
ogy is that it showed the way for a more productive analysis of the relationship 
between culture and environment. By reducing the scale of his observation-by 
being a particularist-Boas in some ways anticipated a more modem approach to 
the problem ofcorrelating settlement practices with environmental features. In his 
discussion of the roots of ecological explanation in anthropology, Ellen (1982:5-6) 
makes the important point that 

The  problem of drawing correlations between environmental and social phenomena is 
very much a question of magnitude-the geographic (or demographic) scale of the 
correlations postulated. . . .The  more specific the correlation the greater the possibility 
ofthere being a single determining relationship and the greater the accuracy in predict- 
ing future events under specified conditions. 

This is a crucial observation for the task of locational modeling. Many valid 
criticisms can be made of naive environmental determinism for its suggestions of 
large-scale, simplistic correlations between environmental and cultural features. 
These criticisms are not all germane, however, to more specific correlations 
between certain environmental features and certain aspects of human behavior. 
Settlement systems and ecosystems are both complex, and we should not expect to 
find simple correlations between them. The  task oflocational modeling is to isolate 
those aspects of the environment that do influence settlement behavior and place 
them into perspective with nonenvironmental factors that also influence settlement 
behavior. 

In the generation of anthropologists following the period in which historical 
particularism reached its ascendancy, people like Kroeber and, to a lesser extent, 
Wissler (e.g., Wissler 1922) once again began to study the relationship between 
environment and culture. This time, however, the relationship was stripped of 
causality. Both Kroeber and Wissler were interested in culture areas that were 
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relativistically defined in terms of their distinguishing characteristics and occurred in 
different environmental settings. . . . [Tlhe concept of adaptation of the cultures, 
especially of the nature of social groups . . ., [was not] taken into account. In fact, this 
would smack of reductionism, which Kroeber, holding firmlv to the idea that cultures " 

should be dealt with on the superorganic level alone, had always opposed [Steward 
1973:53-541. 

Julian Steward and Cultural Ecology 

T h e  contributions of one of Kroeber's students ultimately have had more 
impact on archaeology than those of Kroeber himself. Along with a number of 
influential contemporaries that included Omer Stewart and Leslie White (Stewart 
1943; White l949), Julian Steward (1938, 1955) was responsible for three advances in 
the discussion of environmental concepts that have specific importance for the 
practice of locational modeling. First, Steward, unlike anthropologists using the 
culture-area concept, was interested in causal explanation rather than correlation; 
second, he emphasized the effect of particular local aspects of the environment on 
particular facets of culture, thus moving away from large-scale correlations of 
regional environments with "culture types"; third, he identified more or less 
specific pathways through which environments might influence cultures (in his 
"culture core" concept) and tried to devise a procedure for studying the extent of 
these influences (Ellen 1982:52-53). 

In Steward's terms, those aspects ofa culture that were most closely connected 
with environmental exploitation constituted the "culture core"; other aspects, 
determined by purely cultural historical factors, were considered secondary fea- 
tures. Core features and secondary features had to be identified empirically, and 
these could be expected to differ in differing environments and cultures. For a 
particular culture, discrimination between core and secondary features began with 
an examination of the natural environment and of the relations between the 
environment and the economy. Next, the patterns of behavior involved in exploit- 
ing this environment with a specific technology were recognized. Finally, the 
influence of these behavior patterns on other aspects of culture was assessed 
(Steward 1938:2; 1955:37, 40). All aspects of culture implicated in these investiga- 
tions constituted the core; the residua were the secondary features. This procedure 
clearly reveals the direction and type of causality that Steward believed to be at 
work in the relationship between environment and culture. 

Not all features of the natural environment equally influence the core of 
culture, and what i r  important may be expected to  vary from area to area. For the 
aboriginal groups occupying the Great Basin and adjacent portions of the Colum- 
bian and Colorado plateaus at the time of contact with Euroamericans, for example, 
Steward suggested that "the important features of the natural environment were 
topography, climate, distribution and nature of plant and animal species, and, as the 
area is very arid, occurrence ofwater" (1938:2). He  took the density and distribution 
of the population; the division of labor at sexual, familial, and communal levels in 
hunting, fishing, and seed-gathering; the territory covered and the time required 
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for different economic pursuits; and the size, composition, distribution, and degree 
of permanency of villages to be behavior patterns that were directly and strongly 
influenced by the nature of the environment, in the context of the technology 
available to exploit it (Steward 1938:2). 

His comments on the village locations of specific groups were based on 
conversations with informants who were recalling a lifeway that by that time was 
extinct and, usually, on visits to the areas in question. Many of these comments 
indicate which factors Steward considered to be determinants of site location. The 
Northern Paiute of Owens Valley, for example, lived in an area that was rich and 
diverse in comparison with most of the Great Basin. Their villages were relatively 
permanent and were situated on the alluvial fans of streams where these water- 
courses emerged from the canyon wall, about 2-4 mi from the Owens River. These 
locations afforded access to abundant water and were centrally located with respect 
to critical floral resources (except for pinon nuts) growing in or near the valley. Sites 
related to pinon nut extraction and use were located in the adjacent Inyo and White 
mountains and might be occupied during part of the winter in the event of 
abnormally abundant harvests. As important determinants for winter (or perma- 
nent village locations for all the groups he studied, Steward repeatedly mentions the 
availability of water, ample timber for houses, and fuel, and he also emphasizes 
avoidance of areas with unacceptably cold winter temperatures. Thomas (1973) 
used simulation to predict what the artifact dispersal patterns should be ifsteward's 
reconstruction of the Great Basin Shoshonean subsistence-settlement system ap- 
plied to precontact times in the Reese River Valley. Steward's predictions, as 
operationalized by the simulation, were generally verified. 

Some ofsteward's views on the responsiveness of site location to environmen- 
tal factors will be systematized into a more general framework in Chapter 4 and 
hence are worth additional discussion here. T o  judge by Steward's work, the 
locations of winter villages in the Great Basin ought to be relatively predictable on 
the basis ofassociated environmental features. For example, Steward characterized 
the entire Shoshonean culture as practically, even "gastrically," oriented. Since 
Shoshonean groups were frequently at risk of starvation, their adaptation (broadly 
speaking, including the location of their settlements) was constantly exposed to 
selective processes. Social and political factors that may affect site location- 
defensibility; access to trade partners and routes; and economic, social, and political 
obligations to nonlocal groups-were of minimal importance in comparison with 
many areas in North America where warfare was more frequent, economic speciali- 
zation more pronounced, the family not the basic economic unit, and social and 
political groups more rigidly structured and less local. It  will be argued in Chapter 4 
that this constellation of factors-which will be placed on the low end of a 
continuum of "intensification"-results in settlement behavior that is quite 
responsive to environmental factors. Moreover, the structure of the environment is 
such that the resources apparently affecting winter village location are relatively 
concentrated in space, overlap to a fairly high degree, and exhibit either high 
temporal constancy-meaning that they can always or nearly always be found in the 
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same place, as in the case of water and certain aquatic resources-or high temporal 
contingency-meaning that they are seasonally predictable. It will be argued in 
Chapter 4 that this kind ofpatchiness and this kind oftemporal predictability make 
for high site visibility and high site predictability on the basis of environmental 
variables. 

T h e  location of piiion-gathering stations, on the other hand, depends in part 
on the distribution of piiion resources, which in any year are relatively widely 
distributed, seldom overlap with other critical resources, and exhibit low temporal 
predictability. Logically, this environmental structure should lead to  dispersed, 
poorly visible, and poorly predictable distributions for archaeological materials 
deposited during piiion exploitation. On the basis of these observations, and of 
Steward's discussions, we would expect different parts ofthis settlement system to 
have differing visibility and variable degrees of predictability on the basis of 
environmental variables. 

Even this brief discussion of Steward's approach and conclusions clarifies the 
continuity between inductive locational modeling and Steward's work. Steward 
demonstrated that-at least for some site types and in some environments exploit- 
ed by some groups in the arid portions of western North America-there is good 
reason to believe that location was highly responsive to a relatively limited number 
of map-readable environmental determinants. In addition, he argued for a more or 
less one-way directionality of influence: from the environment, as exploited by a 
particular technology, to  the culture core. Finally, although his research was 
influenced by a strong and consistent theoretical orientation, Steward argued that 
the particular aspects of the environment that are most relevant to adaptation 
(which is to say, to the composition of the culture core) have to be discovered 
empirically. 

People in Their Ecosystem: Post-Stewardian Developments 

Locational modeling-particularly in its inductive variety-normally assumes 
that certain environmental variables strongly influence site location. If settlement 
behavior can be considered to  be part of the "culture core," this assumption finds 
support in Steward's cultural ecology. T h e  strong, although frequently implicit, 
reliance of locational modeling on Steward's theories or on other variants of what 
Trigger (1971) calls "deterministic ecology" makes the resultant models susceptible 
to the many criticisms to which Steward's work has been subjected in the last two 
decades. 

One outstanding problem is an ambigu~ty in the definition ofthe culture core, 
which is noted both by Harris (1968:660-662) and by Kohl (1981:102). There is no 
rigorous objective procedure for determining what constitutes the core, and it is 
clear from Steward's own statements that the core may occasionally encompass 
social, political, and even religious patterns. May we assume that all aspects of 
settlement behavior are core elements? Ifnot, which aspects are? Another problem 
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is Steward's assumption ofan unrealistically unidirectional influence of the environ- 
ment on culture. A third problem is unrecognized complexity and variability in how 
the environment is perceived in different cultures (Brookfield 1969). 

Steward's approach enjoys continued popularity among many practicing 
archaeologists, especially those involved in hunter-gatherer studies (Bettinger 
1980: 190). As a result ofthese problems, however, and perhaps also as a result ofthe 
increasingly sophisticated ecological studies of the last two decades, many human 
ecologists and some archaeologists have begun to abandon Steward's framework in 
favor of an ecosystemic perspective influenced by evolutionary ecology-a develop- 
ment that is more evolutionary than revolutionary. A very selective sample might 
include publications by Marston Bates (l953), J. W. Bennett (1946), Harold Brook- 
field (1%8), J. G. D. Clark (1952), David L. Clarke (1968), Harold Conklin (1%1), 
Kent Flannery (1%8), Stanton Green (1980), Donald Hardesty (1975), Robert 
Netting (1974), Roy Rappaport (197l), and Bruce Winterhalder (1981), among many 
others. Although each of the researchers who has shifted to an ecosystems perspec- 
tive has unique points to make, Roy Ellen (1982:75-78) has attempted to summarize 
several characteristics shared by most workers involved in this reorientation of 
culture/environment studies: 

1. Monism. Behavioral and environmental traits are analyzed as part of a 
single system. Culture becomes part of animal behavior, or at least it must 
follow rules that do not contradict those imposed by natural selection. 

2. Complexity. Significance and causality in this single, integrated system 
containing both the culture and the environment are "found in the web of 
finely interrelated factors rather than with general propositions at the level of 
gross categories" (Ellen 1982:76). 

3. Connectivity and mutual causality. "In the ecosystem view, all social activi- 
ties impinge directly or indirectly on ecological processes and are themselves 
affected by those same processes. Fauna (including humans), vegetation, soil 
structure, and microclimate are intricately related and mutually interdepend- 
ent (Ellen 1982:76). 

4. Process. In this systemic view of relationships the emphasis is on the 
interaction ofvariables (for example, positive and negative feedback relation- 
ships) rather than on correlations between social and environmental variables 
at particular states of the system. 

5. Populations as anahtic units. Local human populations replace societies as 
units of observation and analysis, a situation analogous with the ecological 
analysis of nonhuman populations. 

Local, detailed paleoenvironmental reconstructions are of special concern to the 
archaeologists involved in this reorientation, and this is a concern with which 
Steward would have been sympathetic. There is an increasing awareness that such 
information must not simply be brought in as an after-the-fact explanation for 
observed changes through time in human use ofthe landscape, as has long been the 
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practice. Rather, settlement system studies should account in a dynamic manner for 
changing resource distributions related to changing climates (e.g., Darsie 1983). 

The  challenge to  Steward's approach posed by these advances is also implicitly 
a challenge to locational modeling as typically practiced. Future advances in 
locational modeling depend on our learning how to incorporate the richness and 
complexity of the systemic perspective in our locational predictions. 

THE EMERGENCE OF SETTLEMENT PATTERN STUDIES 
IN ARCHAEOLOGY 

One important result ofJulian Steward's insistence on the importance of the 
local environment in the study of living (and recently living) cultures and of his 
interest in the location ofethnographic settlements was the development ofstudies 
of archaeological settlement patterns. The  survey component of the Virb Valley 
program conducted in the late 1940s was instituted largely as a result ofsteward's 
influence (Willey 1953:xviii). Willey's 1953 monograph about this work is generally 
regarded as having defined a new field of inquiry in archaeology: 

The material remains ofpast civilizations are like shells beached by the retreating sea. 
The functioning organisms and the milieu in which they lived have vanished, leaving the 
dead and empty forms behind. An understanding of structure and function of ancient 
societies must be based upon these static models which bear only the imprint oflife. Of 
all those aspects ofman's prehistory which are available to the archaeologist, perhaps the 
most profitable for such an understanding are settlement patterns. 

The term "settlement pattern" is defined here as the way in which man disposed himself 
over the landscape in which he lived [Willey 1953:1]. 

Willey included within the scope of settlement pattern studies the nature of 
dwellings and their arrangement within settlements and the nature and distribu- 
tion ofcommunal buildings. His discussion of the role ofenvironmental, technologi- 
cal, and demographic change in affecting settlement patterns is not elaborate by 
modern standards; he was much more interested in how the community patterns of 
these large, late-prehistoric sites in Peru were affected "by various institutions of 
social interaction and control" (1953: 1). 

Nevertheless, a field war defined, and a series ofpapers (Willey 1956) published 
three years after Willey's Viru Valley report contains many contributions emphasiz- 
ing the importance of environmental variables in determining the distribution of 
human populations across the landscape (e.g., Haury 1956; Heizer and Baumhoff 
1956; Williams 1956). Other authors (e.g., Sears 1956) were interested more in the 
social and political aspects of community patterning than in environmental rela- 
tions. In 1%8 Trigger defined the various aspects of settlement patterns somewhat 
more rigorously than had previously been done, and he distinguished among the 
probable determinants oflocation for individual buildings, community layouts, and 
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"zonal patterns" (Trigger 1968). In the case ofzonal patterns, he states that "the 
overall density and distribution of population ofa region [are] determined to a large 
degree by the nature and availability of the natural resources that are being 
exploited" (1%8:66). He  notes, however, that broad economic (as opposed to simple 
subsistence), political, religious, and defensive factors may also be important 
determinants of site location among agriculturalists. 

In the 1970s several important initiatives added new items to the list of 
environmental variables that archaeologists were willing to consider as possible 
determinants of location, and they also affected the ways that these variables were 
handled analytically. For example, the "situation" of a site (Roper 1979:ll-14) or 
the putative "territory" ofthe community occupying it (Vita-Finzi and Higgs 1970) 
began to be scrutinized in addition to the more traditional on-site environmental 
characteristics. Catchment analysis, as this investigation is usually called, was 
designed to provide insight into the economic activities of the occupants of a site. 
Like most efforts to  use the distribution of environmental variables in understand- 
ing site location, catchment analysis makes the joint assumptions that 

the most important transactions for most people were with the environment . . . [and 
that] humans tend to minimize the time or effort expended in their economic transac- 
tions with the environment (or perhaps they include effort and time expenditure as 
considerations in these transactions). In societies without advanced transportation these 
two factors-strong economic coupling with the environment and minimization of time 
and effort-encourage location close to important economic resources [Kohler and 
Parker 1986:400; emphasis original]. 

Another important advance made in the 1970s was in the analysis of data. 
Steward himself had avoided statistical approaches, and following perhaps uncon- 
sciously in his footsteps virtually all settlement pattern studies for many years 
followed an anecdotal form. That  is, the investigator called attention to apparent 
tendencies for sites to be located in areas having specific constellations of natural 
features, much in the same way that Steward did in his Bashplateau work cited 
above. Where these relationships were patent, the observations were probably 
correct, at least to the extent that the original surveys were not biased by an 
internalized model of "where sites should be." Nevertheless, it was a great contri- 
bution to settlement pattern studies when the participants in the Southwestern 
Anthropological Research Group (SARG) helped to introduce a more rigorous 
testing procedure for determining the degree of relationship between site locations 
and environmental variables. This procedure involves the creation ofexpected site 
distributions for comparison with observed site distributions, using formal statisti- 
cal inferential techniques. 

T h e  SARG organization was dedicated to investigating systematically the 
question of why archaeological sites (or, in some versions, prehistoric population 
aggregates) in the Southwest were located where they were (Plog and Hill 1971). 
T h e  members of SARG began with the basic assumption that activities were located 
in such a way as to optimize the return on energy investment and then proposed 
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three somewhat more specific hypotheses for testing. These hypotheses suggested 
that activity loci were 

1. situated with respect to critical on-site resources, 

2. situated so as to minimize the effort expended in acquiring required 
quantities of critical resources, and 

3. located so as to minimize the cost ofresources and information flow among 
loci utilized by interacting populations (Plog and Hill 1971:12). 

Most participants concentrated on the first two problems, and in his perceptive 
insider's view of the SARG research design several years after its inception, Dean 
(1978:107) suggests that this was due to procedural and logistical considerations. 
T h e  difficulty of operationalizing and testing the third hypothesis would have been 
great. 

Plog and Hill's suggested procedures for testing these hypotheses using null 
models and statistical comparisons of where sites were and were not located were 
rarely used by the SARG participants. More often, the SARG researchers concen- 
trated on searching for significant differences in site location frequencies across 
environmentally defined strata. T h e  methods proposed by Plog and Hill have, 
however, become standard in cultural resource management and in some research 
contexts. The  potential utility of this brand of locational research was clearly 
foreseen by Plog and Hi11 (1971:ll): 

our research should lead to the ability to predict site locations (and something about 
organizational characteristics of sites) from the distribution of critical resources and 
other critical variables. And, conversely, we ought to be able to predict the critical 
variables by examining the site distribution patterns. 

Some of the problems with the "critical resources" concept are noted in the 
Chapter 4 discussion of how variables are selected-in inferential or deductive 
models-as potential determinants of locational behavior. Hi11 (1971:58) suggests 
that critical resources are those "without which the system would collapse" (but 
see Sullivan and Schiffer 1978:172). Dean (1978:108) acknowledges that SARG has 
been primarily concerned with food resources and suggests that availability offuel, 
structural wood, and other nonfood resources might also be important in determin- 
ing site location. 

While it is clear that those ofus who are engaged in locational modeling owe a 
substantial debt to the  SARG participants, it is important to  call attention to  a final 
comment by Sullivan and Schiffer concerning the difference between investigating 
the distribution and movement ofpeople through space in the systemic, behavioral 
context and investigating the spatial distribution of archaeological sites: 

[Plrehistoric peoples most likely did not locate "sites" anywhere. However, they did 
establish, occupy, and abandon behaviorally significant spaces, such as activity areas, 
camps, and settlements. . . . Sites are nothing but deposits of material remains in the 
environment that archaeologists recognize as being potentially informative about past 



PREDICTIVE MODELING: HISTORY AND PRACTICE 

cultural behavior and organization. . . . Owing to secondary deposition, multiple 
occupations, and other formation processes, sites usually are not equivalent on a 
one-to-one basis to camps, settlements, or population aggregates [Sullivan and SchiKer 
1978: 1691. 

T h e  discovery of statistical associations between site types and environmental 
variables, they continue, may be potentially useful for developing predictive 
models for cultural resource management (CRM) and for evaluating survey sam- 
ples, but  construction of such models "has little to  do with the formulation and 
testing of behavioral principles" (1978: 169). 

THE ERA OF PREDICTIVE MODELING 

It  is clear from the above citations that in the early 1970s there was already 
some talk about predictive modeling, although there were relatively few examples 
of what this term might mean. T o  avoid ambiguity, we can define a predictive 
locational model as a simplified set of testable hypotheses, based either on behav- 
ioral assumptions or on empirical correlations, which at a minimum attempts to  
predict the-loci of past human activities resulting in the deposition of artifacts or 
alteration of the landscape. Thus defined, the potential applications of predictive 
models are certainly not limited to CRM contexts. Green (1973) conducted a 
locational analysis of prehistoric Mayan sites (defined as the loci of one or more 
structures) in northern British Honduras (now Belize). In this research she shared 
the SARG assumption that "sites were located so as to minimize the effort 
expended in acquiring critical resources" (1973:279). Several soil and vegetation 
variables, along with variables reflecting distance from navigable bodies ofwater (in 
the belief that access to  commerce was a critical resource), were tested for associa- 
tion with counts of sites per unit area, using multiple linear regression. The  
resultant multivariate statistical model of site location was interpreted as predicting 
high probability for site location in areas with large tracts of good agricultural land 
and in proximity to  trade routes. In a sample of 150 quadrats known to contain only 
22 sites, about 22 percent of the variance in the number of sites observed in each 4.25 
kmz quadrat was explained by the independent variables selected by the regression 
routine. Quadrats with high negative residuals (no sites found, several predicted) 
were considered as probably containing undiscovered sites, and such quadrats were 
assigned a high priority for future survey efforts. Because sites were located in the 
centers ofarable tracts rather than on their margins, Green inferred that residences - 
were probably located so as to have garden plots in their immediate vicinity. 

As predictive models began to be applied in CRM contexts, many still- 
unresolved issues concerning the appropriate use ofpredictive models were identi- 
fied almost immediately. 
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Predictive models are probability statements; they are not "facts," and cannot substi- 
tute for facts in any application requiring the use of hard data about specific individuals 
as decisionmaking criteria. . . . 
T h e  problem is that some archaeologists have told some planners that our predictive 
models can be used as hard data, when in actuality it is our hard data on site location and 
significance that must be figured into the planner's cost-benefit ratio. T o  substitute a 
scientific hypothesis (our predictive model) for scientific fact (actual site location) as a 
criterion for a planning decision is to court disaster. 

There is only one way for us to get the hard data for use in such decisions: by an 
intensive ground reconnaissance of the entire area to be affected by a proposed project 
(Wildesen 1974:l-21. 

In the latter halfofthe 1970s the Bureau ofLand Management, Forest Service, 
Corps of Engineers, Interagency Archeological Services, and some State Historic 
Preservation Oficers were beginning to sponsor both surveys that would result in 
predictive models and attempts to build predictive models from data already 
collected (Interagency Archeological Services [IAS] 1976:3; King 1978:73). Although 
important federal historic preservation legislation dates back to the turn of the 
century (the Antiquities Act of 1906; the Historic Sites Act of 1935), the National 
Historic Preservation Act of 1966, amended in 1976 and 1980, has been of signal 
importance in this growth of predictive models, especially Section 106 of that act, 
which requires that federal agencies "take into account" the effects oftheir actions 
on properties eligible for the National Register of Historic Places (King 1984; Scovill 
1974). In conjunction with Executive Order 11593 (1971), other sections of the 
National Historic Preservation Act, the National Environmental Policy Act of 1969, 
and various implementing regulations, this statute gives federal agencies the 
"substantive responsibility to identi@ historic properties on their lands and nomi- 
nate them to the National Register, and to record such properties when they must 
be destroyed" (King 1984:116). Highly variable legislation for the protection and 
identification of archaeological resources also exists in state and local jurisdictions 
(Rosenberg 1984). 

Federal (and occasionally state) agency response to this legislation has 
included predictive modeling, under the assumption that it will be a long time (to 
say the least) before a total, comprehensive inventory of archaeological resources 
can be conducted on lands under their jurisdiction. 

For comprehensive planning, predictive survey may best be considered an ongoing 
process in which increasingly fine-tuned predictions can be made as more and better 
information becomes available. If the archaeologist continues to survey a new selection of 
sample units every time, he will eventually obtain a 100 percent sample. This is a rational 
goal for statewide comprehensive surveys and for federal agency surveys conducted 
under section 2(a) of Executive Order 11593. The  advantage of predictive survey is that 
rome useful data for purposes ofplanning in the entire study area became available almost 
immediately . . . and it is probable that all the information needed to carry out 
responsible preservation planning will be available before physical inspection has 
covered even 50 percent of the land [King 197892; emphasis original]. 
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T h e  flood of predictive models that appeared in the late 1970s shows that 
contractors were happy to respond to agency requests for such models, even though 
(judging by the variability in techniques and products) no one was sure how 
prediction might best be accomplished. Early attempts include Dincauze and 
Meyer (1976), Fuller e t  al. (1976), Hackenberger (1978), Robertson and Robertson 
(1978), Scott et al. (1978), Woodward-Clyde Consultants (1978), Holmer (1979), 
Barber and Roberts (1979), Burgess et  al. (1980), Kohler e t  al. (1980), Muto and Gunn 
(1980), and Senour (1980). 

A Taxonomy for Predictive Locational Models 

Before we can begin to talk about the very dissimilar enterprises that have 
been called "predictive locational models" during the last 10 years, we need to 
establish some definitions and build a classification for what has been done so far. 
Another purpose for classification is to highlight what this author believes to  be the 
most significant dimensions of variability among the predictive locational models 
put forward to date. Specifically, I propose a classification with three distinguishing 
dimensions: level of measurement, procedural logic, and target context (Figure 
2.1). 

Many models for site location or settlement behavior are intuitive or not fully 
operationalized. T h e  ugly word operationalization refers to  the process of careful 
definition ofall the terms in a model in such a way that the same predictions can be 
made from a model by different people. If a model can be objectively, replicably 
mapped, it is operationalized; a model consisting of the statement that "sites are 
located near rivers on dry, level ground," for example, is not mappable until site, 
near, river, dry, level, and ground have been rigorously defined. 

As we move to the right in Figure 2.1, we move from models with no 
measurement to  models based on variables measured at the categorical or nominal 
level (such as soil type) or ordinal level (such as resources ranked in order of 
hypothesized importance) to models based on variables measured at the interval or 
ratio level (such as slope, distance to  water, estimated net primary productivity, 
and so forth). There is nothing wrong with site location models that are not 
operationalized if they provide insights into settlement behavior, as does Binford's 
(1980) distinction, based on a review ofhunter-gatherer subsistence and settlement 
system organization from around the world, between foragers and collectors. Until 
a model is operationalized, however, it cannot be mapped and cannot be used for 
management. This is one problem with the informal models of settlement pattern 
that are found in many Class I overviews based on existing literature and site files. 
T h e  most important distinction along the dimension labeled level of measurement is 
between the box on the left, containing unoperationalized models, and the two 
boxes on the right, containing operationalized models. 

T h e  other two dimensions in this classification-procedural logic and target 
context-need to be discussed together. Most predictive models in cultural 
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resource management have been inductive (used here synonymously with the terms 
inferential or empirical,~correlative) in their logic. That  is, they begin with survey data 
on the distribution of archaeological materials across the landscape in relation to 
some (usually environmental) features, and then they estimate the spatial distribu- 
tion of the population of archaeological materials from which the sample was drawn. 
T h e  logical alternative to this procedure is to begin with a theory as to how people 
use a landscape and to deduce from that theory where archaeological materials 
should be located. 

By target context I mean the "theater of operations" for the model. T h e  
systemic context (Schiffer 1972) is the dynamic living system observed by ethno- 
graphers and ethn~archaeologists. (Of course, it too is subject to inference, partial 
observation, and informant perception.) The  sum total of the materials collected, 
altered, organized, and deposited by the participants in this system, and the spatial 
distributions of these materials, constitute the archaeological context (Schiffer 
1972). This context can never be directly observed, however, and as soon as we 
begin to sample materials from it, analyze them, and make interpretations, we enter 
the interpretive or analytic context (Kohler et  al. 1985). Some of the processes and 
activities in each of the contexts are discussed in Chapter 4. 

In two senses inductive models automatically operate in the analytic context. 
First, to make predictions directly about the systemic context they would have to 
make some attempt to control for the effects of the postdepositional and deposi- 
tional processes that separate the analytic from the systemic context (see Chapter 
4); this is rarely, ifever, done. Second, and more insidious, the sampling and analysis 
processes of the analytic context are invisibly imbedded in inferential predictive 
locational models. Any inferential locational model predicts only what would have 
been found had the population of space from which the sample was drawn been 
surveyed in the same manner as was the sample, using the same rules for attribute 
coding, site recognition, and data analysis. Such inferential models predict neither 
the systemic interaction between a cultural system and a landscape nor the archaeo- 
logical context resulting from it; rather, they predict what we will find and how we 
will interpret i t  if we consistently follow a particular set of rules for fieldwork and 
analysis. For this reason I say that inductive models normally operate in the analytic 
context. The  challenge for inductive models is to  build the bridge co the systemic 
context by making the analytic methods (including discovery) as "transparent" 
(non-bias-making) as possible and by controlling for the effects of depositional and 
postdepositional processes in the archaeological context. 

Deductive models, on the other hand, begin with some theory predicting 
human behavior in the systemic context. T h e  challenge for deductive models is t o  
build the bridge to the analytic context, which is where the outputs of the system 
can be observed. This bridge-building-whether from the systemic to the analytic 
context or vice versa-is referred to as explanation (see discussion in Chapter 4). 
Explanatory models, as I suggest the term be used, are inherently neither inductive 
nor deductive. Instead, they are models that attempt to build the bridge between 
the dynamics of the living system and its observed outputs. 
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There is at least one sense, however, in which deductive models are clearly 
preferable to inductive models. Except when we are working with living groups we 
are limited to testing predictive locational models in archaeology in the analytic 
context. Thus, an explanatory, inferential locational model would end up making 
predictions about behavior in the systemic context that could not be immediately 
tested, although in a cycle of scientific inquiry these predictions could be used to 
suggest theory from which implications for future testing are drawn. An explana- 
tory, deductive locational model would result in predictions for the analytic context 
that would be directly testable. 

Examples 

A detailed review of even a small proportion of the predictive models of the 
past decade would take much more space than is available here. T h e  only reasonable 
way to approach this mass of material is to pick a few themes and trace them 
through a highly selective sample of the available references. Discussions of sam- 
pling, statistical methods, use of remote sensing data, and use of geographical 
information systems are generally avoided here, as they are treated in detail 
elsewhere in this volume. The  four models to be discussed here were chosen 
because they illustrate particular cells in the proposed taxonomy and because they 
focus on various geographic regions. 

I would suggest that some of the same criteria used to evaluate research 
designs and theory can be used to assess predictive locational models. One obvious 
criterion that should be applied is the accuracy of these models. Do they supply 
reliable predictions? Unfortunately, this information is available for so few models 
(see Appendix) that other, more general guidelines need to be considered. This, in 
itself, underlines the need for additional attention to  model testing, refinement, and 
verification. In the discussion below of examples of predictive models, I have 
followed Blalock's (1979) suggested criteria for judging what constitutes good social 
science theory in general. 

1 .  Generalizability. Generalizable models can be applied to large areas, 
rather than small; are applicable to different adaptations and environments, 
rather than just to one; take into account the entire settlement system, rather 
than just part ofit; and have implications for human organizational systems in 
general as well as prediction of site locations in particular. Generalizability has 
both a conceptualization component-are the theoretical arguments applica- 
ble across a broad range of situations?-and a comparability component-if 
our theories can be applied across a broad range of situations, can our 
measurement operations be guaranteed to be applicable in the same broad 
range of circumstances (Blalock 1982:29)? 

2. Simplicity. Other things being equal, a simple (or parsimonious) model is 
to be preferred to a complex one. After all, one reason people make models in 
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the first place is that the real world is too complex to be readily and unambigu- 
ously understood. 

3. Internal Consistency. Like other models, predictive locational models must 
be mathematically and logically consistent. 

4 .  Precision. Precision refers to the fineness of detail in the predictions. 
Precision may involve spatial detail: are predictions made to the square mile 
or the square meter? Or it may involve content: how fine-grained are the 
predictions ofwhat will be found in various locations? Are various possible site 
types, periods, or assemblage types differentiated? Other things being equal, 
a model that is precise in its predictions is to be preferred to one that is not. 

5 .  Falsifiability. It must be possible to prove that a model is wrong. 

The last two of these characteristics can be lumped together for convenience, 
since a model that is not precise in its predictions cannot be falsified. Internal 
consistency is a more or less mechanical problem that needs no further mention here 
(but see Kohler and Parker 1986:398). There are, however, severe and perhaps 
unresolvable conflicts among generalizability, precision, and simplicity in predic- 
tive modeling, as in social science theory in general (Blalock 1982:27-3 1). 

A Predictive Land-Use Model for North-Central Washington 

In an overview based on a survey of existing literature, Robert Mierendorf et 
al. (1981) first constructed a predictive model for site location in a large study area 
encompassing the corridors of two proposed transmission lines and then carried out 
a "sensitivity analysis" for the predicted archaeological resources in these same 
areas. The  sensitivity analysis was designed to predict the likelihood that disturb- 
ances in different geographic zones will significantly impair the research value of 
predicted archaeological resources, given the predicted regional research value of 
these resources, their density, and previous disturbances in each zone. I will 
consider only the predictive aboriginal land-use model in this discussion. 

If we have to fit this model into one of the pigeonholes shown in Figure 2.1, it 
would probably be best to call this an inductive model aimed at the analytic 
(archaeological) context, at a nominal level of measurement, although to the (rather 
large) extent that the authors rely on an ethnographic model, it could be argued 
that this is primarily a deductive approach. There is no formal statistical model for 
site location, type, or density, but the model was operationalized to the extent that 
a map could be made. To the extent that the model construction relied on data from 
archaeological site excavation and survey, it is fair to call-it inductively based. The  
model also takes into account the seasonal distribution and density of resources, 
however, and draws on recent hunter-gatherer studies. In some places it apparently 
(and implicitly) assumes a least-cost solution to location of settlements in cases of 
conflicts between the location of resources. For example, many researchers assume 
that storage of fish and roots was necessary in order for human inhabitants in the 
Columbian Plateau to survive the harsh, resource-poor winter months in a rela- 
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tively sedentary fashion. In this study area, fishing and presumably fish and perhaps 
root storage were concentrated along the large rivers, the Columbia and Okanogan. 
These same river valleys, however, were probably unfavorable winter locations 
from the point of view of adequate shelter from severe winter winds and the 
availability ofwood for fuel. Mierendorfet al. assume that in decisions about winter 
village locations priority would be given to distributions of landforms providing 
shelter from winter winds and to the availability of fuel, which is a bulky, heavy 
item in comparison with stored food. 

T h e  predictive model is based on a vegetation map and a set of topographical 
contour maps. T h e  model recognizes six broad zones of archaeological resource 
types and densities (Mierendorf e t  al. 198190): 

1. Summer hunting and gathering zone; low density. Areas supporting 
summer hunting ofdispersed ungulates. T h e  highest elevations, which have a 
mesic vegetation and are accessible only in the summer, are mapped as part of 
this zone. 

2. Summer and fall hunting and gathering zone; low density. Areas support- 
ing dispersed ungulate hunting in the summer and fall. Intermediate eleva- 
tions with a xeric vegetation are included in this zone. 

3. Spring, summer, and fall (on map) and winter (in text) hunting and 
gathering zone; low density. Low-elevation, steppe vegetation zones not 
included in any of the other categories are mapped in this zone. These areas 
are relatively accessible in winter. 

4. Summer fishing camp zone; high density. Areas within 10 km (6.2 mi) of 
falls and rapids on the Columbia and Okanogan rivers and mouths oftributar- 
ies to  these rivers are included here. Catchment sizes are modified to  reflect 
steep river valleys, resulting in a linear distribution for this zone. 

5. Winter residence zone; moderate to high density. Areas in which stands of 
timber, protected canyons and valleys, and water resources are available 
within a 5 km (1.3 mi) radius of each other are mapped in this zone. 

6. Overlap of fishing camp and winter residence zones; high density. 

Generalizability. This model is intended to be applicable to a study area in 
north-central Washington that covers more than 21,000 km2 (8000 mil). T h e  tem- 
poral scope of the model is assumed to be the entire local prehistoric sequence. Its 
applicability to  other areas may be slight, inasmuch as it relies on local ethnographic 
analogs and archaeological data for its predictions. 

Simplicity. T h e  model is moderately parsimonious in its selection of inde- 
pendent (causal) variables. Three different types ofvariables (shelter, fuel, and food 
resources) are considered for their possible effects on the locations of three different 
site types. Both on-site and catchment-area variables are considered. T h e  model 
gains simplicity but loses realism and precision by not incorporating changing 
resource distributions due to changing climates and changing adaptation types due 
to intensification. 
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Precision. T h e  model gains precision by considering seasonal distributions of 
resource types and by identifying differing site types and densities. On the other 
hand, the very large study area, the rather poor quality of available maps of 
important resource distributions, and the hand-measurement techniques all con- 
tribute to  low spatial resolution in prediction. It is hard to imagine, particularly, 
how the distribution of the winter village zone could be accurately mapped using 
these manual techniques. The  authors themselves call attention to these shortcom- 
ings (Mierendorf e t  al. 1981534, 94). 

In many ways this study is exemplary among the "overview" documents that 
attempt to predict prehistoric land use. Most such overviews result in unoperation- 
alized models that remain at a verbal, unmapped, unmeasured level, somewhere in 
the far left-hand box in Figure 2.1. It also avoids too heavy a reliance on existing 
survey records that (if typical ofmost areas) are biased toward certain types of sites. 
This is achieved by giving more weight to natural resource distribution than to the 
existing site data base and by building a reasonable model for the use of those 
resources by using the ethnographic record. Even granting unlikely climatic stabil- 
ity assumptions resulting in unchanging resource distributions, the danger in such 
an approach, of course, is that if adaptation types other than those present in the 
documented ethnohistory were ever present, they will not be identified or pre- 
dicted by such a model. 

A weakness that this model shares with most overview documents is the 
absence of attempts to validate statistically the variables selected as probable 
determinants of site location. Of course, in cases where no existing data base is 
available or where the existing data are irretrievably flawed, this is the only possible 
approach. In other cases, however, there should be an effort to build a null, random 
model for the location ofarchaeological resources for statistical comparison with the 
actual distributions. Impressionistic isolation of determinant variables should be 
avoided since it may result in the use of variables whose significance cannot in fact 
be demonstrated or in the failure to use variables whose significance could be 
demonstrated. Even ifthe selected variables are the correct ones, the model will not 
be convincing to those who have other subjective impressions of the determinants 
of site location. 

A Hierarchical Choice Model for Site Location 

Before moving to predictive models based on deductive, optimizing assump- 
tions and inductive models involving substantial analysis of ratio-level data, a brief 
discussion of an approach to settlement location analysis proposed by Limp and 
Carr (1985) will be useful. Their model should probably be categorized as a 
deductive approach to the systemic context, on an ordinal level of measurement 
(Figure 2.1). These authors propose that people make decisions about anything, 
including location of activities, by ranking the available alternatives into sets of 
equal preference value and then randomly selecting an alternative from the possibil- 
ities in the highest available preference set. This "general theory ofrational choice" 
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was derived by Arrow (1951). The  ordering of available options into these prefer- 
ence sets is based on "conditional preference aspects"-those aspects of the 
environment (broadly speaking) that directly bear on choices. When there is more 
than one "choice-making" aspect t o  be considered, it is assumed that the alterna- 
tives are evaluated in a sequential, hierarchical fashion by the decision-maker. In 
this framework an unfavorable aspect of a location (e.g., no water or too much 
water) cannot be mitigated by another, favorable aspect, as could happen in a linear 
additive model. 

One key decision to be made in the analytic context when using this model is a 
choice as to how many preference sets should be assumed to have been in use for 
each choice-making aspect. Ifthere are only two preference sets for each variable- 
satisfactory and unsatisfactory locations-the approach is formally identical to a 
"satisficing" approach (Simon 1957), as used by Williams et al. (1973) in the Great 
Basin, for example. As the number of sets that need to be ranked becomes greater 
than two for each variable, the framework approaches the optimization called for by 
classical marginalism: large numbers ofbits ofinformation have to be considered by 
both the decision-maker and the analyst. Intermediate numbers of preference sets 
imply an ordinal level of measurement. 

Limp and Carr (1985) present a few brief examples of how this framework can 
be applied in different settings. They convincingly argue that hierarchical choice 
analysis is a realistic model for how people make decisions, since it does not assume 

- - 

that they can make, or wish to make, perfect calculation of return rates on every 
variable for every possible location. Nor are the data requirements in the analytic 
context as huge as for an optimal foraging theory model, for example. T h e  hierar- 
chical decision process assumed by this framework does not lend itself to easy 
discovery through any presently available computer algorithms, however, and it 
certainly cannot be reconstructed by such linear additive models as multiple linear 
regression, for example (Kohler and Parker 1986:428-430). 

Generalizability. Because of its flexibility and its explicit reference to  the 
systemic context, this model has very great generalizability. It  has the ability to 
bring all kinds of choice-making aspects into consideration, not just those related to  
food resources. Indeed, one of the problems with the approach is that it is so very 
general that it gives few internal guidelines as to  how it might be applied to a 
specific area. How many choice-making aspects should we expect? Where should 
the "break points" for a ratio-level variable like distance to water be established for 
each preference set, and how do we know this? Can an inferential technique be 
devised to reconstruct hierarchical decision frameworks from a distribution of 
points with and without archaeological resources? These are important questions 
that need to be addressed before application of such models can advance very far. 

Besides these operational difficulties, we may-ask to what extent it is appro- 
priate to view all, or most, site locations as the result of "free" decisions in the 
systemic context. Kohler and Parker (1986:432-438) have identified a number of 
constraints on choice, instances in which "rational" decision rules are violated, 
cases where there is extreme lag in response to changing environmental determi- 
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nants, and other factors that make it difficult to analyze site location as though it 
were the outcome of simple, rational decisions. Then too, it will be suggested in 
Chapter 4 that settlement systems have a kind of internal logic that has little to do 
with individual or even group decisions at particular moments in time. Despite 
these very real problems, it is not easy to see how human behavior can be analyzed 
and predicted in the systemic context without considering how and why people 
make decisions. 

Simplicity and precision cannot be evaluated for this example, since they depend 
on particular applications of the framework. 

A n  Inferential Model for Site Location in Central and Southeastern Utah 

T h e  next case was selected as an example of the most common approach to 
predictive locational modeling in North America and particularly in the arid West. 
This is an inferential multivariate predictive model, operating on a ratio level of 
measurement and targeting the analytic context. This example, in common with 
many others that could be mentioned, is the result of a Class I1 (sample) cultural 
resource inventory-in this case, three tar sands areas in Utah (Schroedl 1984; Tipps 
1984; Appendix, this volume). 

For the larger two of the three study areas a two-phased random sample of 
quarter-sections was drawn, selecting 5 percent ofthe population on the first round 
and an additional 5 percent on the second round. (The third area was simply 
sampled at 10 percent, since it comprised only seven 160-acre quadrats.) The  
sequential samples were actually surveyed at the same time, but the results were 
recorded separately so that model building and model testing and revision could be 
conducted using different sets ofdata. Survey intensity and means of distinguishing 
sites and isolated finds are explicitly described in the report. For each site, probable 
age and cultural affiliation were recorded, and the site was classified into one of 10 
descriptive site types (for example, pithouses, rockshelters, and lithic scatters with 
features). A second functional classification, more useful for explanatory purposes, 
was devised by evaluating eight criteria for the 158 sites/components in the sample: 

1. diversity and size of the tool assemblage 

2. maximum density of artifacts 

3 .  frequency of debitage (lithic debris) 

4. site size 

5. number of features 

6. type of features and amount of labor investment represented 

7. presence of trash or midden deposits 

8. presence of stratified deposits 

T h e  first five of these variables-those measured at the ratio level-were analyzed 
using principal components analysis (see Chapter 5). Four groups emerged on the 
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two significant factors, and these were interpreted as representing the major 
functional types suggested by Binford (1980) for logistically organized hunter- 
gatherers. T h e  non-ratio-level variables were used to check the site classifications; 
these variables usually supported the type assignments made on the basis of the 
principal components analysis. 

Site location analysis began with univariate descriptive frequencies for all sites 
in each study area with respect to elevation, aspect, slope, distance to permanent 
water, primary and secondary landform, depositional environment, primary and 
secondary vegetation, and primary and secondary geologic substrate. 

One nice feature of this report is the discussion of how point estimates and 
confidence intervals for the total population of sites in each study area were 
calculated (Tipps 1984). It is relatively rare for confidence intervals to be calculated, 
which is a waste of one of the main advantages of random design adopted by most 
surveys. Tipps also warns her readers, quite correctly, that in two ofthree samples 
the amount ofskewness relative to the sample size may lead to confidence intervals 
that are misleadingly narrow, using the normal parametric estimation techniques 
employed (for a discussion of statistical terms used here, see Chapter 5). 

Two separate predictive models were developed (Schroedl 1984). One of these, 
incorporating Landsat imagery, turned out not to be very informative and will not 
be discussed further. Predictive models were constructed only for the two larger 
survey areas, which were somewhat more similar to each other than they were to 
the third area, and the two larger areas were pooled for purposes of analysis. 
Disappointingly, the functional identification ofsites carefully worked out earlier in 
the report was not used for locational analysis and prediction, probably because of 
sample size considerations imposed by the inferential approach. (Division of the 
total pool ofsites into its constituent classes significantly reduced the sample size in 
each class, which in turn makes it less likely that significant relationships with 
environmental variables will be discovered.) Nor is there any analysis ofthe location 
of the considerable number of isolated finds recorded during the survey. 

T h e  model-building process went through several preliminary stages. In the 
first, nine variables were used in a discriminant analysis to  find the best linear 
function differentiating between sample quadrats from the initial 5 percent samples 
that contained, or did not contain, sites. Distances were measured from the center 
ofeach 160-acre quadrat. The  directional aspect was broken into two components to 
avoid the problem typically associated with measurements in circular degrees. (A 
symptomof this problem is that 359" and lo are very similar measurements.) The  
variables were 

I .  difference between the maximum and minimum elevation in each quadrat 

2. distance to nearest permanent water 

3 .  percentage of the quadrat covered by piiion-juniper 

4. number of drainages within the quadrat 

5. average quadrat elevation 
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6. distance to nearest river 

7. distance to nearest wooded area 

8. north-south aspect 

9. east-west aspect 

In the first two-group analysis, only the first four variables were selected by the 
stepwise procedure used for construction of the one discriminant function. Reclassi- 
fication of the quadrats on which the function was based into their original groups 
(sites, no sites) was 73 percent successful; classification error rates for the quadrats of 
the second 5 percent sample were about 10 percent higher. These results are 
somewhat lower than, although within the range of, other similar attempts tabu- 
lated by Schroedl(1984:155). A second stage ofrefinement, which involved discard- 
ing three outliers from the analysis and using more of the sample quadrats in the 
initial classification-building portion of the discriminant analysis, improved these 
results; two additional variables (5 and 6 above) also contributed to the linear 
discriminant function. 

T h e  final analysis employed all of the sample quadrats and discriminated three 
groups of quadrats: those without sites, those with one site, and those with more 
than one site. Reclassification rates were quite high but, ofnecessity, were based on 
the same sample for which the functions were obtained in the first place. In a 
three-group solution there may be one or two significant linear discriminant 
functions; there are two in this example. T h e  first, explaining about 40 percent of 
the total variance, showed that high-elevation quadrats with relatively large pro- 
portions of piiion-juniper contained a larger number of sites than low-elevation, 
unwooded quadrats. T h e  second function, which explained about 12 percent ofthe 
total variance, was orthogonal to the first; that is, this function exploited a dimen- 
sion of variability uncorrelated with the high elevatiodhigh picon-juniper vs low 
elevation/low pinon-juniper dimension. Apparently there were several quadrats 
that had a relatively high number of drainages but were not significantly higher in 
elevation than those having only a few drainages. These same quadrats were also 
located a long way from a river and tended to contain only one site; they were 
differentiated from quadrats with no sites or with two or more sites along this 
dimension. 

Generalizability. It seems probable that this solution exploits a good deal of 
variability peculiar to  this particular sample; it would be surprising if the second 
dimension of variability turned out to be typical of much of the intermountain 
West. The  first dimension is much more general; a stmilar discriminator could 
probably be found in many areas at similar elevations in the intermontane region. 

Simplicity. T h e  final predictive model, in the form of the classificatory equa- 
tions derived from the discriminant analysis, allows unambiguous classification of 
any quadrat from the spatial population into one ofthe three groups on the basis of 
measurements on six variables (the original nine variables less distance to wooded 
area and the two aspect determinations). 
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Precision. T h e  160-acre quadrats do not allow for very precise prediction of 
site location. T h e  author points out, quite reasonably, that achieving higher spatial 
precision over large areas is extremely time consuming without the use of such 
computerized data-collection aids as geographic information systems (see Chapter 
10). Nor are the predictions very fine grained in terms ofthe types of sites predicted 
to  be present. Some gain in precision in terms of the number of sites predicted for 
unsurveyed quadrats is achieved by the three-group solution, in contrast to the a 
priori site/nonsite classes used by most analysts. There is little reason to expect, 
however, that the local environment in quadrats with one site should be opposable 
to  that in quadrats with more than one site along a continuum that is at right angles 
(or uncorrelated with) the continuum that distinguishes between quadrats with no 
sites and quadrats with many sites. Some functional differentiation in site types is 
almost certainly being exploited here, and the results might have been even better 
had this distinction been taken into account for prediction. 

A n  Optimal  Foraging Theory Model  of Site Location for the Northeastern 
Continental Shelf 

Barber and Roberts (1979) present both an inductive and a deductive approach 
to the dificult problem of estimating site types and densities on those portions of 
the continental shelf from the Bay of Fundy in Maine to Cape Hatteras in North 
Carolina that are now submerged but were exposed at or after 18,000 BP. Although 
they face unusual measurement problems because ofthe nature of their study area, 
their conceptualization problems are the same as those for a dry-land model. Only 
their deductive model-based on optimal foraging theory-will be discussed here; 
see the Appendix for a summary of the entire project. 

Optimal foraging theory models are derived from fundamental assumptions in 
evolutionary ecology and population genetics in which change in the relative 
frequency of traits in a population is interpreted as being due to differential 
inclusive fitness among the individuals in that population. From this perspective, 
the goal of behavior should be to maximize the individual's proportionate contribu- 
tion to  the genotype of the next generation. Unfortunately, inclusive fitness is 
difficult or impossible to  measure, but it may have correlates that can be measured. 
Optimal foraging theory assumes that the net rate of energy captured by an 
individual (or some similar measure) is such a correlate, and that it will be maxi- 
mized by selective forces (Smith 1980:58). 

There has been an extended discussion about the applicability of such models 
to  human populations. Those cultural ecologists who accept the "monism" dictate 
discussed above consider these models to be clearly relevant. Eric Alden Smith 
(1980: 12-15) points out that there is a middle ground between two extreme positions: 
(a) that cultural processes are perfectly anal~zable in terms of general evolutionary 
models, with the only meaningful distinction being that cultural evolution is more 
rapid and more finely tuned; and (b) that cultural processes are shaped by purely 
cultural goals that have no necessary congruence with biological criteria for 
adaptation. 
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[ A ]  third alternative is .  . . that cultural criteria guiding decisions and long-term changes 
are closely correlated with, but not isomorphic with, biological criteria of adaptive 
success. In this case, biological factors acting at the proximate level ensure that cultural 
modes of inheritance will not substitute selective criteria that are consistently in conflict 
with fitness maximization. . . . 
Selective criteria of genetic evolution, and those ofculture change or individual decision- 
making, will be generally but not perfectly correlated [1980:14-IS]. 

Models for the location of behavior based on optimal foraging theory share 
some similarities with the general choice theory used by Limp and Carr. Since they 
deal in decisions, both operate within the systemic context. The  hierarchical choice 
methods essentially specify how choices are made (choice mechanisms), however, 
while optimal foraging theory also specifies why choices are made (choice goals). In 
one sense the approach advocated by Limp and Carr is more generalizable, since 
goals other than optimizing food intake can be accommodated. Optimal foraging 
theory is more complete, and perhaps more useful, however, since it contains 
internal guidelines to predict exactly what choices will be made given an array of 
information on resource costs. Both use a deductive logic for prediction. 

The  information needed to apply and test optimal foraging models is difficult 
and expensive to collect, and it has not been easy to test such models, even in 
modern ethnographic contexts (but see Smith 1980; Winterhalder 1983). In the 
archaeological context the problems are multiplied immensely. These problems are 
particularly serious for the application discussed here, since no detailed paleoenvi- 
ronmental maps are available for the inundated continental shelf. For some of the 
resources, return rates have been experimentally estimated by Perlman (1976). 
Since the rigorous quantification ofnet resource yields called for by optimal foraging 
theory was impossible for most resources, the authors dichotomize the major 
potential food resources along two dimensions: the probable importance of the 
resource, based on grossly estimated caloric return rates (primary vs secondary 
resources), and the degree to which location in the immediate vicinity of the 
resource is necessary for efficient exploitation of that resource (determinate vs 
indeterminate resources). Shellfish, f i r  example, have relatively low return rates 
and are therefore secondary, but they are localized in space and have a large amount 
of waste weight, which would encourage location of sites in the vicinity of the 
resource (Barber and Roberts 1979:306). The  resources characterized in this manner 
are shown in Table 2.1. 

T h e  authors recognize that the immediate predictions made by optimal 
foraging theory concern what resource patches will be exploited under what 
conditions. Locations ofsettlements, therefore, are one order ofinference removed 
from the predictions that optimal foraging theory is designed to make. The  spatial 
resolution of predictions is so low for this particular model, however, that this may 
not be a problem. Only four zones are differentiated for prediction: full coastal, 
estuarine, inland valley, and upland. Given that the locations of these zones change 
during marine transgression, Barber and Roberts separate the extremely long 
period of interest (beginning at 18,000 BP) into six 3000-year segments. They also 
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TABLE 2.1. 

Resources categorized by return rate and role in influencing site location 

Importance 
Resource (Return Rate) Role in Determining Location - 

nuts (various oaks, hickory, and pecan) primary indeterminate 
mammoth and mastodon secondary indeterminate 
caribou secondary indeterminate 
moose secondary indeterminate 
seals (spring) primary determinate 

(other seasons) secondary indeterminate 
walrus secondary indeterminate (1) 
anadromous fish primary determinate 
other fish primary (1) determinate (1) 
marine molluscs secondary determinate 

From Barber and Roberts 1979:307-314 

subdivide the north-south expanse ofcontinental shelfinto three subareas: Maine, 
southern New England, and Mid-Atlantic. 

For each period, in each subarea, predictions are made concerning the proba- 
ble site size, site density, and to a limited extent, site type in each of the four 
environmental zones (a portion of one of their tables is reproduced here as Table 
2.2). T h e  authors assume that site size is correlated with population size; dispersed 
populations will be found in areas with "predictable, mobile, and evenly distributed 
resources," leading to small sites. Aggregated populations and, consequently, large 
sites will be found in areas with unpredictable, immobile, and clumped resources 
(Barber and Roberts 1979:316). T h e  effects on site size of such variables as duration 
of occupation and location reuse are not considered. Site density, in turn, is 
considered to be a function of the "relative attractiveness of the several environ- 
ments for exploitation" (1979:317) and so is predicted only on an ordinal level within 
each period, for each subarea. Barber and Roberts intend these projections of site 
size and frequency to be suggestive; they do not believe that more precise estimates 
could be calculated reliably using available information. 

Generalizability and Precision. Models in which both decision mechanisms and 
decision goals are fully specified by theory seem to provide the only consistently 
deductive, truly rigorous formulation for predicting site location. For optimal 
foraging theory models the resources actually used must be inferred for each specific 
application, and return rates for these resources must be calculated for each case. 
Once these inferences and calculations have been made, however, all predictions as 
to resource use then follow automatically from the theory itself. This is in contrast 
to  the rational choice theory approach described above, or to the satisficing 
approach, where preference sets or acceptability criteria must also be discovered 
inferentially or made up using rules of thumb. 

When optimal foraging theory models are used to  predict the locations of 
activities resulting in the deposition of archaeological materials, the explicit focus 



TABLE 2.2. 

Example predictions 

Anadromus-Fish 
Subarea T i m  Span ( B P )  Pa/eornvironment Predicted Site Size Predicted Site Density SbcN M i d d m  Present Camps Present 

Maine 18,000-12,000 under glacier or sea none none 

12,000-9000 full coastal 
estuarine 
inland valley 
upland 

small 
small 

very small 
very small 

low 
low 
low 
low 

9000-f3lOO full coastal small-medium medium-low X 
estuarine small medium X 
inland valley small low 
upland small low 

6000-3000 full coastal small-large medium-high X 
estuarine small-medium medium X X 
inland valley small-medium medium X 
upland small low 

From Barber and Roberts 1979:322 
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on the spatial distribution and return rates of food resources (only) is a two-edged 
sword. There is no reason to doubt that there will be a general correlation between 
the distributions of archaeological materials and the distribution of exploited 
resources; after two decades of settlement pattern analyses this is no longer a 
surprising conclusion, or even one worthy of research in itself. Considerably more 
work is needed, however, on predicting exactly what these materials will be, how 
they were deposited, and what their relationship was to other materials elsewhere 
on the landscape. This task will require consideration of more than the distribution 
of food resources. 

Optimal foraging theory assumes that all humans are foragers. In Chapter4 we 
will argue that, since not all humans are foragers, the degree of intensification 
affects the organization of the settlement systems, and this in turn determines how 
spatially predictable the sites generated by that system will be on the basis of 
variables in the natural environment alone. For example, in the case of foragers we 
might expect that many resource patches-especially if they overlap spatially in 
their temporal availability with other nonsubstitutable resources and are relatively 
isolated rather than continuous in their spatial distribution-will support residen- 
tial bases. These same resource patches, however, may be visited intermittently by 
specialized task groups in a logistically organized subsistence system. In still more 
intensified systems, variables other than the distribution of environmental resour- 
ces become increasingly important in the location of residences and other site types. 
We need to begin trying to make predictions with more specificity about how 
human settlement systems interact with the environment-not just where undif- 
ferentiated sites or materials will end up on the landscape, but  what kind of use 
these represent in the systemic context. 

The  lack of behavioral (and spatial) precision is no fault of these particular 
authors, who suffered more severe measurement problems than most. No large 
predictive locational models have ever been constructed with great behavioral 
specificity. These considerations are relevant here, I believe, because if such 
specificity is ever to  be achieved it will be through a deductive approach to  the 
systemic context, using detailed reconstructions of the resource availability in the 
paleoenvironment. 

The  generalizability of optimal foraging theory models for human use of the 
landscape is limited by their relatively low degree of "portability" across different 
adaptation types, especially those of increasing intensification. T h e  precision with 
which these models do what they were explicitly designed to do-predict foraging 
exploitation of resource patches-is probably high in the ideal case, although this is 
dificult to test. In the particular example discussed here, measurement problems 
interfere with high precision. 

Simplicity. Optimal foraging theory models are wonderful in the simplicity of 
their design and the economy oftheir assumptions. In fact, it is this very simplicity 
that prevents them from being more general. What is not simple, however, is 
handling the mass of ratio-level information necessary to  rigorously map a predic- 
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tive model based on this theory. For such purposes a geographic information system 
(Chapter 10) seems essential. 

I do not mean to minimize the shortcomings of optimal foraging theory, 
particularly as they might affect the accuracy of prediction. One such shortcoming 
is the assumption that each resource patch, and the landscape as a whole, will be 
used at its maximum capacity, when in fact hunter-gatherers typically do not 
expand their populations to the carrying capacity of the region. Another is that 
cultures frequently have high-status resources (and conversely exhibit food taboos) 
that do not have any obvious relation to  resource abundance or caloric content. 
Readers should consult Martin (1983, 1985), Sih and Milton (1985), Hawkes and 
O'Connell(1985), Yesner (1985), and Smith and Winterhalder (1985) to capture the 
complexity of the recent debate on issues surrounding application of optimal 
foraging theory to  human societies. 

Discussion 

Generalizability. One clear conclusion emerges from these four examples: 
deductive theories of settlement location that work from first principles have 
considerably more potential generalizability than do specific models designed for 
particular areas and derived almost entirely through empirical procedures. Thus, 
the framework of decision theory and analysis discussed by Limp and Carr (1985) is 
very generalizable; the optimal foraging theory framework is somewhat less gener- 
alizable but can still be applied to differing environments and adaptation types. 

T h e  inductive or inferential framework, as an overall strategy, is very generaliza- 
ble. Am i~o&xtive model can be constructed for any area that has a partially known 

BIT ethnographic record. But we must differentiate between a strat- 
or prediction (inductive generalization vs deductive implication) 

and a m ~ t d  explaining or predicting site location. An optimal foraging theory 
model can be applied in any area; only the structure of the environment in question, 
and the resources actually used, change. Each new inferential model starts from 
scratch: of the infinity ofvariables that might have affected how people used space, 
which actually did? 

Precision. There is no inherent difference between inferential and deductive 
models in their potential spatial resolution ofprediction. As it happens, none of the 
models discussed above had finely resolved spatial predictions, although some 
inferential models (for example, those discussed by Kvamme later in this volume) 
do. There is more to  precision than spatial resolution, however. How fine-grained 
are the predictions of site type or of the cultural and natural forces at work in the 
formation of the archaeological record? Are predictions made about assemblage 
content? As such questions approach behavior in the systemic context more closely, 
it becomes more natural to frame them in a deductive manner. 

Simplicity. T h e  discussion of the two deductive models for site location 
suggests that there is a general trade-off between simplicity and generalizability. 
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The  optimal foraging theory model is more parsimonious but less generalizable than 
hierarchical choice theory. Inferentially constructed models are not necessarily 
more parsimonious than deductive models. Although the examples used here shed 
no light on this question, Limp and Carr (1985) suggest that a few processes can 
generate a multiplicity of forms. Since inferential models deal with forms, and 
deductive models with processes, the latter may prove more parsimonious. 

CONCLUSIONS 

Some of what has been said above seems to favor deductive approaches over 
inferential approaches to the problem of predicting types and locations of archaeo- 
logical materials, and the same will be true of the method and theory discussion in 
Chapter 4. And yet, while models are classified one way or another here for 
taxonomic purposes, it is evident that neither purely deductive nor purely induc- 
tive models are possible. In the first case, we would not know how to apply the 
model to a particular area; in the second, we would not know what variables should 
be considered for inclusion in the analysis. 

Much of this book will be devoted to discussing the kinds of inductively - 
derived models that constitute most current efforts in archaeological predictive 
modeling. While empirical correlative models can be very useful in specific cases, in 
this chapter and in Chapter 4 we would like to balance the picture somewhat by 
suggesting that deductive explanatory models should have greater utility in the 
long run. Both the manager and the researcher want predictive models that are 
useful, after all, and as Blalock (1979:120) points out, there are several ways that 
utility can be defined in such a context. One ofthese is in the significance ofwhat we 
learn through the application of the model. I think that nearly everyone will agree 
that it is more significant to learn something about both the systemic and archaeo- 
logic contexts at the same time than it is to  learn about the archaeologic or analytic 
context alone, as is so often the case for inferential models. 

Another indication ofutility is whether the application ofthe model results in 
predictions that go beyond those that could have been made by common sense or 
by a casual examination of the phenomena in question. As long as we couch our 
analyses in terms of casually observable variables (for example, a dichotomy 
between site presence or absence) it will be hard to transcend common sense 
predictions, such as the prediction that sites will cluster around resources basic to 
human needs. 

A third potential criterion for utility is the general i~abi l i t~ ofa model to  other 
times and places. In fact, until such time as we begin to gather reliable estimates of 
model accuracy, I suggest that we strive to build models that are both generalizable 
and precise. If generalizable and precise models can be constructed, I think we will 
find that accuracy will take care of itself. 
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MODELS AND THE MODELING PROCESS 

Jeffrey H. Altschul 

In Chapter 2 a model was defined as "a simplified set of testable hypotheses." 
Researchers investigating a particular phenomenon create a model by isolating 
various components of the phenomenon and then positing (or hypothesizing) a 
relationship or series of relationships among them. The  result is a simplified version 
of the phenomenon that mimics, in a general way, the events or behaviors in , question. 

One of the utilities of a model is that it is possible to hypothesize how changes 
in one or more components will affect the final state ofthe phenomenon; that is, one 
can predict what the phenomenon will "look like" given specified changes in 
particular components. All models are predictive in this sense. It is important to  
emphasize, however, that prediction is not synonymous with explanation and that 
predictive accuracy alone is not necessarily the best indicator of a model's utility. 
For instance, the old adage 

Red sky at night, sailor's delight; 
Red sky in morning, sailor take warning 

is a perfectly valid predictive model of the weather. Based on a single observation 
one can predict whether or not there will be a storm in the immediate future. 
Nowhere is it implied that the color ofthe sky explains why the weather is the way 
it is; the only implication is that a particular condition will occur based on a certain 
observation. 

An explanatory model of the weather might involve a series of differential 
equations deduced from theoretical propositions relating air pressure, relative 
humidity, wind currents, and the like, and it is quite possible that the predictive 
success of this model might be less than that of the old sailors' adage. T h e  choice 
between these two models would depend on one's goals. Looking at the sky might 
be the best approach ifone is interested simply in predicting the immediate weather 
conditions. If, on the other hand, one wishes to understand the process, then it 
would be far better to reanalyze the internal logic of the second model in hopes of 
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refining the hypothesized relationships among components and ultimately produc- 
ing a higher success rate. 

A similar situation exists with models that are used to  predict the locations of 
archaeological sites. If one is simply interested in predicting whether a location will 
or will not contain a site, then in many areas of the world a highly successful 
predictive statement would be to say that no individual location contains a site. 
This conclusion is based on the fact that sites are relatively rare "events" and cover 
only a minute fraction ofthe earth's surface. For example, two surveys conducted in 
conjunction with predictive modeling in the mountainous sections of the western 
United States showed that in at least these cases a"no site" prediction would have 
been right more than 99 percent of the time (Kvamme 1983; Reed and Chandler 
1984). 

Cultural resource managers and archaeologists, however, are less concerned 
with the overall predictive success rate of a model than with the likelihood of a 
wrong prediction. Basically there are two types of predictive errors: a prediction 
can be made that a location (or area) contains a site when in fact it does not, and 
conversely a prediction can be made that a location does not contain a site when in 
fact it does. T h e  first type oferror may lead to  increased costs or to inefficient use of 
resources and will be called a wasteful error. Errors of the second type lead to the 
destruction of cultural resources and will be termed gross errors. 

T h e  errors defined above can be associated with the classical Type  I and Type  
I1 errors defined by Jerzy Neyman and Egon Pearson in a series ofpapers in the late 
1920s and early 1930s (e.g., 1933a, 1933b). As these statisticians pointed out more 
than a half century ago, in a hypothesis-testing framework there are always two 
potential errors: we may reject the null hypothesis when it is in fact true (Type I) or 
we may accept the null hypothesis when it is false (Type 11). T o  relate these errors 
to predictive modeling, we can take as the null hypothesis that an area will not 
contain a site. Ifwe reject the null hypothesis when it is true (i.e., accept the fact 
that there is a site when there is none) we are committing a Type I error or, as it may 
be viewed from a management perspective, a wasteful error. If, on the other hand, - - - 
we accept the null hypothesis that a site does not exist in the area when indeed one 
does, then we are committing a Type I1 error, which we have more forcefully named 
a gross error. 

An ideal predictive model minimizes both types of errors; that is, it makes - - 
correct predictions. In practice, however, models do make wrong predictions. In 
this regard, we can make two observations. First, in general it is much more costly 
in cultural resource management to make a gross error than a wasteful one. Second, 
the likelihood ofmaking a gross error is inversely related to  the likelihood of making 
a wasteful error. T o  see the logic of the second point, one needs to  understand that 
the primary means of reducing gross errors is by increasing the amount of land 
predicted to contain sites. But unless site location can be predicted with no errors 
(which is highly unlikely), this procedure will increase the number of wasteful 
errors. 
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T h e  choice between two models, then, has less to  do with overall success than 
with minimizing errors, especially gross errors. In general, a more powerful predic- 
tive model is one that for a specific proportion ofgross errors to total predictions also 
minimized the area predicted to contain cultural resources. Let us assume, for 
~xample, that there are two predictive models of site location for the same region, 
Model A and Model B. When both models predict that 5 percent of the region will 
zontain sites, predictions derived from Model A are found to be correct 70 percent of 
the time, while those from Model B are correct 80 percent of the time. Our first 
inclination would be to conclude that Model B is a superior predictor. Let us say 
that upon closer examination, however, we find that in all its predictions Model A 
makes only 5 percent gross errors while Model B makes 10 percent. For most 
management purposes, then, Model A is twice as good as Model B (for additional 
discussion of these two types of modeling errors, see Chapter 8). 

TYPES OF MODELS 

Until now the discussion has proceeded as though differences in types of 
models were not important. While it may be true that any model that satisfactorily 
minimizes errors can be a useful predictor, the form of the model will determine in 
large part the confidence placed in it and one's willingness t o  make it even better. 

T h e  scientific literature is replete with discussions of models, modeling, and 
prediction (e.g., Braithwaite 1960; Hempel 1965; Kaplan 1964; Salmon 1971; Scriven 
1959, 1962; Zetterberg 1963). During the past two decades archaeologists have also 
become increasingly interested in these subjects (Binford 1972, ed. 1977; Clarke 
1968, ed. 1972; Earle and Christenson 1980; Flannery 1968, ed. 1976; Fritz and Plog 
1970; Gardin 1980; Read 1974; Renfrew 1973; Renfrew and Cooke 1979; Renfrew et  al. 
1982; Salmon 1975, 1976, 1978). Archaeological models range from simple analogs to 
complex simulations. Although the properties and forms of the various types of 
models differ in important respects, a more fundamental distinction, which bears 
directly on any discussion ofthe types ofmodels used to predict site location, can be 
made. 

In general, models can be divided into two groups based on the degree to 
which they can be operationalized. Those that contain components or relationships 
between components that cannot be measured in a replicable and reliable manner 
will be termed intuitive models, whereas those with components that can be so 
measured will be called objective models. Objective models are further distinguished 
on the basis of (a) the spatial referent of the dependent variable (i.e., whether 
aspects of site location for an area or specific locale are being predicted), (b) the 
predominant form of procedural logic (inductive or deductive), and(c) the nature of 
internal relationships among model components (i.e., whether independent varia- 
bles are given equal weight or relative weights). On the basis ofthese criteria, three 
categories of objective models can be defined: associational, areal, and point-specific 
models (Table 3.1). 
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TABLE 3.1. 

Types of objective predictive models of site locations 

Primary Procedural Logic 
Variable Spatial 

Model Typc Inductive Dcductive Weigbt R ~ c ~ n t t  

Associational 

Areal 

Overlay or composite Adaptive types 
models 

Map interpolation 
Pattern recognition 
Grid prediction 

Simulation 
Discrete probability 

distributions 
Hierarchical decision 

models 

Pattern recognition Central place models 
Point-specific Gravity models 

prediction Optimum location models 
Polythetic-satisficer 

models 

The classification presented above differs from the one presented in Chapter 2. 
The  previous typology was based on three criteria: the level of measurement of the 
independent variables, the model's procedural logic, and the target context. Here 
our primary concern is not with the level of measurement but simply whether the 
measurements are made in a consistent and replicable way. For models that can be 
operationalized in an objective manner, interest now shifts to the form of the model, 
that is, to the relationships among the internal components and to the nature of the 
dependent variable. 

Intuitive Models 

Intuitive models can be derived through either inductive or deductive logic, 
with the reference frame being either the archaeological record or patterns of 
human behavior. An example of an intuitive model is the statement, "You'll find 
arrowheads on high ground near water." This statement may be based on repeated 
observation or on a common-sense theory about human behavior. But regardless of 
whether the statement is based on inductive observation or on deductive thinking, 
the most important characteristic of this model from a scientific standpoint is that 
the components are not fully conceptualized. While everyone may understand the 
thrust of the statement, there will not necessarily be agreement on what is high 
ground or what "near water" means. The relationship(s) among landform, distance 
to water, and artifacts is only partially established. Until everyone can agree on 
what the terms mean they cannot be operationalized in a way that is replicable. 
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Until the variables are operationalized they cannot be measured, and without 
measurement the relationship(s) cannot be tested. 

Many archaeologists might contend that intuitive models are not really models 
at all, reserving that term only for constructs that can be measured and tested. 
Leaving aside the philosophical issues, there is good reason to consider intuitive 
thought in a discussion ofpredictive modeling. Much ofthe recorded archaeological 
data base in the United States was derived through intuitive models. American 
archaeologists have only recently concerned themselves with formalizing their 
notions about site location into research designs. Many archaeologists have sur- 
veyed and continue to survey land based on their ideas about where they will find 
sites. Moreover, these intuitive models are often the basis for more intensive 
research projects. For example, in the early 1970s the Corps of Engineers began 
plans for the development of Sardis Lake, a reservoir covering about 1400 ha in 
southeast Oklahoma. The agency commissioned a survey that consisted of one 
person trying to find as many sites as possible in a 1-month period (Neal 1972). The 
survey was based on personal intuition and reports from amateurs and resulted in 31 
sites being recorded. These sites, along with six others recorded later, formed the 
basis for 10 years of intensive excavation. 

Not only have intuitive models been the basis ofmuch professional work, they 
have been the mainstay of amateur archaeology. As a result, recorded site locations -. 
in most areas of the United States do not necessarily reflect where sites are located 
but only where people have looked for them. Models of site location based on 
existing data can lead to predictions with very high accuracy rates. After all, if 
people have only looked for sites in certain types ofplaces, then it is inevitable that 
site locations will be highly correlated with specific environmental attributes. This 
is not to say, however, that all data collected on the basis of intuition must be 
ignored. Procedures for reducing the biases inherent in this type of data do exist 
(e.g., subsampling and weighted analysis) and will be discussed in Chapter 7. 

It is important to remember that intuitive models are not examples of bad 
science or of bad thinking. Indeed, creativity and intuition are the most important 
and most illusive parts ofthe scientific process. The first question many archaeolo- 
gists ask themselves prior to designing a survey for a region is, "If I were a 
prehistoric inhabitant, where would I live?" The problem is that many archaeolo- 
gists stop there and never formalize their answer. Thus, no matter how brilliant 
their insight or how many sites they find, no one can objectively evaluate how well 
their model works. 

Objective Models 

Associational Modelr 

Often archaeologists are interested in determining whether patterns exist in 
the data. For instance, suppose a survey records 25 sites in a 1000 ha piiion-juniper 
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zone and 10 sites in an adjacent 2500 ha sagebrush zone. T h e  first question asked by 
an archaeologist might be whether the difference in site frequency between the 
vegetative zones is greater than would be expected if there were no association 
between site location and the vegetation. One approach to answering this question 
would be to compute a goodness-of-fit statistic. If the value obtained exceeded a 
specific level of a chi-square distribution, the association could be considered 
significant. 

If it were determined that a significant association existed, the results might be 
used as the basis for a simple predictive model. It might be predicted, for example, 
that in another study area more sites would be found in the pison-juniper zone than 
in the sagebrush zone. If this prediction were based solely on the patterning 
observed in a single survey, our confidence in it would be fairly low regardless of the 
strength of the association or the proximity of the two study areas. Confidence in 
the expected outcome might be greater if this prediction were based on 15 surveys 
in nearby regions, although we still would not be in a position to  express our 
confidence in a quantitative fashion. 

Models similar to the one described above are common throughout archaeol- 
ogy. Many predictive models developed in cultural resource management studies 
take the form of relatively simple pattern-recognition, associational models. For 
instance, Kohler e t  al. (1980) conducted an intensive survey of the Halloca Creek 
drainage, which consists of about 2 percent of the area of the Fort Benning Military 
Reservation in Georgia. Twenty-one prehistoric and 10 historical sites were found. 
Site locations were examined to determine whether they covaried with six envi- 
ronmental variables. T o  evaluate the relationship between soil type and site 
location, for example, the observed numbers of sites per soil type were compared 
with the distribution expected if there was no relationship. After computing the 
appropriate chi-square statistic, the investigators concluded that the relationship 
between site distribution and soil type was nonrandom. 

In a similar fashion Kohler and his colleagues examined the associations 
between site location and vegetation, distance to water, slope, relative elevation, 
and distance to roads. T h e  results suggested that the distribution of sites was 
nonrandom in relation to slope, soils, and horizontal distance to water and that it 
was random relative to the other variables. For each significant environmental 
feature, the investigators defined a variable with two states, favorable to site 
location and unfavorable to  site location. A map of each variable was created for the 
entire military reservation, along with a composite map on which the three varia- 
bles were overlaid. Areas where favorable values for all three variables intersected 
were considered high-probability zones; areas with two favorable scores were 
defined as medium-probability zones; and the remaining areas were considered 
low-probability zones. 

Associational models like the one described above are among the most com- 
monly used predictive models in cultural resource management (e.g., Campbell e t  
al. 1981, 1983; Chandler et al. 1980; Grady 1980; Klesert 1982, 1983; Larralde and 
Nickens 1980; Reed and Nickens 1980; Thomas et  al. 1981). These models are 
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attractive primarily because of their simplicity; they are easy to  construct and 
relatively straightforward to  understand. They are not without their problems, 
however. For one thing, it is simply not true that the intersection of several 
favorable values for environmental variables will necessarily be a better predictor of 
archaeological site location than the individual variables themselves. The  intersec- 
tion is only a more precise predictor ifthe variables are independent ofone another, 
which is highly unlikely with environmental variables. For instance, well-drained 
soils are only associated with certain types of landforms and with a restricted 
number of vegetative communities. Each of these variables individually may be 
highly correlated with site distribution, but before it can be concluded that the 
predictive power ofthe model will be increased by using all three simultaneously it 
has to  be shown that site Jistribution is associated with each variable after control- 
ling for the influence of the other two (see Chapter 5 for an extended discussion of 
spatial autocorrelation and statistical independence). 

A second major problem with associational models is generalization. For the 
most part, associational models have been developed as part of Class I overviews or 
using the results from surveys of management-selected areas. They are usually not 
derived from probabilistic sample surveys and thus may contain biases that will be 
magnified if the model is generalized (i.e., extended to areas that have not been 
surveyed). 

The  predictive power of this type of model, and certainly the generalizability 
of associational models, would be increased if the suggestions concerning the 
associations between site location and environmental attributes were not based 
solely on pattern recognition but instead were deduced from principles of human 
behavior. One would then be in a position of demonstrating that an association 
between site location and an independent variable or set of independent variables 
exists, as well as being able to explain why the association exists. 

From a research perspective, explanation is our ultimate goal; only when we 
can explain why the phenomenon occurs can we be said to truly advance our 
understanding of human behavior. Deductively derived models, however, are also 
superior from a management point ofview. Ifwe do not understand why patterns 
occur, our confidence that they will reoccur in the future will always be somewhat 
tempered. This is especially true when we deal with human behavior. The  assump- 
tion that settlement locations were conditioned by environmental features may be 
valid in a general sense, but it will not explain why sites are frequent in one river 
valley and rare in another. Pattern-recognition models often show that settlement 
distributions are highly patterned, but without some sort of explanatory frame- 
work, management decisions based on these patterns are grounded more on faith 
than on reason. 

There are only a few examples ofdeductively based associational models. One 
such model was developed by Sabo e t  al. (1982; see also Sabo and Waddell 1983) in a 
cultural resources overview for the Ozark-St. Francis national forests in Arkansas. 
These investigators used the concept of adaptation type to model successive prehis- 
toric and historical human ecosystems in the Ozark Mountains. An adaptation type 
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relates regional environmental potential to specific levels of socioeconomic and 
technological organization. Sabo et al. (1982) defined four prehistoric and 14 histori- 
cal types in the Ozarks, e.g., Late Pleistocene/Early Holocene hunting and gather- 
ing, and Late Holocene horticultural, hunting, and gathering adaptations. 
Expected archaeological site types and their distributions within four major physio- 
graphic zones were derived for each adaptation type. The  predictions were tested 
with 254 previously recorded sites. For each site, attributes of four environmental 
variables were recorded. Q-mode cluster analysis resulted in groups that corre- 
sponded to the predicted site classes. 

In general, the Ozark-St. Francis model is more convincing than a pattern- 
recognition associational model, but it would be even more convincing if the 
adaptation types were not so broad. One cannot avoid the sinking suspicion that, 
given the conceptual framework, virtually any result could be viewed as consistent 
with the model. The general approach, however, is in the right direction. 

Has the emphasis on associational models in cultural resource management 
contexts really been misplaced? The answer seems to hinge on the stated objec- 
tives. Associational models provide a means of operationalizing the environmental 
variables that may be related to site location. In this sense they are a tremendous 
improvement over intuitive models. Associational models can be used to provide a 
first guess about site location and as a basis for future research; they can, for 
instance, define environmental dimensions that will be useful in stratiGing a region 
for a Class I1 survey. Associational models, then, can be a good first step, but hardly 
a step at which to stop. 

Areal Models 

Areal models are those that predict certain characteristics of sites or cultural 
resources, such as density or frequency, per a specified unit of land. For the most 
part, areal models are more attractive than associational models because the latter 
only produce relative statements about site location, such as "more sites will be 
found in this area than in that one" or "more sites are found in this zone than would 
be expected by chance alone," and these statements are often inadequate for 
research or management needs. In many instances researchers and managers want 
to know more than just the fact that one zone will contain more sites than another; 
they want to know how many sites each zone will contain and what the site density 
in each zone will be. 

Answers to such questions lie in the area of estimation, that is, deriving a 
reasonable estimate ofan unknown characteristic of sites and/or of site distribution 
in a specified region on the basis ofa sample of that region. This issue falls under the 
topic of sampling, which will be discussed in more detail in Chapter 6.  Because of the 
close association between sampling and many forms of areal models, some archaeol- 
ogists have viewed predictive modeling as synonymous with sampling for the 
purpose of parameter estimation (e.g., Ambler 1984). There are, however, good 
reasons for keeping the two separate. Parameter estimates are based on assumptions 
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about how the population of characteristics is distributed and how that population 
is sampled. When some type of probabilistic sampling design is used (i.e., when the 
sampling technique, frame, fraction, unit, etc., are specified), an estimate of a 
population value can be computed. While this value is the best guess or prediction 
of the population value, it must be remembered that it is not characteristics of the 
populations that are being modeled but characteristics of the sampling distribution. 
Tha t  is, sampling theory makes no statements about how the population was 
derived (in this case, about how sites become located in specific places). Instead, 
sampling theory only allows us to  determine the likelihood that a particular sample 
would result given a certain hypothesis about the underlying population. 

Predictive models of site location (as they are being defined here) all use some 
aspect of site location as the dependent variable that is being predicted by one or 
more independent variables. In areal models the nature of the relationship between 
the independent variable(s) and the dependent one is usually determined for 
relatively small areas, and this same relationship is then projected to exist in larger, 
more inclusive areas. Although this notion of projecting from a sample to a larger 
population is similar to parameter estimation, many areal models are generalized on 
some basis other than probability theory. 

Kriging, for instance, is a technique for generalizing that uses the concept of 
spatial autocorrelation-the presence of a characteristic in one area makes its 
presence in adjoining areas more likely (see Chapters 5 and 7). Basically a method of 
map interpolation, kriging uses moving averages and involves estimating values, 
and the errors associated with those values, for spatially distributed variables. 
Although kriging has been most extensively used in trend analysis on geologic 
mineral deposits, Zubrow and Harbaugh (1978) have provided several examples of 
how this technique can be used to predict site densities on the basis of samples. In 
one example they simulate how an archaeologist can divide an area into grid units 
and then, using hidher  intuition about where sites are located, survey 12.5 percent 
of the grid units most likely to contain sites. A krige analysis ofthe results produces 
site density estimates for the entire region that are reasonably close to the true 
values. 

Kriging and other map interpolation techniques, such as trend surface analy- 
sis, have been largely ignored as bases for predictive models in cultural resource 
management, probably because most archaeologists are not well versed in these 
techniques. Whatever the reason, it is fair to say that the potential ofmodels based 
on map generalization has not been realized. Models ofthis type could be especially 
useful at the Class I or overview stage of work (e.g., Hansen 1984). 

One of the most popular types of predictive models used in cultural resource 
management is an areal-based pattern-recognition model. Although differing in 
form, most ofthese models utilize sample data to compute a mathematical function, 
which is then used to predict some aspect of site location (e.g., presence/absence or 
site density) for unsurveyed units. A variety of statistical techniques have been 
used in these models, including multiple linear regression, discriminant function 
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analysis, and logistic regression, but whatever the statistical technique the logic of 
these models is the same. 

The  predictive model developed for the Bisti-Star Lake region of northwest- 
ern New Mexico (Kemrer 1982) is a good example of this type of model. The 
Bisti-Star Lake region is located in the San JuanBasin and consists ofvarious tracts 
of coal leases totaling approximately 191,500 ha (77,500 acres). The  modeling 
approach adopted was to use the results of six previous surveys to create a 
predictive model. On the basis of these results, Kemrer and his associates devised 
eight site classes (Table 3.2), each of which served as the dependent variable in a 
separate predictive model. 

Landsat multispectral satellite data were then used to classify soil and water- 
source characteristics of the area into eight "environmental classes." Adopting an 
approach similar to  that often used in remote sensing, the investigators used a 
sample oftraining pixels (in this case equivalent to an area of about 50 by 70 m) with 
known environmental characteristics to obtain a mathematical function by which 
unknown pixels throughout the area could be classified. In this manner very fine 
scaled environmental data were obtained. 

The  next step was to place a 2 by 2 km grid over a map of the Bisti-Star Lake 
region. Seventy-eight "environmental" variables were then calculated for each grid 
square. Eight ofthese were simply the number ofpixels per unit for each ofthe eight 
environmental classes. A second set of eight variables consisted ofthe proportion of 
pixels per grid square classified into each class. The remaining 56 variables repre- 
sented all unique two-way interactions between frequency and proportional varia- 
bles, respectively, of the eight environmental classes. 

TABLE 3.2. 

Bisti-Star Lake region site classes 

S ~ r e  Clarr Derrripion Number 

Lithic undiagnostic lithic scatters 410 

Anasazi sites dated to Basketmaker I11 - Pueblo 111, as well as all 
sites considered to be Anasazi but not assigned to phases 178 

Pre-1933 Navajo Navajo sites dating from the late 1600s to 1933 1 46 

Post-1933 Navajo Navajo sites dating from 1933-1980 358 

Total Navajo all Navajo sites combined (includes those that could not be 
assigned a date) 569 

Anglo/Spanish historical sites dating from 1700-1940 3 

Unknown historical historical sites that could not be affiliated with a specific 

!PUP 14 

Total all sites combined 1174 

From Kemrer 1982:62 
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T h e  2 by 2 km grid squares were then used as units ofobservation for which the 
dependent variables (the number of archaeological sites of a specific site class per 
unit) and the independent variables (the 78 variables based on different methods of 
associating pixels of each spectral class per unit) could be measured. Linear equa- 
tions were developed for each site class using a multiple linear regression formula. In 
essence, these equations served as predictive models so that if the values for the 
eight environmentally related pixel variables could be determined for a grid unit, 
the number of sites of each site class could be predicted. 

The  models were tested with data derived from a 15 percent sample survey of 
the Bisti-Star Lake region. Areas surveyed were not chosen through a probabilistic 
sampling design but were instead purposely selected to  test the entire range of 
variability in cultural resource density. Based on the discrepancies between pre- 
dicted and observed numbers of sites, the models were refined by recalculating the 
linear equations with the survey data. 

Models such as the one described above have recently become very popular in 
cultural resource management (e.g., Gordon et al. 1982; Kranzush 1983; Lafferty et  
al. 1981; Morenon 1983; Nance et  al. 1983; Newkirk and Roper 1982; Peebles 1983; 
Sessions 1979). Much of this popularity is probably due to  the ease with which these 
models are created and to their apparent predictive power. Two inherent problems 
of these models should be pointed out, however. First, as with many spatial analytic 
techniques, grid size affects the results. T h e  models developed on the basis ofa 2 km 
grid in the Bisti-Star Lake region differed substantially from those based on 1 km 
squares in nearby regions (compare Kemrer 1982 with Sessions 1979). Studies in 
other areas have also shown that widely differing results can be expected as the grid 
size is altered (e.g., Kranzush 1983), and thus far no one has been able to  resolve this 
issue for a particular region, to say nothing of the general case. 

A second problem, which is also related to grid size, has to  do with the 
characterization of the environment. Most often the environment of each unit is 
characterized on the basis of one or, at the most, a small number of points in each 
grid unit from which environmental variables are measured. These points are 
argued to be representative of the environment of the larger grid unit. This 
approach is difficult to justify even for small units (say 40 acres or less) and simply 
misleading for large units. Commonly this approach leads to inaccurate predictions. 
For instance, Kranzush (1983) found a relatively high frequency of sites in 40-acre 
units that were predicted not to contain any. She notes that in many cases the 
center point of the unit (from which the environmental variables were extrapo- 
lated) may not have been suitable for settlement but one could usually find at least 
one spot in the unit that was suitable. 

T h e  approach developed by Kemrer (1982) for the Bisti-Star Lake region is an 
innovative solution to  this problem (see also Tipps 1984), but the use of Landsat 
images to  create environmental variables is not without its difficulties. The  devel- 
opment of an environmental data base at pixel-level resolution requires not only 
appropriate aerial photographs but also a detailed understanding of the statistical 
procedures involved. For instance, Landsat classes that can be accurately mapped 
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are often extremely broad owing to the poor spectral resolution of the sensor. Areal 
models based on such classes, then, may be of little use to the land manager. Yet, 
even when fine spatial resolution is achieved the information is often wasted 
because the pixel data have to be aggregated into larger units so that they can be 
comparable with other independent environmental variables mapped at cruder 
resolution. These and other considerations will be discussed at length in Chapter 9. 

Although inductive procedures, such as map interpolation and pattern recog- 
nition, are the most common bases for areal models, such models can also be 
developed deductively on the basis of theoretical propositions about human settle- 
ment. Hierarchical decision models (Limp 1983a) 1983b), simulation models (Chad- 
wick 1978; Thomas 1972, 1973), and probability distribution models (Hodder 1976; 
Hodder and Orton 1976; Thomas 1972, 1973) are all examples of areal models of this 
type. As a group these models are more diverse than other categories previously 
discussed. Although they vary widely in their internal logic and procedure, they do 
share a common emphasis on explaining why humans settle in certain areas and not 
in others. 

Theory-based, deductive areal models have not received much attention in 
cultural resource management studies, probably for one or more of three reasons. 
First, theoretically based models require more time to create. The internal connec- 
tions between variables must be explicitly stated, as must the logical arguments 
supporting those relationships. Second, validation procedures are more onerous. 
Deductive models must demonstrate that they are not only consistent with the data 
but also more parsimonious than any alternative. In contrast, inductive models are 
judged primarily on the accuracy of their predictions. No claim is necessarily 
forwarded about how the population was formed in these models, only that the 
dependent variable covaries with one or more independent variables. 

Some archaeologists contend that all pattern-recognition models are based on 
the assumption that the environment shapes decisions about where humans settle; 
this assumption is almost always implicit in these models, and the relationship 
between environment and human settlement is never specified. Although theory- 
based models also assume a relationship between environmental factors and settle- 
ment, the relationships between environmental factors and locational behavior are 
spelled out according to some behavioral theory. Thus, these models are easier to 
critique than those based on the generalization that environment is related in some 
unspecified way to settlement. 

Finally, the predictive statements derived from some types of deductive 
models are not of a form that is useful for management purposes. For instance, 
probability distribution models yield statements about the expected number of 
sites per sample unit, but this type ofmodel will not predict which units will contain 
sites. Instead, such models predict that in the aggregate a specified number ofunits 
will contain no sites, a certain number will contain one site, and so on. 

While the three reasons cited above may account for the less extensive use of 
deductively based areal models in cultural resource management, they are not good 
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reasons. T h e  fact that deductively based models need to be more explicit and are 
more difficult to  validate should not necessarily be viewed as a detriment. Clearly, a 
model that has successfully gone through this process has much more research 
utility than one that has not. Even from management's perspective, there is good 
reason to keep a balance between inductive and deductive modeling. Inductive 
models, as they are currently used in cultural resource management, may provide 
useful day-to-day information. They are not, however, designed to provide deep 
insight into the relationship between humans and the environment. Yet it is these 
latter relationships that underlie, albeit implicitly, all inductive models being used. 
In contrast, deductive models have not to date performed well in providing 
on-the-ground information for making management decisions. But research into 
these models is one of the prime mechanisms of forwarding our understanding of 
man-man and man-land relationships that affect the spatial arrangement of human 
settlement. Emphasizing one approach to the exclusion of the other is the surest 
way to stymie the potential of predictive modeling in general. 

Point-Specific Models 

In the past few years there has been a growing trend to shift the level of 
prediction from the sampling unit to  the site itself. Instead of making predictions 
about the number ofsites in a sampling unit, archaeologists have explored methods 
ofassessing the likelihood that any particular spot will or will not contain a site. T h e  - . . 

appeal of such an approach to both management and research is immense. Not 
surprisingly, point-specific models have become the predominant form of site 
locational modeling within the BLM's cultural resource management program (e.g., 
Burgess et  al. 1980; Kvamme 1983; Larralde and Chandler 1981; Peebles, ed. 1981; 
Reed and Chandler 1984). 

Pattern-recognition point-specific models in archaeology are based on proce- 
dures developed in the field of remote sensing (see Chapter 9 for an in-depth 
discussion of this subject). In remote sensing, scientists use reflected radiation 
values to classic locations ofinterest on the earth's surface into prespecified groups, 
such as forest vs nonforest, wheatfields vs nonwheatfields, and so on. In the simplest 
terms, they first calibrate a "training set" of known cases, such as vegetation types, 
by measuring different spectral bands; then for other cases, locations with unknown 
vegetation types, the different spectral characteristics are used to infer vegetation 
types. T h e  validity of such classification schemes is evaluated using test data that 
were not used to  calibrate the original model. 

A similar approach has been adopted in archaeology, using numerical classifica- 
tion techniques like discriminant function analysis and logistic regression. T h e  
predetermined groups are defined on the basis of certain combinations of discrimi- 
nating variables, so that if the same variables are measured for -an unknown case it 
can be placed with a specified degree of probability into one group or another. 

In addition to  adopting the numerical classification techniques, many 
archaeologists have also borrowed the concept of a binary response variable. That  
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is, given locations are classified as being a site or a nonrite. This is unfortunate, 
because all sites are lumped into one category. No distinction is made between big 
and small sites, functionally distinct sites, or sites from different time periods. This 
is unrealistic, since nearly all anthropological studies indicate that a particular 
configuration of environmental variables is not equally important in all temporal 
and functional contexts. With the sitehonsite dichotomy, however, sites are either 
present or absent, and all sites are created equal. From a managerial perspective, 
information on different types of sites may not only be important but required. 
Clearly, different management strategies are required for small lithic scatters and 
for large ceremonial centers. 

There are also statistical problems associated with lumping all sites into one 
group. These will be discussed at length in Chapters 5 and 7. Sufice it to say here 
that these problems fall into two groups. T h e  first has to do with the use ofwhat are 
usually heterogeneous groups in mathematical models that assume that the groups 
being used are internally homogeneous. For example, discriminant analysis is a 
popular modeling technique in which two or more groups are statistically distin- 
guished from one another. If there is only slightly more between-group variation 
than within-group variation, the results will be largely useless and can even be 
highly misleading. Lumping site classes together almost always increases within- 
group variability of the site group, often to such a degree that sites are more 
dissimilar to each other than they are to nonsites. 

T h e  second set of problems involves generalization. In the case of areal 
pattern-recognition models using probabilistically selected sampling units, general- 
izing the results is relatively straightforward. The  sampling unit is the same as the 
sample element, and parameter estimates can be computed following formulas for 
element sampling. This is not the case for point-specific models, since the sites 
found within the sampling units are used as the units ofanalysis. Thus, the sample is 
a cluster sample, and unless the appropriate adjustments are made in calculating the 
group variances and covariances, there are likely to be serious errors in the 
computation of the mathematical function (see Chapter 6). 

T h e  preceding discussion does not mean that all pattern-recognition point- 
specific models are inaccurate or lead to invalid predictions. Given the strong appeal 
of these models and the recent emphasis placed on them, however, it is important to 
discuss the problems that can arise. One solution to some of these problems would 
be the development of aresponse variable with multiple categories. The  creation of 
multiple groups does not invalidate the use of such techniques as discriminant 
analysis or logistic regression. It simply makes them more realistic, flexible, and 
amenable to management and research concerns. The  problem of generalization can 
be mitigated by careful attention to how the model will be used. Ifits sole purpose is 
to  act as a heuristic device, pointing out patterns of covariation between the 
environment and site location, then problems associated with generalizing the 
results are probably not as critical as if the predictions were to be used as the basis 
for management decisions. 
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From a theoretical standpoint, the most powerful locational models should be 
those that not only predict where sites are located but explain why they are located 
there as well. Models of this type include central place models (Berry 1%7; Berry 
and Pred 1965; Christaller 1966, 1972; Crumley 1976; Haggett 1965; Johnson 1977; 
Losch 1954; Skinner 1977; Smith 1976), gravity models (Crumley 1979; Haggett 1965; 
Johnson 1977; Olsson 1970; Plog 1976), optimal location models (Wood 1978), and 
polythetic-satisficer models (Williams et  al. 1973). Some of these, such as central 
place or optimal location models, have a long history in the field of human 
geography and have only recently been adapted for use with nonindustrialized 
societies by archaeologists and anthropologists. Others, such as the polythetic- 
satisficer model, have been developed by archaeologists on the basis of ethno- 
graphic research and basic principles of human behavior. 

Much like deductively based associational and areal models, deductive point- 
predictive models have been overwhelmingly ignored in cultural resource studies. 
Many of the reasons for this situation cited in the previous sections also hold true at 
the point-specific level. These models are more difficult to develop than correla- 
tional models, and the validation process is more involved. In addition, the accuracy 
of these models is usually not very high. For instance, in archaeology central place 
models are generally used more as a yardstick to evaluate deviations from a 
theoretical pattern than as a predictor of actual site location. 

The  land manager reading this section may well have decided that, given the 
inherent difficulties associated with the use of deductive models, the current 
emphasis on pattern recognition represents a conscious decision on the part of 
archaeologists. This is a false impression. Outside the confines of cultural resource 
management, pattern-recognition models have been much less discussed or devel- 
oped than their theoretically based counterparts. The  reason for this disparity goes 
beyond any simple explanation of academic vs nonacademic research goals. What 
appears to have happened is that a perception has developed among landholding 
agencies that locations of archaeological sites can be predicted within acceptable 
accuracy levels. This perception was probably fostered by a number of theoretical 
studies, sponsored at least in part by the BLM and the Forest Service, that 
investigated the potential of pattern-recognition approaches to  predicting site 
location (e.g., Cordell and Green 1983; Grady 1980; Hurlbett 1977; Kvamme 1983). 

The  net result has been a tremendous emphasis on the methodological issues 
involved in prediction at the expense of studies of behavioral processes. The  
implications of this trend can be illustrated with a simple example. Let us suppose 
that on the basis of environmental attributes 70 percent of all site locations in a 
region could potentially be predicted. Let us further suppose that an associational 
model was developed that predicted 50 percent of the site locations. By creating an 
areal-based discriminant function model the result might be to  increase the model's 
predictive capability to 60 percent; with a point-specific logistic regression model, 
to  65 percent; and with a point-specific quadratic discriminant model, to 67 percent. 
The  point is that the increase in the sophistication of the statistical models has not 
led to a proportional increase in our ability to predict site locations. In this case, as 
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with most of the research in predictive modeling in the past few years, all of the 
effort has been devoted to finding ways of increasing our predictive power through 
statistical methods. It is not surprising, then, that as more and more research has 
gone into predictive modeling this research has yielded smaller and smaller 
increases in predictive power. Because patterns of environmental attributes will 
only account for so much of the variation in settlement patterns, no matter how 
much time and money are invested in developing statistical methods or sampling 
designs, at some level a point ofdiminishing returns is reached. That point is rapidly 
approaching in predictive modeling. 

A legitimate question for a land manager to  ask would be, "Is the additional 30 
percent worth it?" There is no simple answer to this question, although an example 
from anthropology may be useful. In a study of political systems in highland Burma, 
Edmund Leach (1954) began with an analysis of the ecological situation. H e  argued 
that the distribution of two economic systems covaried fairly well with differences 
in environmental settings, but that once the environmental correlates had been 
factored out, a number of differences between systems were still left unexplained. 
Leach used his ecological analysis as a springboard into a more detailed study of the 
social structure. The result was a far-reaching (and now classic) analysis of political 
and social dynamics embedded in a culture, a result that simply could not have been 
obtained through the study of ecological relationships alone. 

study of archaeological remains is part and parcel of the percentage for which 
pattern-recognition models cannot account. Although these models are useful and 
informative in certain contexts, it is also true that no matter how the term is 
defined, much of what archaeologists consider to be "significant" begins where 
pattern recognition leaves off. 

As Chapter 4 will make clear, much ofwhat is considered important about thc 

THE MODEL-BUILDING PROCESS 

, 

It should be clear from the foregoing discussion that there are many kinds ol 
predictive models of site location. Some are largely or wholly operationalized, others 
are intuitive; some are based on deductive arguments, others are inductive. 
Numerous modeling techniques exist, and the choice of a technique depends on I 
research objectives and the available data base. Moreover, predictive models are not 
mutually exclusive. As archaeologists have learned over the past decade, the line 
between induction and deduction is neither-hard nor fast. There is no reason why 
different modeling techniques cannot be used to analyze the same data, and in fact, 
there is good reason to do just this. 

Regardless of the form of a model or of the specific techniques used, the basic 
steps in the modeling process are the same for all models (Figure 3.1). The  rest of 
this chapter will be devoted to outlining this process; Chapters 6-8 will discuss this 
process in much greater detail. 
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I Review of Existing Data 

1. Data Collection 
2. Data Synthesis and Evaluation 

I.  Dependent Variable 
2. Independent Variables 
3 .  Relationships Between Variables 

I I .  Use of Existing Data 
2. Collection of New Data 

I I .  Use of Existing Data 
2. Collection of New Data 

Figure 3.1. The model-building process. 
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Identification of Objectives 

As Figure 3.1 shows, the first step in the modeling process is the specification of 
goals or objectives. In the process ofidentifying objectives a clear distinction needs 
to be maintained between short-term and long-term goals. In the long run, 
management and research goals are probably not that different; cultural resources 
are protected for what they can tell us about the past and how the past evolved into 
the present. It is the information content of the resources, not their physical 
make-up, that has been deemed worthy of preservation. T o  best fulfill this legal 
obligation, federal and state agencies need to know not only where resources are 
located but also why they are located there. This objective is our end goal. It is not 
at all clear that we can ever reach it, but as scientists we are committed to continue 
striving for it. 

In order to reach this goal, we need to have a better understanding of the 
necessary intermediate steps or short-term goals. Often developers of Class I and 
Class 11 models refer to their results as "preliminary predictive models," which 
suggests that they view these models as intermediate steps along the way to a 
better understanding ofsite location. Perhaps the most significant criticism that can 
be made about predictive modeling programs in most cultural resource manage- 
ment contexts is that there is no consensus as to  the overall objective of these 
programs. Models continue to be developed as if they represented the desired end 
product. Instead of calling for the refinements of existing models, scopes of work 
usually require the creation of a new model. T h e  results are not cumulative, and 
thus it is little wonder that most federally sponsored predictive modeling programs 
are bogged down in a seemingly endless progression of virtually identical models. 

From the perspective of the land management agencies, it would be prudent 
to identify both long-term goals and the steps needed to achieve them. On the basis 
ofthis overall plan, an agency could decide whether it would be more productive to  
award a contract for an overview that requires the creation of a multivariate model 
of site location or whether it would be more useful to invest that effort in research 
designed to develop locational variables that make sense from a theoretical 
standpoint. 

Data Collection 

T h e  first step in modeling locational behavior for a specific region is to  amass 
the available data. Four basic sources of data are commonly used: historical docu- 
ments, ethnographic research, archaeological data, and environmental data. 

Historical documents include explorers' and colonial accounts ofNative Amer- 
ican culture and associated settlement patterns. Land-use records are sometimes 
available, as are baptism and death records for Spanish missions. T h e  latter are 
especially useful for examining such issues as intergroup movement, population 
change, and ethnohistoric settlement patterns (e.g., Munoz 1982). Many of these 
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records have been examined by ethnohistorians, and secondary sources exist for 
nearly every region of the United States. 

Ethnographic research represents a complementary data source. Ethnographic 
analogy of one form or another has been a mainstay of archaeological interpretation 
since the inception of the discipline. Ethnographic analyses of indigenous subsist- 
ence and settlement systems were used by archaeologists as the basis for 
settlement-pattern studies long before cultural resource predictive modeling 
became an issue. Perhaps the best known study of this type is Julian Steward's 
(1938) Basin-Plateau AboriginalSociopoliticalGroups, which served as the foundation for 
numerous settlement and subsistence models both within and outside the Great 
Basin (Flannery and Coe 1968; Jennings 1957; MacNeish 1964; Thomas 1972, 1973; 
Williams et al. 1973). In addition to direct analogy, ethnographic studies are useful 
as sources for general propositions about settlement decision behavior (e.g., Jochim 
1976; Lee and DeVore 1968; Yellen 1977). Finally, the growing field of ethno- 
archaeology continues to supply much-needed data on factors and constraints 
leading to decisions about where people live as well as on depositional and post- 
depositional processes that affect the archaeological record (Ascher 1962; Binford 
1976, 1978a, 1978b, 1979, 1980, 1981; Coles 1973; Gould 1978, 1980; Kramer 1979). 

Recorded archaeological data exist in a variety offorms. Site records are stored 
at the state level, either in a central repository or dispersed among several state 
institutions (usually museums and universities). Several federal agencies keep their 
own records, which may or may not be duplicated at the state repository. Regional 
data bases,.such as the Southwestern Anthropological Research Group (SARG; 
Euler and Gumerman 1978) and Intermountain Antiquities Computer System 
(IMAC; University of Utah et al. 1982)' exist for some areas. Private institutions, 
museums, and local historical and archaeological societies also may have informa- 
tion. Finally, as has been true since the beginning of archaeological research, one of 
the best sources for site locational information is the local informant. 

Extant archaeological data vary considerably in quality and quantity. In order 
to assess the existing data one must evaluate a number of factors. The  number and 
intensity of surveys has a direct bearing on the distribution of known sites and the 
types of sites recorded. Definitional criteria for sites are often subjective and 
nonreplicable. The  reliability and comparability of recorded information is an open 
question that must be resolved before this information can be used in model 
building (see Chapter 7). 

Environmental data can be gathered at two levels. At a macro or regional level, 
data can be collected on a variety of topics, including climate, vegetation, geology, 
hydrology, and physiography. Sources of these types of data include many federal 
and state agencies, such as the Soil Conservation Service, the Forest Service, the 
U.S. Geological Survey, the Fish and Wildlife Service, the National Oceanic and 
Atmospheric Administration, and the Bureau of Land Management. An increas- 
ingly important source of data on environmental conditions is aerial imagery. 
Remote sensing and Landsat images have emerged as extremely useful tools for 
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identifying and classifying environmental dimensions and as means of objectively 
measuring environmental variables (see Chapter 9). 

At the site level we are often interested in which environmental features 
affected the decision to settle in a particular spot. Studies ofthis nature are classified 
under the rubric of catchment analysis (e.g., Higgs and Vita-Finzi 1972; Jarman e t  
al. 1972; Roper 1979; Vita-Finzi 1969, 1978; Vita-Finzi and Higgs 1970). Environmen- 
tal zones that surround each site can be analyzed in terms of their potential 
economic value. Studies of this type, coupled with environmental and subsistence 
data from excavated sites (e.g., pollen, flora, fauna, and malacological analyses), can 
help to shape our understanding of the subsistence strategy. 

Data Synthesis and Evaluation 

Once the available data have been gathered, they must be synthesized and 
evaluated in terms oftheir applicability for predicting site location. One ofthe first 
tasks is to identify general trends of cultural change and stability and trends in the 
distribution of known sites. Map interpolation techniques, such as trend surface 
analysis, kriging, etc., can often be useful aids in discerning general trends. 

One result of this type of background research must be the identification of 
known sites or at least of the types of sites crucial to understanding regional 
settlement systems. Here interest lies in determining the effects of what some 
authors call the "big site" phenomenon (Rogge and Lincoln 1984) and what will be 
called "magnet" sites in Chapter 6. Implied in the notion of a magnet site is the 
existence of social factors that led people to locate other types of sites closer to or 
farther from a particular site than would be expected just on the basis of the 
prevailing subsistence system. Unless the exact locations of these magnet sites are 
known, it is extremely doubtful that site locations can be successfully predicted in 
that region. 

In the Santa Cruz River Valley of southern Arizona, for example, a predictive 
model was developed on the basis of a Class I overview (Westfall 1979). A Class I1 
sample survey demonstrated that the Class I model overestimated the importance 
of certain environmental zones and therefore was not particularly useful. A second 
predictive model, which was based on environmental variables derived from work 
in the Gila Bend area about 80 km (50 mi) to the west (McCarthy 1982), was also 
tested against the Class I1 results and again was found not to be a very accurate 
predictor of site location. An intensive Class 111 survey revealed the problem; three 
major Hohokam communities were identified in environmental contexts that did 
not contain such communities in the Gila Bend area. Each community consisted ofa 
central platform-mound complex surrounded by smaller sites lying within 1.5-5 km 
of the central complex (Rogge and Lincoln 1984). Only a small proportion of sites 
were found outside these communities. 

In most areas of the country the proportion of known, large, complex sites is 
higher than the corresponding proportion of known sites in other categories. People 
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have been drawn to large sites, especially those that exhibit major architectural 
features or mounds, since the nineteenth century. Many of these sites, which 
probably represent social centers and/or the top elements of the regional settle- 
ment hierarchies, have been formally recorded or are at least known to local 
residents. T h e  point is that in areas where socially complex societies developed, 
predictive models based solely on environmental variables are bound to fail. Yet, in 
most areas the locations of many of the magnet sites are known and can be 
determined either by examining the existing site records or asking local informants. 
Thus, the existence and importance ofthese sites can be evaluated at an early stage 
in the modeling process (say a Class I level). If this were accomplished, the 
construction of useful social predictive variables should be possible. 

This discussion of magnet sites points out the importance of being able to  
distinguish site classes. Ideally, site classes are defined along two dimensions, time 
and function. In practice, however, this task is often difticult even with excavation- 
based data, to  say nothing of the problems involved in using site files or even 
survey-based data. At the data-evaluation stage it is important to  determine (or 
hypothesize) the types of sites expected to be found for each culture period and 
their probable locations. T h e  magnitude of the discrepancy between theory and 
existing data can then be gauged. That  is, we can determine how many sites can be 
classified by period and function, with the remaining sites grouped into a residual 
category. Examination ofthe residual category, which in many areas of the western 
United States will constitute between 60 and 80 percent of a]! recorded sites, will 
determine the types of research questions that can legitimately be asked. These 
questions in turn will affect the type of dependent locational variables that can be 
modeled and thus the nature of the independent variables that can be used. 

Identification of environmental dimensions along which site locations vary is 
an important step. It is, however, only one step. Most predictive models developed 
in cultural resource management contexts have viewed this step as the only one or at 
least the most important one, paying lip service to other factors affecting site 
location. It is also important to  bear in mind that the environmental variables that 
directly covary with site location are probably best viewed as proxies for whatever 
decision-making criteria led to the selection of locations exhibiting this environ- 
mental feature (Kohler and Parker 1986). For example, landform may be a proxy for 
considerations of defense, agricultural potential, floral resources, or any other 
reason that a group may have for choosing a place to live or to  conduct activities. It 
follows that several environmental variables may reflect the same decision-making 
criterion or that one environmental variable may be an indicator of portions of two 
or more decision criteria. Moreover, the criteria for choosing a site location were 
probably different in different parts of a single settlement system, and certainly 
these criteria changed through time and between settlement systems. 

Given this situation, it would be best to  study the covariation ofenvironmen- 
tal features with each separate site class. This ideal situation is rarely realized 
because of the problems ofdistinguishing site classes, but it is still possible to model 
expected distributions of sites based on theoretical principles or ethnographic cases 
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and evaluate the results against the known data base. Using ethnographic informa- 
tion about Great Basin settlement systems, Thomas (1972, 1973) wrote a computer 
simulation that projected the expected distribution of cultural remains across 
environmental zones and then tested these predictions against the archaeological 
record. This approach offers a way of evaluating the effects of environmental 
attributes on the settlement system that could be a powerful complement to the 
pattern-recognition studies in vogue today. 

In addition to examining environmental factors that affect decisions about 
where to settle, we need to evaluate the natural processes that affect the creation 
and present state ofthe archaeological record. Archaeologists have become increas- 
ingly sensitive to the difference between the systemic context in which residues of 
past behavior are deposited into the archaeological record and the archaeological 
context in which they are recovered (Ammerman et  al. 1978; Binford 1976, 1978b, 
1979, 1980; Ebert et al. 1984; Schiffer 1%8, 1976; Schiffer and Rathje 1973; see also 
Chapter 4 of this volume). In general, this growing awareness has not been 
incorporated into predictive models, probably because of our poor understanding of 
these processes and of the attendant difficulties in modeling them. Failure to take - 
into account depositional and postdepositional processes leads to predictive models 
that, a t  best, predict where sites have been seen and not necessarily where they are 
or were. 

Several recent studies indicate the potential for increasing the power of 
predictive models by including geomorphic factors. For example, Artz and Reid 
(1983) use a relatively simple soil-geomorphic model to predict the location of 
buried Archaic sites in the Little Caney River Basin of northeastern Oklahoma. 
Previous surface surveys had not found any Archaic materials in the area, leading 
some investigators to question whether the region had been occupied during this 
period. Artz and Reid developed a model based on the proposition that the relative 
age and stability of a geomorphic surface is often reflected by the properties of the 
soil developed below it. The  model was used to identify buried surfaces that in the 
past were suitable for habitation. Subsequent investigation of these surfaces showed 
that Archaic sites, although buried, were indeed located in the Little Caney River 
Basin. 

Model Components-Dependent Variables 

T o  develop a model one has to be clear about exactly what it is that is being 
modeled. As far as site location is concerned there are a variety of potential 
dependent variables. It is possible to predict site presence or absence, site density, 
site types, site functions, or various combinations thereof. Moreover, the depend- 
ent variable can change, although this will require either drastic internal revisions 
or an entirely new model. For example, at an early stage of research archaeologists 
might predict that sites will be found in greater numbers in areas within 100 m of 
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permanent water and on land with slopes with less than a 5 percent grade. Formally 
this relationship might be expressed as 

P(A(B n c )  > P(A) 

whereP(A) stands for the probability that an area contains a site, B for areas within 
100 m of permanent water, and C for land with slopes of less than 5 percent grade. 
Thus, the equation simply states that the probability that an area contains a site is 
greater if it meets conditions B and C than it is for all areas in general. 

At a later stage of research it may be found that the relationship between site 
location and the two independent variables is much more precise. This relationship 
might be modeled with a linear equation of the form 

whereA equals site density; B is distance to water in meters; C is slope in degrees;F 
and F2 are the weights for B and C, respectively; D is a constant; and E is an error 
term. In this case two independent variables are being used to  predict the number 
of sites per survey unit. While the two equations represent two fundamentally 
different models, it is also fair to say that they are part of the same model-building 
process, with the latter equation being a more refined expression of the former. 

Ideally the dependent variable should be specified first, followed by creation of 
the model. Usually in predictive modeling, however, a dependent variable is 
selected on the basis of the data available and the types of independent variables 
being used. Most archaeologists tend to be less concerned with the exact nature of 
the dependent variable (as long as it bears on some aspect ofsite location) than with 
meeting the assumgtions of the modeling procedure, especially in a mathematical 
mode!. 

fn we want to proceed from crude measures of site location, such as 
relative S 4 3 s i g h  C N . ~ . ,  more sites here than there), to more powerful variables that 
will predict a specific site type in a particular location. Although the level of 
locational specificity modeled is directly related to  the nature ofthe data that can be 
used to test it, it is necessary to  guard against blind acceptance of a dependent 
variable simply because a particular modeling technique is used. Deciding to 
predict site density because "that's what multiple linear regression predicts" is 
definitely putting the cart before the horse. Selection of an appropriate dependent 
variable has to  do with defining management and/or research objectives as well as 
identifying the nature of the data base available or being collected. Once this 
decision has been made, an appropriate way to model the phenomenon can be 
found. 

Model Components-Independent Variables 

Selecting independent variables and determining their interrelationships are 
perhaps the most difficult steps in the model-building process. There are no rules 
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that govern this process and few guidelines that can be offered. Variables and their 
relationships can be derived from inspiration, intuition, creative thought, and/or 
previous experience. Certainly it is true that if one has a good grasp of general 
anthropological or sociological propositions about the factors that affect decisions as 
to  where behaviors will be conducted, one is more likely to make an informed choice 
of variables. There is no guarantee, however, and Clark's (1982:232-234) discussion 
of false starts and mental gestation periods aptly describes this process. 

T h e  development of model components and the definition of their interrela- 
tionships should be the areas in which archaeologists make their greatest contribu- 
tion t o  the predictive modeling process. This, however, has not been the case. 
Instead, there has been a tendency among archaeologists producing predictive 
models to concentrate on the sophisticated multivariate mathematical techniques 
and t o  give only casual attention to the predictive variables. In most cases, 
methodological discussions focus on the inner workings of the statistical procedures 
with only passing references to the reasons why specific variables were chosen or to 
how these variables are theoretically related to  site location. Indeed it appears that 
investigators are assuming that the relationship(s) between the environment and 
site location cannot be specified, other than that there is one, and that if only 
enough environmental variables are put into the equations something useful will 
come out. 

There is nothing wrong with searching for patterns, but it is important to  
realize that the ways in which aspects of the environment are conceptualized and 
measured seriously affect the types ofstatistical tests that can be used as well as how 
they are interpreted. Since most archaeologists are more atuned to  the relationship 
between site locations and the surrounding environment than they are to statistical 
theory, it stands to  reason that it is in this area of specificationoflocational/environ- 
mental relationships that archaeologists could make important in-roads. 

In an ideal setting a predictive model would be built by first identifying the 
characteristic ofsite location, such as site density or frequency (i.e., the dependent 
variable) and then identifying all the social, environmental, and geomorphic factors 
(i.e., the independent variables) that impinge upon it. One can envision a series of 
differential equations describing the relationships among the various factors. In 
order to  learn whether a site would be found at a particular location one would 
simply assign appropriate values to the variables in the equations, and "presto!" the 
answer would appear. Unfortunately, at this time such a model cannot be created. 
While it might be possible to  incorporate all three factors intoone model, the result 
would be extremely complex, difficult to evaluate, and probably would have very 
low predictive power. 

Perhaps the best approach for now is to develop a series of models. For 
instance, it might be hypothesized that settlement in a specific river valley followed 
some process that can be modeled with a specific probability distribution. T h e  
importance of specific environmental variables might be assessed through the use of 
a pattern-recognition technique. Finally, a model of paleo land surfaces that would 
have been suitable for habitation could be constructed using information about 
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geomorphic processes. T h e  results of the models would be mutually reinforcing. If 
one model worked better than another in a particular area, this information could be 
used to  refine the model and eventually would yield a better understanding of the 
settlement process. 

Regardless of whether one or several models are developed, the form of each 
model will be the same. In each case a dependent variable will be predicted by one or 
more independent variables. Some models in archaeology consist of logical state- 
ments (such as "if. . . then") that connect the independent variables in some type 
ofcausal or deterministic fashion. These models are useful when theoretical reasons 
can be posited for the connections. Often, however, archaeologists cannot be this 
specific, and in these cases there are two advantages to using a mathematical 
model: the relationships between the variables are explicit, and the variables must 
be objectively defined and measured, a feature often lacking in the logical models. 

T h e  major disadvantage ofmathematical models is that each model comes with 
its own set of underlying assumptions. For instance, most of the statistical tech- 
niques used in predictive modeling assume a linear relationship between the 
variables. Theoretically, there is no reason to believe that the relationship between 
site location and the environment is linear any more than it is quadratic or any other 
function. While the goal is to work toward theoretically defined connections 
between variables, a start must be made somewhere, and it is perfectly reasonable 
to begin this process by using predefined relationships between variables as long as 
it is understood that these relationships are arbitrary. 

Once a specific modeling technique is chosen the necessary data to develop the 
model must be gathered. For some types of models the data may already be on 
hand. Associational models can be developed on whatever data exist. The  minimal 
restrictions imposed by these models and the ease with which they can be devel- 
oped probably account for their popularity in overview-level research. 

Other types of models will require the collection of new data or the reformzt- 
ting of existing data. For example, once it is decided to model site density per 
kilometer (A) on the basis of slope (B) and distance to water (C) using a linear 
equation of the form 

A = D  + F I B  +F2C + E  

information must be collected on A ,  B, and C so that the weights (F1 and F2), 
constant (D), and error term (E) can be defined. 

T h e  decision as to whether to use existing data or to collect new data to 
develop the model will depend on the following criteria. Are the temporal and 
functional site classes that can be defined with existing data sufficient for the model? 
Are the environmental data that can be obtained from existing maps or site forms 
suitable for the proposed model? In particular, can patterns in microenvironmental 
variability be identified from existing records and does the distribution of known 
sites by environmental zone reflect aboriginal settlement decisions or is it skewed 
by postdepositional processes? Finally, since many predictive models generalize 
from a sample, can the existing data be considered in any sense to be representative 
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of the phenomena of interest? T o  answer these questions, information must be 
gathered about the size and distribution of previous surveys as well as their 
intensities. Using this information, the researcher can determine whether survey 
results are comparable, if all environmental zones have been adequately covered, 
and if the types of sites found within the surveyed areas are representative of the 
settlement system as a whole. 

Based on these criteria, gaps in the existing data base can be discerned. ln  
order for the model to be successful, data on paleoenvironmental and geomorphic 
conditions, chronological and functional dimensions of site classes, and social and 
economic aspects of the subsistence and settlement systems must meet the 
requirements of the modeling technique. The  existing data base must also be 
assessed to determine how far the data can be generalized. From this evaluation, the 
researcher can determine what types of data, if any, must be collected in the field 
before model building can begin. 

Once gaps in the existing data are defined, a research program can be devel- 
oped to obtain the needed information. While it may seem obvious that research 
programs should be developed to meet the needs ofthe particular situation, this has 
often not been the case. In the usual course ofevents the first major research project 
in a region is an overview, combining a review of the existing data and a literature 
search and producing a planning document (e.g., BLM 1978). In essence, the 
primary goal of this overview is to decide how future work should be conducted. 

It would seem logical that the sample surveys that generally form the next step 
in these major research projects should be based on the designs outlined in the 
overview documents. In practice, sample surveys tend to follow rigid, almost 
standardized formats in which 10 percent of a management-defined area (often an 
aggregate or series of aggregates of coal lease tracts) is sampled in 40- or 160-acre 
quadrats through the use ofa simple or stratified random sample (see Berry 1984 for 
a discussion of other problems with this approach). 

The  uniformity of this design appears to  be based on a desire to obtain 
consistent and comparable results. While the objectives are commendable, the 
approach is misguided. As will be discussed throughout this volume, the selection of 
sampling technique, sampling fraction and sample size, and sample unit size and 
shape are decisions that cannot be made in the abstract but are dependent on the 
nature ofthe phenomena of interest and the research objectives. A 40-acre quadrat 
may be an ideal sampling unit for estimating site density but a very poor choice for 
studying intersite relationships. Moreover, consistent results have less to do with . . . .  
the sampling design than with issues of survey intensity, site visibility, and sample 
unit accessibility (see Chapter 6). Indeed, the best approach to achieving substan- 
tive comparability between projects is not through design standardization but 
instead through design flexibility. 

The  research design not only specifies how the area will be searched for sites 
but also how sites will be defined andrecorded. Definition ofsite classes will usually 
require fairly intensive artifact analyses. "No collection" (or limited collection) 
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policies, while perhaps defensible from a preservation standpoint, run counter to 
modeling requirements. The  present situation in which temporal and/or functional 
site classes are only poorly developed is unlikely to change unless intensive artifact 
collections are made. Again, as with sampling design, decisions regarding data 
recording are best made in relation to a specific project and not at an agency-wide 
level. 

Model Testing 

A central aspect of model development is model testing; in fact it can be argued 
that a model does not really exist until it has been tested. Model testing requires 
independent data. In general, archaeologists have relied either on collecting new 
data for testing or on splitting their sample in two, using one half to develop the 
model and the other halfto test it. T h e  former tendency has led to many predictive 
models remaining untested or being tested only with the data used to derive them. 
T h e  latter approach often results in such small samples that models can be neither 
reliably developed nor reliably tested. There are a number ofstatistical techniques 
for validating models that circumvent many of the problems described above; these 
techniques are discussed in Chapter 5. 

In the validation stage it is necessary to examine not only the model itselfbut 
also the data upon which it is based. Double-blind tests, common in forestry and 
agriculture, are totally lacking in cultural resource management. Most agencies try 
to ensure that land is surveyed for cultural resources only once. While the intent of 
this policy is understandable (after all, if the entire land base can never be 
completely surveyed, why waste money on resurveying parts of it), it must be 
remembered that the intended use ofa predictive model from the agency's perspec- 
tive is to allow for useful planning and management decisions about cultural 
resources in a much larger area. Thus, the argument can be forwarded that, because 
the model is only as good as the data upon which it is based, time and money spent 
ensuring the quality of the data are prudent and wise investments. 

Model Refinement 

Unless 100 percent predictive accuracy is achieved, a model can theoretically 
always be improved by changing the variables and/or respecifying the relationships 
among them. I t  is extremely unlikely that we will ever achieve the high level of 
predictive accuracy that would imply either complete understanding of past behav- 
ior or past behavior that was so deterministically patterned that it can be accurately 
predicted whether it is understood or not. 

T h e  real question for the land managing agency is "how accurate is accurate 
enough?" T h e  answer to this question depends on the agency and on the research 
objectives as well as the anticipated results. For instance, a first attempt may 
explain 60 percent of the variance in site location and indicate major trends in 
settlement patterning. A researcher might consider this result a tremendous 
success, while a land manager might view it as a dismal failure. 
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Much of the above discussion has been phrased in an ideal context, where 
sufficient time and resources are available. In practice, federal agencies are not in a 
position to execute grandiose regional survey designs. Instead, federal archaeolo- 
gists have all they can do to inventory lands to be affected by timber sales and 
mineral leases. But this does not mean that predictive modeling is some "pie-in- 
the-sky" scheme dreamed up at the state and regional levels and foisted on district 
and forest archaeologists. Modeling is part and parcel of what we do as scientists. 
We cannot evaluate a site located during a timber-sale survey unless it is first placed 
in some type of scientific context or, if you will, some type of model. 

At this time it is less important for the archaeological community to show 
land-managing agencies how to build accurate models than it is for us to demon- 
strate the proper use and importance of the modeling process. Scientific models are 
not like model airplanes; they are not built and then put on the shelf. Yet this is 
exactly what is being done with predictive models of site location. Archaeologists 
are being asked to build models that can be used as is for the indefinite future. 

Scientific models get better as they are refined. Usually as our predictive 
power increases, our understanding of the phenomena increases as well. Better 
understanding leads to new and innovative ways of looking at old data and of 
collecting new data. Often sites are found where it was previously believed there 
were none, even in areas that have been looked at before. 

From a management perspective, the most important issue facing the agencies 
is not whether to invest in predictive models but whether the modeling process 
should be an integral part of the overall cultural resource management program. It 
can be argued that the agencies should utilize models and the modeling process 
because it is in their best interest to do so. In the short run the first few predictive 
models will probably not be very powerful. They will not be substitutes for 
inventory surveys, and perhaps they will not even be very good planning tools. 
Moreover, a commitment to  the model-building process may require the restruc- 
turing of the cultural resource management program to ensure that projects are 
designed to meet specific objectives and that their results are cumulative. Standard- 
ization will have to give way to flexibility in research design, and the agencies may 
have to be prepared for larger rather than smaller sampling fractions. In the long 
run, however, a commitment to modeling may be the land managing agencies' best 
hope for the creation of useful tools to guide future development and management 
of this country's cultural resources. It is to  this end that this volume is devoted. 
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Chapter 4 

THE THEORETICAL BASIS OF ARCHAEOLOGICAL 
PREDICTIVE MODELING AND A CONSIDERATION OF 

APPROPRIATE DATA-COLLECTION METHODS 

James I. Ebert and Timothy A. Kohler 

This chapter, intended for both managers and archaeologists, discusses 
archaeological predictive modeling from the theoretical and methodological stand- 
point. During discussions between the authors and editors of the volume and 
Bureau of Land Management and Forest Service archaeologist/managers that took 
place before the book was written, it was suggested that the material contained 
herein should be directed toward the cultural resource manager. The  implication 
was that managers would not be interested in the sorts ofthings that archaeologists 
often produce. This was to be a practical volume, a guide to how predictive 
modeling can be done and how it should be used-not a compilation of esoteric 
anthropological theory. Some of those present seemed to be looking for a guide for 
the manager/archaeologists on how to do "pragmatic" predictive modeling that 
would cut research costs; others leaned more toward wanting a document that 
would question the propriety of using predictive modeling for purposes of assess- 
ment or mitigation. 

Both groups seemed to feel that locational predictive modeling had already 
been developed in useful form; the problems from their perspective lay in deciding 
how or whether modeling should be used. It is our feeling that we do not know as 
much as we should about how to do predictive modeling at present; that it is a 
worthwhile goal to want to understand the process more thoroughly; and that 
through the proper combination of rigor and research we can probably learn to do 
such modeling in the near future. But at this stage in our understanding of the 
modeling process, it would be premature to attempt to produce a guidebook. 

In the two years since the original manuscripts for this volume were written, it 
has become even more apparent that many archaeologists and cultural resource 
managers want and need a guide to predictive modeling. With accelerating fre- 
quency, especially during the past year, we have received calls and letters from 
colleagues (some of whom are archaeologists and some of whom are not) in the 
remote sensing and GIs fields who are contracting and experimenting with 
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archaeologists who want to  implement predictive models in their study areas. 
Those colleagues are invariably armed with third-or fourth-generation Xerox copies 
ofearly drafts ofcertain chapters from this volume, chapters that purport to  tell just 
how to do predictive modeling. After wading through the pro's and con's ofvarious 
regression and sampling methods, they suddenly realize that the "modeling" 
advocated in those chapters has a surprisingly and perhaps dangerously simplistic 
foundation beneath all of the mathematical discussions. 

"Surely there was more to prehistoric human behavior than this implies," said 
one colleague, himself a Native American trained as an archaeologist, remote 
sensing specialist, and geographic information system researcher. "This is what we 
do to map fox or squirrel habitats: look for water and shelter and food and then 
draw polygons and isopleths around them. Squirrels don't have canteens but 
Indians did. Do these archaeologists think they know all about how complex past 
peoples' seasonal rounds were, why they went where they did?" 

T h e  authors ofthis chapter feel, in fact, that we as archaeologistsdo not know all 
about the complex systemic behavior that must be the basis of archaeological 
predictive modeling. The  theme of this chapter, then, is that while there may be 
more than one way to do predictive modeling once we know how to do it, as 
suggested elsewhere in this volume, there is only one way to learn how to do it. For 
those who contend that we already know how to do predictive modeling ("we do it 
all the time"), this could be rephrased to read that there is only one way toprove that 
we know how to do it. Developing predictive modeling as a tool to  aid both 
archaeologists and cultural resource managers must proceed from a consideration of 
just what it is that both of these groups want and need to know about. 

While some might feel, superficially, that archaeologists want to "explain" 
while managers just want to know where and what the resource is, we will illustrate 
that these goals are inseparable. Both must be approached from a theoretical 
standpoint-starting with the consideration of how we believe systems of human 
adaptation operated in the past and moving logically in the direction of evaluating 
how the ways we discover, collect, and analyze our data are compatible with 
learning what we need to know. 

Several reviewers of this chapter have protested that we are presenting "just 
one theory of predictive modeling" here. We would like to  make it clear that the 
terms theory and theoretical are used here not in any partitive sense (". . . he has one 
theory and she has another. . .") but rather to indicate where one begins trying to 
build the framework of ideas and methods, and the hypothetical links between the 
two, that will be a prerequisite to being able to do predictive modeling, no matter 
what one means by that. This chapter, then, is about "The Theoretical Basis of 
Archaeological Predictive Modeling,'' as opposed to "The Non-Theoretical Basis of 
Predictive Modeling." What, one might ask, could be meant by non-theoretical 
predictive modeling? Again, usingtheory to mean the framework by which ideas are 
evaluated, a non-theoretical approach would be one that begins with an attempt at 
the "unbiased" interpretation and derivation of knowledge from data, a direction 
that we will characterize in this chapter as empirical predictive modeling. 
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Empirical predictive modeling, in its simplest form, consists of using the 
results of site surveys of an area and matching the locations of sites with certain 
landform features or other indications of past characteristics of the environment. 
Once these correspondences are noted, the proposition is set forth that more sites 
will be found in areas where the greatest proportion of previously found sites was 
located. 

In more complex manifestations, empirical predictive modeling breaks pre- 
viously found sites into functional or other assumed types, derives complex taxon- 
omies of environmental indicators, sometimes specifies multiple working hypo- 
theses about the relationships between these two sets of variables, and applies 
sophisticated mathematical models (correlation and other associational analyses) to 
determine which sets of correlations are strongest. Then the same "prediction" is 
made-that sites will be distributed in unexamined areas the same way (that is, 
with respect to the same environmental indicators) that they were in the previously 
explored area. 

In a sense, empirical predictive modeling often works-that is, correspond- 
ence between the presence of sites and of gross environmental indicators often exist 
at some level of statistical confidence. Mathematical confidence tests have nothing - 
to do with explanatory confidence, however; they only test the probability of 
obtaining specific results by chance, given certain characteristics of the samples 
from which data are drawn. It will be suggested in this chapter that the "success" of 
some empirical predictive models has as much to do with the ubiquity of the 
archaeological record across the landscape, and with natural postdepositional proc- 
esses, as with the realities of the archaeological record. 

This chapter will explore in depth the differences between theoretical and 
empirical predictive modeling. We begin with general properties of human adapta- 
tional systems as a first step in an exploration of the processes that anthropological 
and ethnoarchaeological research suggests are responsible for the formation of the 
archaeological record. The  complexities of human adaptational systems and their 
"translation" into the archaeological record may make dimcult reading for non- 
archaeologists, but they are inescapable. In order to learn to apply empirical 
predictive modeling to the archaeological record, one must "work back" through 
these complexities, which may be even more difficult than our approach of "work- 
ing forward" through them. 

It will also be suggested that one way to make this learning task-and future 
empirical predictive modeling, once we learn how-easier and more economical is 
to fit our data discovery and measurement methods to the things we want to know 
about. In other words, we need to make our data-collection methods compatible 
with our goal of explaining complex, multicomponent human systems. One major 
difference between present-day attempts at empirical predictive modeling and a 
theoretical approach is that empirical modeling has inappropriate data biases 
already built in. The  data upon which it is based have been cast in terms ofsites with 
various assumed functions. It will be suggested in this chapter that new methods of 
data collection, based instead upon our ideas about how the archaeological record is 
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formed and designed to allow the evaluation ofinherent biases, may often be helpful 
in the development of any workable predictive model, whether explanatory or 
empirical. 

As was seen in Chapter 2, researchers have been experimenting with empirical 
predictive modeling for many years and are continuing to do so today. Most of the 
locational predictions made in archaeology today are statements ofempirical corre- 
lation. True prediction of archaeological distributions of materials and of their 
concomitant behavioral and natural causes is a worthy goal and one that is impor- 
tant and necessary for both the cultural resource manager and the archaeologist. 
Modeling and prediction are integral parts of the scientific explanatory process, as 
will be illustrated in this chapter. They form a very real part ofwhat archaeologists 
must do to link their beliefs about the operation and organization of past systems 
with the observable remains of the archaeological record, and they constitute the - 
only means by which those beliefs can be tested. Cultural resource managers need 
to know where archaeological materials are located, where they can be found by 
archaeologists, and what these materials are in order to preserve or otherwise 
manage them. 

T h e  archaeologist and the manager are united in their attempt to arrive at 
successful predictive models. There may occasionally be talk of theory vs applica- 
tions, of the research goals of the archaeological scientist being at odds with the 
pragmatic objectives and responsibilities of the manager. But research cannot be 
separated from such applications as attempting to predict the locations of archaeo- 
logical materials. Research provides information about the basic operation of past 
human organizational systems; the discard of materials from these systems; the 
incorporation of archaeological materials into what is discovered and seen as the 
archaeological record; and the ways in which archaeologists discover, measure, and 
interpret this record. Without this information there is no hope of understanding 
the mechanisms that create cultural resources. Prediction is not a rote empirical 
process: its scope encompasses the entire framework of archaeological inquiry and 
explanation. Archaeologists and managers are partners in cultural resource man- 
agement and study. 

We conclude our introduction with a discussion of what this chapter is and 
what it is not. This chapter is different from the rest of the book: it presents ideas 
about how the world works, about the structure of archaeology and anthropology, 
about the organization ofhuman systems, about the formation of the archaeological 
record, and about how archaeologists perceive and use that record. Looking at the 
task of locational prediction from this perspective tends to highlight the difficulty 
and intricacy of the task, since it soon beco-mes apparent that a large number of 
complex considerations can affect the locations and even the degree of predictabil- 
ity of archaeological materials. These are things that must be explored before we 
can hope to  predict successfully and predict with understanding the locations of 
cultural resources. Although we present methodological suggestions for overcom- 
ing some of these difficulties, we risk being regarded as spoilers to  the extent that 
we cannot at this time offer easy fixes for all of the problems we can foresee in 
locational prediction. 
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This chapter is not an overview of how people are currently proposing, or 
attempting, to  do predictive modeling; these topics are discussed in other chapters. 
Instead of focusing on the modeling process, this chapter discusses some of the 
things that we need to think about (and some of the ways in which we might think 
about them) in order to  perfect the process of predicting whatever we decide to 
predict. T o  begin with, we attempt to define the places that modeling and 
prediction occupy within the explanatory framework ofarchaeology-that is, what 
are modeling and prediction? What do we want (or what do we need) to  model and 
predict? T h e  question of research goals is also addressed-what will we have to 
learn in order to be able to do these things? 

Methodological questions are very important in this discussion. T h e  interpre- 
tations that we make concerning the archaeological record are probably influenced 
as much by how archaeologists deal with their data as by what people actually did in 
the past. How can we collect the appropriate data? How can we ensure consistency 
and comparability in data collection, measurement, and analysis within and 
between surveys and other studies? Should or can every researcher have a unique 
research problem or orientation, or are there general problems upon which we must 
concentrate, problems of critical importance to  the manager and the archaeologist? 
And finally (and perhaps most important from a management perspective), how can 
we eficiently collect data and do the other research that is necessary if we are to 
learn how to predict characteristics of the archaeological record and how to give 
these characteristics meaning in terms of past behavior? 

These and many other topics are explored in this chapter. We begin by 
discussing the framework of archaeological explanation within which modeling and 
prediction must take place. 

PREDICTION, MODELS, AND THE SCIENTIFIC 
FRAMEWORK OF ARCHAEOLOGY 

T h e  archaeological record is a complex amalgam of patterning in material 
objects created by the organization of peoples' activities in the past and by the 
intervening cultural and natural processes that have preserved or rearranged these 
materials since they were lost or abandoned by their past owners. T h e  archaeologi- 
cal record consists solely ofpatterns that we can see today-that is, it is a contempor- 
ary phenomenon. It is important to note that these patterns do not ordinarily 
record a single moment frozen in time that, given the proper expertise, we should 
be able to reconstruct. In fact, the archaeological record is not ordinarily the simple 
result of past episodes of individual behavior, and it is only through a scientific, 
explanatory archaeological framework that we can give it meaning. Nor is the 
archaeological record a mirror that reflects past behavior in a dark, warped, and 
incomplete fashion. This is only the case ifwhat we want to  do is to reconstruct in 
microscopic (and normally impossible) detail an instant view ofthe past. We would 
argue that this is not the goal of archaeology. T h e  nature and scale of the archaeo- 
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logical record is such that we will be more successful in understanding it if we 
consider it not as the reflection of actions of individuals but rather as the cumulative 
record ofan entire system. These systems are not directly embodied in nor are they 
equivalent to  the materials we find in and on the ground. Linking past organiza- 
tional systems with the archaeological record can only be accomplished through the 
explanatory framework of archaeology. T h e  only distortions in this reasoning 
process will exist in archaeologists' models, not in the archaeological record. 

Explanation in Archaeology 

Explaining things in archaeology is a two-way street, a progression of theory 
and method. Theory is the way in which we think about things, particularly about 
the existence, nature, and direction ofcause-and-effect relationships, and method is 
the way in which we go about dealing with data. These two parts of the explanatory 
process are inseparable, regardless ofwhat the archaeologist wants to explain. In the 
chart shown in Figure 4.1, some of the links between theory and method in 
archaeological explanation are shown. This diagram is intended more as a guide to 
how we might think about the explanatory process than as an indisputable flow 
chart of archaeological thought, and many other categories in the progression might 
be acknowledged. The  point is that explanation involves both theory and method. 
In the diagram, one might proceed in either direction-from ideas about human 
subsistence, settlement, mobility, and technological organization (that is, the 
organization of systems) to interpretation of patterning in the archaeological 
record, or vice versa. Linking the two extremes ofthis diagram constitutes explana- 
tion and requires the modeling of a series of intervening processes. These processes 
transform the ways that people organized their systems into what we see today as 
the archaeological record. One class of these processes links static archaeological 
data with the dynamics of past systems; the study of these has been referred to as 
formulation of "middle-range theory" (Binford, ed. 1977:6-9). In our diagram, this 
class comprises discard behavior and depositional and postdepositional processes; in 
its broadest sense, middle-range theory provides guidelines for generating empiri- 
cally falsifiable outcomes from general theory. Other factors that further remove the 
patterning we see in the archaeological record from past systemic organization are 
those introduced by archaeological methodology itself-the ways in which 
archaeologists recover, measure, analyze, and interpret the archaeological record. 

These things that separate high-range theory from the meaning that we assign 
to patterned data represent complicating factors in attempts to interpret the 
archaeological record. Moving from one of these complicating factors to another 
requires qualitative rather than simply quantitative "translationM-that is, the 
physical archaeological record left behind after the action of each of these factors is 
of a very different nature than it was before. In the course of this chapter, each of the 
components of the explanatory archaeological framework will be discussed. First, 
however, the place of modeling and prediction-the subject of this volume-in the 
explanatory process must be addressed. 
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Figure 4.1. T h e  explanatory framework of archaeological science. Explanation is the process of modeling human 
subsistence, settlement, and mobility organization using archaeological and anthropological data, as well as anthropological, 
environmental, and systems theory, and confirming these models using prediction to derive expectations for data 
patterning. These predictions must also be linked with higher-level theory through middle-range theoretical propositions 
concerning the things that separate the static archaeological record from the organization of human systems. Empirical, 
inductive projection, sometimes referred to as "prediction" in the literature, is a methodological exercise in which the 
results of future archaeological discovery are projected from noting correspondences between where sites have been found 
previously and environmental or landform features of assumed significance. 
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Modeling and Prediction 

In Figure 4.1, the lowest box, interpretation of data patterning, is connected 
with the highest theoretical category, subsistence and settlement/mobility organi- 
zation, by the two-way process of explanation. Explanation involves integrating 
archaeological data with other sorts of information-ethnographic, ethnoarchaeo- 
logical, historical, environmental-to create models that connect the archaeological 
record with what we think was happening in the past. These models are abstract 
and complex formulations and can never be proved to be strictly "true." In fact, 
this is not their purpose: they are constructs that help us to assign meaning, rather 
than laws or translational rules. Yet they need to be tested or confirmed ifwe are to 
know whether they are realistic and useful, and whether they elucidate the 
mechanisms behind how people live in their world. 

The  way that models are tested is through prediction. Prediction is the 
formulation of hypotheses-that is, testable statements of expectations-based 
upon models. If predictions based on models are found to be successful, then the 
model and the theories upon which it is based tend to be confirmed. In the structure 
ofscientific explanation, models and theories can never be proved to be true, but if 
the mechanisms behind the predicted phenomena are being modeled faithfully, the 
predictions based on them will be consistently successful. 

Successful prediction ofphenomena in the real world is an accomplished fact in 
many scientific disciplines, such as electronics, chemistry, and physics. These 
successes consist of experiments in which predictions based on models are con- 
firmed in a wide variety of situations, with external influences being held "equal." 
Such successes are unknown at present in archaeology. Not only are we unable to 
predict phenomena over a wide range of situations, but there is virtually no 
agreement as to what we want to  predict and what we have to model in order to do 
that. 

What Do We Want to Predict and What Do We Need to Model? 

T h e  literature dealing with predictive modeling is usually directed toward 
determining the locations of archaeological materials, whether for discovery pur- 
poses (Artz and Reid 1983; Davis 1980a, 1980b; House and Ballenger 1976; Lynch 
1980; McManamon 1981a, 1981b; Nance 1980, 1981; Spurling 1980; Warren 1979), for 
purposes of finding archaeological "voids" (Baker and Sessions 1979; Kemrer 1982; 
Kemrer, ed. 1982; Klesert 1983; Kvamme 1980,1982,1983a; Parker 1985; Peebles 1983; 
Sabo and Waddell 1983; Scholtz 1980, 1981), or for more avowedly explanatory 
purposes (Chandler and Nickens 1983; Limp 1983; Nance e t  al. 1983; Waddell 1983). 
Prediction of the locations of archaeological materials is a primary concern of 
cultural resource managers, as well, for in order to manage resources one must know 
where they are. It could be argued, and will be argued later in this chapter, that 
prediction of the locations of sites is an ambiguous goal, for the concept of the site is 



THEORETICAL BASIS AND DATA-COLLECTION METHODS 

of uneven usefulness when the ways in which archaeological materials are depos- 
ited, accumulated, and discovered are taken into account. 

There may well be things other than simple locations, too, that archaeologists 
and managers might want to predict. Densities of materials, for example, might be 
of interest (Foley 1981c; Thomas 1973). The  diversity or clustering of assemblage 
components at different sample unit sizes (Whallon 1973, 1974, 1984) or the occur- 
rence of patterning congruent with intrasite activity structure (Kintigh and 
Ammerman 1982) are other possibilities. The  most obvious thing, or at least the first 
thing, that cultural resource managers need to predict, however, is the location of 
cultural resources. 

T o  make predictions we need to have models, and those models must span the 
entire explanatory framework rather than simply concentrating on those things we 
want to predict. Models exist at a theoretical level, not an empirical one. Their 
purpose is to elucidate the mechanirmr behind the formation processes ofthe archaeo- 
logical record, i.e., to explain it. Prediction, then, is a subset of explanation. 
Whether predictions are to be locational or not, it is human organizational systems 
that must be modeled, as well as all those complicating factors between this highest 
level of human behavior and the archaeological record as we see and measure it. 

Cultural resource managers and archaeologists share the need for explanatory 
models. We do not yet have many satisfactory archaeological models or even 
components of such models. It will undoubtedly take many more years to decide 
what sorts of models are needed by both archaeologists and managers. Some of the 
things that we may need to consider in this decision process-those "complicating 
factors" referred to above-are discussed in the remainder of this chapter. 

THE NATURE AND ORGANIZATION OF HUMAN SYSTEMS: 
SETTLEMENT, MOBILITY, AND TECHNOLOGY 

A Systems Perspective on Prediction 

As discussed in Chapter 2, anthropologists interested in the relationships 
between people and their environment have increasingly adopted an ecosystemic 
perspective on these relationships. Over the past two decades archaeologists have 
also acquired the habit of referring to the dynamic interaction between people and 
the ecosystem as the settlement system without worrying too much about what it 
means, in general, to call something a system. (A notable exception is D. L. Clarke 
[1968].) Yet our acceptance ofthis term has significant implications for our attempts 
to predict the locations ofcultural resources. A system may be practically defined as 

a circumscribed complex ofrelatively bounded phenomena, which, within these bounds, 
retains a relatively stationary pattern ofstructure in space or ofsequential configuration 
in time in spite of a high degree of variability in the details of distribution and 
interrelations among its constituent units of lower order [Weiss 1973:40]. 
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This vague characterization can be sharpened by an exclusion. T h e  mere fact 
that something is composed of several compbnents does not necessarily make it a 
system; a distinction can be made between yrtemr and mechanirmr. In a mechanism 
such as a typewriter, for example, one action rigidly triggers other actions in a 
completely determined manner, corresponding to notions of strict linear cause and 
effect. In systems, however, there is much freer interplay between the components, 
despite considerable predictability in the actions of the system as a whole. Systems 
are not, however, composed of parts that are chaotic in their behavior. Living - 
systems have an evolutionary tendency toward consolidation along stereotyped 
tracks and toward determinancy in the behavior of the parts; such systems ulti- 
mately realize some balance between flexibility (indeterminancy) and rigor (deter- 
minancy) (Weiss 1!273:54-59). Relatively rigid designs have great efficiency but are 
only successful if the problems to be solved are always the same. 

Another characteristic of living systems (for example, a human community of 
hunter-gatherers in its regional ecosystem) is that they tend to provide stability of 
existence for their components (individual bands or households, for example), 
although the state of any of these components at any time is itself unpredictable, 
varying far more than the state of the system of which the components are a part 
(Piaget 1978:59-72). This characteristic of systems leads in turn to  a hierarchy of 
predictability that Weiss calls stratified determinism: there is predictability in the 
behavior of the system despite demonstrable indeterminism in the individual 
constituents of that system. 

We suggest that human settlement systems share many characteristics with 
general living systems. Settlement systems are the way that people move around on 
and locate themselves within a landscape. T h e  individual constituents of this 
system-the locations ofindividuals or groups at any given moment, the ways that 
decisions are made or rationalized, the likes or preferences of human participants, 
and all the minute details that seem to constitute the everyday world when one is 
actually involved in a system-are inherently less predictable than are the structure 
and patterning of the system as a whole. 

This is not to say that any part of the operation ofgeneral systems or ofhuman 
settlement/mobility systems is random or, in the final analysis, indeterminate. T h e  
point is that scientific research addressing a research problem dealing with a system 
component must be targeted at the system to which the component belongs. Our 
job in spatial prediction, then, is to understand the structure of the system first. 
Accordingly, we will spend some time in this chapter discussing what the structure 
of a settlement system might include. 

In the course of this chapter we will argue that modeling undertaken for 
purposes of predicting the locations and characteristics of phenomena in the 
archaeological record should take place on the level of human organizational 
systems. In order to demonstrate this, we propose to take the reader on a journey 
through the many stages of archaeological explanation, beginning with some 
approaches to modeling the nature of human settlement/mobility systems. 
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I t  will be important to  remember that although individuals obviously make 
artifacts and other parts of the archaeological record, neither the patterning nor the 
role of these portions of the archaeological record in space and time can be equated 
with the actions (and even less the thoughts or decisions) of individuals or with 
specific episodes of behavior. Neither are the cultural materials we find today 
located where they are because of simple interactions between human behavior and 
specific resources or landscape variables. 

The  patterning of materials in the archaeological record is a result of the 
organization of the cultural system that produced those materials. A cultural system 
is not the summation of the actions of individuals but rather consists of the 
components in an organizational framework under which actions are structured; the 
patterning of cultural materials will embody aspects of this framework rather than 
provide any sort of instant view of a frozen ethnographic moment (Binford 1981). 

In cultural systems, people, things, and places are components in a field that consists of 
environmental and sociocultural subsystems, and the locus ofcultural process is in the 
dynamic articulations of these subsystems [Binford 1%5:205]. 

T h e  actors in a cultural system are not only people, but places, artifacts, strategies, 
schedules, landscapes, climate, environment, resources-and many other things as 
well. 

One hallmark of contemporary attempts at archaeological prediction, and 
indeed of much modern archaeology in general, is the explicit or implicit assump- 
tion that environmental factors are major, even exclusive, determinants of much 
human behavior (site location, subsistence strategies, etc.). Environmental varia- 
bles, such as distance to  water, distance to resources assumed to have been 
important, shelter, and available lookouts, are compared with the location of 
archaeological materials to  determine whether there are correlations between these 
landscape characteristics and such cultural variables as the location of sites. T h e  
causal link between site locations and natural, independent variables is usually 
considered to  be multivariate-that is, people positioned their sites with respect to  
an optimal combination of all the resources in which they were interested. 

Probably the best example of this approach is in Jochim (1976), often cited as 
one of the seminal works in archaeological prediction. Jochim argues that, since the 
distributions of individual resources seldom coincide, these resources exercise 
differential degrees of"pul1" on settlements in relation to  their value to  the people 
who occupied those settlements. One problem with this approach is that it is based 
on a model of the individual person as decision-maker and of specific resources as 
the basis for making decisions about where to locate activities. That  is, it attempts 
to predict specific components ofthe larger organizational system without regard to  
the system ofwhich they are a part. This is not the level ofhuman organization that 
must be addressed; it is the structure of human organizational systems within 
ecosystems that needs to  be modeled in order to predict things about the compo- 
nents of human systems. How ecosystems variables relate to this task will be 
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considered later in this chapter; now, however, we will attempt to illustrate an 
approach to modeling human systems. 

Systemic Mobility/Settlement Organization 

Archaeologists and cultural resource managers work with an archaeological 
record produced by prehistoric human systems. All the "facts" that we know about 
these past systems are actually meanings that we have assigned to the archaeologi- 
cal record. Empirical correlative models that use distances between sites and 
resources as bases for predictions assume that simple proximity of one thing to 
another implies some sort of connection or causality, and that distance negates 
these relationships. The  assumption that proximity means something is of course 
supportable when one is observing ethnographic instants in time. It would be 
supportable in the interpretation ofthe archaeological record ifwe could be assured 
that we are observing therein instants in past time, i.e., a spatially and temporally 
nonoverlapping archaeological record. Not only have we no such assurances, but in 
fact it is almost certain that we are not. Many locations are used for short time 
periods within most human systems; resources may be transported great distances 
in anticipation of future needs; and many resources are not in constant demand. 
Prehistoric people, for instance, could certainly travel some distance without taking 
a drink, and they certainly had the mental resources to carry water with them. We 
should have as much capacity to realize (on another level) that the location of one 
component ofa system-where an artifact is discarded, or where a camp is made-is 
affected by the patterning of other components in space and time: for instance, 
where another camp was made and what was there last week, or what a group 
anticipates it will find at the next camp. Rather than being due to the immediate 
proximity of the resources, in fact, archaeological site patterning is the result of 
long-term repetition (or lack thereof) in the "positioning of adaptive systems in 
geographic space" (Binford 1982:6), and the use of space is not uniform, even within 
the same system. Some activities occur at concentrated locations and some do not. 
T h e  spatially concentrated nature of some activities and the dispersed nature of 
others have been discussed in terms of "ranges" of various types (Foley 1977, 1978, 
1981b; Jochim 1976), settlements vs activity "nodes" (Isaac 1981:134), and catch- 
ments (Vita-Finzi and Higgs 1970). 

T h e  very nature of human systems-organized through such tactics as plan- 
ning and anticipation and effected through caching, transport of materials, staged 
manufacture, and intensive reuse and recycling of material items-brings the use of 
proximity arguments in predictive modeling under question. Human behavior is 
different from animal behavior in that animals in general do not flexibly or con- 
sciously anticipate, plan, or transport, cache, and recycle materials; animals do not 
have behavioral systems organized in a human way. 

T h e  things that people do that involve planning, anticipation, and the com- 
plex geographic repositioning ofmaterials (some or most ofwhich are not left where 



THEORETICAL BASIS AND DATA-COLLECTION METHODS 

they were used, or are reused there and other places in other times) will not be 
understandable in any simple way through correlations ofartifacts or other cultural 
evidence and supposed nearby resources. Of course, unplanned events and activi- 
ties will be represented in the archaeological record, for even in the most highly 
planned systems (and perhaps particularly in them) unanticipated contingencies 
will arise. These events, in fact, may be explainable through artifact-resource 
proximity arguments-these are the things that people do like animals, and the 
same sorts of predictive modeling that our previously mentioned colleague uses to 
model fox and squirrel habitats can be used to "predict" them. 

So there are aspects of both human organization and "animal" behavior 
embodied in the archaeological record-perhaps we do know how to do some 
archaeological predictive modeling after all! But before you skip the rest of this 
chapter and turn to discussions about the best regression models, we think that just 
a few very important questions must be asked, including W h a t  proportion of human 
behavior is immediate and unplanned (and thus explainable usingproximity arguments) and tvhat 
proportion is systematically organized? Which portions of human behavior are tve most interested 
in? 

The nature of activities that happen at any place during an occupation will of 
course have a relationship to the resources available there, but this relationship may 
not be a simple one, and its strength will be affected by such environmental 
characteristics as the distribution or diversity of resources (Harpending and Davis 
1977) or the annual range oftemperatures requiring, enabling, or restricting storage 
of foodstuffs (Binford 1980). But economic resources are not the only actors in 
human organizational systems, and they will not be the only determinants ofwhere 
different activities are carried out in these systems. What a group does at one place, 
for instance, may be as much affected by what they will do at the next place they 
visit, or what they did at the last place they visited, as it is by the available resources 
at the current location. 

An examination of one taxonomy of differential mobility patterns will help to 
illustrate the interlocking nature of the parts of a human organizational system, as 
well as the implications of different forms of organization for the formation and 
ultimately the predictability of the archaeological record. Binford (1982) has distin- 
guished a number of ranges or mobility zones that can be used in different 
combinations to characterize the ways that people use the space around their 
residential base. A residential base is the place where a group lives, where resources 
are consumed, where children are reared, and where most maintenance activities . 
take place. Residential camp sizes vary, mostly in relation to population sizes. 
There are certain complications in this relationship, however, that prevent direct 
projections of population on the basis of site size, as will be discussed later in this 
chapter. Surrounding the residential base is the foraging radius, which is usually 
considered to be within 10 km of the camp in any direction; resources in this zone 
are exploited in the course of trips that last a day or less and from which both 
resources and people return to the residential camp. This area contains locations, 
places where resources are extracted and where limited processing is carried out. 
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Few maintenance activities are carried out at locations. Outside the foraging radius 
is a logistical radius, which is exploited by special-purpose task groups who stay away 
from the residential base for at least one night and sometimes for months. Within 
the logistical radius, both maintenance activities and special-purpose activities can 
and do take place. 

Not all groups use these different radii to the same extent. T h e  use of these 
radii varies with the frequency with which a group's residential base is moved, and 
this, in turn, is conditioned by environmental and perhaps in some cases social 
factors. In highly diverse environments almost all resources can be found within a 
group's foraging radius, and people in equatorial jungles and possibly in some other 
environments, such as the Kalahari Desert and the southern parts of the North 
American Great Basin, particularly during the summer months, acquire nearly all - 

resources using a generalist encounter strategy during daily walkabouts. Intensive 
use ofthe foraging radius, however, leads to quick depletion ofresources, and when 
this happens the residential camp is moved, most often to  one edge of the old - - - 
foraging radius. From this new basecamp a new foraging radius is established 
(Figure 4.2). Only half of this new radius is actually usable for foraging, of course, 
since the portion shared with the old radius is still depleted. This  sort of mobility 
strategy results in what Binford (1982: 10) calls a ba l f - rad i  continuour pattern. 

Foraging Radius 

1 Residential Bases 

Figure 4.2. The  half-radius continuous pattern ofexploitation ofthe landscape by foraging groups. When 
the resources within a foraging radius are depleted, the group moves its residential base to  the far edge of that 
foraging radius and begins to exploit another half-radius. Materials lost or discarded within the foraging radius 
are expected to be of low density and relatively continuous distribution (after Binford 1982). 
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In more differentiated or simpler environments, a complete radius leapfrogpattern 
of residential mobility is more often found ethnographically. This settlement 
system consists of residential moves that result in little or no overlap between 
successive foraging radii but produce logistic radii that do overlap (Figure 4.3). In 
this situation, logistical camps are often located at old residential bases because 
materials in these abandoned camps can be reused and because the specialized 
task-group members are familiar with the old residences and their surroundings- 
reasons for site location that are at least partly nonenvironmental. Examples of 
cultures with this type of settlement system include the northern Paiute and the 
Shoshone. A variation of the complete radius leapfrog pattern that is common in 
lower-biomass settings is thepoint-to-point pattern found in high-elevation settings 
and claimed to be used, for example, by the Yaghan ofTierra del Fuego (Wills 1980). 
In this case residential moves involve no overlap in use zones at all, not even in the 
logistic radii. T h e  location of residential camps under this mobility pattern repre- 
sents a compromise among the locations of known but spatially incongruent 
resource distributions. These resources are then exploited through logistic mobility. 

Foraging Radius . .... . 0 Residential Bases 
0 Locations 

Logistic Radius 0 Reoccupied Locations 

Figure 4.3. The  complete radius leapfrog pattern oflandscape use. This model was devised to typify the 
land-use strategy of logistically oriented groups. Locations that are reused within the zones of logistic radius 
overlap could contain assemblages representing different functional uses. Archaeological materials found within 
the foraging radii would be dispersed and continuous; materials at locations within the logistic radius are more 
focused but may represent multiple functional occupations (after Binford 1982). 
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Some Examples of Variability in Reuse of Places 

Binford's mobility/settlement type taxonomy, as described above, is not an 
attempt to arrive at any "whole truth" about human spatial organization; rather it 
is an attempt t o  model different types of organization so that their consequences in 
the archaeological record can be predicted. Binford's model is not altogether 
theoretical in its derivation; rather, ,it is based on ethnographic examples gathered 
by anthropologists and ethnoarchaeologists studying hunter-gatherers, pastoral- 
ists, and agricultural groups throughout the world. Ethnographic and ethno- 
archaeological accounts of variations in mobility and settlement patterning indicate 
that groups operating under different mobility/settlement patterns exhibit differ- 
ent patterns of reuse of places. This observation has important implications for our 
understanding of the complexity of the archaeological record. 

A number of expectations or predictions about the reuse of places can be drawn 
from Binford's mobility model. Binford's suggestion that under the complete- 
radius leapfrog pattern old residential bases will be reused for special-purpose 
logistic functions leads to the expectation that, under such a mobility organization, 
sites will occur at definite points within the landscape where different functions 
would overlap. In addition, since the location of residential bases represents a 
compromise among the locations of resources exploited through logistic mobility, 
we might also anticipate reuse of residential locations as residences, assuming stable 
distributions of logistically exploited resources. 

For the half-radius foraging pattern, on the other hand, there are no logistic 
camps and resources are more evenly distributed. Reuse ofresidential camps might 
be less common under this form of organization, in part because foraging radii would 
more likely be depleted of critical resources for some time and in part because of the 
nature of the environments in which foraging is most commonly practiced, as will be 
discussed below. Foraging radius locations-places where resources are encoun- 
tered and perhaps minimally processed-could be expected to  occur almost ran- 
domly within the foraging radius, a pattern that through time would lead to a 
low-visibility but continuous archaeological record. 

Anthropologists and archaeologists have found that living hunter-gatherer 
and pastoralist groups that pursue a relatively generalist strategy and fall toward 
the foraging end of the mobility/settlement scale utilize the.ir foraging radii more or 
less continuously. Population densities among such groups are characteristically 
low. An annual average density of 0.03 persons per square kilometer has been 
recorded among the /Kade area Bushmen (Harako 1978; Tanaka 1%9), and even 
among the relatively densely populated Ituri Forest Pygmy a density of only 0.2 to 
0.6 persons per square kilometer is typical. Characteristically, such peoples exploit 
their sparsely populated ranges relatively evenly. 

Foley (1981c:21) cites very low densities of artifacts among such groups in 
Africa, even on residential bases if those bases were only occupied once. What is 
more, a large percentage of artifacts among such groups are discarded at what Foley 
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calls "secondary home range foci," which are the equivalent of Binford's "loca- 
tions" within the foraging radius. These locations are usually used only once, and 
their occurrence throughout the environmentally diverse home range assures even 
distribution ofdiscarded items. Gould (1980) reports that among Australian aborigi- 
nes only about 1 percent oflithic discard occurs at the residential basecamp; most of 
the rest occurs within the home range (foraging radius). T h e  results of evenly 
distributed, low-density discard over the length oftime monitored by ethnologists 
are almost invisible, but over archaeological time this discard process can produce 
impressive and relatively continuous densities of discarded materials. 

This discussion has important implications for the ways in which the archaeo- 
logical record of foragers should be surveyed, measured, bounded, and analyzed, a 
topic to  be discussed in greater length in later sections of this chapter. Given a 
foraging adaptation, it is clear that, in much of the contemporary archaeological 
record, discrete "sites" will not be apparent. Nonetheless, the continuous archaeo- 
logical record left by groups employing a foraging strategy includes within it 
materials related to both types of activity areas used by these groups (residential 
and nonresidential loci). 

Although few human groups pursue a pure foraging subsistence strategy, most 
groups represented in the archaeological record may well have pursued a foraging 
strategy at least part of the time. A model such as Binford's, which contrasts two - .  
ex t r eme  subsis tence and  mobi l i ty / se t t l ement  strategies-foraging and  
collecting-is not meant to  reflect the real world as much as to  provide a basis for 
predictions. All actual human strategies should fall somewhere between these two 
extremes. Among groups that depend more heavily on logistically organized collect- 
ing strategies, there are definite nodes or foci in the landscape that are repetitively 
used for the same or different purposes. Even among near-classic foragers, such as 
the Bushmen described by Yellen (1976), some camps can be seen to  be resettled 
even within the short span of ethnographic time. 

Most North American prehistoric and ethnohistorically recorded hunters and 
gatherers could be expected to employ subsistence strategies more closely resem- 
bling the collecting portion of Binford's model and thus to exhibit a logistic 
mobility/settlement pattern. For example, most Shoshone groups of the Great 
Basin, who exploited only wild foods even ethnohistorically, occupied a number of 
functionally differentiated types ofcamps. Four major food sources were exploited: 
Indian ricegrass seeds, piiion nuts, jackrabbits, and antelope (Powell 1980). Winter 
villages served as residential bases, and foraging for seeds and rabbits took place 
near these camps; in addition, at least two types of special-purpose camps were 
occupied. Piiion camps, which were reused when the nuts were locally available, 
were occupied by one or more families for periods ranging from 2 weeks to several 
months. Antelope camps were also reused, although only about once every 12 years 
owing to pressure on antelope populations. When these antelope camps were in use, 
however, they were occupied by a large population consisting of many residential 
groups, and they were spatially quite extensive. T h e  Shoshone antelope drive camp 
is a good example of a location being chosen not on the basis of "multivariate" 
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determinants but instead because of the presence of a single resource. As Thomas 
(1983:79) notes, at antelope camps '&the short-term gain[s] of high-bulk animal 
procurement temporarily offset the high costs of transporting essentials such as 
firewood and water." 

The  pastoralist Navajo also exhibit differentiated use of locations within a 
home range centering on a permanent camp. Some of these functionally specific 
locations are used only once or infrequently (temporary windbreaks, tent loca- 
tions), but many more are revisited regularly (e.g., stock shelters, storage features, 
dumps, antelope hunting corrals, sweathouses; Kelley e t  al. 1982). Although com- 
monly characterized as pastoralists, the Navajo also grow crops, and they maintain 
agricultural fieldhouses when the distance from the permanent camp to the field is 
greater than ca. 3.2 km (Russell 1978). Some ofthese fieldhouses are occupied for the 
entire agricultural season, and commonly they are reoccupied from year to year. 

As people become more intensively agricultural and residentially sedentary, 
their logistic use of nonresidential locations may actually be greater than that of 
hunter-gatherers. But because there is little residential relocation, these special- 
purpose locations are used for more or less the same set of functions, although not 
necessarily all at the same time. Among Pueblo agriculturalists, both living and 
prehistoric, special-purpose sites have often been lumped under the rubric of 
"fieldhouses," although they may have had many functions, including agricultural 
camps, lookouts, hunters' camps, and storage facilities (McAllister and Plog 1978; 
Moore 1978). Mesoamerican analogies suggest that small fieldhouse locations origi- 
nally occupied for purposes of tending agricultural fields may grow into larger 
residential villages through time (Fish and Fish 1978). Ellis (1978) observes that 
among the New Mexico Pueblos most fieldhouses belong to single individuals and 
thus represent recurring occupations for only a generation. She also notes that these 
structures are used not only while fields are being tended but also for "vacations." 

Implications of Variations in Settlement/Mobility Patterns 
for the Archaeological Record 

Binford's model of hunter-gatherer subsistence strategies and their concomi- 
tant settlement/mobility organizations has suggested two polar extremes, that of 
subsistence generalists with a foraging pattern of spatial use, and that of specialist 
collectors whose use of space is logistically organized. Ethnographic and ethno- 
archaeological documentation provides support for the conceptual validity of both 
of these patterns and also suggests that most groups occupy a position somewhere 
between these extremes. Prehistoric systems also can be expected to fall somewhere 
on this continuum-in other words, some aspects of their use of space will be 
continuous and other aspects will result in the reuse of places for the same or 
different functions. 

What are some of the implications of these patterns for the formation of the 
archaeological record, particularly with respect to predictive modeling? A first 
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obvious implication is that within any single organizational system there should be a 
number of different site types with functionally and formally different contents. 
T h e  determinants of the placement ofthese different site types vary, with some site 
locations (those of residential sites in logistic systems, for instance) being compro- 
mises among the locations of known resources (i.e., determined and multivariate). 
Some site types, for instance residential bases and locations in foraging systems, will 
be far less predictably located on the basis of correlations with resource locations. 
Still another class of sites, special-use camps within logistic systems, may be 
locationally quite dependent upon the occurrence of a single resource and inde- 
pendent of the occurrence of other resources. In order to predict the locations of 
special-use sites, one would need to know just what resources were being exploited 
at  and around them. The  archaeological dilemma about the function of "field- 
houses" illustrates that it may be very difficult to  determine the specific use of 
places by simply inspecting those sites. Nonetheless, all of the site types that 
constitute a settlement/mobility system are integral participants in the overall 
organization of that system, and they must be understood before the locations of 
other components of that system can be predicted. Another implication of these 
patterns of space use and reuse is that a large and important portion of the 
archaeological record may be relatively continuous across the landscape, difficult to  
discover using current survey methods owing to low density of discarded materials, 
and very hard to talk about in terms of any equivalency between perceived clusters 
of materials (sites) and past behavioral episodes. 

T h e  reuse of places through time also raises questions about the practice of 
equating clusters of materials with sites, at least insofar as sites are automatically 
interpreted episodically and as having locations that are predictable on the basis of 
their proximity to important resources. Moreover, site size as a functionally discrim- 
inating factor may be skewed by the reuse or lack of reuse of structures or of the 
places where previous structures had been. In the residential camps of the northern 
Ute, for example, menstruating women were required to build a new menstrual hut 
each month; these were similar to  family shelters in size and functional characteris- 
tics, having internal hearths and activity areas, and they didnot occupy areas where 
previous menstrual huts had been built (Smith 1974). If a hypothetical northern Ute 
residential camp were occupied by an extended family including eight adult 
females, half of whom were pregnant at any given time, approximately 68 new 
menstrual huts would be constructed each year. Ifeach old hut structure remained 
visible for 50 years, as some taphonomic studies indicate might be possible, and if 
the camps were continuously occupied over these years, this single Ute camp would 
accrue 3400 menstrual hut locations. What would normally be classed as a very large 
site may actually be the remains of multiple reoccupations of a single location by a 
relatively small group. 

An exciting account by John Wesley Powell, an ethnographer who worked 
with the southern Numa (Ute) for two decades beginning in the 1860s, illustrates 
the consequences of reuse ofthe same general area, but not ofthe exact spots where 
structures had previously been built, at residential camps. 
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It is very rare that a site for a camp is occupied a second time and though they all go again 
year after year to camp near the same spring or small stream they invariably seek a new 
site for their bivouacs each time. When they leave a camp their bivouacs are not 
destroyed and so on coming to a customary camping place of the Utes, it gives the 
appearance of having been occupied by a very large tribe, and persons are easily led to 
suppose that thousands have beenencamped there when in fact perhaps a small tribeofa 
dozen families have been the only persons who have occupied the ground for many years 
[Fowler and Fowler 1971:52]. 

T h e  nature ofsite patterning and the appearance and visibility ofarchaeologi- 
cal sites are seldom determined solely by the activities carried out during a single 
occupational episode. The  archaeological record is instead created by the repetitive 
superposition of materials resulting from adjustments of human systems to their 
landscape through mobility. All components of these systems must be located, 
studied, and understood through the explanatory process before any can be success- 
fully predicted. 

TECHNOLOGICAL STRATEGIES, DISCARD BEHAVIOR, AND 
THE ARCHAEOLOGICAL RECORD 

Analyzing the differences and similarities among and within collections of 
cultural materials that are found at places-that is, assemblage variability-is often 
thought of as something to be done in the future, after the cultural resource 
manager's work has ensured the protection of significant sites. Unfortunately, this 
cannot be the case in any program directed toward predicting the locations or other 
characteristics of sites and resources. In order to  understand the workings of past 
systems and the mechanisms behind the spatial organization ofactivities, we must 
be able to  tell the parts of systems from one another. In this section we will suggest 
that the component parts of human systems can be identified on the basis of the 
tools and other materials discarded, combined with information about the organiza- 
tion of technology. 

Modeling Technological Organization 

Ongoing cultural systems occupy a set of functionally and spatially differen- 
tiated places. If we study these places simply by grouping together sites that are 
similar, we cannot hope to understand the system as a coherent whole. In order to 
understand past systems we must find a way to group together the dfferent parts ofa 
single cultural system or type of adaptation. Such parts of the cultural system may 
occur in the form ofclumped distributions ofartifacts and features resulting from a 
single or from multiple occupations. Assemblages of artifacts resulting from differ- 
ent functional activities and formed at the same or different times may overlap 
wholly or partially in space. In other circumstances artifactual materials may be 
relatively sparsely and continuously scattered over large areas as a result of exten- 
sive foraging. 
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On the organizational level, it is clear that the archaeological record is not 
directly or simply equivalent to activity areas or sets. It is accretional rather than 
episodic, whether it is of a continuous nature or concentrated into clusters. It is 
necessary to sort out the overlapping, accretional sets of artifacts and features 
before functions and roles in the organizational system can be assigned to what we 
see in the archaeological record and before we can approach any sort of locational 
predictions. A consideration of intersite and intrasite assemblage variability is a 
necessary starting point. 

Assemblage variability can be predicted through reference to the model of 
subsistence, settlement, and mobility detailed above. It should again be empha- 
sized that models are heuristic theoretical constructs that permit us to  consider the 
range of strategies that human groups might follow and to predict the expected 
results of these strategies. Models allow prediction of consequences; if these 
predictions are confirmed, this tends to validate the usefulness of the model. 
Consequences are predicted from the model through the use of middle-range 
theory (Figure 4.1). 

Curated vs Expedient Technology 

As an example of a middle-range theoretical concept with great potential for 
tying together the dynamic organization of past human systems and the static 
contemporary archaeological record, consider the distinction between curated and 
expedient tools (Binford 1976, 1979). Expedient tools are those that are manufac- 
tured in the immediate context of their use when the circumstances that require 
them arise. Examples of expedient tools are rare in today's manufactured technol- 
ogy, but we all use bent coathangers to open locked automobile doors or convenient 
sticks to  chase frightening dogs. In systemic terms, the use ofexpedient technology 
would be expected to  be greatest in organizational systems geared toward an 
encounter strategy-that is, foraging systems. In the environments that favor such 
a strategy, there is an equal chance of coming across a wide variety of resources; 
there is no need for the participants in such a system to even attempt to predict 
what they will find. Other things (such as material availability) being equal, it might 
well be most efficient for these people to manufacture tools on the spot to  meet 
specific situations as they are encountered. 

In curated technologies, on the other hand, the tools that are employed are 
planned to fit specific uses that have been anticipated (Binford 1976). This is an 
efficient strategy in environments where the occurrence of resoukes is predictable, -. 
and in organizational systems that focus on specialized resources. Collecting strate- 
gies featuring a logistic organization of mobility-dispatching of special task groups 
to procure selected resources-are most likely to exhibit curated technologies. 

As in any modeling effort, of course, these two technological extremes are 
theoretical constructs. Actual technologies employed within a system can be 
expected to be a combination of the two. For instance, foraging people may produce 



EBERT AND KOHLER 

and use general-purpose curated tools in addition to manufacturing situational 
tools. It is probable that the participants in logistically organized systems will 
encounter unplanned situations that require the fabrication of expedient tools or 
the modification of tools with planned uses into tools with new uses. One character- 
istic ofcurated components of a technology is that they are often the result ofstaged 
manufacture employed in the face of time stress (Torrence 1983). Time stress occurs 
when resources are clumped or concentrated in space (which requires a focus on 
specific resources to consumer needs) and in time (which requires highly eficient, 
specialized tools). Since collecting resources in such an environment must be done 
in short time periods, there is plenty of time to work on tools; high energy 
expenditures in tool design, manufacture, and maintenance assume technological 
efficiency. Typically, tools are manufactured and maintained in a staged manner, 
with stages taking place not only at residences but also at special-purpose locations 
occupied on the way to and from locations of time-stressed resource procurement. 
Staged manufacture, resource specialization or focalization, and the use of special- 
purpose locations are characteristic of logistically organized groups. 

Foraging groups are characterized by relatively broad-spectrum resource 
bases-they are generalists in that they exploit a large number of resources, at 
relatively low levels, within a foraging radius even over short time periods. While 
specialists in simple environments must obtain most of their resources during very 
short time periods, this is not the case for foraging generalists, who obtain food 
slowly and constantly. In such a generalist scenario there is neither the need nor the 
opportunity for staged manufacture. If technological components are curated, they 
are manufactured, maintained, and discarded at residential bases. Expedient por- 
tions of a foraging group's technology will be discarded continuously throughout 
the foraging radius. 

These crosscutting but definitely not independent middle-range dimensions 
of variability-collecting vs foraging, resource specialization vs generalization, and 
tool curation vs expediency-are important in a discussion of predictive modeling 
in that they have different implications in terms of the location ofthe manufacture, 
maintenance, and discard of tools and hence the formation of the archaeological 
record. Expedient tools are manufactured where they are needed, and they are also 
discarded there. In this strategy, the occurrence of expedient tools is isomorphic 
with the activities for which they were used, and the energy put into these objects is 
low; they exhibit little in the way of formalization or style. Most expedient tools 
probably do not look much like tools a t  all and are therefore either exempted from 
analysis by many archaeologists as "undiagnostic" or included in the category of 
debitage. 

Curated tools, on the other hand, are rarely either manufactured or discarded 
in the context of their immediate use. Tools intended for use during the mobile 
activities of special task groups are most likely to be manufactured at residential 
basecamps (Binford 1980) for anticipated uses away from those camps. Curated 
tools, designed to be used for some time, will be more durable than those made 
expediently for immediate discard, although this may not be morphologically 
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obvious. Characteristically, however, curated tools are of a compound or complex 
nature (Allchin 1966; Oswalt 1973)) having hafted components or multiple parts. 
These characteristics help to ensure that a curated tool will not be "used up" at the 
locus ofits use but rather will be brought back to the residential base for rejuvena- 
tion or other maintenance. Under such a curated technology, both manufacturing 
debris and broken portions of curated tools will be found at the residential site and 
not at the places where the tools were used. The  only curated tools (as opposed to 
"site furniture," such as metates) that should be found at the place where they were 
used are those that were lost and not recovered, for instance, unrecovered projectile 
points. 

Expectations about the presence of discarded tools and debris associated with 
tool manufacture in the archaeological record can be generated from the above 
assumptions. Under a foraging strategy, there are two situations in which discard 
should take place: at the residential basecamp and at the location. Manufacture and 
discard ofexpedient tools would be expected to take place at both ofthese loci, with 
the implements being discarded where they were used. Groups using a foraging 
strategy should exhibit major variations in mobility and group size and composition 
during the year or from year to year in response to short-term variations in the 
environment (Binford 1980). This leads to the expectation that the activities 
performed at foraging sites ofeither type could be quite diverse and could vary with 
time. Since over the long term, at least, campsites would not be chosen with regard 
to  the placement ofprevious camps or locations, this diverse archaeological record, 
particularly those assemblages derived from locations, would tend to be relatively 
continuous over the landscape, given long-term use. Under a foraging strategy, 
variability in residential site assemblages is the result of differences in seasonal 
scheduling of activities and in duration of occupation. In such systems there is a 
pattern of increasing assemblage diversity with increasing site size, as noted by 
Yellen (1976). Among groups practicing a foraging strategy, therefore, the nonresi- 
dential use of the foraging radius leaves nonsite archaeological remains that are just as 
important for archaeologists attempting to predict the operation of these past 
systems as are the more clustered and visible materials that are usually called sites. 
This problem ofcontinuous distributions will be discussed at greater length later in 
this chapter. It is quite likely that some components of all human systems leave 
dispersed archaeological remains with low visibility, and these remains must be 
studied and understood before the mechanisms behind the placement of activities 
in systems can be explained and used to predict the locations of those activities 
accurately. The  record left by expedient activities may be far more easily under- 
stood than that of the more logistically organized portions of past systems. 

Under a logistically organized system the nature of the intra- and interassem- 
blage variability can be expected to be very different from that predicted for 
foraging systems. Collectors use specially organized, highly mobile task groups to 
accommodate situations in which consumers are near one or more critical resources 
but distant from others. In addition to residential basecamps, these groups also 
utilize field camps, stations, caches, and other places for specific functions. Field 
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camps under such systems probably outnumber residential camps by as much as 4: 1 
(Judge 1973). Since these camps can be occupied for long periods and/or be the sites 
of intensive processing, they may become as large and visible, archaeologically, as 
residential bases (Binford 1980). As noted above, groups organized under a collect- 
ing strategy will be likely to employ a curated technology to some extent, given 
their high levels of mobility and activity planning. Discard of those curated tools 
that are employed primarily away from the residence rarely takes place at the locus 
of their use. Collecting strategies are based upon prediction or planning and should 
be expected to occur for the most part in the most predictable environments. This 
means that places where archaeologists today should best be able to predict the 
locations of sites on the basis of resource distributions will harbor assemblages that 
are unlikely to reflect the activities that took place there, since they will have less 
functional correspondence with the "resources" that are used as independent 
variables in predicting them. 

The  argument might be made that it is not necessary to know the functions of 
sites to be able to predict their occurrence-that using proxy indicators that can be 
measured in the environmental today and that "predict" the occurrence of sites 
empirically works just as well. This may be true in certain situations, but proxy 
indicators should not be expected to occur isomorphically with the reasons that 
activities took place at certain locations in the past in all cases. It is the mechanisms 
behind the placement of activities in space and their resulting archaeological record 
that must be understood in order to successfully predict the occurrence of activity 
loci. 

The Reuse of Places and Intra-Assemblage Variability 

Attempts to predict the occurrence of sites that result from the operation of 
logistically organized systems are further complicated because places are reused for 
different purposes, so that many different combinations ofactivities may take place 
at a single site. For instance, a place might be used as a residential base for several 
months and thus contain tool manufacturing and maintenance-related debris. Ifthe 
site were subsequently used as a field camp, the discarded materials from this 
second use may not faithfully represent activities that actually occurred there. A 
wide range of technological variability of specific and easily differentiated types can 
be expected in the archaeological record produced by a collecting-based systemic 
organization. Investment in such facilities as structures for shelter or storage, 
caching ofitems to be used later at the site, and other cultural "improvements" ofa 
place would also be expected at reused places under such a system. This means that 
differential site function in a logistically organized, collecting system might not be 
obpious on the basis of either site size or site contents. Indeed, as Thomas (1983:80) 
points out, 

it is extremely difficult to distinguish field camps from base camps in the archaeological 
record. There are behavioral differences to be sure, but these differences are commonly 
subtle and off-the-cuff field designations should always be mistrusted. 
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Interassemblage Variability and Mobility 

T h e  variability among assemblages at different sites that result from the 
operation of a single system-that is, interassemblage variability-is the result of the 
overlay of an organized series of events. T h e  nature of assemblages that result when 
cultural events interact differentially with natural events has been discussed in 
terms of "grain size" by Binford (1980:17). Coarse-grained assemblages are the 
cumulative product of events spanning relatively large time periods, for instance 
several months or a year. Fine-grained assemblages accumulate over a short period 
of time. The  finer the assemblage grain, the greater the probable content variability 
among assemblages, because there is less chance that the total range of activities that 
occur under that system will be found there. The  main factor responsible for grain 
size is mobility, but this relationship is far from simple or linear. In a foraging group, 
residential mobility would be expected to be highest in the least diverse, least 
seasonal, and least predictable environments, resulting in an increase in inter- 
assemblage variability. Under logistic strategies, residential mobility goes down, so 
coarser-grained assemblages would be expected in residential sites; the more 
mobile logistic components would, however, be finer grained than the residential 
sites and would thus, as a class, exhibit more interassemblage variability. 

The Explanation of Intra- and Interassemblage Variability 

Two major expectations concerning the relationship between assemblage 
variability and differing degrees of residential vs logistic mobility have been dis- 
cussed above. One expectation is that under increasing logistic mobility the effects 
of curation and the reuse ofplaces will make it increasingly difficult to postulate the 
functions of sites or to  predict their occurrence in terms of association with 
particular resources. T h e  other expectation is that under increasing logistic mobil- 
ity there will be increased interassemblage variability, both between residential 
basecamps and special-task locations and among different special-task locations as 
well. T h e  archaeological record in this latter case may appear as a series of sites that 
are relatively uniform in size, visibility, and contents in terms of structures or 
facilities but contain assemblages that are strikingly different in terms of the formal 
attributes of their constituents or at least some of their constituents. 

One of the ways of explaining an archaeological record like that described 
above is in terms of separate technical or cultural traditions, an approach that has 
been dominant in American archaeology since the science's beginnings (Willey and 
Sabloff 1974). This approach, which has been referred to as the Kriegerian method 
(Binford and Sabloff 1982: l43), defines culture types as collections offormally similar 
properties or attributes of cultural materials that are spatially coherent. Data 
collected and interpreted using this approach pose serious problems for archaeolo- 
gists and cultural resource managers who wish to understand the operation of past 
human systems and the mechanisms behind the archaeological record, yet such an 
understanding is critical to successful prediction of the locations of archaeological 
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materials. A Kriegerian, culture-type approach to assemblage variability virtually 
assures that the differentiated components of systems will be treated as separate 
cultures or traditions, making it impossible to consider them as parts of an inte- 
grated whole. And since the components of a system do operate in an integrated 
manner, their locations are just as dependent upon the nature and locations of the 
other components as upon environmental or other factors. Successful prediction is 
necessarily based upon the recognition and sorting out of the complementary 
components ofsystems. Unfortunately, this is something that archaeologists cannot 
do at present, although attempts toward this goal will be discussed later in this 
chapter. 

Technological vs Ecosystems Organization 

The  practice ofgrouping assemblages on the basis offormal similarity encour- 
ages an emphasis on empirical correlations between assemblages (site types or 
culture types) and environmental variables, a practice that is the hallmark of 
present-day prediction attempts. Maze1 and Parkington (1981) suggest that a more 
productive approach might consist of regional studies of the interrelationships 
among tools, sets of tools, and resources. These interrelationships are controlled, 
they feel, primarily by the spatial patterning of resources (rather than simply by 
their location) and by the ways in which resource patterning compares with the 
spatial patterning of human mobility within a system. In other words, prediction 
might be based not only on an understanding ofhuman systems but on knowledge 
ofecosystems as well. Ecosystem variables include thepatterning ofresources in time 
and space and such qualities as environmental diversity and equability. The  effects 
of ecosystemic spatial and temporal structures on the predictive effort will be 
discussed later in this chapter. 

Selection of the cultural variables against which to compare ecosystem varia- 
bles may be one ofthe most dificult tasks presently before the archaeologist. It will 
require very different approaches to sampling, survey, and data collection, record- 
ing, and analysis than are used in cultural resources management today. The  
assemblages that constitute sites must be understood in their entirety- 
undiagnostic artifacts as well as diagnostic ones. One new approach, a nonsite or 
distributional archaeological survey method, was recently tested by the Bureau of 
Land Management in New Mexico. This project will be discussed in a later section 
of this chapter. 

From a systems perspective it is clear that, at least under certain types of 
mobility and technological organization, the contemporaneous technological "tra- 
ditions" often identified in the archaeological record are actually functionally 
different parts of the same system. Most of the archaeological record in any one 
place may consist of the remains of different portions of an essentially similar 
system-remains that have been deposited over very long periods of time. The  
archaeological record is not directly explainable in terms of episodic behavior; 
rather, 



THEORETICAL BASIS AND DATA-COLLECTION METHODS 

a detailed consideration of the factors that differentially condition long-term range 
occupancy or positioning in macro-geographical terms is needed before we can realisti- 
cally begin to develop a comprehension o f .  . . subsistence-settlement behavior. The 
latter is of course necessary to an understanding of archaeological site patterning 
[Binford 1980:19; emphasis original]. 

NATURAL FORMATION PROCESSES AND THE 
ARCHAEOLOGICAL RECORD 

The  complex patterning of cultural materials across space is a result of human 
mobility, the spatial patterning of different economic activities, the redundancy in 
economic activities across the landscape, and differences in the locus of artifact 
discard vs that of artifact use. In most cases, this patterning of discarded material 
undergoes additional changes before it is discovered and interpreted by the 
archaeologist (Schiffer 1972, 1983). Processes affecting the deposition, accumulation, 
preservation, disturbance, and exposure ofthe materials that make up the archaeo- 
logical record have been much investigated in recent years, largely due to  such 
interdisciplinary influences as the study of taphonomy of culturally utilized or 
modified organic and inorganic materials (Behrensmeyer and Hill 1980; Brain 1%7a, 
1%7b, 1969, 1981; Gifford 1977a, 1977b, 1980, 1981; Gifford and Behrensmeyer 1977) 
and geoarchaeology (Butzer 1977, 1982; Gladfelter 1977). 

Deposition: The Coincidence of Natural and Cultural Events 

Cultural materials enter the archaeological record through deposition, during 
which process they are buried or otherwise preserved. Although depositional 
processes may be cultural, in most cases they are natural, consisting of aeolian, 
fluvial, lacustrine, or residual aggradation. These natural processes of deposition 
may or may not coincide with episodes of cultural discard. Materials discarded as 
the result of an occupation or activity might lie on the surface for long periods (in 
fact, "forever") without being buried, or they may be quickly buried even as they 
are discarded. Materials buried in layers or "levels" are thus not necessarily or even 
not often expected to be the result of single occupational episodes. T h e  nature of 
the deposited archaeological record is controlled by the periodicity or "tempo" 
(Binford 1982: 16) of occupation or use of a place and by the relationship between this 
occupational periodicity and the periodicity of depositional processes. If the perio- 
dicity ofdiscard is the same as the periodicity ofnatural occurrences-for instance, 
floods-that incorporate these the artifacts into sediments, then a regularly strati- 
fied archaeological record will result. If discard occurs more often than the natural 
encapsulating events, however, cultural materials resulting from multiple behav- 
ioral episodes-multiple activity sets, in Carr's (1984: 113) terms-will be incorpo- 
rated into the same geomorphic stratum. 

In situations such as the complete radius leapfrog pattern of residential 
mobility, for instance, in which certain logistic sites may be reoccupied or reused for 
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different activities within a short period of time, one might expect that episodes of 
discard would occur more frequently than episodes ofdeposition. This would result 
in single-layer assemblages, or what Carr (1984:114) calls depositional sets, com- 
posed of materials from more than one occupation or function. T h e  nature of the 
deposited archaeological record is determined not only by the organization of the 
cultural system but by interactions between the organizational system and deposi- 
tional processes. This poses another set of problems for the archaeologist, since 
"demonstrably associated things may never have occurred together as an organized 
body of material during any given occupation" (Binford 1982:17-18). 

Postdepositional Processes 

Another set of processes affecting the ultimate nature of the archaeological 
record can be thought of as postdepositional, occurring after the discard ofcultural 
materials. Generally, almost any process that disturbs or acts upon the surface ofthe 
earth and subsurface deposits also acts upon archaeological materials. Such biologi- 
cal processes as faunalturbation and floralturbation (Wood and Johnson 1978), 
caused by burrowing, trampling, and root-heave, can modify the original distribu- 
tion of cultural materials. Chemical and physical processes that affect the archaeo- 
logical record include freezing and thawing cycles; mass wasting (gravitational 
forces); the growth and wasting of salt crystalline structures; the swelling and 
shrinking of clays; volcanism and tectonism; disturbances caused by the action of 
gas, air, wind, and water; and pedogenesis. 

A somewhat different taxonomy of the postdepositional processes acting on 
the archaeological record is advanced by Foley, who presents five sets of processes 
responsible for burial, movement, destruction, exposure, and "small-scale oscilla- 
tion" (1981a: 167) of archaeological materials. Discarded artifacts enter the archaeo- 
logical record through burial by cultural or natural agencies; once assemblages are 
buried they may remain in place or they may be moved through stream action, 
sediment movement, faulting, or mass wasting. At the same time, certain materials - - 
may or may not be destroyed by physical and chemical agencies while in or on the 
ground. Small-scale oscillation processes include animal burrowing, human disturb- 
ances, root action, and water or wind action; these forces may alter the position of 
components of the archaeological record slightly but presumably do not totally 
disarrange it. Exposure of the archaeological record to water or wind erosion, 
tectonic activity, or human disturbance may alter the distribution of the archaeo- 
logical materials as well as make them visible. 

Just as variations in the coincidence of episodes of discard vs episodes of 
deposition or burial can create either well-segregated assemblages or palimpsests 
(that is, artifact distributions resulting from the overlay of many separate behavioral 
episodes and the action of postdepositional processes), exposure and reburial can 
also introduce complexities in archaeological patterning. These processes are rarely 
simply gravitational; they usually include some lateral component and therefore are 
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influenced by small variations in topography. Exposure and redeposition are often 
highly localized; deposits from separate occupations may be mixed in one area while 
a few meters away they will be separately stratified. Controlling for the complexi- 
ties caused by differential deposition, exposure, and reburial of artifacts may be one 
of the most difficult and yet necessary tasks facing the archaeologist. Whatever the 
scale at which patterning in the archaeological record is being analyzed, the 
microtopography and geomorphological activity of surfaces must be examined in 
more detail than that afforded by most generally available topographic or surface 
unit maps. 

The Scale of Depositional and Postdepositional Processes 

Natural depositional and postdepositional processes are not necessarily or even 
often controlled by the factors that caused prehistoric people to  visit and use an 
area. Depositional and postdepositional processes are localized and patterned on a 
small scale. Rarely, then, will the actions and results of these natural processes be 
spatially congruent with activity areas or assumed sites. Instead, their effects serve 
to remove the archaeological record yet further from past behavior and the organi- 
zation of human systems. 

This is not to  say that natural processes necessarily render the archaeological 
record useless or uninterpretable. It is common in contemporary archaeology to 
view postdepositional processes as "bad," as making the archaeological record 
unusable or of diminished research potential. This probably arises from the seem- 
ingly popular belief that postdepositional processes are random in their operation 
(Bowers e t  al. 1983; Kirkby and Kirkby 1976). Almost all modern survey forms have a 
space for an assessment of a site's integrity; if the site is distuibed, it is too often 
classed as being of limited utility to science and therefore ofdiminished significance. 
Such an assessment ignores the fact that all archaeological materials, whether from 
"sealed" sites or lying on the surface, have been affected by natural processes. 
Depositional and postdepositional processes are not random in nature; in order to  
assess their effect on our data, however, we must study and understand these 
processes so that we can predict their distribution and impact. Any prediction ofthe 
occurrence of archaeological materials must incorporate a full consideration of the 
effects of depositional and postdepositional processes as intervening factors 
between the operation of past human systems and the archaeological record. 

This is necessary because the effects ofpostdepositional processes on what we 
see as the archaeological record may be far greater than we intuitively recognize. 
They not only disarrange flakes and tools but in fact are almost totally responsible 
for most of what archaeologists actually see during surface survey. If the physical 
extent ofbehavioral events that result in discarded materials are ofthe same general 
range ofspatial scales as the depositional and postdepositional processes, then there 
is some chance that entire sites will be exposed to the archaeologist's view. 
Unfortunately, it is almost inconceivable that this will be the case. T h e  material 
record will almost certainly be acted upon by a series of partially overlapping 
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depositional and postdepositional processes of widely varying scales. These proc- 
esses will combine the products of behavioral episodes; blur or sharpen (and in fact 
probably often create) their apparent boundaries; and differentially affect the place- 
ment of artifacts, depending on their sizes and shapes. These effects are all- 
important, for they determine where we see sites and what these sites look like. 
They also may be responsible for the fact that we think we see "sites" at all in many 
places. These processes must surely be determinable and predictable. The natural 
processes that intervene between the archaeological record and our knowledge of 
the past must be understood before predictive modeling can become an operational 
tool for cultural resource management. This task is discussed and illustrated at 
length in Chapter 9of this volume, which deals with remote sensing and predictive 
modeling. 

The Usefulness and Integrity of Surface Remains 

Recently Lewarch and O'Brien (1981) argued that surface assemblages can be 
used to answer archaeological questions because comparable processes affect the 
patterning of artifacts in both surface and subsurface archaeological assemblages. A 
more realistic way to phrase this might be that archaeologists should be aware that 
natural and cultural processes can affect subsurface or "sealed" archaeological 
patterning just as strongly as they affect surface materials, so no automatic assump- 
tions of total contextual integrity should be made for any observed archaeological 
patterning. 

There are important pragmatic reasons for developing methods to measure the 
patterning and content of archaeological surface remains and for using such data to 
answer archaeological questions. Of these, the most relevant to the present volume 
is that the depositional processes that seal and protect cultural materials after their 
discard usually render these materials invisible to the archaeologist, even when 
such sophisticated and often expensive techniques as underground radar, proton 
magnetometry, resistivity measurement, and the like are used to search for them. 
For practical purposes, most buried archaeological materials are unknown and ofno 
value to the archaeologist until they are exposed. Another reason for paying 
attention to surface assemblages is that the contexts in which stratified deposition 
and burial are most dependable and regular, and in which archaeologists most often 
look for and find buried materials, may be the result of only very limited or 
specialized portions of the cultural systems. For instance, while cave sites contain 
well-segregated and well-preserved cultural strata, such sites might have been 
occupied only when the shelter they afforded was necessary, or they may have been 
used only for a specific set of purposes. Most of the components of the cultural 
system may have involved the use ofopen situations that would be more likely to be 
buried and reexposed, or perhaps not buried at all. Thus, in the archaeological 
record these components would be represented only by surface assemblages. 

Possibly the best reason for using surface archaeological assemblages, however, 
is that such data can be collected quickly, accurately, and cost-effectively, and they 
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yield a high return in the form of information that can be used to test models of 
human systems organization. In order for us to use this information, however, it is 
imperative that surface archaeological data be discovered, measured, and analyzed 
in ways that are consistent with their nature and with the nature of the organiza- 
tional processes that we wish to explain, as documented in the final section of this 
chapter. 

Natural Processes and "Independent Environmental Variables" 

The  importance to predictive modeling of an understanding of postdeposi- 
tional processes becomes clear if we consider the "independent variables" fre- 
quently discussed by archaeologists involved in locational predictive modeling. 
These independent variables are the noncultural aspects of the total environment 
that correlate with site locations. Under an empirical framework these variables are 
used to "predict" (project) site locations. Commonly used independent variables 
include soil association, slope, elevation and/or variation in elevation, topographic 
aspect, vegetation, distance to water sources and their nature, and various specific 
landform associations (Chapter 9). It is almost always explicitly acknowledged that 
these independent variables themselves may have no causal relationship with the 
placement of sites; they are simply considered to be indicators. In many instances, 
variables may be chosen primarily because they can be taken conveniently and 
quickly from topographic maps so that fieldwork is not required; some ofthe pitfalls 
of this approach will be discussed in Chapter 9. 

In addition, trying to generalize about where prehistoric people lived on the 
basis of where we find their discarded materials circumvents the explanatory 
framework outlined above by equating the archaeological record with past behavior 
without taking intervening processes into account. Correlating environmental 
characteristics with the archaeological record must begin with a consideration of the 
natural processes that determine how we see the archaeological record. Every one of 
the independent variables used in empirical, correlative projections could be a 
successful predictor because it has relevance to natural depositional and postdeposi- 
tional processes (and thus to the visibility of archaeological materials) rather than 
for any cultural reasons. 

For example, archaeological materials might be found on ridge tops, in sand 
dunes, or near water sources because that is where they are exposed and visible 
today. Soil associations are taxa of different types of soils, and these differences are 
based largely upon varying parent materials and the time that the soil has had to 
develop, both of which may affect the geomorphic processes that cover or uncover 
artifacts. Vegetation is an obvious factor in reducing or enhancing archaeological 
visibility. Erosion takes place at accelerated rates on steep slopes. And any archaeol- 
ogist who has tried to survey the north side of a hill in the early morning or late 
afternoon knows that the light there is poor; things can simply be seen better on 
south slopes. There is not a single independent variable used in current predictive 
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modeling attempts that might not have more to do  with depositional and postdepo- 
sitional processes than with anything that prehistoric people thought or did. 

Predictive modeling based on correlations with these variables may actually be 
predicting where we see sites and may have very little to do with how people 
behaved or how their systems worked. This is not to say that the archaeological 
record has no systemic, behavioral determinants; previous sections of this chapter 
have emphasized that it does. T h e  point is that natural processes are very important 
in determining many aspects of the nature of the archaeological record and how we, 
as archaeologists, can deal with it. They must be thoroughly understood before 
predictive modeling can become either a management or a research tool. Ways of 
measuring, understanding, and even predicting the effects and distribution of 
natural depositional and postdepositional processes will be discussed more exhaus- 
tively in Chapter 9. 

ECOSYSTEMS VARIABLES AND ARCHAEOLOGICAL 
EXPLANATION AND MODELING 

As defined in the first section of this chapter, archaeological explanation is the 
process of combining middle-and upper-range archaeological and anthropological 
theory with ecosystems theory to form models from which predictions are drawn. 
This process begins at the systems level, and archaeological models connect sys- 
temic human organization with predictions about the archaeological record. 

Human systems obviously exist within ecosystems-they are subsets or com- 
ponents of ecosystems. Ultimately, the nature and predictability of human systems 
and their products will be related at least in part to the natural ecosystem. This is an 
explicit assumption in all predictive modeling or projective attempts known to the 
authors of this chapter. In fact, the almost universal approach for such attempts is to 
compare the distribution of archaeological materials with "environmental varia- 
bles" that are suspected of having been important to  past people: the availability 
or lack of water, shelter, firewood, food species, lookouts, south-facing slopes, etc. 

This section will discuss the use of ecoytem variables rather than particularis- 
tic environmental resources in the process of archaeological explanation. Ecosystem 
variables have considerable explanatory power when incorporated into models of 
change in human systems in response to  ecosystem properties; they also have 
implications for the ultimate "predictabilityw of locations of cultural resources in 
different ecosystemic settings. In keeping with the principle ofcongruence in levels 
of systems being compared, it is important to examine the global characteristics of 
the structure of the ecosystem in order to predict something about the structure of 
the human organizational system inhabiting it (Figure 4.4). On  a lower level, the 
spatial and temporal distribution of that environmental structure is important for 
predicting the spatial and temporal distribution of the human system exploiting it. 
At a still lower-order level in both systems, it is important to  be able t o  characterize 



ECOSYSTEMS 
SETTLEMENT 

SYSTEMS 
ARCHAEOLOGICAL 
MANIFESTATIONS 

Global characteristics Net primary productivity Population size and density Abundance of archaeological 
Potential evapotranspiration affects Resource mix affects materials or sites 
Degree of seasonality - Degree of mobility - Assemblage grain 
Accessibility of resources Number of site types 

Components Components 

Characteristics Spatial patchiness Concentration of activities within Concentration of materials in space 
of spatialized Patch diversity and overlap affects the landscape affects Diversity of depositional sets 
system components Temporal predictability of patch Diversity of activities at loci + (assemblages) 

Ruggedness of terrain Degree of site reuse 

Components Components 

Elements of these Spatial and temporal distribution Spatial and temporal distribution Artifacts and activity sets 
spatialized system of biotic species affects of activities affects 
components Abiotic components of the Episodic behavior - 

environment 

F igure  4.4. Parallel levels of ecosystems and  set t lement  systems and  their archaeological manifestations. Both ecosystems and  set t lement  systems are 
components  of a single regional system a t  a higher level. T h e  causal arrows shown are not  meant  t o  be  exhaustive. 
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the distribution of particular resources in order to  predict the location of specific 
prehistoric activities and their archaeological manifestations. T h e  extent to which 
this is possible, however, will depend on higher-order characteristics of both 
systems. 

Human Systems Within Ecosystems 

Ecosystems are composed ofindividuals enmeshed in populations, interacting 
with other populations in communities. Ellen (1982:74) has provided us with a useful 
modern definition of the ecosystem as 

a relatively stable set oforganic relationships in which energy, material, and information 
are in continuous circulation, and in which all processes are seen in terms of their 
system-wide repercussions. Spec+ changes, which may theoretically begin anywhere in 
the system, trigger adjustment and re-adaptation among theother elements.. . .Syrtemic 
changes take place slowly through conjoint evolution that is biological, chemical, and 
physical. 

T h e  ecosystem composed of these interacting communities is another example 
of a general living system and likewise exhibits a mixture of predetermined behavior 
and free systems dynamics, as discussed earlier in this chapter and in Buechner 
(1971:45). T h e  species composition ofparticular locations in a forest, for example, is 
always changing in response to fire or other perturbations, although species compo- 
sition and dominance in the larger forest may remain relatively stable. Species 
composition in sera1 (i.e., successional) communities varies according to both 
random and predetermined processes (Buechner 1971:52-53). 

On an abstract systems level, a number of relationships between ecosystemic 
characteristics and aspects of settlement systems have been demonstrated or 
suggested. Binford (1980) remarked upon the increasing importance ofboth logistic 
mobility (collecting) and storage among hunter-gatherers in environments with 
increasing seasonality. H e  notes that foragers, who practice little storage or logistic 
collecting, tend to move from the center of one resource area to  the center of the 
next. Kelly (1983) has argued that the resource "accessibility" (the amount of time 
and effort required to  extract resources from an environment) ofplants can roughly 
be estimated by dividing the net above-ground primary productivity of an environ- 
ment by its primary (plant) biomass; animal accessibility is roughly measured by 
dividing secondary biomass by primary biomass. (Net primary productivity is the 
rate of increase over some unit of time in biomass, usually measured in calories.) 
Kelly finds that as resource accessibility measured in this way decreases, residential 
mobility increases. Low resource accessibility and high residential mobility are, in 
turn, correlated with short distances between sequential residential bases, as is 
typical for foragers in the tropical rainforest. 
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Some Factors Affecting the Predictability and Location ofHuman Use of Space 

An appreciation of mobility is vital to our understanding of how the archaeo- 
logical record is formed. T h e  causes and consequences of mobility are only part of 
what we need to know, however, in order to predict the locations and characteris- 
tics of past human behavior. In particular, we need to consider the middle and 
lowest levels in the systems of hierarchy shown in Figure 4.4, both for ecosystems 
and cultural systems. The  middle level for ecosystems consists ofinformation about 
the spatial and temporal structure of the ecosystem in some region ofinterest. The  
lowest level consists ofinformation about how the distributions of specific resources 
make up the patches and about specific environmental features (soils, landforms, 
etc.) of the landscape. 

Of the many kinds ofknowledge that might improve our ability to understand 
settlement systems and to estimate how well site locations may be predicted, three 
dimensions of variability are most important: the temporal and spatial ~ariabi l i ty  in 
resource availability and the degree of economic intenrijcation of the people exploit- 
ing those resources. We will first define these three dimensions of variability and 
then explore the effects of each variable on settlement systems; each variable will 
first be discussed as if it were possible to hold the other two constant. Finally, we 
will give some concrete examples of how these three independent dimensions of 
variability can be used to characterize various settlement systems and environ- 
ments in terms of the likely success of the prediction of settlement locations. 

Spatial heterogeneity in the landscape is called patchiness, a term that is not 
readily quantifiable but refers to significant spatial discontinuities in the distribu- 
tion of populations or communities. Intuitively, it is the opposite of homogeneity; 
although all ecosystems are patchy at some scale, the relative homogeneity of the 
tropical rainforest, for example, distinguishes it from the relative patchiness of a 
semiarid landscape. Patchiness encompasses aspects of environmental variability 
that are measurable, including the size and size distribution of patch types, the 
relative differences between patches and their surroundings, and so forth (W' mter- 
halder 1980: 153). 

Three terms are especially useful for describing the temporal distribution of 
resources (Colwell 1974; Winterhalder 1980:162-163). Constancy is a measure of the 
degree to which a resource is continually available. Rainfall has a high constancy in 
tropical rainforests but a low constancy in most areas of the North American 
Southwest. Contingency is a measure of the degree to which the availability of a 
particular resource can be accurately predicted based on the season, without the 
need for monitoring that resource. In many areas of the Pacific Northwest, anad- 
romous fish runs have high-contingency predictability even though they are not 
constant. Perfect temporal predictability for a resource can be due to  perfect con- 
stancy, perfect contingency, or a combination ofthe two. For example, Bella Coola, 
British Columbia, has moderately predictable rainfall patterns owing to relatively 
high constancy coupled with relatively low contingency. Acapulco, Mexico, has 
equally predictable rainfall as a result of low constancy coupled with high contin- 
gency (Colwell 1974: 1 151). 
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Intensification has at least two manifestations. It may refer to the process of 
expending increasing amounts oftime or energy to realize the same level ofreturns, 
or it may describe the process through which the same amount ofoutput is obtained 
from less and less land-either through increased time or labor inputs or through 
more efficient technology. Intensification appears to  be closely related to  a number 
of factors: increasing involvement ofgroups beyond the family in the regulation of 
production (Sahlins 1972:lOl-140), increasing population, increasing population 
density, approach to a current carrying capacity, and increasingly complex socio- 
political organization (Harris 1977), to name a few. Harris's position (1977:70) that 
increasing population and increasing population pressure on resources results in 
intensification of land and labor, which in turn causes increasing sociopolitical 
complexity, may be too unilinear, but the general correlation of this system of 
variables is clear. 

Boserup (l%5), Binford (1983: 195-232), and many others have discussed factors 
that may be seen either as the causes of intensification or as its symptoms: 
increased population size and packing, decreased mobility, the beginnings of 
serious agriculture, increased sociopolitical complexity, increased importance of 
exchange, the rise of urbanism, and so forth. Intensification is used here simply as 
the name for this large system of covarying variables, organized along the lines 
proposed in Table 4.1. Under certain circumstances intensification may involve the 
adoption of agriculture (Binford 1983:205) or the development of industrialism 
(Wilkinson 1973). 

Some ofthe following discussion ofthe effects of spatial and temporal distribu- 
tion of resources and degree of intensification on human settlement systems is 
exploratory, and we know of little empirical proof for some of the relationships 
suggested. This is a starting point for further work in this direction and serves as a 
qualification to  simple empirical correlations of the locations of sites with environ- 
mental variables. 

TABLE 4.1. 

Selected correlates of intensification 

Degree oflntmrification 

L o w  + + High 

Carual or 
Extenrive Intenrive 

Correlater Foraging* Collecting * Domertication Domertication 

Modal group size small (18-120) moderate large large 

Generic site types 1-2 5 or more many many 

Residential mobility high (15-50 moderate to low low low 
moves per year) 

Investment in facilities low moderate high very high 

Storage very little; food seasonal seasonal long-term 
gathered daily 

* All information on foraging groups and generic site-type information on collecting groups from Binford (1980) 
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Intensification. What is the importance ofintensification for our ability to  predict 
where sites might be located in space? What implications might it have for the value 
of the concept of the "site"? T h e  least intensified hunter-gatherer economies, 
people practicing a foraging way of life, should exhibit high residential mobility, 
practice little storage, gather or hunt food almost daily, and conduct much of their 
hunting on an encounter basis. T h e  Dobe !Kung and the Central Kalahari San 
(Tanaka 1976) provide good examples of foragers. 

Although all human systems may well exhibit some foraging subsistence, and 
thus mobility, behavior, the purest examples offoraging should be found in tropical 
areas where there is relatively little seasonal pulse in the availability of resources. 
Ignoring for a moment the effects of such ecosystemic factors, the following 
observations about foraging systems in general can be made: 

1. In comparison with logistically organized hunters and gatherers (collec- 
tors), foragers should exhibit low population densities and expend relatively 
little energy in food transport and processing for storage. 

2. T h e  tendency for foragers to move themselves to  food and water, rather - 
than vice versa, suggests that distributions ofsuch resources may in general be 
good predictors of reridential bases (if these can be distinguished in the 
archaeological record). As a cautionary note, however, see comments by Foley 
cited earlier in this chapter. Yellen (1976:52) also observes that the !Kung San 
in the northern Kalahari-whose site locations are heavily constrained by the 
availability of water-generally locate their residential bases at least one-half 
kilometer, and often much farther, from a water source so as not to  disturb the 
animals that also make use of the water. 

3 .  Unless the environment is very homogeneous, or unless there is a single 
resource that is overridingly critical (such as water), however, the residential 
bases of sequential foragers may be located with respect to d$fCrent suites of 
resources, since residential bases are used for a short time. 

4. T h e  low population density of foragers suggests that there may be a low 
tendency toward reuse ofresidential bases (what Binford [1980:7] calls redun- 
dancy in the occupation ofparticular places) except where there are significant 
topographic or other constraints in the physical environment. 

5. Given long-term use ofan area these last two observations may mean that 
all favorable resource locations will be occupied. But the small group sizes, 
short duration of occupation, and low rates of residential reoccupation will 
lead to low archaeological visibility, low artifact density, and little bounded- 
ness in space, making application of the "site" concept relatively difficult and 
arbitrary. Groups practicing foraging also conduct activities away from their 
residential bases, and activities at these "locations" (Binford 1980:9) can be 
expected to leave only very low densities of archaeological materials that do 
not correspond to established notions of sites. 

T h e  logistically organized subsistence-settlement system of collectors repre- 
sents an intensification compared to foraging. A landscape in which foraging is 



EBERT AND KOHLER 

possible should be able t o  support more collectors than foragers owing to the 
collectors' increased efficiency in exploiting spatially disjunct but temporally con- 
current resources and in overriding temporal disjunctions of resources with storage. 
The  implications of this particular intensification for hunter-gatherers have been 
explored earlier (see Table 4.1) and include greater reuse of some places in the 
landscape, but not necessarily for the same purposes; greater degree of disjunction 
between those places and any single "critical" resource; and a wider variety of site 
types, which can be expected to differ dramatically in their locational determinants. 

Active management  of plant and animal resources-including 
domestication-entails an additional intensification of the hunter-gatherer way of 
life. In environments where both collecting and agriculture are feasible, a particular 
landscape should be able to support more agriculturalists than collectors, since the 
former more effectively exploit the potential net primary productivity and over- 
come temporal discontinuities in resource availability. Although there are some 
climates in which storage is difficult, most domesticators of plants and animals 
practice more storage than hunter-gatherer groups. Increased storage may lead to 
increased investment in facilities and increased residential sedentism (Hitchcock 
and Ebert 1984). 

Although agriculturalists decrease their residential mobility in comparison 
with most hunter-gatherer groups, their logistic mobility is not necessarily 
decreased; in fact, owing to the heavily altered nature of the foraging radius 
surrounding agriculturalist settlements (Kohler and Matthews 1988), logistic mobil- 
ity may be more frequent, and encompass a wider radius, than among groups with a 
more mobile residential base. Among these groups, however, logistic procurement 
as a means for coping with resource shortages is increasingly supplemented by 
exchange networks involving subsistence and/or sumptuary items. (This is not to 
imply that such networks cannot be important to  nonagriculturalists in certain 
circumstances, as is amply demonstrated by some Archaic period groups in eastern 
North America or by the trade network in the Pacific Northwest centered on The  
Dalles.) With increasing sedentism, trips away from the residential base are increas- 
ingly likely to emphasize interaction with other groups, rather than direct resource 
collection from the natural environment, as their primary goal. 

In general, the effects of increasing intensification in the absence of changing 
ecosystems variables can be summarized as follows: 

1. residential mobility tends to decrease; 

2. environmental perturbation in the vicinity of residential sites tends to 
increase; the original environmental communities are replaced by communi- 
ties at a less mature stage, with higher net primary productivity; 

3 .  logistic mobility and its supplement or surrogate-exchange-tend to  
increase. 

Given the increasing importance of exchange relationships as a supplement to  
logistic mobility for providing access t o  resources outside the foraging radius, the 
location of other groups-and other components of the settlement systems of a 
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single group-becomes an increasingly important consideration in the location of 
residential sites. T h e  significant disruption in the foraging radius surrounding the 
residential sites of agriculturalists and the possible investment in facilities within 
this radius (irrigation systems, for example) result in considerable pressure to keep 
residential sites outside the foraging radii of other residential sites. On the other 
hand, special economic, social, or political ties with other groups may dictate that 
inter-residential distances not be too great. 

One implication of these changes for the ~ir ib i l ig  of the archaeological record is 
that intensification should lead to increasing visibility for residential bases because 
of decreased seasonality of occupation, increased longevity of occupation, increased 
investment in storage and dwelling facilities, and increased alteration of the natural 
environment. 

Implications ofintensification for the visibility of site types other than residen- 
ces are more complicated. For locations within the foraging and field radius of the 
residential base that have relatively stable resources, such as arable soils, location 
reuse may be routine, eventually resulting in high site visibility. Within their 
foraging or field radius, agriculturalists or intensified hunter-gatherers invest more 
in facilities and revisit these facilities more frequently than do groups that regularly 
move their residential bases long distances; this may help to explain the relatively 
high visibility of "fieldhouse" sites in the American Southwest. Locations where 
some nonrenewable or slowly renewable resource such as wood is exploited, 
however, may be used in a way that is not substantially different from or more 
visible than the way that foragers use locations away from their residential bases. 

T o  summarize the effects of intensification for where sites will be located, 
residential sites should increasingly represent a compromise location (Figure 4.5). 
Either they should be located not too far from any of the resources that will be 
needed regularly during the increasingly long period that such sites are occupied, or 
they should be located near some important subset of these resources and count on 
kinship ties, trade, or usufruct privileges to obtain the remainder. These predic- 
tions refer to individual residential sites, since the total let of forager residential bases 
on a given landscape may be responding to as many different environmental factors 
as the total set of collector or agriculturalist residential bases. Within the economi- 
cally acceptable zone of possible residential base locations, considerations of comfort 
are not insignificant for a site that may be occupied for several years, and the 
locations of the residential bases of other groups become an increasingly important 
consideration as well. 

T h e  definition of what is a suitable zone for residential sites-both economi- 
cally and from the perspective of comfort-may become broader under intensifica- 
tion. T h e  increasingly complex technology that accompanies intensification per- 
mits intensive use of areas that are unsuitable for occupation by people with a 
simpler technology. T h e  development of irrigation, for example, makes agriculture 
possible in places where it could not be practiced without irrigation. Variables 
determining residential base location cannot be assumed to be identical for groups 
at different levels of intensification. 
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Intensification -- 
Number of relevant independent 
variables affecting location ; 
independent site basis 

--- Proportion of the relevant 
independent variables that 
are environmental 

Figure 4.5. Suggested effects of increasing intensification on the location of residential sites. 

Finally, site types other than residences may be located for very specific, 
single-resource considerations (for instance, clay or chert quarries), or they may 
represent compromises among several variables that are weighted rather differently 
than they are for residences, as is probablythe case with fieldhouses. 

Next, let us summarize the effects of intensification on the predictability of site 
location (that is, how strong the association between selected environmental 
variables and archaeological materials should be). T h e  increased population packing 
under which intensification is expected to take place may mean that a smaller 
number of the places in the landscape that fulfill the requirements for use or 
settlement will remain unused; in a fully packed landscape, all suitable locations 
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may be used. This should make prediction easier in the limited sense that it should 
lower the frequency of wrong predictions about where sites are (Figure 4.6). 
Perhaps more important, residential bases for collectors or agriculturalists should all 
have similar environmental determinants within a particular settlement system, 
whereas forager residential bases within a single settlement system may have quite 
different determinants. T h e  prediction that a single set of environmental determi- 
nants will apply to all residential bases for agriculturalists within a single settlement 
system is weakened, however, by the tendency for exchange to allow communities 
to  occupy locations with access to complementary rather than redundant resources. 

T h e  implications tend to complicate inferential locational modeling. Forager 
residential sites cause problems because they may be responding to different suites 

1 

Figure 4.6. 

lntensificat ion - 
Concentration and visibility 

---- Strength of association with 
a single set of independent 
variables (= predictability) 

Suggested effects of increasing intensification on the concentration and, hence, 
visibility ofarchaeological materials at residential sites and locations within the foraging radius where 
nonexhaustible resources are exploited and on the strength of association of each of these site types 

with a single set of independent variables. 
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of environmental variables and because they fit the concept of "site" poorly. 
Residential bases in more intensified adaptations are less subject to these particular 
problems, but predictions about their locations also have complicating factors. 
Locations of these sites represent a response to an increasing number of variables, an 
increasing proportion of which (the locations of other contemporaneous sites, for 
example) cannot normally be used for prediction. This discussion makes clear the 
theoretical basis for Kohler and Parker's (1986) insistence on modeling different 
adaptation types in one area through time, but in order to do this we must be able to 
"sort out" the overlapping archaeological records. 

Spatial Heterogeneity. Let us now briefly consider the effects ofincreasing spatial 
heterogeneity-patchiness-while ignoring intensification and temporal predict- 
ability. The  aspects ofspatial heterogeneity that have the most important implica- 
tions for where sites will be located and how visible and predictable they will be are 
the degree to which the critical, nonsubstitutable resource patches overlap, the 
extent to which each resource type is concentrated, and the distance between 
patches of substitutable resources. First, we suggest that the strength ofassociation 
between the distribution of archaeological materials and the distribution of a 
particular resource type (and therefore the predictability of those archaeological 
materials) should increase as resource patches 

1. become more concentrated in space, so that equivalent resource-type 
patches are increasingly distant from one another; and 

2. overlap more in space with other nonequivalent (nonsubstitutable) 
resource-type patches. 

These proposed relationships are in accordance with common sense. T h e  
occurrence in a single location of more than one critical, nonsubstitutable resource 
(say fuel, large game, and roots) increases the likelihood of use, and reuse, for that 
location. If equivalent resource types (for example, carbohydrate resources with 
similar processing requirements and storage characteristics) are fairly continuous 
across the landscape, the strength of association between archaeological materials 
and any one of those resource types should be low. Equivalently, ifpatch size is very 
large, or if patches are close together, predictive success will tend to be low. It is 
important to remember that resources include things other than food; fuel is 
probably universally needed, but other "amenities," such as well-drained sedi- 
ments deep enough to enable construction of a pithouse, may be peculiar to  
particular adaptations. We do not necessarily know the identity of these food or 
nonfood resources, however. 

The  visibility of archaeological materials, and to some extent the ease with 
which the concept of "site" may be applied, should increase under the same 
circumstances in which predictability increases. The  same environmental circum- 
stances that serve to bind environmental features and archaeological materials 
closely together should also serve to concentrate those materials into sites. It should 
be noted, however, that sites, even in these systems, are not the remains ofdiscrete 
episodes of behavior. Because concentrated materials are easier to  find than 
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dispersed materials (Wandsnider and Ebert 1984), concentration increases visibility 
ofclusters. We do not advocate the use ofthe concept ofUsites" without recourse to 
the entire explanatory modeling process and explicit recognition of the different 
meanings that the term ~ite might have. 

Where there is considerable spatial overlap among critical nonsubstitutable 
resources, a relatively small number of independent variables should adequately 
predict the presence or absence of archaeological materials. That  is, where there is 
strong spatial correlation among the potentially important environmental variables, 
a few may successfully stand for many. Where spatial overlap among resources is 
low, a larger number of proxy environmental variables may be required for predic- 
tion. The  general relationships suggested here between aspects of the spatial 
structure of critical resources and aspects of the predictive modeling process are 
graphically summarized in Figure 4.7. 

Temporal Predictability. What, finally, are the effects of increasing constancy 
and contingency in the temporal distribution ofvarious resources on the predictive 
process? Remembering that constancy and contingency can be summed to create a 
measure of temporal predictability, we propose that archaeological materials will be 
relatively concentrated, visible, and predictable in places where resources have 
either high constancy or high contingency; archaeological materials tend to be 
spatially predictable where resources are temporally predictable (Figure 4.8). (This 
prediction ignores concurrent variability in the spatial structure of resources; 
obviously, spatial concentration or dispersion of resources, as outlined above, also 
affects these relationships.) Places where both constancy and contingency in the 
temporal distribution of resources are low will not favor concentrated, repetitive, or 
long-term use and in general should not be associated with residential site types. 
High constancy of resource availability should favor low residential mobility, while 
high contingency should favor regular seasonal reuse. T h e  coastal salt marsh/sea 
island/estuarine systems of Georgia and the Calusa area of southwest Florida are 
examples of environments with high constancy in the resources critical to human 
survival (Marrinan 1975). Most noncoastal North American environments expe- 
rience greater seasonal pulses in temperature or precipitation, reducing the con- 
stancy of most critical biotic resources. The  large rivers with their runs of anadro- 
mous fish and the root-gathering areas of the Columbia Plateau provide good 
examples of high-contingency environments. 

The Interaction of Intenrification, Spatial Heterogeneity, and Temporal Predictability 

Finally, how do these three dimensions of variability-economic intensifica- 
tion, spatial heterogeneity, and temporal predictability-tend to interact? This is 
the important question for predictive modeling, since it is artificial to discuss these 
dimensions as if they were totally independent ofone another. It seems obvious that 
certain kinds of spatial and temporal variability in resources require some intensifi- 
cation practices-particularly storage-before the resources can be exploited at all. 
Arctic adaptations to  resources with low constancy, only moderate contingency, 
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Concentration of each resource- - 
type patch and degree of overlap 
among critical resource- type patches 

Visibility and concentration of 
archaeological materials 

Strength of association between ---- location of archaeological materials 
and critical environmental variables 

Number of independent environmental -- variables needed for accurate 
locational modeling 

Figure 4.7. Suggested effects ofthe spatial characteristics ofcritical environmental resources on 
locational modeling. 
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Predictability (constancy - 
and contingency 1 

Concentration and visibility 

--- Strength of association between 
locations of archaeological materials 
and critical environmental variables 

Figure4.8. Suggested effects of the temporal characteristics ofcritical environmental resources 
on locations of archaeological materials. 

and large distances between critical resources are good examples of this. Other 
combinations of environmental factors allow either a forager way of life or more - 

intensified economies to thrive; under these conditions we might expect some 
historical tendency for the replacement of foragers by collectors and perhaps 
agriculturalists following the competitive exclusion principle (Bettinger and Baum- 
hoff 1982; Kohler 1976). Relatively low constancy coupled with high resource - 
productivity and relatively little spatial overlap in critical resources has seemed to 
favor intensification in many temperate portions of North America. This intensifi- 
cation involves increased population, increased packing, decreased residential 
mobility, increased storage, and even production ofstorable foods. Still other kinds 
of spatial and temporal variability discourage or select against intensification. 
Foragers in the tropical rainforest exploit resources that have high constancy and 
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high spatial overlap in the critical resources but low resource accessibility and little 
spatial variability. These environmental factors leading to high residential mobility, 
in conjunction with the prevalence of tropical diseases and pests, keep populations 
below the foraging capacity of these environments. 

Implications for Inductive Empirical Models 

We have suggested that various economic and ecosystemic factors affect (a) 
the number of relevant independent (determinant) environmental variables 
needed for accurate predictive locational modeling; (6) the extent to which factors 
in the natural environment, by themselves, will be adequate predictors oflocation; 
(c) the strength of the association between various predictor variables and the 
location of archaeological materials; and(d) the concentration and visibility of these 
materials. Let us now explore the implications of these suggestions for the induc- 
tive, empirical modeling of site location commonly practiced today. 

First, there is no reason to believe that locations for all site types produced by 
all subsistence-settlement systems in all environments are equally predictable. 
Other things being equal, predictability (strength of association with critical 
environmental factors) should be relatively high in landscapes where equivalent 
resource-type patches are concentrated and isolated, have high overlap with other 
nonequivalent resource types, and have high temporal predictability. For residen- 
tial site locations, accuracy of prediction (which is equivalent to the strength of 
association with relevant independent variables) should increase in more intensified 
economies. But the location of residential sites in such economies becomes an 
increasingly multivariate problem, and the independent variables affecting location 
increasingly include locations of other residential sites-information not typically 
available to or easily utilized by inferential predictive models. 

Other problems for inferential predictive models involve the differential con- 
centration and visibility of various site types in areas where the resources differ in 
spatial concentration, overlap, and temporal predictability, and in economies at 
differing levels of intensity. Residential bases become increasingly concentrated 
and visible under the same conditions that promote predictability, as reviewed 
above. Other site types may or may not become more visible under intensification, 
depending on their function and location in relation to a residential base. Other 
things being equal, we assume that site types other than residential bases will be 
underrepresented in samples from most modern and all older surveys. 

Taking these points into consideration, it is unlikely that inferential predictive 
models will perform well in areas where resources are not concentrated, overlap- 
ping, and temporally predictable, or where residential sites have low visibility (such 
as those of foragers) or high locational dependence upon factors of the social 
environment. On the other hand, we can expect inferential predictive models to 
perform relatively well when the opposite conditions hold. 
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One point ofthis discussion is that we cannot expect inferential approaches to 
be equally successful in all circumstances, and even for all kinds of archaeological 
manifestations within a single settlement system. Nor is inferential prediction likely 
to  be completely successful in most applications, both because of the complications 
outlined in this section and because ofa certain indeterminancy in all living systems, 
including settlement systems. Another important point is that archaeologists need 
to begin to  characterize the environments in which they work in terms of opera- 
tionalized, consistent, ecosystemic factors, such as temporal constancy and contin- 
gency and degree of spatial concentration and overlap of resources, instead of by 
simple reference to the presence or absence of particular resources at particular 
points on the landscape. Admittedly, this will be dificult for even modern environ- 
ments, let alone for paleoenvironments that differ from those of today, but we hope 
that this section has pointed out the necessity for such characterizations in under- 
standing how settlement systems are structured and, therefore, how their position- 
ing on the landscape might be predicted. 

DISTRIBUTIONAL ARCHAEOLOGY 

Approaches to Congruence Between Theory and Method 

So far in this chapter we have discussed the effects on the archaeological record 
of differences in the organization of human systems, of a number of depositional and 
postdepositional processes, and ofgeneral ecosystemic (rather than single environ- 
mental) variables. We have tried to show the implications of these different 
determinants of the archaeological record for modeling and prediction. Some forms 
of organization and some temporal and spatial attributes of ecosystems lead to the 
formation of an archaeological record that is relatively more visible and predictable 
than records formed under other organizational and ecosystemic principles. We 
have suggested that the least visible and least predictable archaeological record is 
created by foraging activities-either foraging components of generally logistically 
organized systems or human systems whose subsistence activities are wholly 
organized around this mobility/settlement strategy. 

What this means is that an expectably large proportion of the archaeological 
record left anywhere by all past peoples will consist of relatively continuous, 
low-density, low-visibility remains. Such an archaeological record cannot be dealt 
with using site-centered discovery and measurement methods; in fact, it may not 
even be detectable via traditional survey. In addition, the clustered materials that 
result from intensive reuse of circumscribed places (the things we think of as sites) 
are superimposed on this more continuous, lower-density record. In order to sort 
them out, to  distinguish occupational and functional episodes from one another, we 
must record artifacts and features as a continuous phenomenon. 

If in fact at least part of the archaeological record is continuous, and the 
ethnographic ("theoretical") as well as methodological arguments presented 
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throughout this chapter support that it is, then the meaningfulness of predictive 
modeling based on a "site" vs "not site" concept is called into serious doubt. One 
example of why this might be the case will be considered briefly here. In certain 
chapters of this volume it is argued that it is not enough simply to show that the 
locations of sites are highly correlated with the locations of supposed independent 
environmental variables; one must also show that "nonsites" (by which the author 
means places that are not sites or areas that do not contain sites) are less strongly or 
are negatively correlated with these same variables in order to allow "prediction" 
using such a variable. 

How are suchL'not-sites" to be found? Unfortunately, the author continues, it 
is too expensive to look for them, but fortunately, according to him, we don't have 
to. Archaeological sites, he contends, are rare phenomena that only occur "about 1 
percent of the time." Therefore, if one randomly chooses points at places where 
sites haven't been located through actual survey, it is to be expected that only 1 out 
of 100 points will actually be sites by chance, and the rest will be "not-sites." This 
argument is sometimes broadened further: in one geographic information system 
study Ebert knows of, the randomly selected "not-site" sample consists ofarear 2 mi 
on a side, only 1 percent of which are supposed to contain sites by chance. 

But just where would one have had to undertakea survey in order to think that 
sites only occur I percent ofthe time? Some people reply to this point by admitting, 
"Yes, you'll find archaeological materials everywhere you look, but not necessarily 
sites." And this is the real point: How are riter to be dirtinguirhed from isolated occurrences 
or nonsites or not-sites? By assuming we know that they are only "really" sites 1 percent 
of the time? By using different (explicit or implicit) definitions of sites vs whatever 
else in each survey, or even within a single survey? 

Elsewhere Ebert (1986) has argued, at length, that one of the biggest problems 
that archaeology, particularly cultural resource management -directed archaeology, 
has is reliance on an unworkable, insupportable "site" concept. There are, thank- 
fully, theoretically as well as practically valid alternatives to "site" approaches. 
These approaches are soundly based in archaeological literature and practice and 
are drawing increasing interest from both the archaeological and managerial com- 
munities. We would like, therefore, to conclude this chapter by offering an example 
of a methodological direction designed to record the continuous archaeological 
record. We believe that many such methodological innovations, critically informed 
by both general and middle-range theoretical concepts, will be needed before we 
can learn to predict characteristics of the archaeological record and locations of 
cultural resources accurately. 

Background: Nonsite and Off-Site Archaeology 

Recognition of the complexities of the formation of the archaeological record 
coupled with dissatisfaction with most traditional means of recording this record 
has led a number of archaeologists working in different parts of the world and with 
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different problem orientations to recommend new ways of approaching the spatial 
patterning of surface assemblages. One of the most promising of these involves what 
amounts to a reconsideration of the basic unit of archaeological analysis, which until 
this time has explicitly or implicitly been the site. David Hurst Thomas was one of 
the first to express dissatisfaction with the site concept in the literature, calling for a 
"nonsite sampling" (1975:61) approach. Certain sorts ofdepositional situations and 
certain problem orientations, he argued, make a site sampling approach not only 
"inessential, but even slightly irrelevant" (1975:62), and he suggested an alterna- 
tive survey method in which individual artifacts, features, and other cultural items 
form the minimal operational units. This approach, used during Thomas's Reese 
River Ecological Project, was designed to test archaeologically the consequences of 
Julian Steward's model of ethnographic settlement patterns of the Great Basin 
Shoshoneans (Steward 1938). If Steward's model could be shown to describe the 
prehistoric case accurately, Thomas reasoned, then the contention of some anthro- 
pologists that historically observed Shoshonean behavior was due to acculturation 
in the wake of European contact would be disproved. 

In order to study the ways in which "members of a single hunter-gatherer 
society moved themselves across the landscape, in a stable yet flexible pattern of 
transhumance" (1975:64), Thomas compared the cultural debris left by these people 
in each of a number of "microenvironments" or sampling strata in the Reese River 
Valley in Nevada. Locations and characteristics of individual artifacts were 
recorded, and artifact-density statistics were used to analyze some aspects of the 
prehistoric systems represented. Although the relationship between these observa- 
tions and the human behavior that created the data was not explicitly defined, 
Thomas's work remains a provocative illustration of methods of data collection and 
analysis that are not totally dependent on the site as an analytical unit. 

Bettinger (1!J77a7 1977b) employed Thomas's methods of density analysis in a 
similar inquiry into the correspondence between ethnohistorically observed behav- 
ior and the patterning of surface assemblages in eastern California's Inyo and Mono 
valleys. Although both Thomas and Bettinger advanced sound theoretical reasons 
for their nonsite approaches, it is likely that the nature ofthe observed archaeologi- 
cal surface record in their study areas was more than a little responsible for shaping 
their research designs. In much of the arid and semiarid American West, surface 
archaeological remains consist oflarge expanses of sparsely distributed artifacts and 
features that can only be sorted into discrete sites by means ofarbitrary boundary- 
setting criteria. 

Another environment that is archaeologically similar to the American West is 
the arid belt of East Africa extending southward from Egypt through the Rift 
Valley. At approximately the same time that Thomas and Bettinger were working 
in the Great Basin, archaeologists in Africa were beginning to develop their own 
methods of measuring diffuse artifact distributions. Faced with the sparse and 
probably disturbed artifactual evidence from the Acheulean in Kenya and Tanzania, 
Glynn Isaac and his colleagues approached the archaeological record from a consid- 
eration of natural depositional and preservation processes (Bunn et al. 1980; Isaac 
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1966, 1967, 1978; Isaac and Harris 1978). These studies were oriented toward 
assessing the patterning of artifacts within sites and on occupation floors believed at 
the time to be the consequence of single behavioral episodes. Isaac was also 
concerned with nonsite distributions of cultural items, however-the "scatter 
between the patches" (Isaac and Harris 1975) that makes up a large proportion of 
the total number of cultural items discovered in large areas of arid East Africa. 

As with the American nonsite strategies, sample quadrats were defined along 
the eastern shore of Lake Turkana, and the locations of individual artifacts and 
features within these sample areas were recorded. Isaac (1981) argues that the 
density and patterning of various artifact types are related to prehistoric mobility 
patterns analogous with those of present-day hunter-gatherers. Going a step 
further toward the reconciliation ofnonsite and site-oriented archaeology, Isaac and 
his colleagues have more recently suggested what must be seen as yet another 
alternative unit of analysis, the "mini-site" (Isaac et al. 1981:105). Although the 
term may be unfortunate, the implication that the remains ofmany past behavioral 
events or series of events might consist of very small or diffuse assemblages is 
worthy of consideration. 

Perhaps the most systematically developed approach to understanding the 
meaning of archaeological surface assemblages employing the artifact as an analyti- 
cal unit is Robert Foley's "off-site archaeology" (Foley 1980:39-40). This methodol- 
ogy was the result ofFoley's attempts to compare site locations and the distribu- 
tions of resources in a catchment area or "home range" around a site (Foley 1977). 
Starting with the assumption that resource usage-is distance dependent, ~ 0 1 ; ~  
proposed a model in which a study area would be gridded into squares and the total 
relative resource productivity for each area would be calculated on the basis of 
detailed ecological field studies. Next, given the location ofa site ofinterest, isocals 
or areas with consistent extractive values for that site would be drawn. All those 
areas in which the availability/cost ratio for resources was positive would be 
considered to be likely candidates for the home range for that site (Foley 1977:178). 

Operationalizing such an explicit economic model would, of course, require a 
detailed knowledge not only of all relevant prehistoric ecological parameters but 
also of the locations in space of all sites or localities participating in the cultural 
system of interest. In interpreting the preliminary results of archaeological survey 
undertaken in the Amboseli Basin in Kenya, Foley recognized that artifacts seemed - 
to be "distributed ubiquitously across the landscape. In contrast to this, demon- 
strable primary stratified sites are extremely rare" (1980:39). This was due, he felt, 
to at least two broad classes ofprocesses: those arising from the patterning ofactual 
human behavior in the past, and those created by postdiscard taphonomic, deposi- 
tional, and postdepositional forces working upon the discarded artifacts. Later 
consideration of the formation stages for the archaeological record led Foley to draw 
a number of inferences upon which the necessity for and methodology of off-site 
archaeology were to be based (Foley 1981c:31): 

1. Sites are nodes in a continuous distribution of archaeological materials. 
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2. Home-range behavior provides the theoretical underpinning for continu- 
ous archaeological regional distributions. 

3. The  processes of continued occupancy, leading to accumulation of mate- 
rials, and postdepositional mechanics compound the continuous distribution, 
as well as increasing its complexity. 

4. The  artifact, the basic unit of an archaeological distribution, can and 
should be used as the unit of regional analysis. 

The  methodology employed by Foley in his Amboseli survey was developed to 
ensure the collection of data-artifact locations and the characteristics of these 
artifacts-on items occurring continuously but not uniformly across the landscape. 
T h e  study area was sampled using methods tested by plant ecologists who have 
"the same problem of integrating small analytical units or data objects (plants, 
artefacts) with large survey areas" (Foley 198 lc:34). The  sample areas encompassed 
0.05 percent of the total study area. 

Two basic classes of data were collected in the sample units. First, the natural 
and particularly the preservational and depositional environments were recorded. 
Sediments were classified, and the natural processes acting on them (erosion, 
compaction, topographic effects, vegetation cover, and animal or recent human 
activity) were noted. Next, artifacts were recorded in terms of raw material, size, 
artifact or flake type, platform, cortex, and condition; taxonomies for pottery and 
associated bone were also devised. In addition to the surface survey, a number of 
experiments designed to test the short-term effects ofrainfall, erosion, compaction, 
and other taphonomic processes were undertaken. The  exact locations of artifacts 
within the sample units were apparently not recorded-a very significant omission 
that, coupled with small sample unit size (5 by 50 m), precludes any but the grossest 
density-based spatial analyses. 

Data on the occurrence ofartifacts in the sample units were extrapolated to the 
entire study area, and density contours were drawn. Other contour maps also 
extrapolated from the sampled ireas to the total study area depicted densities ofraw 
materials and artifact types, proportion of cores to other artifact types, artifact 
length and width, occurrence of retouch and edge damage, and other artifact 
characteristics. Foley's analysis of his Amboseli data, like his earlier work (1977), 
proceeded from a goal ofexamining humanly important aspects of the environment. 
H e  attempts to do this by formulating models that predict the areas ofmost intense 
use by past groups with pastoralist and hunting-gathering adaptive strategies and 
then testing these predictions using artifact density data. 

These pioneering efforts to arrive at congruence between theoretical ideas 
about the formation of the archaeological record and methods of discovering, 
measuring, and analyzing cultural resources inspired two recent experiments with 
adapting nonsite or "distributional" archaeological survey to cultural resource 
management. These experiments are discussed below. 
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Distributional Archaeology: Paths Toward 
Theoretical/Methodological Congruence 

In order to apply the theory-based explanatory framework examined earlier in 
this chapter to the archaeological record, it is absolutely essential that there be a 
congruence between theory and method. Such approaches as nonsite or off-site 
archaeology, in which the artifact is the unit ofdiscovery and analysis, are certainly 
a step in the right direction when we are attempting to deal with continuous aspects 
of the archaeological record, as discussed above. There are shortcomings in these 
approaches, however. One of the chief problems with recent artifact-oriented 
approaches has to do with sampling. If it is the patterning in the continuous 
distribution ofarchaeological materials that we must measure, then the best way to 
do this is by choosing a relatively large "window" through which to look-by 
surveying for, discovering, measuring, analyzing, and interpreting archaeological 
materials over relatively large, contiguous sample units. 

The  remainder of this section will describe what one of the authors and his 
colleagues (Ebert et  al. 1983) have referred to as distributional archaeology. Distribu- 
tional archaeology is a nonsite-oriented approach that yields data that are congru- 
ent with the theoretical concepts of mobility and artifact discard presented above. 
Distributional archaeology has been carried out in two different governmental 
contexts as this volume goes to press. In 1983 the Bureau of Reclamation and the 
National Park Service funded a distributional survey at and around Fontenelle 
Reservoir in southwestern Wyoming, and the Bureau of Land Management Las 
Cruces (New Mexico) District recently conducted a distributional survey near El 
Paso in conjunction with the Navajo-Hopi Land Exchange. 

Unfortunately, no detailed accounts of these surveys have yet been published, 
although a number ofpapers and reports are available (Ebert 1983a; Ebert et al. 1983; 
Larralde 1984; Wandsnider and Ebert 1983, 1984; Wandsnider and Larralde 1984). 
These papers have been compiled in a report edited by Drager and Ireland (1986). 
This section will not provide an exhaustive discussion of this methodology but 
rather will summarize some of the main points. Distributional archaeology is by no 
means fully perfected, and experimentation with similar approaches should be 
encouraged. 

Distributional archaeology was conceived with several major objectives in 
mind. It is oriented toward the relatively complete and continuous survey of 
archaeological materials-artifacts and features-over large contiguous areas. 
Large areas relative to the scales of the archaeological patterning must be surveyed, 
and their contents analyzed, ifwe hope to sort out overlapping distributions in the 
continuous archaeological record. The  distributional archaeology methodology 
calls for discovery of artifacts and features through intensive surface survey, 
recording of the location ofeach artifact or feature as a point in space, and consistent 
in-field coding ofartifact attributes. All artifacts, including nondiagnostic tools and 
debitage, are recorded. 
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The Seedskadee Project 

Survey Design 

T h e  Bureau of Reclamation/National Park Service survey around the Fonte- 
nelle Reservoir was called the Seedskadee Project (Figure 4.9). This survey was 
designed as an experiment to test systematic survey methods for recording the 
continuous archaeological record. T h e  survey design was directed by two major 
propositions: (a) units of analysis and discovery structure the ways in which 
archaeologists think about the nature of the archaeological record and, in fact, what 
is found during fieldwork (Binford and Sabloff 1982); and (b)  very little is known 
about what the archaeological record means or what it looks like. For these reasons, 
the units of analysis employed during the survey had to be units with little or no 
meaning already attached. Individual artifacts were chosen as the units ofdiscovery 
and mapping; attributes ofartifacts were chosen as the units ofdata recording. T h e  
discovery and recording methods used were carefully designed to minimize biases 
in what was recognized as an artifact, what data were considered to be appropriate 
to  record, and how those data were recorded. 

Figure 4.9. Location ofthe Seedskadee Project, a distributional (nonsite) archaeological survey 
undertaken by the National Park Service and the Bureau of Reclamation in southwestern Wyoming. 
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A simple random sample of 25 500 by 500 m sample units was surveyed during 
the Seedskadee Project (Ebert 1983a). T h e  sample was not stratified by environ- 
mental zones because the zonation present was thought to represent differential 
surface geomorphological processes rather than past natural conditions. Responsi- 
bility for data recovery was delegated to three separate crews. A five-member 
discovery crew was responsible for finding and flagging artifacts and for maintaining 
even ground coverage in precisely controlled 5 m transect intervals. The  data- 
recording crew consisted of three individuals who numbered the pinflags marking 
artifacts and recorded artifact attribute data in a format designed for easy computer 
input after the fieldwork phase of the project was completed. The  two-person 
mapping crew was responsible for provenience control of artifacts, most of which 
were mapped individually using an electronic distance measuring (EDM) device 
and a prism. In areas where artifact density was very high, mapping of individual 
items was abandoned, and 1 m grids became the provenience unit. 

When additional artifacts were found by the recording crew, they were flagged 
separately. T h e  distributions of these later finds often resembled the results of 
traditional site surveys in that they tended to be far more clustered than the 
distributions marked by the discovery crew. As a rule, highly visible artifact 
concentrations received more attention than interlying areas, as is the case with 
traditional survey methods. The  items found by the recording crew often doubled 
or tripled the number of artifacts recorded in a sample unit. 

General Results of the Seedskadee Distributional Survey 

T h e  end product of these survey procedures is a data base that consists ofsome 
170,000 coded attributes, predominately locational data and lithics descriptors from 
17,000 artifacts. Analysis of the Seedskadee data base, emphasizing the search for 
spatial patterns among attributes, is presently proceeding along lines that will be 
discussed below. Some preliminary impressions gained from the Seedskadee exper- 
iment, however, have immediate implications concerning the appropriateness of 
the approach and the nature of the contributions that it can make to predictive 
attempts: 

1. There were prehistoric artifacts in all environmental zones. They 
occurred in differing (but usually unexpectedly high) densities and in many differ- 
ent kinds of distributions that appear to vary in both spatial configuration and 
content. It seems that the kinds of distributions encountered at Seedskadee would 
confound the usual methods of doing predictive modeling (i.e., defining environ- 
mental parameters for site location) because the data base is gradational in distribu- 
tion and density, rather than made up of discretely bounded "sites." 

2. The  harder one looks, the more one finds. Although this is a simple 
observation, its repercussions for management of archaeological resources are 
profound, since RFPs generally emphasize acres surveyed rather than cultural 
resources located per dollar spent. The  perception that archaeologists have of the 
archaeological record is a direct function of the context of discovery: survey 
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interval; time spent on sweeps, on flagging concentrations, or on recording con- 
tents of grid squares; and external and internal crew goals and conditions. 

It was also observed that surface and subsurface are relative, dynamic terms. This 
point is easily illustrated in areas like dunes, where the acts of discovery, mapping, 
and data recording change the surface archaeology: artifacts are buried and uncov- 
ered through scuming and trampling during the course of the survey itself. 
Noncollection survey is often (probably always) destructive of the archaeological 
record. Not only does the survey have a direct impact on the location of artifacts, it 
is likely that indirect impacts, such as alteration of the soil's surface and of 
vegetation, will affect the rates and nature of local natural processes in the future. 

3.  Error, variability, and sources of bias in method and results must be 
evaluated and explained. T o  address such problems, two control experiments were 
included in the project to help in the evaluation of data reliability. In the first, a 
sample unit was seeded with "pseudofacts": nails and washers painted to  approxi- 
mate the color of the ground and natural lithic materials occurring in the area. Some 
of these items were distributed in clusters or "sites," while others were placed 
individually as "isolated occurrences." These were flagged and recorded by the 
discovery crew, which yielded information about accuracy of the discovery proce- 
dures. Approximately 55 percent of the pseudofacts were recovered by the discov- 
ery crew at a 5 m transect spacing, with an additional 10 percent being found by the 
follow-up analysis crew. More interesting, however, were the proportions of clus- 
tered vs isolated pseudofacts found. T h e  discovery crew located 68 percent of the 
clustered artifacts but only 16percent of the isolated items (for the analysis crew the 
figures were 12 and 6 percent, respectively; Wandsnider and Ebert 1984). 

In a second methodological experiment, a purposefully manufactured lithic 
assemblage was independently coded by the three principal data recorders. There 
was considerable inconsistency among coders even though they inspected the 
assemblage at the same time under the same conditions. It is possible to control for - 
such inconsistencies if their extent is known, however, and procedures for doing so 
are discussed at length by Larralde (1984). 

4. With a systematically organized, multicomponent survey team such as the 
three-part Seedskadee crew, portions of the crew can complete their individual 
tasks at their own speed and under ideal conditions, and this greatly increases the 
yield of actual product (in terms of information) per person-hour worked. In a 
period of approximately seven 10-person weeks, some 170,000 attributes were 
recorded. This is the information equivalent of 2-3000 of the most detailed site 
recording forms in use in the United States. Although the amount of ground 
covered during this time (625 ha or 1544.35 acres) is less than for most traditional, 
site-oriented surveys, the information yield is high. The  information-yield argu- 
ment is very important when considering the cost-effectiveness of any in-field 
data-collection program. 

The  question might be asked, of course, just what the real "information 
equivalence" is between 170,000 artifact at tributes and the data contained on 2-3000 



detailed site forms. In order to answer this, what those data consist of must be 
explicitly considered. Distributional archaeological data consist of known point- 
locations and characteristics of the physical materials that make up the archaeologi- 
cal record. Site data in almost all cases consist of hastily formed opinions about 
abstract boundaries of supposed past occupations, guesses as to how many artifacts 

diagnostic materials found during a walk around the "site," and the surveyors' 
enumeration of the cultures that occupied the area in the past and what the 
members of those cultures were doing there (camping, chipping stone, hunting, 
etc.). We would suggest that in most cases "information equivalence" isn't even 
the right framework for such a discussion. The  difference is information vs abstrac- 
tions. 

5. Even though finding sites is not the point of a distributional survey, the 
results of spatial clustering routines run on the Seedskadee data suggest that the 
distributional survey discovered more "sites" than recent traditional surveys in the 
immediate project area. This is true even if allowance is made for the intensity of 
survey. The  Seedskadee survey was 3-6 times as intensive as 15-30 m transect 
interval surveys done recently in the area (Reynolds 1983); our first impression is 
that the Seedskadee distributional survey located from 10 to more than 50 times as 
many sites as the traditional surveys did. This means either that linear or sinusoidal 
intensity-to-yield models of surface survey results such as that presented by Judge 
(1981) are unwarranted or that we did not reach the hypothetical falloffpoint even 
at a 5 m transect interval. Are even smaller transect intervals necessary in certain 
situations? 

might be found within those boundaries if one were to count them, a list of 

6. Field observation during the Seedskadee Project revealed that the scale of 
patterning of the natural processes that affect the visibility, preservation, and 
integrity ofthe archaeological record are ofa very local nature. These processes are 
controlled by local topography and other small-scale factors and thus are often 
smaller in scale than culturally caused clusters of artifacts. As discussed above, it is 
necessary to factor out the effects of natural depositional and postdepositional 
processes before one can decide what cultural patterning looks like. This means 
that extremely localized, small-scale geomorphological mapping and process mea- 
surements over time may be absolutely necessary before any predictive modeling of 
artifact or site distributions can be done. 

The Navajo-Hopi Land Exchange Project 

Another example of a distributional archaeological survey in which the site is 
not the explicit unit of either recording or analysis is the Navajo-Hopi Land 
Exchange Project survey, conducted by the Bureau ofLand Management just west 
of El Paso. This survey is much larger in scale than the Seedskadee Project and 
represents several refinements on the methods used in the earlier survey. 
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T h e  Navajo-Hopi Land Exchange (NHLE) survey was conducted in three 
adjacent survey areas, which together comprise some 16,000 acres (25 mi2) of mesa 
top and breaks. Much of the area is covered by a thin sand mantle exhibiting 
coppice dunes and blowouts. Previous site-oriented research in the study area 
recorded sites with adobe pueblo structures as well as many scatters of lithic and 
ceramic materials and isolates. The  adobe pueblos are typically not visible unless 
they have been disturbed by natural or cultural processes, although their associated 
middens have high artifact densities and thus high visibility. 

Phase I of the NHLE survey was designed primarily to fulfill management 
needs. Its goal was to determine, through a relatively low intensity transect survey, 
which areas contain dense concentrations of resources, particularly structure- 
associated resources, and should therefore be excluded from the land exchange and 
preserved. Phase I was also expected to identifj areas in which the nature of the 
archaeological remains did not warrant automatic exclusion but did require further - 

survey, study, and possible excavation prior to the land exchange. 

During Phase I, 400 by 400 m and 800 by 800 m sample units (totaling more than 
60 km2) were surveyed at 25 m and 50 m transect intervals. All artifacts and features 
occurring within 1 m on each side of the surveyors were tallied for each transect, and 
densities of materials were calculated along each transect. These density data were 
analyzed using a clustering technique in which areas were examined on the basis of 
whether they contained portable and/or nonportable containers, portable and/or 
nonportable implements, and low- and/or high-volume processing facilities. Pre- 
dictions were then made as to which areas should contain structural remains. An 
independent, structure-oriented discovery survey was carried out, and the Phase I 
density analysis was found to have been very successful at predicting which areas 
would contain subsurface structures. 

Two other classes of areas were also isolated during the Phase I survey: those 
with very low densities of cultural resources and those with moderate densities of 
artifacts and features but without associated structural remains. These areas are the 
subject ofphase 11, an intensive survey similar to that described for the Seedskadee 
Project (Camilli et  al. 1988). In this phase 13 400 by 400 m units and five 800 by 800 m 
units were studied using a 5 m transect interval. Individual cultural items (artifacts, 
features) were the unit of discovery, mapping, and analysis. 

Certain cultural resources, including unifaces, bifaces, and rimsherds, were 
collected during this phase, and some of the areas with surface features, such as 
firecracked rock and hearths, and some scatters with no features were excavated. 
Generally, however, artifact and feature analysis carried out during the course of 
Phase I1 was done in the field. T h e  Phase I1 in-field coding taxonomy was directed 
toward not only the identification of formal tools or diagnostic materials, but 
especially toward identification of lithic production strategies. 
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Artifact Coding and Analysis 

We need to touch briefly upon a very important subject-what data need to be 
coded when artifacts are used as the units of discovery and analysis. It is often 
suggested that all archaeological research takes place in unique situations and that 
each researcher's problems are different, and therefore that no hard-and-fast rules 
can be formulated as to the field methods and analyses archaeologists should use. I t  
may be that any area containing cultural resources is unique on a very specific 
level-just as the distribution of molecules in Maxwell's glass of water was unique. 
We would suggest, however, that it is not the unique aspects of the archaeological 
record that are of interest, but rather those aspects that can be compared and 
contrasted from place to place-the general attributes of archaeological materials. 

T h e  practice of separating assemblages on the basis of formal attributes of 
diagnostic artifacts and labeling each of these as a different culture type or tradition 
defeats any attempt to recognize the differentiated portions of human organiza- 
tional systems and thus precludes successful explanation, modeling, and prediction. 
Methods must be found for recognizing different systemic components and their 
overlap. Although some possible directions for this will be discussed below, we do 
not, unfortunately, know at present which general attributes of archaeological 
items are important in explanation. 

It is possible, however, to describe a general direction that might be followed 
in determining how to code attributes of archaeological materials. A human system 
is composed of, among other things, a series of places where things are done. The  
key word here isseries, and this chapter began with a discussion of the ways in which 
events at each place in the series are important to the operation ofthe entire system. 
Another set ofcomponents in a human system is technological items, which are also 
used in a serial way. Items used at places are sometimes discarded and at other times 
are modified there and used for other functions. Still other times, items are curated 
and taken away to be used at one or probably more different locations. Attributes 
that provide possible clues to the serial nature of technological strategies are, then, 
of major importance in understanding the components of systems. Such attributes 
include not only formal tool designations but also data on the nature of what most 
researchers class as debitage-utilized and unutilized parts of tools, and debris from 
lithic reduction, modification, and manufacturing. 

Analyzing Data from Distributional Archaeological Surveys 

It is necessary to establish linkages between the archaeological record and the 
organization ofthe past human systems that created this record before we can make 
successful predictions about the locations of cultural resources or about their 
meaning, usefulness, or significance in archaeological terms. Previous sections of 
this chapter have worked downward through the explanatory framework of 
archaeology presented in Figure 4.1, beginning with higher-level, theoretical ideas 
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about the nature of human settlement/mobility systems and middle-range theoret- 
ical ideas about technological strategies, discard behavior, and the natural forma- 
tion processes that also affect the archaeological record. In this section, archaeologi- 
cal method has been considered and suggestions have been made about ways to  
discover and measure the archaeological record that are congruent with this 
theoretical framework-nonsite or distributional surveys yielding high-resolution 
spatial and attribute data collected from artifacts and features, rather than from 
sites. Given such data, however, what should we do with them? 

This is not an easy question to  answer, for it is one of the areas in which the 
most concentrated archaeological research has yet to be done. During the past 
decade, however, there has been some experimentation in the spatial and content 
analysis of assemblages, primarily intrasite analyses attempting to  isolate activity 
areas within sites. Intrasite analysis is not exactly the same thing as what we will 
ultimately want to do with distributional archaeological data, although the intrasite 
analysis literature should suggest some ways in which archaeological data must be 
analyzed before we can understand patterning in the archaeological record pro- 
duced by the action of past systems. 

Carr (1981, 1984) suggests that prior to  intrasite assemblage analysis it is 
necessary to differentiate carefully between activity sets (archaeological materials 
used together in space and time in the past) and depositional sets (those materials 
that aggregate in the archaeological record), since disjunctions between these two 
entities result in clusters of tools or implements that are not automatically equiva- 
lent to  activity areas. Associations in the archaeological record may be the result of 
implements having been used together, but they can just as well be a result of 
overlap of activities through time or of natural depositional and postdepositional 
processes that cause polythetic, overlapping depositional sets (Carr 1984:120). The  
archaeologist faced with comprehending the intrasite archaeological record must, 
according to Carr, use these depositional sets to  define (a) the spatial limits of 
activity areas and (b) the organization of artifact types into tool kits. These have 
been the goals of a number of archaeologists using various methods of intrasite 
analysis. 

Wandsnider and Larralde (1984) break down contemporary intrasite archaeo- 
logical assemblage analysis methods-into three basic types.   he first of these was 
developed by Robert Whallon at the University of Michigan, who became one of 
the pioneers of intrasite spatial analysis with the development of his dimensional 
analysis of variance (Whallon 1973) and comparison of its results with nearest 
neighbor analysis (Whallon 1974). Whallon's more recent work (1984) uses a more 
comprehensive spatial method called "unconstrained clustering." Unconstrained 
clustering identifies areas within sites that have similar assemblages by (a) con- 
structing density maps for each artifact type, (b) calculating the relative proportion 
that each artifact type contributes to the assemblage at points across the site, (c) 
identifying similar assemblage types, (d) mapping the cluster members and examin- 
ing their distribution, and(e) reconstructing the activities that occurred on the site 
in light of spatial patterns identified ethnoarchaeologically. Carr (1984) has criti- 
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cized Whallon's unconstrained clustering method because it assumes that activity 
sets are the result of single episodes of functionally similar behavior (i.e., they are 
monothetic [Carr 1984: 136- 137]), that tools are always discarded expediently, that 
no disturbing postdepositional processes occur, and that activity areas do not 
overlap but have sharp borders. These assumptions are probably unfounded in 
most if not all cases of human behavior and archaeological record formation. 

Carr (1981, 1984) proposes new techniques that he feels overcome some of the 
problems with Whallon's and other spatial analysis approaches; these techniques 
describe the distribution of each artifact type within the site. Although Carr's 
process is too complex to be described in detail here (see Carr 1981), he uses point 
distributions rather than grid cell counts and employs digital filtering, Fourier 
analysis, spectral analysis, and histogram equalization, techniques in common use in 
the processing of imaged remote sensor data. Such technological means may hold 
great promise for archaeological pattern recognition. 

A third class of approaches to intrasite spatial organization is exemplified by 
the work of Kintigh and Ammerman (1982) and Simek and Larick (1983). Kintigh 
and Ammerman's heuristic approach to spatial analysis combines "the sophistica- 
tion of intuitive approaches with the information processing capacity and system- 
atic benefits of quantitative treatments" (1982:31). This method divides artifacts 
into types and subjects the distributions bf each.type across space to a k-means 
nonhierarchical divisive cluster analysis. The  archaeologist, using internalized 
knowledge about the scales and nature of archaeological formation processes, 
decides intuitively upon a cutoff point for the number of clusters of each type 
formed and then recombines the clusters of different types into a series of overlap- 
ping clusters that presumably represent activity areas. 

While all three approaches to intrasite spatial analysis hold promise, they are 
all also directed toward specific reconstruction of the things that went on within 
sites. Before these methods can be applied to the continuous archaeological record 
across landscapes, the scale of application must be increased far beyond that 
discussed by these authors. Wandsnider and Larralde (1984) have also pointed out 
that each of these three approaches solves only some of the problems of spatial 
analysis: Kintigh and Ammerman and Simek and Larick only identify spatial 
clusters; Carr describes and compares the spatial organization of artifacts; and 
Whallon describes and compares assemblage content. Wandsnider and Larralde call 
for methods that permit the description and comparison of assemblages both in 
terms of content and in terms ofspatial organization or structure, and they suggest 
a five-part method building upon archaeological theory as well as inductive statisti- 
cal procedures: 

1. Development of an artifact taxonomy. This could proceed in several ways: 
along deductive lines, based on ethnographic and ethnoarchaeological information; 
on the basis of experiments in lithic manufacture that identify the stages of artifact 
production and sequential use; on the basis of information about the mechanics of 
artifact function (edge angles, etc.); or through purely statistical and inductive 
clustering algorithms. 
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2. The identijication of rpatial unitr. Directed at defining the boundaries of 
assemblages, this stage of analysis might be based on interactive, heuristic tech- 
niques, such as those suggested by Kintigh and Ammerman (1982) and Simek and 
Larick (1983), which incorporate not only behavioral knowledge but also informa- 
tion on depositional and postdepositional processes. Perhaps the best way to define 
small-scale patterning in natural formation processes is through the use of remote 
sensor data, since these data could be machine processed at the same time as 
distributional information on clusters. 

Other sources ofinformation to  be incorporated at this stage may come from a 
consideration of the characteristic shapes and sizes ofthe spatial patterns ofhuman 
behavior. During fieldwork with the Nunamiut Eskimo, Binford (1978) identified a 
number of different zones of activities and artifact discard, including drop zones, 
toss zones, hearth-centered activity areas, and structure or tent scatters. Recogni- 
tion of these patterns within overlapping distributions might be accomplished 
mechanically by varying grid frame sizes during analysis or by constructing shape- 
recognition filters. T h e  larger zone types might be appropriate for discerning the 
boundaries of assemblages. 

3. Content dercription and analyrir. Once assemblages have been defined, their 
contents might be described on the basis ofthe taxonomy or taxonomies devised in 
stage 1, by means ofsuch techniques as principal components analysis, which is used 
to  compare the composition ofdifferent assemblages. Recently, Kohler and Blinman 
(1987) have proposed using multiple linear regression to estimate the absolute and 
relative contributions of several different periods of use and deposition to the total 
archaeological deposits at ceramic-containing sites in the Dolores River Valley in 
Colorado. Their technique is similar to  Stahle and Dunn's (1982) use of multiple 
linear regression to estimate the contributions ofvarious stages ofbifacial reduction 
in a mixed collection. Both of these applications are aspatial, but they contribute to 
an understanding of the composition of mixed collections in terms of predefined 
constituents and might be used to  sort out overlapping activity sets. 

4. Structural dercription and analyrir. While stage 3 is directed toward describ- 
ing the contents of assemblages, stage 4 provides a description of the spatial 
organization within assemblages. This is where the smaller-scale "zones" character- 
istic of human activity might be recognized within the overall assemblage composi- 
tion through digital filtering. It might also be possible to use small, simple clusters 
of materials that seem to result from single discrete activity episodes to design 
"filters" to pass through larger, denser, and probably more composite artifact 
distributions. Smaller, single-occupation clusters might be expected to exhibit 
more central distributional tendencies and higher correlations between artifact 
types in space than the larger, more composite distributions. Other filters might 
consist of sample frames of varying size that could be passed through complex 
distributions in the manner of Whallon's dimensional analysis of variance (1973, 
1974). Wandsnider and Larralde (1984) also suggest that the spatial organization of 
the different principal components might be inspected. 
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5. Pattern dissection would constitute the last stage in distributional spatial 
analysis, according to Wandsnider and Larralde (1984). Larger and more complex 
assemblages (i.e., things found together-depositional sets in Carr's terminology) 
are undoubtedly the result of the complete or partial overlapping of many behav- 
ioral episodes. It  may be possible to separate these episodes from one another, and 
certainly this is a necessary step in comprehending the complex systemic mecha- 
nisms that resulted in the archaeological record at any place. 

It is quite possible that some of the procedures suggested by Wandsnider and 
Larralde (1984) might be implemented in different orders or as combined steps 
rather than separately. Some of them may also be unnecessary-for instance, stage 
2, in which the boundaries of assemblages are sought. We may never really see 
bounded assemblages in the continuous, overlapping archaeological record but 
rather may be looking at portions of these through the "windows" provided by our 
sample units, by our survey area boundaries, or by natural surface processes. 

The Solution: Dedicated Research Using Distributional Data 

It is clear from the foregoing that two general things can be said for archaeolog- 
ical spatial analysis. The  first is that archaeologists do not quite know how to do it 
yet, at least in ways that are congruent with the higher-level and middle-range 
theoretical ideas that we have about the formation processes of the archaeological 
record. The  second is that spatial analyses directed toward understanding the 
complex, composite archaeological record will probably combine modern tech- 
niques such as digital image processing-some of which are just now being devel- 
oped to the point that they will be useful to archaeology-and deductive reasoning 
in a complex interactive process. This process will draw upon both archaeological 
and ecosystemic theory to arrive at successful archaeological explanation and thus 
prediction. Such archaeological analysis is presently a goal rather than reality, a goal 
toward which both management and archaeological interests should be energeti- 
cally directed. 

SUMMARY 

This chapter has been concerned with the method and theory of using 
anthropological explanation to predict things about the organization of past human 
systems as well as about the archaeological record. The  explanatory process illus- 
trated in Figure 4.1 involves the advancing of models that are used as the basis of 
prediction. While at first it might seem overblown to introduce anthropological 
explanation into a discussion of "practical" archaeological prediction, it has been 
argued and illustrated here that it is only in the context of explanation and 
explanatory modeling that archaeologists and managers can hope to make truly 
successful predictions of the locations and other characteristics of the materials that 
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make up the archaeological record. This is so because the things that determine the 
locations of the materials that make up the archaeological record are not static, 
unchanging properties of the environment that can be measured easily from 
topographic or environmental maps. 

T h e  archaeological record is not the same thing, or even the same kind of 
thing, as the way that past individuals dealt. with their environment and the 
locations at which they dropped artifacts. The  data that archaeologists collect, 
analyze, and attach significance to are the product of long-term use of the land- 
scape. Large numbers of people, organized in different ways, have serially located 
their activities across this landscape, manufacturing and differentially discarding 
artifacts in ways that changed as the landscapes changed with paleoclimatic flux, 
and as the mobility and technological strategies within their cultural systems 
changed. 

This chapter has advanced a general model ofhuman subsistence and mobility 
strategies that vary along a continuum of intensification from a generalist,foraging 
strategy through a specialized, collecting organization. This model is not intended to 
represent the "whole truth" about past systems. Nonetheless, it provides a basis 
for making predictions, and if these predictions prove to be consistent with the 
observations about the archaeological record, this would tend to support the 
usefulness of the model. If the predictions made on the basis of this model are not 
supported by observations of the archaeological record, then an alternative model 
or models should be devised. This may be one of the most important problems 
currently facing archaeologists today-to arrive at and attempt to confirm models 
concerning the operation of past systems. This task lends significance to the 
discovery and conservation of archaeological materials, and it is therefore the reason 
why cultural resources should be managed and preserved. 

Before archaeological data can be called upon to support or negate any 
explanatory model, however, the archaeologist must take into account the things 
that alter or otherwise affect the ways that we see the materials that past human 
systems discarded. These factors are also illustrated in Figure 4.1 at the beginning of 
this chapter. 

There are two basic types of things that happen to the objects that human 
systems culturally modify and then discard or abandon. The  first ofthese lies in the 
realm of natural processes, which incorporate discarded materials into the earth's 
surface and subsurface deposits and which act to preserve, rearrange, or destroy 
these materials. Natural processes also make archaeological material visible to 
archaeologists and managers, so that we know they are there and need to be 
conserved and studied. 

T h e  other factor affecting archaeological materials is that they are discovered, 
measured, analyzed, and interpreted by archaeologists. This is the realm of archaeo- 
logical methodology. It has been suggested in this chapter that, in order to be 
successful at discovering those things we need to know about the archaeological 
record in order to be able to predict its locations and characteristics (and thus its 
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significance in management terms), archaeological methods must be compatible 
with the theories we have about the ways in which materials were discarded by past 
human systems. It  has also been argued that this is not presently, at least very often, 
the case, and that we may need to alter significantly the ways in which we deal with 
the archaeological record today as archaeologists and managers. 

Another very important area of archaeological methodology concerns the 
natural phenomena that we measure and compare with the distribution ofarchaeo- 
logical materials as they presently exist. These variables must be  chosen in accord- 
ance with our ideas about the organization of past human systems if they are to be 
useful in predicting the characteristics of the archaeological record. T h e  things that 
biologists, ecologists, and the people who make topographic maps have measured 
may not be the best variables to  use ifwe wish to  elucidate the organization of past 
systems; we have discussed the alternative of using ecosystemic variables in 
archaeological explanation rather than relying on specific resources, species, land- 
forms, or other convenient proxy "indicators." In order to  use ecosystemic varia- 
bles in our modeling and predictions, we may have t o  do most of the measurement 
work ourselves. 

Many archaeologists may disagree with the models of past systems organiza- 
tion that have been advanced in this chapter and with our suggestions about the 
relationships between these models and ecosystems variables and about the conse- 
quences of these relationships for the archaeological record. That  is good, for it 
gives us all something to think about and to try t o  build upon and to alter so that it 
"fits" the archaeological record that we discover and deal with. There are few 
archaeologists, however, who will argue that we do not need t o  model past systems 
organization to predict the locations and nature ofthe archaeological record that we 
are all concerned with conserving. 

This chapter, therefore, should not be thought of as advancing any particular 
model or models that will best typify what human systems were like in the past, or 
how they were related to the world in general. T h e  theme ofthis chapter is instead 
that it willnot be  easy to model the ways that the archaeological record came about 
or to predict where archaeological materials in general, or specific sorts ofsignificant 
archaeological materials, will be found. Claims that predictive modeling is easy or 
that a particular model is highly successful should be carefully examined in light of 
this chapter. Does the model in question consider past systems organization? Are 
empirical "predictive models" of general utility not only in predicting the locations 
of archaeological materials but  in explaining the systemic mechanisms behind 
them? If not, they are likely not to be generally successful and applicable, for 
mechanisms must be elucidated before theii consequences can be determined. 

We are presently at a very crucial point in archaeological science and in the 
practice ofcultural resource management. Management requires that we be able to  
predict the locations and significance of archaeological resources, and archaeology 
must discover how to do this. Fulfilling this goal will require concentrated and 
dedicated research that may not, at all times, appear to  be totally directed toward 
the pursuit of simply identifying and conserving sites. Management must be 
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patient and supportive ofthe genuine pursuit of archaeological explanation, for it is 
only through explanation that we can understand anything about the past through 
the archaeological record. Archaeological prediction is a new frontier, and all aspects 
of it must be justified and proven in explanatory terms. 

We would first like to thank LuAnn Wandsnider, Eileen Camilli, Bryan Marozas, Signa Larralde, 
Lewis Binford, Michael Schiffer, Rob Foley, Jim Hester, Frank McManamon, Robert Dunnell, and 
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have helped shape our thinking on the subject of predictive modeling and the organization of past 
human behavior. Dan Martin, Jim Judge, Lynne Sebastian, and Chris Kincaid were instrumental in 
bringing this volume to  fruition, and we thank them as well. Most of all, the senior author adds that 
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T h e  senior author participated in a symposium at the 1984 meeting of the Society for American 
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entitled "Predictive Modeling: Current Abuses of the Archaeological Record and Prospects for 
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tool through which we can test our ideas about the past against the data provided by the archaeological 
record. In a very real sense, predictive modeling doesn't predict the archaeological record-the 
archaeological record predicts what we learn through predictive modeling. Predictive modeling allows 
us to refine our ideas, and the computer methods we have for expressing them, in light of what 
archaeologists have found and continue to find on and in the earth. 

Nothing better points out the value and applications of predictive modeling than this logical 
progression within the last few years. As pointed out in our chapter, modeling is an interactive 
procedure by which archaeologists and managers learn about what it is they want to know about the 
past, and how this is expressed and verified (or perhaps not) by the archaeological record. It is in a very 
real sense an embodiment of the process of archaeological science. In archaeology, the process of 
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of this assertion, we would also like to acknowledge the efforts ofall those "archaeological managers" 
who have shown interest in archaeological predictive modeling, whatever their rationales and goals. 
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hope that we can work alongside them in years to come in refining the complex and exciting methods 
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Chapter 5 

AN OVERVIEW OF STATISTICAL METHOD AND 
THEORY FOR QUANTITATIVE MODEL BUILDING 

Martin R. Rose and Jeffrey H. Altschul 

This chapter focuses on some of the conceptual aspects of building quantita- 
tive predictive models, The  discussion is aimed primarily at correlative models, 
although many of the topics addressed will also apply to  other types of models. I t  
must be emphasized that the aim is not a "cookbook" of statistical procedures 
involved in producing a predictive model. There are many textbooks devoted to  
univariate, bivariate, and multivariate statistics; some even emphasize specific 
predictive modeling techniques, such as multiple and logistic regression and dis- 
criminant function analysis. For the most part, the reader will be referred to  these 
textbooks for detailed discussions of t henu t s  and bolts of specific procedures, 
although it is impossible to  avoid including some formulas and detailed discussions 
in this chapter. Statistical techniques, especially multivariate ones, are not simple 
procedures. Some may be relatively easy to understand from a conceptual stand- 
point, but many of the assumptions and intricacies of the procedures are not 
amenable to a cursory examination. If statistical techniques are going to be used to 
build a predictive model, the researcher must be willing to invest the time to learn 
how to do it correctly. 

This chapter begins by defining the problem that predictive modeling 
attempts to  address-namely, the distribution of sites in space. Specifically, predic- 
tions about site locations in a region are generated on the basis of observed 
associations between a set of independent predictor variables and site locations in a 
sample of locations in that region. This information about the attributes of site 
location in the sample is used to  "predict" site location attributes for an area not 
included in the original sample but for which observations for the same set of 
independent variables have been made. 

Once the nature of the problem has been defined, we will consider the nature 
ofvariables, scales, and distributions appropriate to  different discrete and continu- 
ous random variables. Variables should be designed to measure certain theoretical 
aspects of the phenomena of interest, and further, each variable ideally should 
reflect only one dimension of variability. T h e  different scales of measurement 
commonly employed in statistics will be briefly reviewed so that the limitations 
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they place on potential analytical procedures can be noted. Finally, different types 
of discrete and continuous probability distributions will be examined, and the 
implications ofthese distributions for parametric vs nonparametric statistics will be 
outlined. 

Statistical description and inference in the model-building process are exam- 
ined in the third major section of the chapter. Two distinct statistical parts to the 
model-building process are recognized. The  first is the definition and measurement 
of the associations among one or more independent variables and of their relation- 
ships to site location. The  second concerns generalizing from these sample-based 
associations to the larger population. Some general univariate descriptive statistics 
and bivariate and multivariate tests of association will be described. We will 
highlight some of the concepts involved in the use of inferential statistics and 
emphasize the probability-based nature of these statistics and their dependence on 
some type of probabilistic sampling scheme. 

A large part of the chapter is devoted to the topics of defining differences 
among groups and producing some type of classification of these groups. The first 
objective of the analytical procedure is to take two or more known groups defined 
on the basis of a set of independent variables and then determine which of the 
variables provides the most important discrimination between or among groups. 
The  second goal is to capitalize mathematically on the group differences and 
produce a function or set offunctions that allow the classification ofunknown cases 
into the most likely group. The importance ofUcleaning up the data" is discussed as 
a necessary early step in predictive modeling. This process helps to provide a set of 
variables that can be used to distinguish site distributions from nonsites or different 
types of sites from one another. The  requirement for homogeneous groups is 
described, and factors that work against homogeneity, such as temporal and 
functional variability in sites, the difficulty of defining site classes using cultural 
resource management data, and the inherent heterogeneity of nonsite points, are 
discussed. Attention is given to appropriate methods for defining site classes and 
reducing heterogeneity in data sets using the techniques of cluster analysis and 
principal components/factor analyses. Finally, three of the more popular tech- 
niques for assigning cases to groups in predictive models-general linear regression, 
logistic regression, and discriminant function analysis-are described. 

The  subject of the final section ofthe chapter is the validation and generaliza- 
tion of predictive models. Three different perspectives are suggested for model 
validation: the use of independent data, split-sample validation procedures, and 
the use of synthetic (simulated) multivariate data sets. Model generalization using 
computer-generated contour maps is discussed briefly. 
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MODELING SITE LOCATION 

The Problem 

Predictive modeling is based on the assumptions that human behavior is 
patterned and that the outcomes ofthe decisions that people make about where and 
where not to live are also patterned. Most forms ofspatial analysis also assume that 
the patterns in settlement behavior can be discerned by studying the locations of 
sites. Scientists studying modern patterns ofsettlement can examine all the compo- 
nents of the system, but archaeologists are restricted to the patterns that can be 
discerned from partial, and often biased, data. Predictive modeling further assumes 
that patterns of locational behavior in a particular region can be perceived through 
statistical analyses of samples drawn from the archaeological record, and that the 
resulting patterns can be generalized to the larger area. 

From a quantitative standpoint, predictive modeling is a process that permits 
us to determine the long-term relative frequency, or probability, that any particu- 
lar location within a region contains a site. For the purposes ofthis discussion we will 
sidestep the problem of varying site sizes and will assume that a location, defined 
here as some areal unit (e.g., hectare, acre, square kilometer, etc.) contains either 
one site or no sites. 

A diagram can be used to illustrate this situation. In Figure 5.1 the space within 
the borders of the rectangle represents the region in question-the area covered by 
a national forest, for example, or by a coal-lease tract. The dots in the diagram 
represent site locations. If our purpose is to determine the probability that a 
location of specified size will contain a site, one approach would be to divide the 
region into units of the specified size, survey each unit, and then tabulate the 
results. For example, we might divide the space in Figure 5.1 into 500 units, each 
representing some specified area. Ifwe were to inventory the entire space and find 
that 10 units contained sites, we could calculate a proportion of 10/500 or 0.02 sites 
per unit. With no other information available we might take this proportion to be 
the probability of finding a site in a unit selected by chance. 

This example highlights two important points about predictive modeling. 
First, how is the probability of an event determined? If it were necessary to survey 
an entire region in order to determine the probability offinding a site in a location, 
there would be no need for predictive modeling. Fortunately this is not the case. In 
explaining why this is so, we must introduce the concept of a random experiment. 
Put simply, a random experiment involves certain actions conducted under speci- 
fied conditions that has as its outcome one (and only one) of a set ofpossible results 
(usually termedrimple rerultr). Before the experiment is conducted we have no way of 
predicting which simple result will occur. 

Returning to our hypothetical archaeological survey, we can construct a 
random experiment in which every time a unit is surveyed there are two possible 
simple results: "yes," a site is present, and "no," a site is not present. If we are 
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Figure 5.1. Diagram of a region (dots represent site locations). 

interested in those cases in which sites are found, we can divide the number of times 
that "yes" results occur(E) by the  total number oftrials(N); the result is the rclatiue 
frequency (in N trials) of sites per areal unit. This fraction is often denoted in 
statistical texts as r.f. (E). 

Ifwe were to conduct a random experiment and record the results ofeach trial, 
we would see that r . 5  (E) varies as the number of trials increases. Table 5.1 is a 
record of such a series of trials. After the first trial, r.fi (E) is either 0 (ifE does not 
occur) or 1 (ifE does occur). After the second trial, r .5  (E) can be 0 (ifE does not 
occur in either trial), 0.5 (if E occurs in one trial), or 1 (if E occurs in both trials). 
This process can be repeated N times and graphed as shown in Figure 5.2. Over 
many trials the graph may look like that shown in Figure 5.3 (constructed from data 
given in Table 5.2). 

Figure 5.3 illustrates a fundamental principle of probability theory. As N 
increases, ref .  (E) becomes closer and closer to a certain value, usually calledp. Thus, 
when N is small, r.J (E) varies widely between 0 and 1, but as N increases, r . j  (E) 
converges onp. Statisticians refer to this phenomenon by various terms, such as 
"the statistical regularity of chance phenomenon" or "the stability of relative 
frequencies" (Derman et al. 1973: 13). 

Regardless of what this phenomenon is called, it lies at  the heart of much of 
probability theory. Returning to the original of assigning a probability 
that a location will contain a site, one can see an immediate application of this 
principle. If we assume that the relative frequency with which a location will be 
found to contain a site becomes more and more stable as the number of surveyed 
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TABLE 5.1. 

Record of simple results and r.f. (E) 

Trial 1 2 3 4 5 6 7 8 9 10 

Result E not E not E E not E not E E E not E not E 

r.f. (E) 1.0 0.5 0.33 0.5 0.4 0.33 0.43 0.5 0.44 0.4 

I 2 3 4 5 6 7 8 9 1 0  

Number of Trials ( N )  

Figure 5.2. Relative frequency of E .  
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Figure 5.3. Relative frequency of the composite result E. 

TABLE 5.2. 

Record of how the relative frequency r.f. (E) of the composite result E varies with the number 
N of trials 

Trial Frequency 

1 1.0000 
2 0.5000 
3 0.3333 
4 0.5000 
5 0.4000 
6 0.5000 
7 0.4286 
8 0.5000 
9 0.4444 

10 0.5000 
11 0.4545 
12 0.5000 
13 0.46 15 
14 0.4286 
15 0.5000 
16 0.3750 
17 0.3529 
18 0.3889 
19 0.3684 
20 0.3500 
25 0.3600 

Trial Frequency 

30 0.3333 
35 0.3143 
40 0.3250 
45 0.2889 
50 0.2800 
55 0.2727 
60 0.3167 
65 0.3231 
70 0.3143 
75 0.3067 
80 0.3 125 
85 0.3529 
90 0.3778 
95 0.3789 

100 0.3900 
120 0.5000 
140 0.3786 
160 0.3625 
180 0.3667 
200 0.3700 
250 0.3680 

Trial Frequency 

300 0.3567 
350 0.3514 
400 0.3625 
450 0.3689 
500 0.3760 
550 0.3927 
600 0.4000 
650 0.3985 
700 0.3929 
750 0.3947 
800 0.4025 
850 0.4059 
900 0.4078 
950 0.4084 

1000 0.4060 
1100 0.3973 
1200 1.3917 
1300 0.3938 
1400 0.3893 
1500 0.3880 
1600 0.3919 

Trial 

1700 
1800 
1900 
2000 
2500 
3000 
3500 
4000 
4500 
5000 
5500 
6000 
6500 
7000 
7500 
8000 
8500 
9000 
9500 

loo00 

Frequency 

0.3912 
0.3961 
0.3974 
0.3985 
0.4032 
0.4003 
0.3986 
0.3973 
0.3953 
0.3956 
0.3958 
0.3978 
0.3983 
0.3994 
0.4019 
0.4000 
0.4016 
0.4016 
0.3994 
0.4001 

Derman et al. 1973:Table 3.1 
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units increases, then it follows that we only need to survey that proportion of the 
region that is large enough to yield reliable and accurate estimates. Determining 
how large the proportion should be, how the units should be selected, and a variety 
of other questions all fall under the rubric of sampling and will be discussed in 
greater detail in Chapter 6. 

T h e  second point that our archaeological example highlights is the practical 
use ofprobability statements. How useful is it for a land manager or an archaeologist 
to  know that the probability of finding a site in one unit is 0.02? In most cases the 
answer is "probabiy, not very." ~ n s t e a d o f b e i n ~  interested in theabsolute or marginal 
probability of site occurrence, one is usually interested in the probability of site 
occurrence under specified conditions. For instance, the statements "the probabil- 
ity ofsite occurrence is 0.0001 in areas with slopes greater than 30°," "theprobabil- 
ity of site occurrence in the piiion-juniper zone is 0.15," and "the probability of site 
occurrence in the pinon-juniper zone and in areas with less than 30° slopes is 0.37" 
are all much more useful than the general statement that the relative frequency of 
site occurrence is 0.02. 

T h e  probability that one event occurs, based on the information that another 
or others have occuired, is termed the conditi~nalprobabilit~. One of the easiest ways 
to conceptualize conditional probabilities is to use a Venn diagram. In Figure 5.4, 
the space within the diagram again represents a specific region; the stipled area 
represents the collection of all site locations. This area is often referred to as the event 
set. It is important to remember that the space within the diagram represents a 
collection of simple results and does not necessarily imply contiguous land areas. 

Figure 5.4. Venn diagram showing distribution of sites (shaded area) within pinon-juniper (PJ) 

and desert shrub (DS) zones. 
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T h e  region has further been partitioned between piiion-juniper areas, which cover 
one-fourth of the region when aggregated, and desert shrub areas, which cover the 
remainder of the space. 

Let us assume that the probability of finding a site in a location of specified 
dimensions in the region is 0.15. Tha t  is, the entire stipled area in Figure 5.4 covers 
15 percent of the sample space. Most of the stipled area lies in the piiion-juniper 
partition. Ifwe knew a priori that the survey area was in the piiion-juniper zone, we 
would want to  reassess the probability of finding a site. In the latter situation the 
sample space would not be the entire diagram but only the partition referring to the 
piiion-juniper zone (Figure 5.4). Thus, a simple result of finding a site will occur in 
event set B (a site location) if and only if it is also in event set A (piiion-juniper 
zone). Stated another way, the outcome can only occur ifit belongs to  the interjection 
of event sets A and B (denoted AnB);  that is, it will occur only if the surveyed 
location is in event sets B and A. 

T h e  rules of probability calculus are followed to determine conditional proba- 
bilities. T h e  conditional probability of B occurring given that A has occurred 
(designated by P[B~A]) is defined by the equation 

where P(AnB) is the probability that bo thA and B occur. Thus, the conditional 
probability ofB givenA equals the probability ofbothA andB occurring divided by 
the marginal probability ofA. 

In our archaeological survey we may have found the following relative fre- 
quencies: 

Site Occurrence 

Vegetation Yes (B) 
Pinon-juniper (A) 25/400 
Desert shrub 5/400 

Here, P(AnB) = 25/400, P(A) = 100/400, and P(B[A) = (25/400)/(100/400), or 0.25. 
Thus, if we know a priori that the survey area is in the piiion-juniper zone we can 
assign a probability of 0.25, not 0.15, to  finding a site. 

In a similar manner, the conditional probability of finding a site in a location 
given slope, distance to water, or another characteristic could be determined. 
Further, we could determine the conditional probability of site occurrence given 
several conditions simultaneously. Indeed, this is what much ofpredictive modeling 
is about. 

In the following sections of this chapter, complex statistical techniques are 
introduced that may appear overwhelming to the nonstatistician. These readers 
should remember that what most ofthese techniques are trying to  do is to  partition 
space in such a way that the conditional probability offinding a site is as close to  1 as 
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possible for areas likely to contain sites and as close to 0 as possible for areas where 
sites are probably absent. 

Probability theory and calculus lie at the heart of the quantitative aspects of 
predictive modeling. These subjects have been only briefly discussed in this 
section. We urge the interested reader and potential predictive modeler to read one 
or more of the many texts on these subjects (e.g., Derman e t  al. 1973; Hayes and 
Winkler 1971; see also Thomas 1976 for anthropological examples). 

The C o n c e p t u a l  M o d e l  

T h e  approach advocated here for building a predictive model is conservative 
and comprehensive. The  basic approach involves defining several groups, such as 
sites and nonsites (see Chapter 4 for a discussion ofthe problems ofsuch definitions) 
or sites from temporally distinct periods, and selecting a set of independent 
variables as the potential determinants of site location. For each case (e.g., each 
recorded site and nonsite location) in each group, measurements are recorded for 
each of the independent variables, and then some set of mathematical techniques is 
used to ascertain how different the groups are from each other. 

Multivariate statistical techniques are particularly useful in looking at the 
differences among groups because they simultaneously assess the importance of a 
large number ofvariables and can usually be used to calculate the probability of site 
occurrence given particular values for the independent variables. While the availa- 
ble procedures differ in a number ofcharacteristics, the usual result is a mathemati- 
cal function or functions that delineate the importance of each variable in defining 
the groups. If the groups can be separated successfully using these variables, 
classification functions can be derived that enable us to place cases of unknown 
group affiliation into the most likely group. 

Once the groups have been defined and the classification functions have been 
derived for the sample locations, the next step is to generalize this information 
about the probabilities of group membership to the whole population of interest. 
This is normally done by obtaining data for the same independent variables for 
locations that were not in the original sample and then using those values in the 
classification function. In this way a prediction can be made about the probable 
group membership of each of the measured points in the larger population. Often 
this is done in a systematic manner that allows the researcher to create a contour or 
trend surface probability map of the study region. 

One problem with the use of these statistical techniques in predictive model- 
ing is that those who use them often do not realize that the use of statistical 
techniques requires certain assumptions about the data, and that when the assump- 
tions are not met the results of the modeling procedure can be invalid or only 
approximate. Or, if these limitations are recognized, they are only given scant 
attention. We argue that the data must be examined using univariate and bivariate 
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statistics before being subjected to more complex multivariate forms ofanalysis. It is 
important that the assumptions associated with a particular predictive modeling 
technique be identified and that the raw data be evaluated to determine if these 
assumptions are met. 

T h e  first step in building any predictive model should be focused on the 
variables themselves, especially how they are measured (the scale) and whether this 
level of measurement is adequate for the modeling technique being considered. 
Also, it is important to identify the types of distributions that the discrete and 
continuous random variables possess. Most multivariate techniques are based on 
interval and ratio scales of measurement (described below) and assume that varia- 
bles follow a normal, or Gaussian, distribution. The  next section of this chapter 
reviews some of the different probability distributions that a researcher can use to 
make probabilistic statements about the values of particular variables. Once the 
distributions of the variables are known and departures from normality assessed, 
the researcher can decide whether to use normalizing transformations on the 
variables or to pursue alternative analytical strategies. 

T h e  next step in model building is to  examine the relationships between pairs 
of variables using different bivariate measures of association. Bivariate analyses 
allow the researcher to evaluate the covariance ofindividual predictor variables and 
to provide the foundation on which more advanced multivariate procedures are 
based. If there are problems with the data on a univariate or bivariate level of 
analysis, there will be problems with more complex analyses. If the steps of 
univariate, bivariate, and multivariate analyses are all made part of the predictive 
modeling process, not only will the soundness of the final predictive model be 
increased, but any weaknesses present in the model probably will have been 
identified. 

Finally, the topic of sampling procedures must be considered. Most predictive 
modeling techniques are based on the assumption of random sampling, and it is this 
assumption that permits probabilistic generalizations t o  be made. Estimates of 
population parameters are computed differently for different types of sampling 
procedures, and researchers often fail to  take this factor into account. This is an 
important point, for in constructing predictive models we should be concerned not 
only with the resultant prediction but also with the amount oferror associated with 
this prediction. 

VARIABLES A N D  SCALES 

Those who have constructed archaeological predictive models have tended to 
concentrate on the sophisticated multivariate statistical models rather than on the 
basic data. This is unfortunate, because the basic data constitute the building 
blocks ofthe models, and they should be thoroughly investigated in the initial steps 
ofmodel construction. The  most cogent reason for a thorough evaluation ofthe data 



OVERVIEW OF STATISTICAL METHOD AND THEORY 

is that the most frequently used predictive modeling techniques, such as multiple 
and logistic regression and discriminant function analysis, areparametric statistical 
techniques. That is, they rely on assumptions about the distribution of the variables 
being analyzed. Single variables usually are assumed to be normally distributed, 
pairs of variables are assumed to have bivariate normal distributions, and sets of 
variables are expected to possess multivariate normal distributions. These assump- 
tions have sometimes been ignored by archaeologists developing predictive models. 
In contrast, nonparametric techniques do not require distributional assumptions. 

Variables 

For our purposes we will define a variable as a measurable entity that is free to 
assume any of a prescribed set of values. The  data used in modeling are the 
measured values themselves. A variable that can theoretically assume any of an 
infinitely large and uncountable range of values between two given values is a 
continuous variable; adircrete variable can assume a finite range ofvalues, i.e., it can have 
as many values as there are whole numbers. In predictive modeling, elevation, 
slope, and cardinal orientation in degrees are examples of continuous variables, 
while site presence (yes or no) in a sample unit is a discrete variable. 

Measurement is the process of assigning a class or score to an observed 
phenomenon according to some set of rules. What is not always clear, however, is 
that measurement does not consist only of processes involving numbers. Phenom- 
ena can also be classified into types or ranked relative to one another. An important 
aspect of measurement, especially in a management endeavor, is that the observa- 
tions be made using an operationally defined process that yields reproducible 
outcomes that are as valid as possible. This is especially crucial in predictive 
modeling because we may be considering changes through space and time where 
some concepts, especially nontrivial ones, may not be readily amenable to mea- 
surement or for which no established measurement rules exist. For example, how is 
the efficiency of site location measured? A simple distance measure could be 
misleading if slope was not taken into consideration, or ifthe spatial distribution of 
the resource itself was not quantified, since different levels of energy expenditure/ 
return could be involved. Efficiency would probably need to be a problem-specific 
measure, with different rules for measurement being developed in each particular 
application. 

T h e  rules we use to assign a name or number to a phenomenon determine the 
level of measurement, with different rules being associated with different levels of 
measurement. T h e  level of measurement of a variable determines which methods 
can be used to analyze it and, ultimately, influences the kinds ofinferences that can 
be drawn from studying its distribution. The  level of measurement also strongly 
influences the type of map that can be used to portray the variable's spatial 
structure. Stevens (1946) identified the following four basic levels of measurement: 
nominal, ordinal, interval, and ratio. Each level is more rigorously defined than its 
predecessor, and each contains more information. 
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T h e  lowest level in Stevens's scheme is the nominal scale. Values are assigned 
to distinct categories that label or name the phenomenon. T h e  only requirements 
are that the categories be inclusive-that is, all objects must belong to a category- 
and that they be mutually exclusive-that is, no object can belong to more than one 
category. Variables measured on a nominal scale are thus considered to  be discrete. 
For example, ifan area is divided into quadrats the archaeologist may be interested 
in whether each quadrat surveyed contains or does not contain a site. Each quadrat 
possesses one of these properties, but not both. T h e  nominal scale makes no - - 

assumptions about the ordering of or distance between the categories. A nominal 
scale places limitations on how the variable can be used in statistical operations and 
cartographic manipulations. In certain situations, however, the values can be 
counted to form frequency distributions and, if they are spatially referenced, 
mathematical operations can be performed on their coordinates. 

An ordinal level of measurement exists when there is an implied relationship 
between the classes and they can be ranked (ordered) consistently according to 
some criterion. Ordinal scales are asymmetric and transitive. By asymmetric we mean if 
category A is greater than category B, then B cannot be greater than A. By 
transitive we mean that if A is greater than B and B is greater than C, then A is 
greater than C. Variables measured on an ordinal scale are considered to be discrete. 
In conducting a hypothetical survey, assume the density ofsagebrush in 100 by 100 
m quadrats was recorded on an ordinal scale using the following five categories: 1 
(none), 2 (a few plants), 3 (moderate coverage), 4 (dense coverage), and 5 (total 
coverage with almost no surface visibility). T h e  asymmetric and transitive charac- 
teristics of the ordinal scale can be illustrated using the sagebrush cover ranking. 
For example, the ranking 2 indicates greater coverage than ranking I ,  and 1 can 
never indicate greater coverage than 2; thus the scale is asymmetric. T h e  scale is 
transitive because ranking 2 indicates greater coverage than 1,3 indicates a greater 
relative cover density than 2, therefore ranking 3 also is greater than ranking 1. 

If the categories are ordered and the distances between them are defined using 
fixed and equal units, the level of measurement is interval. T h e  interval scale lacks a 
zero point; it can be used to measure differences, therefore, but not absolute 
magnitude. For example, 80°F is not twice as hot as 40°F because 0 on the 
Fahrenheit scale is an arbitrary point. T o  take an archaeological dating example, it 
would be absurd to  say that AD 975 is twice as old as 1950 (Thomas 1976:27). Only 
when zero points are established by the phenomena themselves can comparisons 
such as "twice as" have any meaning. Variables measured on an interval scale are - 
considered to be continuous. 

A ratio scale has the properties of an interval scale but also possesses an 
inherent zero point. The  defining property of such scales is that any two measure- 
ments bear the same ratio to each other irrespective ofthe unit ofmeasurement. For 
example, if the distance from point A to point B is 1 mi or approximately 1609.34 m, 
and the distance from B to point C is 2 mi or about 3218.68 m, the ratio ofAB to BC 
distances is 1:2 in both cases. Interval and ratio data are usually treated together 
because they frequently can be manipulated arithmetically and statistically in the 
same ways. 
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Although data may have been collected at one level, it is possible and often 
convenient to convert them into a lower level for analysis or graphic presentation. 
What is generally not permitted, however, is to treat data collected at a lower scale 
as if they had been measured at a higher scale. For example, it is easy to convert 
interval and ratio data into ordinal data, but it is not advisable to  sum ordinal scores. 
If one had obtained cover values for sagebrush in terms of area per square meter, 
they could easily be converted to  an ordinal scale of measurement by establishing 
cutpoints on the original scale. For example, zero coverage could be assigned a 
ranking of 1, values lying between 0.1 and 0.2 could be assigned a rank of 2, values of 
0.3 could be given a ranking of 3, values of 0.4 to0.7 could be assigned rank4, and 0.8 
to  1.0 could be given rank 5. 

In addition to  the property of the level of measurement, most variables also 
have the property of dimensionality. In an archaeological predictive model we want 
the independent predictor variables to be measures ofdimensions that are theoreti- 
cally related to site location, but not to  one another (in a correlation sense). Ideally, 
a variable is a measure of only one theoretical dimension; when a model includes 
more than one variable, each one should represent a different theoretical dimen- 
sion. For example, access to resources may be one dimension in a model, and 
variables measuring this dimension might include arable land, vegetation types, 
and elevation. T h e  distribution of vegetation types, however, can be correlated 
with elevation, and when this is the case in a particular region, it would not be 
advisable to include both variables in the analysis. 

Hybrid variables, representing linear combinations of several other variables, 
can also be effective predictors if they are not correlated with other independent 
variables in the same model. Ifthey are uncorrelated with other predictors a hybrid 
variable still only represents one dimension of variability in a geometric-statistical 
sense. A basic problem in predictive modeling, and in most aspects of the social 
sciences, is that one cannot measure a theoretical dimension directly. We can never 
be completely sure, therefore, that a variable designed to measure one phenomenon 
is not also measuring part ofanother dimension at the same time or, for that matter, 
measuring nothing at all. 

When an analysis contains variables that measure the same dimension, there is 
the possibility that the independent predictor variables will be significantly inter- 
correlated (multicollinearity) and a statistical model will be produced that has little 
predictive value because too many variables are correlated with each other instead 
ofwith site location. Careful attention to variable selection is a must in predictive 
modeling, and a shotgun approach, where as many variables as possible are used in 
the hope that patterns will appear, should be avoided. Ifit  is suspected that there 
are correlations among some ofthe variables, such statistical techniques as principal 
components or factor analysis can be used to reduce the information contained in 
many variables to a few composite variables, or some ofthe original variables can be 
deleted from the analysis. These techniques, which should be fully understood 
before they are used, are discussed later in this chapter. 
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Finally, the variables that we choose to represent the theoretical dimensions in 
the model must be measured using relevant scales of measurement. For example, 
distances to important resources might be measured in meters and areas of arable 
land might be measured in hectares or square kilometers. The  scale of measurement 
chosen for a variable will be based on several factors, including theoretical consider- 
ations and the precision with which the variable realistically can be measured. 

An important class ofvariables is nondimensional and has values independent 
of the units of measurement involved. T h e  term nondimensional is used here to 
mean unitless. I t  does not mean that the variable is measuring an unimportant or 
non-theoretical dimension of variability in the data. This is an important distinction 
to maintain. For example, the variable distance to water is often measured on an 
interval scale in meters. If the values of this variable were converted to z-scores, or 
standard normal variates, then the variable would be nondimensional. Nondimen- 
sional variables are particularly useful in comparisons between sets ofvariables or in 
scaling modeling experiments. For instance, it might be extremely difficult to  
compare the variables distance to water measured in meters (whose scores may 
range from0 to the tens ofthousands) with slope measured in percent grade (whose 
scores vary between 0 and 100). Such a comparison could be facilitated, however, by 
converting both variables' original scores to "nondimensional" z-scores. 

Most of the variables currently being used in predictive models can be read 
from existing maps, such as USGS 7.5- or 15-minute quadrangles, or can be 
retrieved in machine-readable form from some type of geographic information 
system. Map-based variables are convenient because the investigator can measure 
variables for points that were not visited in the field. While this is an important 
consideration, it also implicitly assumes that the level ofresolution ofthe map from 
which the information-is extracted is suficient to distinguish critical states ol 
variables. The  validity of this assumption should be evaluated in each case in light ol 
what is expected from the model. For predictions of a general nature this assump- 
tion may be justified, but as finer and finer predictions are attempted (e.g., "this 
location will [or will not] contain a site") the quality ofthe environmental data upon 
which the prediction rests should itself become the subject of investigation. 

Types of Distributions 

Within a predictive model, values of variables have specific distributions. 
These distributions are produced by rules that assign a numerical value to each 
outcome of an experiment. Where each outcome of an experiment is represented by 
exactly one numerical value, the rules are called random variables (also called chance or 
stochastic variables). Because of the difference between discrete and continuous 
variables, two different types of mathematical models are necessary to describe and 
analyze the random variables. Discrete random variables are described by the 
probability mass function and continuous random variables are described by the 
probability density function. 
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1 Probability Mass Function 

T h e  probability mass function (Derman et  al. 1973) of a discrete random 
variable has the same information about the probability model forX as does a table 
of probabilities of the simple events X = xi, X = x2, and so on, where X I ,  x2, . . . are 
the possible values or outcomes of X. We denote the probability mass function forX 
bypx(t); if no confusion with probability mass functions of other random variables 
will occur, the x subscript is dropped and we write p(t). The  probability mass 
function of X assigns to every number the probability of the event X = t. For each 
value of X (xi, x2, . . . ), the probability mass functionpx(t) evaluated at t = xi, x2, x3, 
. . . equals a positive number; for all numbers t that cannot be assumed by X,px(t) = 

0. T h e  sum of the nonzero probability values ofp(t) is 1.0. The  mass function thus 
gives us the same information provided by a table of probabilities of simple events. 
T h e  function can be represented on a bar graph that displays probability on they 
axis while the x axis is used to represent t = xi, x2, . . ., etc. (Figure 5.5a). The  
probability mass function is useful as a way of quickly gaining a meaningful idea 
about the probability characteristics of a discrete random variable. 

( Probability Density Function 

For continuous random variables, the function analogous t o  the probability 
mass function is the probability density function. T o  define the density function of a 
random variablex we use the symbol fdt), or when no confusion would result, f(t). 
T h e  density function of a random variablex may be given a graphical representa- 
tion, such as the curve shown in Figure 5.5b. In this instance the area under the 
graph between the numbersa and b represents the probability ofan event ( a 5  x F  
b ) .  T h e  area under the graph off(t) over the entire horizontal axis is always equal to  
1, since the probability is 1 that x is equal to some real number. From a density 
function, some qualitative conclusions about the variation of the random variablex 
over repeated independent and identical trials can be drawn. Ifthe density function 
is nonzero over a line segment from xi tox2 and zero elsewhere (Figure 5.6), then no 
values outside the rangex1 tox2 may occur. Ifthe density function is constant over- 
the interval fromxl tox2, then all subintervals ofequal length (11 andZ2) are equally 
likely to occur. T o  take yet another example, if the density function is such that 
most of the area beneath the graph is concentrated in a very narrow range, then 
repeated experiments on X tend to yield values of the random variable X mostly 
within the range of numbers where the area is concentrated (Figure 5.7). These 
simple geometric arguments for calculating the exact probability that a continuous 
random variablex lies in the interval of numbers between and includinga and b are 
rarely applicable, since density functions normally do not come in the form of 
'rectangles or triangles. T o  obtain exact answers one must use integral calculus, 
'which provides techniques and formulas for finding areas under curves. These 
Lalculations can be quite complex, but tables of probabilities have already been 
Lalculated for the types of distributions that most archaeologists will need to 
Lonsider. 
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Figure 5.5. T w o  probability functions. (A) A mass function. (B) A density function. T h e  shaded 
area is equal to the probability that X lies between a and b. 

Figure 5.6. Constant density betweenX1 and X2 implies equal probability for the intervals11 
and 12, both of equal length. 
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Figure 5.7. A highly centralized density function. 

Descriptive Properties of Distributions 

For many purposes it is either unnecessary or impossible to obtain all the 
information contained in the distribution; rather, several descriptive properties 
that summarize the most important aspects of a distribution may or must sufice. 
Two of the most frequently used types of information about a distribution are its 
location and its dispersion. If two density functions have the same graphical shape 
but concentrate at two different points (xo andxl) on thex axis, the relocation of the 
graph fromxo toxl represents the only difference between the distributions (Figure 
5.8). A descriptive measure that changes values whenever the distribution changes 
location is a measure of the location of the distribution. On the other hand, a 
measure of dispersion, or variation, describes how strongly a distribution concen- 
trates about a central value. The  measure of dispersion is large when the spread of 
variates about a central value is large, and it is small when the spread is negligible, 
becoming zero when all of the probability is at a single point. 

The  measure of location of a random variablex is commonly referred to as the 
mean ofthe distribution. Other common measures described in most statistics texts 
are the median, mode, and various partiler. The  most common measure of dispersion 
is the variance or its square root, the standard deviation. The  mean of a random variable 
X is sometimes referred to as thefirst moment of a distribution and the variance as the 
second moment. A generalization of this concept leads to the expected value of the 
random variable (X - c): r = 1,2,3, . . ., which is called the rth moment about the 
point c of the distribution ofX. When c is the mean the moments are called central 
moments. 

T h e  other two moments that we will be concerned with areskewness and kurtosis. 
Skewness measures the asymmetry of a distribution, and kurtosis provides a 
measure of how peaked it is. The  importance of these moments is that they play a 
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Figure 5.8. Two densities differing in location. 

role in approximating the distribution of a random variable. Sometimes the 
moments of a distribution are known but the distribution itself is unknown, and 
mathematical techniques have to be used to identify the distribution that possesses 
those moments. After the distribution has been identified we can then calculate the 
probabilities of events of interest to us. Formulas for calculating all of these 
moments are commonly available in basic statistics texts. 

There are certain probability distributions that arise quite frequently in many 
different contexts. Below we will briefly describe some discrete and continuous 
distributions that are frequently encountered in predictive modeling. 

Discrete Distributions 

When a discrete random variable has two possible outcomes we have aBernouIIi 
trial (Derman et al. 1973). If, for instance, a site can be present or absent, a student 
can pass or fail, or a stock can go up or down, there are two possible outcomes. One is 
frequently called a success, the other a failure; the assignment of these terms for 
possible outcomes is arbitrary. We can define a random variable associated with 
every Bernoulli trial as follows: if the outcome w is a success, X(w) = 1; if the 
outcome w is a failure, X(w) = O. Ifp is the probability of success, then I-p is the 
probability of failure. A random variable having this probability mass function for 
some probability p is said to be a Bernoulli random variable, and the resulting 
distribution is a Bernoulli distribution. The  mass function varies with the changing 
values ofp, the parameter of the distribution. I f p  can be determined for the 
distribution, this distribution is said to be completely specified. 

When we are interested in n independent trials of a random experiment that 
gives a Bernoulli random variable and distribution, we consider the random variable 
Z that records the number of successes in n trials. The  random variable can assume 
any of the values O,1,2,3, . . ., n. Ifn = 3 there will be eight outcomes: (SSS), (SSF), 
(SFS), (FSS), (FFS), (FSF), (SFF), and (FFF), where S denotes a success and F a 
failure. Corresponding to these outcomes are the following values ofZ: 3,2,2,2, 1, 
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1,1,0. T o  find the appropriate probability model for& we find probabilities for the 
simple events of the composite random experiment made up of the three trials, 
where each trial is coded as an S (success) or an F (failure). T h e  probability mass 
function that can be used with the parametersp and n (wherep is the probability of 
success on each ofn repeated Bernoulli trials) is termed the binomial and is given as 

This equation is used to calculate the number ofcombinations ofn objects takenk at 
a time. This equals n!l[(n-k)!k!], where ! denotes factorial, Ifn is a positive integer, 
then the product of the integers from 1 ton is called "n factorial" and is denoted by 
n!. For example, 4! = 4 x 3 x 2 x I .  Knowledge of both n and p determines the 
probabilities given in the above equation. 

T h e  Bernoulli distribution is a special case of the binomial distribution where n 
= I .  T h e  binomial distribution assumes a fixed number of trials, with the probability 
of success being the same for each trial and all trials being independent of and not 
affected by the outcome of the others. As an example of the binomial distribution, a 
mapped area is divided into eight quadrats or subregions of area a. If there are n 
subregions, the probability of any point being in a specified region is lln, or 1/8 = 

0.125 in our example. Conversely, the probability of that point not being in the 
specified region is q = I-p, or 0.875. Using the equation shown above we can calculate 
the probabilities of there being k points in a quadrat given a total of n points and a 
probability ofp for any one point being allocated to a quadrat. For example, say we 
wanted to  know the probability ofthere being three points in a quadrat given a total 
of six points and a probability of 0.125. The  probability will bep(3) = [6!/(6-3)!3!] x 
0.125' x 0.8753= 0.16. In a similar manner we can calculate the probabilities associated 
with any other number of points. 

In many instances these binomial probabilities are not used because they are 
laborious to  calculate and, for most applications, the Poisson distribution described 
below gives a more readily calculated approximation of the probabilities obtained in 
an independent random process. The  Poisson distribution can be used to  approxi- 
mate binomial probabilities when, considering the parameters n and p of the 
binomial distribution, n is "large" andp is "small." This works quite well even for 
modest values of n, say as small as 20 or 30. 

Two distributions, the geometric and Pascal, that can be obtained via the 
binomial distribution are discussed briefly below. T h e  relationships between the 
geometric, Pascal, and binomial distributions are described in most intermediate to  
advanced probability textbooks (e.g., Harris 1%). These different distributions 
are simply used to answer different types of questions. 

When the conditions of the independent binomial trials are satisfied, but when 
one is interested in thenumber of trials required t o  obtain the first success instead of 
the number of successes in n trials, the geometric distribution is required. The  
probability mass function for this discrete random variable is 
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For the first success to appear on thewth trial with a probability ofp, there must first 
bex- 1 failures, each with probability 1-p. For example, based on prior knowledge let 
us assume that the probability of a site being present in a quadrat is 0.125. If the site 
being present is a success then the probability of a failure is 1-0.125, or 0.875, as in the 
previous example. Ifone were interested in the probability that the  first site would 
be found in the fifth quadrat surveyed, the formula above would be employed to 
yieldp(x) = 0.875' x 0.125, or 0.0733. 

T h e  Pascal distribution is also based on the condition of the independent trials 
being satisfied, but unlike the geometric or binomial distribution, the interest is in 
the number of trials required to  obtain a given number of successes (r). T h e  
probability mass function for this discrete random variable is given as 

because if the rth success occurs on the xth trial with probabilityp, then there must 
be r-1 successes in the first x-1 trials. This probability function is thus the product of 
the binomial distribution for r- 1 successes inx-1 trials and the probability for success 
on the xth trial, p. When r is 1, the formula. reduces to that of the geometric 
distribution. 

A sample calculation with the Pascal distribution might make the formula 
presented above less formidable. Assume that from prior research the probability of 
finding a site (a success) in any one quadrat in a survey area is 0.5. A manager is 
interested in the probability that the fifth site located will appear by the time the  
tenth quadrat is surveyed, or in the language of the previous paragraph, that the 
fifth success will appear on the tenth trial. Values to  be used in the formula for the 
Pascal distribution include r = 5, x = 10, andp  = 0.5. The  combination notation 
reduces to the number of combinations of 9 (x-1) objects taken 4 (r-1) at a time, or 
9!/5!4! = 362,880/2,880 = 126. T h e  remainder of the formula is 0.55 x 0.S5, or 0.0010. 
Then,  the probability that the fifth site located will occur by the tenth quadrat 
surveyed will be 126 x 0.0010 = 0.126. 

Closely related to a binomial random variable, a Poisson random variable 
represents the number of occurrences of some outcome, not in a given number of 
trials but in an interval of time or an area of space. T h e  wide variety of random 
phenomena giving rise to  random variables having this distribution is astonishing. 
It  has been used in control engineering, agriculture, biology, and medicine, to  name 
but a few areas of study. A recent archaeological application is presented by Rogge 
and Lincoln (1984). 

The  utility of the Poisson distribution can be demonstrated with the same 
example used above for the binomial distribution. In many practical applications the 
quadrat is a relatively small area, implying that k is large andp is therefore small. 
T h e  probability that a quadrat includes a point may be small, but the number of 
points n is usually large so that the product Np, the expectation of finding one point 
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in one area, is relatively constant. Ifthis expectation is called lambda (A), the Poisson 
distribution is given as 

wheree is the natural constant approximately equal to the number 2.71828. For the 
present example, A = 6/8 = 0.75 since there were six sites in eight quadrats. The  
quantity e(-A) would be 2.71828-0.75 = 0.4723. Using these values in the Poisson 
formula, the predicted probabilities for an independent random process where n = 6, 
k = 8, andp = 0.125 can be calculated. For example, the probabilities of there being 
three, four, or six points in a quadrat are 0.20, 0.04, and 0.00, respectively. 

Probabilities based on the binomial distribution do not apply when we sample 
without replacement because the probability of a success is not constant from one 
trial to another. The  appropriate probabilities in this situation are based on the 
hypergeometric distribution, given as 

Assume a random sample of size n is drawn without replacement from a population 
of N units and that there are k successes and n-k failures, withp denoting the 
probability of success and q, or 1-p, denoting failure. Let's say a prior inventory of 
part of a region showed 50 percent of the quadrats contained a site. The  remainder 
of the area, some 300 quadrats, was not surveyed. An archaeologist samples five of 
the quadrats and finds that two contain sites and three do not. Does this result 
follow from what was already known about the region? The  equation given above 
can be followed using N = 300, n = 5,p = 0.50, and k = 2 to yield a probability that 
0.3 146 ofthe 5 units, or 1.573 units, will contain a site. Thus the observation that two 
units contain sites fits the theoretical observed frequency reasonably well. 

Finally, for the binomial probability law to be valid, all possible outcomes of a 
probabilistic phenomenon can only be classified as either successes or failures. 
When there are more than two categories ofclassification, the multinomial distribu- 
tion applies. More formally, if a probabilistic phenomenon has k possible outcomes 
with probabilitiespl,p2,~3, . . .,pk, if the probabilities are constant for every trial, 
and if all trials are independent, the multinomial distribution gives the probability 
of x i  outcomes of the first kind, x2 outcomes of the second kind, through xk 
outcomes ofthe k th  kind inn trials. The  multinomial distribution could be used in a 
situation where there were three specific types ofsites instead ofjust a site (or type) 
that could be present or absent. Blalock (1972:171) notes that a difficulty with the 
use of the multinomial distribution is the problem ofunambiguously specifying a set 
of outcomes more unusual than the one obtained. 
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We have mentioned some discrete distributions that frequently arise. When 
one of these distributions is chosen to model a random variable for which we have 
observations, the decision generally has either a theoretical or an empirical basis. 
That is, either the selected probability distribution is a logical consequence of the 
properties of the phenomenon that are already known to the archaeologist or the 
probabilities derived from the distribution correspond to the relative frequencies 
obtained from repeated observations of the phenomenon. In some situations a 
particular probability distribution may be chosen for both reasons. 

Many of the distributions outlined above assume that outcomes are independ- 
ent ofeach other, and tests can be devised to determine whether the observed point 
patterns correspond to independent random processes. These processes are usually 
mathematically simple and elegant, and they form a useful starting point for spatial 
analysis. Most geographical applications of models of independent processes are 
made in order to reject the null hypothesis of independence and randomness in 
favor of an alternative that specifies some form of spatial dependence (Unwin 
1981:60). In order for a clustering of points to be produced, the probability of any 
quadrat receiving a point cannot be the same for all quadrats. A number of 
distributions that incorporate spatial dependence exist. Thomas (1977:20-23) notes 
that spatial analysts have had considerable success in fitting observed frequency 
arrays based on clustered distributions. 

One such clustered distribution is the negative binomial, where the probabil- 
ity of placement increases lineally with the number of points already in a quadrat, 
leading fairly directly to a clustered point pattern (Draper and Lawrence 
1970:99-101). At any one time then, the probabilities of cells receiving a point are 
not equal, but are directly related to the existing distribution. The  probability that 
a specified quadrat will contain exactly x points is given by 

where A = kp, aZ = kp (1 + p), therefore p = Ak. 

The  probabilities predicted by the above equation only depend on the two 
parameters lambda (A) and k, where lambda is the point density and k measures the 
degree of clustering. The  value of k falls between zero and infinity, though as k 
approaches zero the distribution converges on a clustered logarithmic distribution 
(Bliss and Fisher 1953), and ask approaches infinity the clustering disappears and the 
negative binomial tends to the Poisson distribution described above. The  variance/ 
mean ratio of the negative binomial distribution is always greater than one regard- 
less of the values of lambda and k. Most typically the values of k are not positive 
integers, and the negative binomial probabilities can be obtained by solving a 
density function which is an approximation to the formula given above. The  
approximation is 
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where R =p(l+p). 

Dacey (1%8:51-70) describes how the negative binomial distribution can be 
deduced from different propositions about how the clustered patterns are gener- 
ated, though for quadrat analyses the most important processes are termedgeneral- 
$zed and compound. The  mathematical characterization of these processes is beyond 
the scope of the present discussion, but it can be noted that the formula for the 
negative binomial presented above assumes a generalized process that results from 
some basic afinity among the points in a cluster. For the assumptions of the 
generalized distribution to hold, one must be reasonably sure that the points and 
study area are fairly homogeneous in nature. 

Compound processes result from a heterogeneity in the numerical population 
ofpoints under investigation. For example, let us assume that we were interested in 
the adoption of a particular architectural construction method among the Anasazi in 
the southeastern Colorado Plateau region. If the prehistoric population density 
varied significantly over the study area we might observe a clustering in the 
"adopters" of the construction method not because of short-distance social con- 
tacts among the population, but because there were high population densities in 
lowland areas and low densities in upland regions. The clustering would thus be the 
result ofthe lambda parameter (A) varying over the area, and not the result of a real 
contagion process. Because the two sets of assumptions associated with the general 
and the compound processes can lead to the same predicted frequency distribution, 
the design of a quadrat sampling procedure must s p e c i ~  which model is more 
appropriate. 

In order to fit the negative binomial distribution to a set ofdata the parameters 
lambda (A) and k must be known. Ideally it would be nice if enough were known 
about the probability model to specify the parameters from a priori information. 
Realistically this is almost never the case, and one is forced to use some statistical 
estimation procedure in lieu of theoretical knowledge. Two of the most common 
methods for estimating the two parameters ofthe negative binomial are the method 
of moments and maximum likelihood estimation. An explanation of these two 
procedures is left to a text such as Thomas (1977:21-23), which provides a cogent 
discussion ofthe relevant material and examples. It should be mentioned, however, 
that the maximum likelihood approach is fairly complex since it involves maximiz- 
ing the value of a likelihood function. 

An alternative that is appropriate in some spatial modeling situations is the 
Neyman Type A distribution (Ripley 1981:106-107), which involves random place- 
ment of a series of initial points from which other points spread randomly. This 
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probability model can be derived as a compound model resulting from the mixture 
of two Poisson processes (Rogers 1974). 

Wood (1971) has suggested that the negative binomial and Neyman Type A 
distributions are applicable to prehistoric settlement processes in which clusters of 
sites are generated by a "contagion" process. Plant ecologists and geographers have 
used models of this type to describe patterns in which each occurrence of the 
phenomenon in question increases the probability ofadditional occurrences nearby 
(Cliff and Ord 1973; King 1%9:45). Clusters of points are Poisson distributed, and 
each cluster contains one or more points that follow some distribution. If the 
distribution ofpoints making up a cluster is logarithmic, the overall distribution is a 
negative binomial; if the points in a cluster are Poisson distributed, a Neyman Type 
A distribution is yielded (Cliffand Ord 1973; Hodder and Orton 1976). It is assumed 
that the clusters are spaced far enough apart that a quadrat will not contain more 
than one cluster, but this will depend on the spatial dispersion within a cluster, the 
distance between clusters, and quadrat size. 

Both of the independent and dependent processes described above lead to 
probability distributions. The  actual observed distribution patterns can then be 
compared with those predicted by the model, allowing for an evaluation of the 
likelihood of the observed distribution. One point to  be kept in mind when 
evaluating probability models in most geographical applications, like the negative 
binomial and Neyman Type A distributions described above, is that the parameters 
are estimated from the data. Hence, it is likely that the predictive frequencies from 
many of these a priori models will reasonably fit the observed data. 

continuous Probability Distributions 

The  continuous distributions described in this section are the normal, lognormal, 
t, exponential, gamma, and Weibull distributions. Like discrete probability distribu- 
tions, continuous distributions are represented in a parametric form, meaning that 
the general shape of the distribution is given by mathematical equations in which 
certain constants are left unspecified. For example, in the Bernoulli distribution 
previously described thep was left unspecified. In the normal distribution described 
below the mean and variance are left unspecified. When we know the values of these 
parameters the probability distribution is completely specified, and the probability 
of any event can be calculated. Put simply, we can determine graphically and 
numerically the properties of the distribution. 

Many of the statistical procedures discussed later in this chapter assume a 
normal (Gaussian) or at least a quasi-normal (approximately normal) distribution. 
T h e  general properties of this well-known distribution-the familiar bell-shaped 
curve-are that it is symmetric, is asymptotic at both ends, has maximum height at 
the mean, has areas under the curve that represent probabilities ofevents, and that 
the distribution of means of repeated samples will tend to be normally distributed. 
Unfortunately, many researchers fail to determine (even using the most simple, 
basic descriptive statistics) how well their data meet the assumptions of normality. 
This can lead to  serious deficiencies at more advanced levels of analysis. 
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Several techniques can be used to judge whether a set of data possesses a 
normal distribution. A chi-square goodness-of-fit test is one technique that can be 
used to  test whether a sample is from a normally distributed population; however, 
the test is not capable ofidentifying some departures from normality. For example, 
the sample data might possess noticeable skew but the test would not reject the null 
hypothesis of no significant difference between the distributions. Alternative tests 
that can detect nonnormal skewness and kurtosis are described below. 

T o  apply the chi-square test the sample data are grouped into classes to form a 
frequency distribution and the sample mean and standard deviation are calculated. 
A normal distribution with these parameters is fitted and expected frequencies for 
each class are obtained. Snedecor and Cochran (1%7:70-72) discuss the relevant 
computations. T h e  chi-square statistic is computed as the sum of (observed- 
expected)z/expected for each class. If the data come from a normal distribution, the 
observed values from the sample will tend to follow the values expected on the 
assumption of normality and the computed chi-square is small. If the data come 
from some other distribution, the observed and expected values in each class will 
tend to agree poorly and the computed chi-square value becomes large. A large 
chi-square value causes rejection of the hypothesis of normality. As a test for 
goodness offit, the most serious limitation of the chi-square test is the requirement 
for a large sample. As a rule for using the chi-square distribution, each class interval 
should have an expected frequency ofat least 5. Unless the sample is large, only the 
most frequent class intervals will retain their integrity. T h e  intervals with small 
frequencies would have to  be combined before computing the test statistic, and in 
doing this, information is lost. When the sample is very small the chi-square test 
cannot be used at all. 

An alternative goodness-of-fit test is the Kolmogorov-Smirnov (KS) one- 
sample test. This test approaches the normality question by comparing the 
observed cumulative frequency distribution of the sample to that expected from 
the population specified by the null hypothesis. T h e  test statistic obtained is the 
maximum deviation between the observed and the expected distributions. The  
specifics of this test are described in Lapin (1978:640-644). T h e  KS test is more 
efficient than the chi-square test for small samples; that is, for a fixed sample size the 
KS test is more powerful because it provides a higher probability ofrejecting a false 
null hypothesis. A disadvantage of the KS test is that it does not allow the 
population parameters-the mean and standard deviation-to be estimated from 
the sample as in the chi-square test. Instead, the population parameters must be 
specified in advance. 

Tests are also available that allow the researcher t o  evaluate whether sample 
data with particular values ofskewness and kurtosis could have come from a normal 
population. Skewness coefficients for random samples of normally distributed 

% populations have a mean of zero and a standard deviation of (6/n) . T h e  skewness 
coefficient for sample data can be compared with this value, or two or three times 
this value, depending on the chosen significance level. For example, if the skewness 
coefficient exceeds twice this value (+ or -), the null hypothesis of a normal 
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distribution is rejected at the 0.05 level of significance. This test for skewness is 
accurate enough when the sample size is greater than 150. For smaller sample sizes, 
the one-tailed 5 percent and 1 percent significance levels, computed from more 
accurate approximations, are presented by Snedecor and Cochran (1978:552, Table 
A6). 

Kurtosis can be tested for departures from normality in a manner similar to  
skewness. Normal distributions possess a kurtosis of 3 .  When kurtosis is computed, 
however, the value of 3 is frequently subtracted during the computation so that 
distributions with positive kurtosis are peaked and those with negative kurtosis are 
flattened. When computed this way and when very large samples are from a normal 
distribution, kurtosis is normally distributed with a mean of 0 and a standard 

!4 deviation of (Wn)  . Sample kurtosis values that exceed the standard deviation, or 
exceed it by two or three times depending on the significance level, will lead to 
rejection of the null hypothesis that the sample data are from a normal distribution. 
Unfortunately, the distribution of kurtosis does not approach the normal distribu- 
tion closely until the sample size exceeds 1000. For sample sizes between 200 and 
1000 more accurate approximations of the 5 percent and 1 percent significance levels 
are presented by Snedecor and Cochran (1978:552, Table A7). For small sample 
sizes, tables of significance levels of kurtosis are not readily available. 

T h e  use of the concept of a normal distribution to  describe many random 
phenomena can be theoretically justified by assuming that these phenomena arise 
from the summation of many statistically independent and identically distributed 
random causes. We can theorize that a random variable is approximately normally 
distributed if we can conceive of it as being equal to the sum of a large number of 
independent realizations of the same random variable X .  

The  lognormal distribution is the product of many independent realizations of 
random variables with approximately equal distributions. A nonnegative random 
variable Z is said to have a lognormal distribution when r = logZ has a normal 
distribution. 

Another continuous distribution that is in many respects similar to the normal 
distribution is the t-distribution. This distribution is also symmetric and has 
maximum height a t  the mean, but its shape depends on a parameter calleddegreer of 
freedom that is largely related to sample size. T h e  t-distribution is commonly used in 
the construction of confidence intervals related to small samples. 

T h e  problems of small samples (those with fewer than ca. 90 cases) and of 
distributions that are continuous but nonnormal have received little attention in 
predictive modeling. A fair amount of applied statistical research in disciplines other 
than anthropology has been directed toward examining the distribution character- 
istics of small samples from a variety of distributions (e.g., Wallis e t  al. 1974). Many 
of these investigations have been instigated by the stark realization that the 
distributions of variables employed in many models are not quasi-normal. Since an 
argument can be made from both theoretical and data-oriented perspectives that 
many archaeological and environmental phenomena are not randomly distributed, 
some of these distributions are described below. 
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In the simplest terms, an exponential distribution has the general shape of a 
reversed "J" and approximates a great many populations where the observations 
involve items whose status changes through time (or space). This distribution has 
been used to characterize the expected use life of equipment, for example, and the 
arrival of cars at a toll booth. 

When the distribution of a continuous random variable is considerably 
skewed, the gamma or Weibull distributions may be useful. The  gamma distribu- 
tion can be used to analyze a system in which the proper functioning of a certain 
component is essential to the proper functioning of the system as a whole. In order 
to increase reliability (that is, to increase the length of time before failure), the 
system may be designed with r-1 spare componenFs that can be used if the critical 
component fails. When that component fails, one of the r-2 other components takes 
over. This process can continue until all r components fail, at which time the entire 
system fails. Assuming that the system can fail only if the critical component fails, 
the lifetime of the entire system is the sum ofthe lifetimes of the r components (Xi, 
X2, Xg,  . . ., Xr). If each of the lifetimes has the same exponential distribution and 
the same parameters, and if all of the lifetimes are statistically independent, then 
the probability density function is appropriate. ~ e i b u l i  distributions 
(Derman et  al. 1973:378-390) have also been found to provide good probability 
models for describing the length of life of certain phenomena. 

The  exponential, gamma, and Weibull distributions are three classes of distri- 
butions that have been used by investigators in many fields to find distributions 
that explain or describe the variation in nonnegative random variables. Examples of 
such phenomena include the lifetimes ofindividuals, travel times, and the lifetimes 
of biological or even social systems. These distributions provide a reasonable fit to 
the distributions ofmany ofthese random variables, but in other cases the fit is not 
as close as desired or may even be unsatisfactory. 

Statistical Implications of Probability Distributions 

The types of probability distributions that variables assume partially deter- 
mine which statistical tests can be used to analyze those variables. Statistical tests 
can be divided into two general families: classical or parametric tests, which are 
usually applied to data measured on an interval or ratio scale, and distribution-free 
or nonparametric tests, which can be applied to data measured on nominal, ordinal, 
interval, or ratio scales. 

Parametric tests are generally more powerful and more widely applied than 
nonparametric tests in predictive modeling contexts, but it is important to note 
that most parametric tests make certain assumptions about the populations from 
which the samples are drawn. These assumptions may not always be met, and the 
data should always be examined to determine whether these assumptions apply. If 
they do not apply, the extent of the violations should be assessed. The  most 
frequent assumption made about the background population is that it is approxi- 
mately normally distributed. The smaller the sample, the more important it is that 
this requirement be met. 
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Ifthe normality or quasi-normality ofthe background population is questiona- 
ble, then a distribution-free or nonparametric test might be required. This is 
especially true if the variables being tested are derived from small samples. Non- 
parametric tests constitute a large family oftechniques that permit one to cope with 
frequently unrealistic and limiting assumptions. Another advantage of nonpara- 
metric statistical tests is that the theory is sometimes easier to follow. They can also 
facilitate more efficient data-collection procedures if it is expected that the back- 
ground population is nonnormally distributed. As Thomas (1976:263) notes, how- 
ever, whatever the virtues ofthe nonparametric approach, it remains a second-best 
substitute for tests based on normality theory. These tests also tend to ignore much 
sample information that is addressed by their parametric counterparts and there- 
fore may be less efficient. Another handicap is that there are so many nonparametric 
tests to choose from that the researcher must pay more attention to the added - - 
question of efficiency, that is, which test is the most powerful in a particular 
situation. Additionally, in terms of complex modeling situations many of the 
nonparametric statistics are not as developed or as applicable as their parametric 
counterparts. 

The  other basic distinction in statistical analysis classifies procedures as univar- 
iate, bivariate, or multivariate. While most predictive modeling situations are 
multivariate, a strong argument needs to  be made for using univariate and bivariate 
procedures as a necessary and logical precedent to the use ofmultivariate processes. 
Ifresearchers devoted more effort to examining the distributional characteristics of 
the variables and the relationships among variables, they could determine whether 
the basic assumptions of more advanced tests were being met and decide whether 
some variables should be rejected or reexpressed before the variables are incorpo- 
rated into sophisticated models. 

STATISTICAL DESCRIPTION AND INFERENCE 
IN THE MODEL-BUILDING PROCESS 

In the process ofbuilding a statistical model we attempt to  define and measure 
the characteristics of individual variables and then to examine relationships 
between pairs and among sets ofvariables that affect site location. The  characteris- 
tics of the individual variables and the measures of association are then generalized 
to  a population. A large battery of univariate, bivariate, and multivariate statistics 
can be employed in the process of generating predictive models of site location. 
Univariate statistics are generally used to  elucidate the various characteristics of 
probability distributions associated with particular archaeological and environmen- 
tal variables. Such descriptive statistics as the mean, median, variance or standard 
deviation, skewness, and kurtosis, coupled with such graphic displays as histograms 
and cumulative probability function curves, permit us to  determine whether the 
variates are distributed in a somewhat normal fashion. As described above, this 
assessment ofthe distribution is critical because normality is a fundamental assump- 
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tion ofmost parametric statistical tests. Ifthe variates are nonnormally distributed, 
statistics and graphic procedures can aid us in determining an appropriate normaliz- 
ing transformation. Alternatively, one of the other distributions described above 
may provide a good fit to the observed data. 

Exploratory data analysis (Tukey 1977), which emphasizes the use of visual 
displays, can help to  describe the univariate, bivariate, or multivariate distributions 
of variables. As Hartwig and Dearing (1979) note, the basic philosophy underlying 
exploratory data analysis is one ofsearching a data set using a number of alternative 
techniques in order to maximize what can be learned. They feel that a potential 
problem may arise when data analysis is equated with statistics, that is, when 
numerical summaries of the data are used to  the exclusion of other methods of 
analysis. 

In contrast to a traditional statistical approach, exploratory data analysis does 
not impose a hypothesis ofsome pattern on the data; it lets the pattern emerge from 
the data. It also emphasizes the reexpression of variables that are not normally 
distributed or might be expressed better on a different scale. Data can be reex- 
pressed by any transformation as long as the discovered patterns can be related back 
to the original data. 

At the most elementary level, traditional descriptive statistics aid in the 
detection ofoutliers, values that by their very label indicate something outside the 
range of the main body of variates, something that is anomalous. Sometimes these 
values may lie three, four, or even more standard deviations from the mean. The  
detection ofoutliers and decisions on how to deal with them at the beginning stages 
of quantitative analysis are essential because of the pathological effect that these 
values can have on the final results. Although rules have been proposed for rejecting 
outliers, automatic rejection is not always advisable. It is possible that the outlier 
provides information that other variates cannot because it arises from an unusual 
combination ofcircumstances. From a managerial perspective, the identification of 
outliers is important because they represent something that does not follow the 
norm and that requires further investigation. 

One of the most fundamental concepts of the exploratory approach is a 
breakdown of the data into smooth and rough components. The  underlying structure 
of a set of observations is smooth when a straight line depicts the relationship 
between two variables or a curve depicts the distribution of a single variable. 
Smoothness represents regularity in the data. When the smooth data are extracted 
from a data set, what remains are the deviations or residuals, the differences 
between the smooth and the actual data, which are called the rough data. The  most 
desirable situation is a rough data set that contains no additional patterns or 
structure. 

Exploratory data analysis, like some traditional univariate statistical analyses, 
places a premium on analysis of single variables in an attempt to understand the 
central tendency, variability, and shape of the distribution for each variable. 
Techniques employed include the stem-and-leaf display, box-and-whisker plot, 
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and resistant number summaries. A stem-and-leaf display is a cross between a 
rank-ordered list and a histogram. T o  create a stem-and-leaf display each observed 
value is separated into its first digit and remaining digits. Each number that occurs 
one or more times as a first digit in the data set is listed vertically in ascending order, 
and a vertical line known as the stem is drawn to  the right of this column of 
numbers. T h e  remaining digits are listed horizontally in ascending order from left 
t o  right in the same row as the first digit to which they belong, creating leaves. This 
results in a histogram that retains and ranks all of the observed values while losing 
none of the data. When the observed values have many digits, rounding the 
numbers to a few digits may simplify the  display. Furthermore, these displays can 
be stretched or condensed by subdividing each row into two or more divisions or by 
combining two or more adjacent rows. 

This description of the stem-and-leaf diagram is included as an example of how 
exploratory data analysis attempts to extract information from a data set. On  a 
univariate level, exploratory data analysis identifies and describes major character- 
istics of distributions using measures of location and spread that have the property 
of resistance. T h e  term resistance means that these measures are not highly sensitive 
to departures from the normal distribution and thus they are suitable indicators of 
location and spread for a wide variety of distributions (Hartwig and Dearing 
1979:19). T h e  exploratory data analysis approach also uses several summary statis- 
tics, rather than just one or two, to summarize information about a distribution. A 
box-and-whisker plot can be used in addition to  numeric summary measures to 
portray the major characteristics of a distribution. These plots provide detail when 
it is often needed the most-when the tails ofa distribution contain extremely large 
or small values. Tukey (1977) provides a detailed discussion of these measures and 
plotting procedures (see also Clark 1982 for a cogent discussion of archaeological 
applications). 

Traditional bivariate statistics include many procedures appropriate to  the 
four different levels of measurement. Because they indicate how one variable is 
related to  another, matrices of bivariate statistics frequently provide a starting 
point for multivariate procedures that, in turn, evaluate relationships between and 
among a large number of variables. At the nominal and ordinal levels of measure- 
ment we employ nonparametric tests like chi-square, gamma, lambda, Kendall's 
taus and taub, rank-order correlation, sign tests, and the like. Parametric bivariate 
tests include analysis of variance, differences of means, and Pearson's r and are 
chosen according to  the level of measurement. Outliers can also be detected with 
bivariate statistics and graphic techniques, but if we are using parametric bivariate 
techniques on nonnormally distributed variables, problems with the reliability of 
results and predictions will begin to appear. 

When examining bivariate relationships, the researcher may be faced with the 
~ r o b l e m  that both variables being considered are strongly affected by a third. One 
way of examining this problem is by cross-tabulation, which is a joint frequency 
distribution of cases according to  two or more classificatory variables. T h e  joint 
frequency distributions can be analyzed with a variety of statistics to  determine 
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whether or not the variables are independent. The  statistics describe the degree to 
which the values of one variable predict or vary with those of another. T h e  
relationship between two variables can also be calculated while controlling for the 
effects of a third. Examining a bivariate relationship while controlling for a third 
variable can frequently be a problem with archaeological data bases that contain a 
limited number of cases, however, because each addition of a category to each 
variable in the relationship exerts a drain on the average cell frequencies in a 
cross-tabulation. A very large sample is needed to generate relatively simple 
controls. 

Partial correlation is another technique that provides a researcher with a 
measure of association describing the relationship between two variables while 
adjusting for the effects of one or more additional variables. Conceptually it is 
analogous to  cross-tabulation with control variables, but in this situation the 
control is statistical rather than literal. Partial correlation is based on the simplifying 
assumption that the relationships among variables are linear and that the effect of 
the control variable is linear throughout its range. Once the relationships among the 
independent, dependent, and control variables are determined, it is possible to 
predict the values of the dependent variable using the independent variable, while 
controlling for the influence of the other variable(s). The  advantage of including 
partial correlation as one of the steps in building predictive models is that this 
procedure can help to  detect spurious relationships-that is, those relationships 
between two variables A and B that are solely the result of variable A varying with 
some other variable C, which may actually be the true predictor ofvariable B. When 
variable C is controlled for, variable B may no longer vary withA, and the spurious 
relationship will have been detected. 

Exploratory data analysis also provides techniques for looking at the relation- 
ships between pairs of variables. Important factors that are considered with this 
approach include the shape, strength, and direction of the relationship. Scatter- 
plots, traces, and smoothers, such as the Tukey line (similar to a regression line), are 
used to examine pairs of variables for nonlinearity not removed by reexpression 
during the univariate stage ofanalysis. Ifnonlinearity is apparent and not due to just 
a few deviant values, some linearizing transformation on the independent and/or 
dependent variable is required. As in the univariate approach, the analysis does not 
stop with an examination of the smooth data set. T h e  importance ofsubjecting the 
rough data to the same careful examination given to the observed values is 
emphasized. Hartwig and Dearing (1979) provide convenient summaries ofexplora- 
tory data analysis approaches to  examining bivariate relationships. 

The  use of techniques such as those outlined a.bove before constructing 
complex multivariate predictive models is necessary for several reasons. First, these 
techniques assist us in determining which variables meet the distributional assump- 
tions of the parametric statistical techniques that we prefer to use. If the variables 
do not meet the criteria for parametric statistics, nonparametric alternatives may be 
appropriate. Second, these techniques define the relationships between pairs of 
variables, and third, they make it possible for us to determine, and untangle, the 
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complex relationships that can exist among several variables. Ultimately, all ofthese 
techniques help us to identify a set ofindependent variables that are related to site 
location; just as important, they show us how the set of predictor variables are 
related to one another. 

Establishing a relationship between one or more interval- or ratio-level inde- 
pendent variables and one or more interval- or ratio-level dependent variables can 
range from being a relatively simple procedure to being a complex one. At the 
simplest level, bivariate regression can be employed, and when more than one 
independent variable is involved, a multiple regression scheme of one form or 
another can be used. If the independent variables are intercorrelated, a modification 
to the normal approach may be required. A principal components analysis can be 
used to create a new set of orthogonal (uncorrelated) variables that are linear 
combinations of the original ones (Harris 1975: 163-167). Or, in multiple regression 
situations, ridge regression or latent root regression may represent a viable alterna- 
tive (Gunst and Mason 1984). When there is a set ofdependent variables in addition 
to the set of independent variables, canonical regression with the original variables 
or with the principal components ofeach data set is required (Harris 1975: 132-146). 
Some of these techniques and their underlying assumptions are described more 
fully later in this chapter. 

DEFINING SITE CLASSES 

Earlier we defined the process of constructing quantitative predictive models 
as consisting ofgroup discrimination and classification. The  former involves taking 
two or more predefined groups and producing a mathematical function that de- 
scribes the use of a set of independent variables to separate these groups. Classifica- 
tion, on the other hand, involves capitalizing on any group differences that might be 
present in order to develop an algorithm for classifying other elements of the 
population into the most appropriate group. T o  be successful at discrimination and 
classification requires choosing and understanding the distributions of appropriate 
variables, as we have discussed, and ensuring that the groups we are using are 
relatively homogeneous. Several problems can aflect our ability to form homogene- 
ous groups; of these, we will discuss temporal and functional variability, the 
definition of site classes using cultural resource management data, and the use of 
nonsite locations as a group in predictive models. 

Temporal and Functional Variability 

In areas where the temporal dimension is long enough to incorporate adapta- 
tional changes, we must be able to control for these temporal and functional factors 
before we can make realistic predictions. For modeling purposes, we assume that 
contemporaneous sites are distributed over the landscape according to various 
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social, economic, and environmental factors, and that these factors determine the 
locations and types ofsites found. Thus, different site types may be associated with 
different configurations of environmental and social variables, and these relation- 
ships may change through time. 

T h e  problem of determining site function is compounded when a region has 
been occupied for an extended period of time, possibly by more than one cultural 
tradition involving more than one economic pattern. In these instances the associa- 
tions between site types and environmental features may change through time. 
During one period basecamps may be found near floodplains while during another 
they may be found on ridge crests. In addition to  controlling for functionally 
distinct site types we must also control for temporal variability in sites and possibly 
in the environment. 

T h e  importance of delineating temporal and functional aspects ofsites and the 
environment has long been recognized by the archaeological community. In early 
settlement-pattern studies this was accomplished by taking large surface collec- 
tions from each site and relating them to the results of intensive excavations of 
samples ofeach site type (see MacNeish 1964 and Sanders e t  al. 1979 for examples of 
this approach). In cultural resource management, however, archaeologists are not 
usually in a position to examine settlement data in this way. Surface collections tend 
to be small, and test excavations are usually not directed at linking surface materials 
to  subsurface remains. This situation thus calls for a different approach. 

Defining Site Types with Cultural Resource Management Data 

Archaeologists developing predictive models with cultural resource manage- 
ment data have not always successfully dealt with questions of temporal and 
functional variability. o f ten  little attention is devoted tb this problem, and model- 
ers lump all sites together in an analysis (Grady 1980; Larralde and Chandler 1981). 
There are two major reasons for the failure to  develop usable site classes in 
predictive modeling. T h e  first is that many predictive models are generated from 
small samples. Scholtz (1981) developed the Sparta Mine predictive models of 
prehistoric and historical site locations on the basis of37 and 3 1 sites, respectively. If 
we develop models on the basis of small samples that represent our only cultural 
resource knowledge of the area, then we may not know enough about the area to  
evaluate the accuracy and precision of the model. Even if the data are derived from 
probabilistic sampling techniques, it is important to remember that unless the 
sampling fraction is large enough, say above 20 percent, we have not sampled a 
significant proportion of the population (Cowgill 1975). Ifwe have reason to believe 
that the survey area is similar to  surrounding areas, then site location data from 
those regions can be used to  augment the data base when developing a predictive 
model. As discussed in Chapter 7, the poor use of existing data has hampered the 
use of predictive modeling in archaeology. 



ROSE AND ALTSCHUL 

The  second reason that site classes are sometimes poorly developed in predic- 
tive models is a reflection of a general trend in cultural resource management. T h e  
determination of temporal and functional attributes from surface collections of 
artifacts usually requires fairly large samples. Even when artifacts are numerous it 
still may be difficult to define site classes, and in the case ofminimal artifact scatters, 
this problem is exacerbated because even if every artifact were collected and 
analyzed the sample might not be sufficient to yield a temporal or functional 
designation for the site. Given the growing trend among some federal agencies to 
limit the number of artifacts collected in the field, archaeologists often are forced to 
do in-field analyses. It  is not surprising that many surveys result in a disproportion- 
ate number of undated sites. 

In the absence of artifact data that could be used to assess site function, 
archaeologists have often used the number of artifact types as a measure of 
occupational intensity, which in turn is used as a proxy for function. One problem in 
using this approach is that collection and vandalism can seriously skew surface 
assemblages of sites. Often, therefore, sites with less assemblage diversity than 
expected have simply been heavily collected. Another problem with this approach, 
even if a site has not been heavily collected, is related to sample size. If 100 artifacts 
representing 27 types are recovered at one site, while at another there are 70 
artifacts with 20 types represented, can it be said that the first site has a more 
diverse collection simply because there are more types? And can this be taken one 
step further to  say that the first site represents greater occupational intensity than 
the second? In many cases we need to know whether the collection from the first 
site contains more types than we would expect given its sample size. Several 
procedures have been used in an attempt to answer this question. 

T h e  first procedure is applicable when the number of artifact classes repre- 
sented can be determined from in-field analysis. Kintigh (1984) devised a method for 
measuring assemblage diversity by simulating the composition of a large number of 
theoretical samples drawn from a range of total artifact classes for a given sample 
size. T o  compare the diversity of two sites one looks not at the assemblages 
themselves but at the expected diversity for each site sample given its size. With 
this procedure one can group sites objectively into classes that may have theoretical 
significance using some form of clustering technique (Everitt 1974). Sites with less 
diversity than is expected may be limited activity loci, while sites with expected or 
greater than expected diversity may represent occupational loci. 

A second approach to  site classification based on cultural resource manage- 
ment data is to use an empirical Bayesian technique (Carter and Rolph 1974; 
Chernoff 1982; Efron and Morris 1973, 1975, 1977). In this case one uses a pooled 
estimate of the population's proportion to obtain more reliable estimates for 
individual sites. This technique has the advantage of retaining information from 
sites with large collections that provide the most reliable estimates. In cultural 
resource management situations, artifacts from all sites in a subregion could be used 
to  develop a pooled estimator (weight) that could then be used to recalculate the  
proportions of various artifact classes in each site in a larger region. These refined 
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estimates could then be put into a clustering algorithm that could be used to obtain 
objective site classes. 

Heterogeneity of Sites and Nonsites 

In many predictive modeling situations archaeologists have adopted the con- 
cept of a binary response variable; often locations are classified as either sites or 
nonsites. This approach may make it dificult to operationalize some discrimination 
and classification procedures. It may be possible to derive a numerical function that 
defines how these two groups are separated, but cases in the site group may be 
widely dispersed around the group centroid (intuitively the "center" of a group of 
points) because of temporal and functional variability. This degree of dispersion 
may lead to a high percentage of misclassifications. Additionally, from a managerial 
perspective, information on different types of sites and their distributions through 
time may be not only important but required-cultural resource managers would 
undoubtedly have different strategies for managing small lithic scatters and large 
Pueblo 111 sites. 

Additional problems can result from the use ofa binary response variable when 
one of the groups represents nonsite locations. In such cases, nonsite locations 
generally are used as a control group, permitting the researcher to identi* patterns 
in the environmental contexts of sites that form the other group. It is not clear 
whether the importance placed on nonsites is justified (see Chapters 7 and 8 for an 
alternative view), and this grouping of all nonsites may cause statistical problems 
when the nonsite category is heterogeneous. The  members of this group may not 
necessarily have relationships among themselves, yet most classification techniques 
assume that there is less variability within than between groups. The  problem is 
that we may be trying to distinguish one group (sites) from another group (non- 
sites) that consists of a random assortment of elements of the population. Essen- 
tially, the site group may be a subset of the nonsite group, and cases that actually 
belong in the site group may be placed in the nonsite group because the latter 
represents the variation of the entire data set. Only those cases located near the 
center of the site group may actually be classified as sites. Because the nonsite group 
may be heterogeneous, a large number of cases may be required in order to 
represent the dimensions ofenvironmental variability accurately. If the sample size 
of the nonsite group is small, the chance that the environment will be badly 
represented is increased, as is the possibility that the centroid of the nonsite group 
may vary from one analysis to another. Our predictions as to whether a location will 
be a site or a nonsite may therefore change from one analysis to another. 

The  results ofa recent predictive model for the Fort Carson Military Reserva- 
tion provide a useful example of these problems (Altschul and Rose 1986). During a 
30 percent simple random sample survey of the base, 98 prehistoric sites were 
recorded (Alexander et al. 1982). In the course ofconstructing a predictive model we 
decided to test the notion that sites and nonsites would form relatively homogene- 
ous and distinct groups based on their "environmental" composition. Each 250 by 
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250 m quadrat that contained a site was scored on eight environmentalvariables, as 
were an equal number of randomly selected nonsite quadrats. A Pearson product- 
moment correlation coefficient, a bivariate technique for normally distributed data, 
was computed between each case and every other case. T h e  resulting matrix was 
analyzed through an agglomerative hierarchical clustering algorithm (see below). 

Our expectation was that groups of sites, ideally recognizable as site classes, 
would form and would be statistically differentiated from either one group of 
nonsites or several groups of nonsites, each representing a separate environmental 
zone. T h e  results were enlightening. As expected, several groups were easily 
distinguished. What was not expected, however, was that each group was com- 
posed ofnearly. equal numbers ofsites and nonsites. T h e  results suggested that, as a 
group, sites were not distinguishable from nonsites. T h e  analysis forced us to 
reexamine our approach, and we concluded that one confounding factor was that 
Fort Carson itself probably was not a useful analytical unit. T h e  base was then 
subdivided into three major drainage basins and the analysis was repeated, with 
much better results. 

We do not mean to imply that all predictive models using a site/nonsite binary 
response variable are inaccurate or lead to  invalid predictive models. Indeed, this 
approach may be dictated by sample size considerations because the statistical 
characterization ofmultiple groups requires that each is adequately represented by 
a sufficient number of entities. We simply suggest that this aspect of predictive 
modeling needs more critical evaluation and that when sample size is sufficient 
there is a need for a response variable with multiple categories. 

Defining Site Classes and Reducing Heterogeneity 

Multivariate parametric techniques, such as cluster analysis and principal 
components or factor analysis, provide the means to define classes of phenomena 
(groups) and reduce the amount of variability present in a data set. T h e  technique 
of cluster analysis is mentioned briefly first because some clustering techniques can 
be used with variables measured with scales ranging from nominal to ratio. Principal 
components and factor analyses, on the other hand, require sets of independent 
variables measured on interval or ratio scales. Cluster analysis will place sites into 
relatively homogeneous groups; principal components and factor analyses are 
valuable techniques for handling the problem of multicollinearity within a set of 
independent predictor variables. 

Cluster Analysis 

Cluster analysis refers to a set of techniques that can be used to  subdivide a 
data set into constituent groups. Some methods group carer on the basis of observa- 
tions made on a set of variables (Q-mode) while others group variables (R-mode). 
Our interest in this context is in Q-mode analysis. Ideal data for cluster analysis 
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would yield clusters so obvious that in situations with relatively small numbers of 
sites the groups could be visually determined. In practice, however, the situation is 
not so simple, and as a result there has been a proliferation of clustering techniques. 

Most clustering techniques begin with the calculation of a matrix of similarities 
or distances between entities. Similarity coeficients have been widely discussed in 
the literature (Sokal and Sneath 1%3), where they are sometimes called measures of 
association. A similarity coeficient measures the association between two cases 
(such as sites) given the values on a set of variables common to both. Values of the 
coeficients normally range from O to 1, with O implying no similarity and 1 
designating perfect agreement, but values of different similarity coefficients applied 
to the same data may vary widely in comparison with one another. One of the most 
common situations in which these coefficients are used is with variables of the 
binary response, presence/absence type. 

A very large number of similarity coeficients have been proposed, primarily 
because of uncertainties about how negative matches should be incorporated and 
whether matched pairs of variables should be equally weighted or carry twice the 
weight of unmatched pairs or, alternatively, whether unmatched pairs should carry 
twice the weight ofmatched pairs. That is, ifwe have two binary response variables 
coded + and -, a two-way association table has the following four possible cells: +on 
one variable and + on the other, + on one and - on the other, - on one and + on the 
other, and finally, - on both variables. This last combination of two negative 
matches lies at the heart of the problem. Some coefficients exclude negative 
matches while others give higher weightings to matched pairs. Different similarity 
coeficients may have very different values on the same set of data for these reasons. 

Some coeficients have been devised specifically for use with data measured on 
interval and ratio scales (e.g., the correlation coeficient), and Gower (191) has 
defined a general similarity coeficient that can be used for data measured on any 
scale. Gower's similarity coeficient can also be used when the data set contains 
variables measured on different scales. 

Distance measures can also be used as the object ofcluster analysis. A distance 
measure is a numerical function 4x,y) ofpairs ofpoints of a set. This function is said 
to be metric for the set if it satisfies the following three conditions: 

The  last condition is the one that separates distance measures from similarity 
coeficients; it is referred to as the metric inequality or.the triangular inequality. 
Most distance functions can be transformed into similarity measures, but the 
reverse process is much more difficult because the triangle inequality must be 
satisfied. One of the most widely used distance measures is the Euclidean distance 
(Everitt 1974:56), but it may be unsatisfactory when used on raw data since it is 
strongly affected by the scale of a variable. Other common distance measures 
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include the absolute or city-block metric (Carmichael and Sneath 1969) and that of 
Mahalanobis (1936). 

Many clustering algorithms are available, but only agglomerative hierarchical 
clustering and partitioning techniques are discussed here. T h e  basic procedure for 
most agglomerative hierarchical clustering techniques involves calculating a sim- 
ilarity or distance matrix between entities. T h e  end product is a dendrogram 
showing the successive fusion of cases, culminating with all the cases in a group. 
T h e  differences among the various hierarchical clustering methods lie in the 
procedures used at each particular step to  fuse cases or groups of cases that are the 
most similar or the closest to each other. Different methods use different means of 
defining the distance or similarity between a case and a group or between two 
groups. 

Partitioning techniques differ from hierarchical techniques in that they permit 
relocation of entities, thus allowing poor initial partitions to  be corrected at a later 
stage. Most partitioning methods are formulated to  partition a set ofcases in a way 
that optimizes some predefined criterion, such as the trace (sum of the elements of 
the main diagonal) of the pooled within-group sums-of-squares-cross-products 
(SSCP) matrix (see discussion of discriminant function analysis below). Most of the 
methods assume that the investigator knows in advance how many groups there 
are, although some do permit the number to  bechanged during an analysis. For 
example, if we had 100 sites and we had reason to suspect that there were five 
temporally or functionally distinct site types, we could specifjr that the sites were to 
be partitioned into five groups. Other methods require an initial specification of the 
cluster configuration, or what the membership of the clusters will be like, based on 
prior knowledge. 

Many different methods have been proposed for initiating clusters, which is 
normally the first step in a partitioning type ofcluster analysis. Each case is then put 
in the cluster whose centroid is closest to  the location ofthat case. For example, the 
k-means clustering program in the BMDP package (Dixon 1981) uses the Euclidean 
distance to  measure the distance between each case and the center of each cluster. 
Relocation of cases to another group takes place in an attempt to  optimize some 
clustering criterion-e.g., to minimize the variability within a group or to maximize 
the variance between groups. Regardless of the particular clustering technique 
used, the objective ofapplying these techniques in predictive modeling is to define 
clusters of sites that might have temporal and/or functional designations. 

Principal Components and Factor Analyses 

In many predictive modeling situations, measurements are made on a set of 
independent interval- and ratio-scale variables for each case, such as a quadrat. 
Usually these variables measure some aspect of environmental variability. Ideally, 
each variable represents just one dimension of variability, and this is one of the 
assumptions of such statistical procedures as multiple regression, logistic regres- 
sion, and discriminant function analysis. Unfortunately, variables are not always 
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uncorrelated with one another, meaning that one variable's values may be partially 
a function of another variable. Principal componentr analyrir is a data-transformation 
technique that can be employed to create a new set of variables that are linear 
combinations of the  original variables (Daultrey 1976; Harris 1975; Morrison 1976). 
T h e  original data are transformed so that the same amount ofvariability is described 
using the same number of variables but in such a way that 

1. the first axis (linear combination of the original variables) accounts for as 
much of the total variance as possible; 

2. the  second axis accounts for as much of the remaining variance as possible 
while being uncorrelated with the first; and 

3 .  the third axis accounts for as much of the remaining variance as possible 
while being uncorrelated with the first two, and so on. 

When significant correlations are present among a set of variables, normally a 
few large axes account for a substantial percentage of the total variance while a 
larger number of variables account for smaller amounts of variance. T h e  small axes 
accounting for only small amounts of variance are normally discarded from further 
analysis. Thus, the investigator has transformed an initial data set ofp correlated 
variables into a data set of m uncorrelated variables that explain most of the 
variance, with m normally being much smaller thanp. 

T h e  creation of this new set of variables, or principal components, has several 
advantages. T h e  first is that the variables are not correlated with one another-that 
is, each one measures a separate dimension ofvariability. This is one way ofmeeting 
the predictive modeling assumption that no significant linear relationships exist 
among the independent variables. T h e  second advantage of principal components is 
that a large amount ofvariance in the original data set is explained by a smaller set of 
variables, introducing a parsimony that is normally desirable in any scientific 
analysis. By examining the relationships between the original variables and the 
principal components it is frequently possible to interpret the meaning of the 
principal components in terms of the original variables. T h e  focus of interest when 
principal components analysis is used as a data transformation technique, however, 
is on the scores exhibited by the individual cases on the principal components. Each 
case, such as a site, will have a score on each of the principal components defining 
some aspect ofvariability among the original variables. These scores can be used in 
subsequent statistical analyses in lieu of the values for the original variables. 

As many principal components are needed as there are variables in order to 
reproduce the intercorrelations among all of the original variables. If the principal 
components accounting for relatively small amounts of variance are eliminated, a 
more parsimonious description of the original data has been obtained, but it has 
been obtained at the expense of possibly losing the ability to reproduce the 
intercorrelations among the original variables. It should also be noted that principal 
components analysis makes use of all the information about every variable, though 
it may be that some of the variation in a case's scores on a given variable is unique 
and attributable to  things that have nothing to do with other variables in the set. 
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When this unique variance is eliminated from the analysis we might be able to 
provide a better explanation of the relationships among the variables. 

In principal components analysis the new linear combinations of variables that 
are produced are uncorrelated with one another, and each successive principal 
component accounts for less variance than its predecessors. If the investigator 
suspects that the true factors determining the structure of the data are all of about 
equal importance, then the technique of factor analysis may be more appropriate 
than principal components analysis. It must be mentioned, however, that many 
authors regard principal components analysis as a form of factor analysis and 
frequently use it as a first step in such a study. 

T h e  term factor analyrir refers to  a family of techniques that correct for one or 
more of the shortcomings of principal components analysis. Common to all factor 
models is the explicit separation of unique variance from variance held in common 
among variables and the assumption that the observed correlations among variables 
are generated by a smaller set of "latent" variables. Depending on one's precon- 
ceptions about the nature of the underlying variables, each variable's communality 
(percent variance held in common with other variables) may have to  be specified in 
advance. By employing factor analysis instead of principal components analysis, a 
researcher gains the ability to reproduce the original pattern of intercorrelations 
among variables from a relatively small number of factors. What is lost is the 
straightforward relationship of a case's scores on the original variables and its scores 
on the various factors. 

Another loss in almost all forms of factor analysis is the uniqueness of the 
solution. A given factor structure simply represents a description of the original 
intercorrelations. Unless additional constraints are imposed, the correlation pattern 
can be described by any other frame of reference employing the same number of 
factors (Harris 1975:26). Most factor analysis methods employ some type ofarbitrary 
constraint to obtain a preliminary factor structure and then rotate the frame of 
reference until a factor solution is found that comes close to some prespecified set of 
criteria. In many predictive modeling situations in which we simply desire a 
straightforward transformation of the data into a new set of uncorrelated variables, 
principal components analysis adequately accomplishes this task. More sophisti- 
cated types of factor analysis are usually appropriate when a researcher is interested 
in obtaining a better explanation of the relationships among a set of variables. 
Whatever the case, factor analysis is a complex form of multivariate statistics that 
should be used cautiously and with understanding. 

MODELING TECHNIQUES 

Predictive modeling takes place in steps, and we have presented a number of 
steps that should precede the use ofcomplex multivariate modeling techniques. We 
have emphasized that the researcher should choose variables that are theoretically 
relevant and that represent different dimensions of the model. Most modeling 
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techniques make certain assumptions about how the variables are measured and 
how they are distributed. Thus, the steps using univariate, bivariate, and multivar- 
iate techniques to understand variable distributions and relationships are impor- 
tant, especially if some variables need to be reexpressed to meet the assumptions of 
the multivariate techniques. In addition, groups must be carefully defined so that 
subsequent multivariate manipulations produce realistic classifications. Three 
parametric multivariate modeling techniques-general linear regression, logistic 
regression, and discriminant function analysis, are described below. 

General Linear Regression 

Regression models are frequently used in predictive modeling situations when 
there is a dependence relationship between the dependent variable and one or more 
independent variables. Ifit is assumed that a relationship exists between a depend- 
ent variable r and k explanatory variablesXl,X2,X3, . . . Xk, the relationship can be 
expressed as 

f i = i O + O 1 x i 1  + . .  .+ikxik+ei 
for i = 1, 2, 3, . . ., N, where e is an error term. A set of N observations is 
simultaneously obtained for the X's and T's; the remaining problem then is to 
estimate the b's. This equation asserts that a given value(s) ofX can be multiplied 
by the estimated regression coefficient and added to an error term e to derive the 
corresponding r value. The  error term represents the discrepancy between the 
actual value of r a n d  that obtained fromxb. The  better the model fit the smaller the 
e. T h e  error term is incorporated in the model for three basic reasons. First, some 
factors may not be amenable to quantification or others may not be included 
because they have only a slight effect uohnston 1972:lO). Second, a basic and 
unpredictable element of randomness is present in the r variable that can only be 
adequately handled by a random variable term. Third, there may be errors in the 
observation or measurement procedure. 

Assumptions 

The  paramount assumption is that of linearity, which states that the regres- 
sion equation should be linear in the unknown parameters. From a simple perspec- 
tive this assumption can be checked by plotting one variable against another or by 
specifically testing for linearity. Direct examination of the residuals resulting from 
fitting a predictive model to a set of data can help to detect violations of this 
assumption. For example, the pattern of residuals may indicate that new terms 
should be added to an equation or that reexpression of the currently included terms 
would be helpful. If the relationship between a pair of variables is found to be 
nonlinear, it may be possible to make this relationship intrinsically linear through 
transformation. 
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Two other assumptions concern the independent variables. T h e  first assump- 
tion is that the values of the explanatory or independent variables can be measured 
without error, which means that the act of sampling is the sole source of variation in 
the independent variables. The  second assumption is that the values of the 
independent variables are fixed or nonstochastic. This is not the case for most 
independent variables used in predictive modeling, which are usually random. If 
the original assumption is replaced by the less restrictive assumption that the values 
are stochastic, most of the results of applying this technique (i.e., significance tests, 
confidence intervals, and so forth) will be valid, provided that the independent 
variables have a distribution function that does not involve the variance and that 
their distributions are independent of the error terms (Johnston 1972:267). 

T h e  assumptions incorporated into general linear regression also include the 
zero mean assumption, the constant variance assumption, and the independent 
error terms assumption. The  zero mean assumption can be expressed as E(ej) = 0, 
which means that the expected value of ej, the mean of the probability distribution 
of possible values of ti, is zero. T h e  constant variance or homorcedastic assumption is 
expressed E(eiz) = Var(ei) = 12. When this assumption is not met, there is a constant 
form of error as a function of the independent variables. For example, the error may 
increase as the values ofa variable in the equation increase. T h e  independent error 
terms assumption, expressed E(e9) = 0 for i# j, simply means that autocorrelation is 
not a problem. This  assumption need not be met simply t o  obtain estimates of by 
but it is an important assumption when tests depending on assumed normality 
(e.g., t- orF-tests) are to be  run or  when confidence intervals are to be run based on 
the t o r F  distributions. An additional assumption about ei is that the values of this 
variable will be normally distributed. 

Finally, general linear regression techniques assume that the number of cases 
exceeds the number of variables and that multicollinearity (significant correlations 
among the predictor variables) is not a problem. Violation of either of these 
assumptions leads to a reduced rank dispersion or correlation matrix for the data 
(Cooley and Lohnes 1971:58-59; Tatsuoka 197 1: 130- 135). 

General linear regression, with all ofits variations, is a very powerful statistical 
tool. Its strength in any given application for predictive modeling, however, 
depends on the assumptions that are fulfilled for that particular application. Some of 
the assumptions are more crucial than others, but  it is desirable to know what 
consequences to expect when particular assumptions are not fulfilled, how to 
determine whether an assumption is satisfied, and what alternative methods to 
employ when the classical technique is inappropriate. 

Violations of Some Assumptions 

One of the most important assumptions of this technique is that no linear 
dependence exists among the explanatory variables. T h e  least-squares estimator b 
requires the inversion ofXIX, which is impossible if the rank ofX, and hence the 
rank ofXIX, is less than the number of variables. X is the data matrix, where each 
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row represents the observations on all of the variables for one case and each column 
represents the observations ofone variable for all of the cases. Thus any element of 
the X matrix represents the value of one variable for one case. The  ' (prime) 
indicates the transpose of the array that precedes it, i.e., the elements of the rows 
and columns are interchanged. Any beginning text on matrix algebra can be 
consulted for a more extensive explanation ofthese concepts. While this is a case of 
extreme multicollinearity that exists when some of the variables are perfectly 
correlated, a less extreme but still serious case arises when some ofthe variables are 
highly but not perfectly correlated. 

Johnston (1972: 160) has outlined some of the adverse consequences ofcollinear- 
ity, noting for example that estimation precision decreases.so that it becomes 
difficult, if not impossible, to  disentangle the influence of predictor variables. 
Individual estimates may be greatly in error and highly correlated with one another, 
and the variances of the coefficients will be large. A second adverse effect is that a 
variable may be incorrectly dropped from an analysis because its coeficient does not 
differ significantly from zero. It may be that the variable in question has no 
predictive power not because it is unrelated to the phenomenon being modeled but 
because it is highly correlated with another variable in the equation. Finally, under 
conditions of collinearity, estimates of coeficients become very sensitive to the 
particular data set, so that the addition of a few new observations produces large 
shifts in the coefficients. 

One way around the multicollinearity problem is to do a principal components 
analysis on the set of independent variables (see previous discussion). When 
multicollinearity is a problem, a set ofprincipal components that is smaller than the 
original set of variables will represent most of the variance. The  scores on the 
eigenvectors can then be used as predictors. This represents a parsimony desirable 
in many scientific endeavors, whereby a reduced set of variables can represent the 
dominant patterns of covariation present in a data set. This solution also has a 
practical quality in addition to solving the collinearity problem-fewer degrees of 
freedom are used by the predictor variables. 

Another crucial assumption of the linear regression model is that of zero 
covariance of the residuals. For a model with normally distributed residuals, this 
assumption implies that they are independent. In an ordinary least-squares context 
there are three main consequences of autocorrelated residuals. First, unbiased 
estimates of the coeficients may be obtained, but their error terms may be large 
compared with those achieved by alternative estimation techniques. Second, the 
variances of the coeficients may be underestimated, and the normal procedures for 
calculating the t- andF-tests may no longer be valid. Third, the predictions will be 
inefficient because their sampling variances will be large. 

Regression models are probably some of the most widely used models in 
archaeological research. Most archaeologists are familiar with normal-theory 
regression models based on the general linear model and its attendant assumptions, 
including the one that requires continuous variables. Researchers may be less 
familiar with models in which the dependent response variable or one or more of the 
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explanatory variables are categorical, or with models in which the explanatory 
variables are a mixture of categorical and continuously distributed values. Such 
mixtures of categorical and continuous data often constitute the independent 
variables used in predictive models. It would be desirable, but also very unrealistic, 
for all independent variables used in a predictive model to be measured on an 
interval or ratio scale. More often than not, however, nominal and ordinal variables 
are theoretically as important as those measured at higher levels. Because nominal 
and ordinal variables are sometimes dificult to integrate with interval and ratio 
measurements, the former may be relegated to positions of lesser importance. 
Archaeologists commonly employ tests of association between nominal and ordinal 
variables; however, they rarely go one step further and use these distributions as 
the independent variable(s) to predict probabilities of group membership for a case. 
Multivariate logistic models offer a means of doing this. 

Logistic Regression 

The  simplest categorized response variable is random, with only two possible 
outcomes-for example, the presence or absence of archaeological sites. Classic 
linear regression models will not work as a ~redict ive mechanism using such 
variables. If we code the two possible outcomes of the categorized response variable 
as 1 and 0, representing the presence and absence, respectively, ofa site in a sample 
unit, and then try to use such a response variable in a classic linear regression model 
with two explanatory variables Xil, Xi2, in the general linear regression equation 
given above, we will face two major problems. 

The  first problem is a violation ofthe constant error variance assumption. This 
is because the error term e can have one of two possible values 

Because the values of the response variable are binomially distributed, the two 
possible values ofei occur with probabilities ofpi and I-pi. The  error variance is not 
constant but depends instead on the values of the independent explanatory varia- 
bles. If ordinary least-squares estimation is used, the estimators of the b's are 
unbiased, but they are not the best minimum variance estimators of all linear 
unbiased estimators. 

The  second major problem concerns the predicted values that are generated if 
the normal regression model is used. f i can only have the values 1 and 0, and the 
expected value of f i ,  ~ ( f i ) ,  is a simple weighted average of the two possible 
values. The  weights are given by the probabilities of the possible values. This is 
shown as 
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~ ( f  i )  = [ l  x Pi] + [ 0  x (1-Pi)]  = Pi  

where Pi is the probability that f i  = 1 .  From this equation, 

E ( f i ) = i O  +i 1xi1 + 6 ^ s i 2  

T h e  problem is that the predicted values f i are interpreted as probabilities. 
They can take values between - infinity and + infinity and hence are unbounded, 
whereas probabilities are supposed to lie between 1 and 0 .  The  predictions may 
therefore lie outside the range of probability and will be inconsistent with a 
probabilistic interpretation. From a modeling perspective, then, use of the normal 
linear regression model to analyze a categorized response variable causes problems. 
T h e  linear logit model outlined below offers one possible solution to these prob- 
lems. 

The Logistic Model 

A probabilistic interpretation of the regression model can be made only ifPi 
falls between 0 and 1 .  A simple model that can be used to provide a probabilistic 
interpretation is 

These equations, which are nonlinear, can be rewritten as 

A linear model can then be achieved by a logistic transformation pi such that 

If we let Li equal the terms to the left of the equals sign we have a linear logistic 
model. Predictions from the linear logistic model can be written as 

L i = i O + i l ~ i l  +isi2 
While the predicted values can fall in the range from - infinity to + infinity, the 
predicted probabilities fall in the range from 0 to 1 .  

A least-squares estimation to solve for the parameters of the equation is 
accomplished by first replacing the probabilities to the left of the equals sign with 
observed relative frequencies, which are derived by grouping the observations into 
k sets. T h e  model can then be written as 
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Even with this model the error variances are still not constant across the j sets. 
Ordinary least-squares estimations of the b's can, however, be replaced by a set of 
weighted least-squares estimations. T h e  weights are ofthe form ?J(l-$ ), and they 
imply that as the number ofcases in a set (nj) increases, more weight is given to that - 
set. Given nj, as4 approaches Oor 1, less weight is given to these equations sinceLj is 
very sensitive to small changes in rn4 and thus takes large negative or positive 
values. If$ is either 0 or 1,Lj becomes infinitely large and cannot be accommodated; 
thus, it is excluded. Some researchers feel that this exclusion is a waste of informa- 
tion and advocate another form of weights so that the variables can be included. 
Solving a modified system of simultaneous equations (because of the weights), 
known as the normal equations, produces the required weighted least-squares 
estimations. Descriptions of the operations involved in solving the system ofnormal 
equations can be found in most textbooks on matrix algebra. 

Testing the Fit of a Model 

T h e  fit of a particular model can be determined using a test statistic based on 
the weighted differences between the observed Lj, based on relative frequencies, 
and Lj ,  the predicted value. The  test statistic 

follows a chi-square distribution with degrees of freedom equal to the number of 
sets minus the number ofparameters estimated. If the test statistic is greater than 
the value shown on the table of chi-square values, the null hypothesis of no 
significant difference between the predicted and observed values is rejected, with 
the implication that the model does not represent the observed variation. If the test 
statistic yields a value that is lower than the critical chi-square value, the null 
hypothesis is accepted, with the implication that there is agreement between the 
predicted and observed logits. 

In matrix notation the normal equation can be written as 

( x f u - ' x > i  = x u - ' L  

This equation can be solved for the b's as 
i = (xqJ-' x)-' =xqJ-' L 

This also makes it easy to  see how additional explanatory variables can be incorpo- 
rated; all that is required is an additional column in t h e x  matrix. T h e  test statistic 
previously described is given in matrix terms as 

(L -xiyu-I (L - x i )  
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Standard errors also provide a means to determine whether a parameter is 
significant. Standard errors are given by the square roots ofthe diagonal elements of 
the equation solved for the b's, above. 

T h e  validity of adding an additional explanatory variable c, or a set ofvariables, 
can be tested by considering the standard errors or the test statistic proposed by 
Grizzle et al. (1%9), given as 

i 'c'[c(x'u-I x)c']-l c i  

Under the null hypothesis, this test statistic has degrees of freedom equal to the 
number of rows of c. The  null hypothesis tested by this statistic is that the 
additional parameter(s) is zero. If only one additional variable is added, c will be a 
vector of the form 

C = [0101011] 

T h e  coeficient associated with c will be cb = [O, 0,0, 11 times a column vector with 
elements [ i  0, i 1, i 2, i 31. 

T o  this point only a dichotomous response variable, such as the presence or 
absence of a site, has been considered. There are many more cases in which the 
archaeologist is faced with a categorized response variable with more than two 
possible outcomes. Such a variable is termed apolychotomous variable, and it probably 
more accurately represents situations that will be encountered in practice. An 
example of a variable with a multiple response category would be one with 
categories representing Pueblo I, Pueblo 11, and Pueblo 111 sites. The  linear logistic 
model can be extended to cover these cases, but its derivation is complex. We feel 
that this derivation is beyond the scope of this volume and refer the reader to 
Wrigley (1976) for a readable discussion of some of the math involved. If more than 
one explanatory variable is to be included in the extended model, all that is involved 
is the addition of an extra two columns in the matrix of observations, x. If the 
response variable has more than three outcomes an extra linear logistic equation is 
added to the pair of equations required for the three-outcome example. The  other 
matrices-X, Y1, I, and 6-and vectors are also increased in size. 

Maximum Likelihood Estimates 

Wrigley (1976:27) notes that the problem with least-squares parameter estima- 
tion is that regrouping of the data set must be done for each model, which is quite a 
laborious procedure. The  solution to this drawback is provided by maximum 
likelihood estimation. Determining the maximum of the log likelihood and the 
extension of this maximum to a multiple response category case requires a numeri- 
cal optimization computer program. The  logistic regression program PLR in BMDP 
is based on such a maximum likelihood estimation procedure. T h e  Bi are estimated 
as the values that maximize the likelihood function using the method proposed by 
Jennich and Moore (1975). 
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Discriminant Function Analysis 

Discriminant analysis is a broad term that refers to several closely related 
activities that can be divided into the processes of (a) defining the differences 
between groups and(b) classifying the cases into the groups. Groups are defined on 
the basis ofa set ofvariables, and the variables with the most discriminating power 
are identified. For example, the groups could be different types of sites defined on 
the basis of a number of environmental and archaeological variables. The  next step 
is to derive mathematical rules that can be used to classify the cases into the defined 
groups. Several different classification procedures exist, but all employ the concept 
ofcomparing a case's position with the centroids ofthe various groups to locate the 
closest centroid. 

In the following section the general aspects of discriminant function analysis 
are outlined. Examples are drawn from a recent predictive modeling study of Fort 
Carson Military Reservation, Colorado (Altschul and Rose 1986). Fort Carson 
presented an interesting problem common to many CRM projects because it was 
not created with archaeology in mind and, therefore, its boundaries do not coincide 
with natural or cultural units. The  area lies within the Arkansas River drainage. 
While several small drainages cut through the reservation, none are captured 
entirely within the base. After conducting several reservation-wide analyses we 
focused our attention on two large drainages, Turkey Creek and Red Creek. A 
predictive model developed for Turkey Creek successfully discriminated site loca- 
tions from nonsites by classifying 82.4 percent of the sites correctly using a jackknife 
procedure (discussed below). All of the 11 sites classified as nonsites are located on or 
near Booth Mountain, a seemingly inhospitable uplift between Turkey Creek and 
Booth Gulch. 

The  Booth Mountain sites appear to be small, transient camps, perhaps 
indicating that this area was favored for certain resources. Such an explanation, 
while plausible, was difficult to accept given the present archaeological knowledge 
of the area. A separate predictive model was therefore developed for Booth Moun- 
tain in an attempt to distinguish between site and nonsite locations. The  site group 
was composed of 17 locations, while the nonsite group consisted of 21 locations 
selected by a two-stage random sampling design. Because of the relatively small size 
of the analysis, Booth Mountain provides the opportunity to follow the discriminant 
procedure from beginning to end. 

The  means and standard deviations for variables used to characterize the sites 
and nonsites are presented in Table 5.3.  As a group, sites are distinguished by being 
closer to the nearest water source, having a more southerly exposure, and com- 
manding a wider view. The  standard deviations of these variables are also smaller 
than those of their nonsite counterparts, indicating less variability about the 
average value-what would be expected if people were keying in on specific aspects 
of the environment when making locational decisions. 
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TABLE 5.3. 

Means and standard deviations of variables for Booth Mountain nonsites, sites, and both groups 
combined 
- - - - - - -- 

Nonriter (n=2l )  Stter (n-17) C a b r n e d  (n=38) 

Means 

VARIABLE 
RELIEF 
ASPECT 
DSTWTR 
DSTRNK2 
ELVWAT 
VIEW 

VARIABLE 
RELIEF 
ASPECT 
DSTWTR 
DSTRNK2 
ELVWAT 
VIEW 

Standard Deviations 

T h e  model on which the most common approaches to discriminant function 
analysis are based has a number of underlying assumptions. When the data do not 
satisfy the assumptions, the statistical results will not be an accurate reflection of 
the real world. First, the number of groups, the dependent variable, must be 
greater than or equal to two. In the Booth Mountain example we are attempting to 
discriminate between two groups, sites and nonsites. Second, there must be at least 
two cases per group. Realistically, there should be a large number ofcases per group 
p 2 5 )  so that the sample statistics will accurately reflect the processes operating at 
the population level. Because the Booth Mountain model was primarily an explora- 
tory attempt to  see if patterns in site location could be discerned at a level that 
would warrant further work, we felt justified in relaxing this rule of thumb; for 
Booth Mountain there are 17 sites and 21 nonsites. Third, there should not be more 
discriminating variables than the total number of cases minus two. In the Booth 
Mountain example there are six variables: relief, aspect, distance to water, distance 
along the river to  the nearest rank 2 stream, elevation above water, and view (see 
Altschul and Rose 1986 for operational definitions of these variables). Realistically, 
again, there should be many more cases than variables, say 10 times as many. 
Finally, the discriminating variables should be measured at the interval or ratio 
level of measurement. If categorical variables were used, especially those coded 0 
and 1, multicollinearity would be a problem. All of the variables used in the Booth 
Mountain study are measured on at least an interval scale. 
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Three additional assumptions have to do with the logical and mathematical 
relationships among variables. The  first ofthese is the assumption that multicollin- 
earity, in the form of either linear combinations of variables or perfectly correlated 
variables, does not occur in the data. For example, if variables A through E were 
being considered for inclusion in an analysis, the sum of variables B and D, the 
product of variables A and B, or the average of variables B, C, D, and E are linear 
combinations that cannot be employed along with the original variables. This 
makes intuitive sense because variables that are linear combinations do not contain 
any information beyond what is offered by the individual variables. For similar 
reasons, when two variables are perfectly correlated, both cannot be used. If 
multicollinearity is a problem, some classification functions based on the concept of 
distance may be hard to  define, and probabilistic interpretations associated with 
group membership may be difficult to  formulate. If the variables are not signifi- 
cantly intercorrelated and they possess normal distributions, probabilities of group 
membership can be assigned. If significant multicollinearity exists, it may be 
necessary to  drop a variable(s) from the analysis, create a hybrid variable that is 
based on several others, or use a data-reduction technique such as principal 
components analysis to express the original variables as uncorrelated linear combi- 
nations of one another. 

Discriminant function analysis also assumes that the population covariance 
matrices for each group are approximately equal. The  covariance between two 
variables is an unstandardized measure ofhow they vary together. Thus this measure 
can take on any range ofvalues and is not, like the correlation coefficient, restricted 
to a particular range, e.g., between +I.O and -1 .O. T h e  covariance matrix arises from 
the pair-wise arrangement of covariances into a table of rows and columns. T h e  
covariance matrix for the sample nonsite locations on Booth Mountain is shown in 
Table 5.4. T h e  matrix has a row and a column for each variable, and the intersection 
of a row and a column contains the covariance for that pair of variables. Only the 
main diagonal and the lower left portion ofthe matrix are shown because the upper 
right portion is a mirror image of the lower left. For example, in Table 5.4 the 
covariance between aspect (row 2) and relief (column 1) is 213.7143, and the 
covariance between view (row 6) and elevation above water (column 5) is 687.8571. 
T h e  covariance of a variable with itself is its variance; therefore, the diagonal from 
the upper-left corner to the lower-right corner contains the variances. T h e  diagonal 
in Table 5.4 contains the variances of the six variables, with reliefhaving a variance 
of 1539.048, aspect a variance of 3208.014, and so on for the remaining variables. Ifwe 
have two or more groups, a covariance matrix can be computed from the cases in 
each group. T h e  covariance matrix for the Booth Mountain sample ofsite locations 
is given in Table 5.5. Two or more covariance matrices are considered equal when 
the elements at similar positions in each matrix are not significantly different. 

It is clear from an examination ofTables 5.4 and 5.5 that the group covariance 
matrices are unequal. Unequal group covariance matrices lead to canonical discrim- 
inant functions (discussed below) that may not yield maximum group separation 
and may result in unrealistic probabilities of group membership. Some of the error 
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TABLE 5.4. 

Covariance matrix for Booth Mountain nonsite group 

RELIEF ASPECT D S T W T R  DSTRNKZ E L Y W A T  V I E W  

RELIEF 1539.048 

ASPECT 213.7143 3208.014 

DSTWTR -1.248810 4.958357 .2158726E-01 

DSTRNK2 -4.606190 67.73639 .lo34365 2.794780 
ELVWAT -157.6190 711.7143 2.094524 9.950476 1089.048 

VIEW 92.85714 -771.3929 -.5785714 -20.61768 687.8571 13286.43 

TABLE 5.5. 

Covariance matrix for Booth Mountain site group 

RELIEF ASPECT D S T W T R  DSTRNKZ E L Y W A T  V I E W  

RELIEF 1097 .059 

ASPECT -535.2206 2348.015 
DSTWTR .4897059 -.85670% .61795%E-02 
DSTRNK2 -32.25882 62.16465 .2590993E-02 3.354502 
ELVWAT 263.2353 -1030.257 3.202574 -16.55092 2218.566 
VIEW 261.3235 -612.7757 1.460570 -27.32134 1138.732 4851.529 

results from the calculation of the within-groups covariance matrix, which is 
supposed to be an estimate of the common equal group covariance matrices in the 
population. One way of coping with the problem of unequal covariance matrices is 
quadratic discrimination, which bases the probability of group membership on the 
individual group covariance matrices. Quadratic procedures require larger sample 
sizes because more terms are added to the equation, and thus could be dificult to 
use in predictive modeling situations, where samples are frequently small. In the 
case of the Booth Mountain data (with group sizes of 17 and 21) quadratic discrimi- 
nation would be inappropriate (and therefore is not discussed further here). In this 
case a linear discriminant function like the canonical discriminant function dis- 
cussed below is a better approach, although we still have to accept some degree of 
error in the within-groups covariance matrix. Fortunately, this assumption has 
received considerable theoretical and applied scrutiny, most of which points to the 
fact that this assumption can be relaxed. 

A final assumption is that each group represents a population with a multivar- 
iate normal distribution on the discriminating variables. A multivariate normal 
distribution exists when each variable has a normal distribution when the values of 
the other variables are held constant. This assumption makes it possible to compute 
meaningful tests of significance and probabilities of group membership. This 
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normality assumption is required by most of the popular computer packages, such 
as SPSS (Nie e t  al. 1975) and BMDP. However, it should be noted that discriminant 
analysis can be performed using other parametric distributions (though not with 
SPSS or BMDP), and that nonparametric discriminant techniques that do not 
assume a normal distribution could possibly be employed. Nonparametric discrimi- 
nant analysis computer programs and discriminant analysis procedures based on 
other parametric distributions are not as widely available as their normal theory 
counterparts. 

Canonical Discriminant Functions 

A discriminant function is a linear combination of discriminating variables 
formed to satisfy certain conditions (Klecka 1980: 15). T h e  form of the discriminant 
function in summation notation is 

where fkm is the score on the discriminant function for case m in the k th  group,Xkm is 
the value on the discriminating variablexi for themrh case in the krh  group, and ui is 
the coefficient of the function derived according to certain characteristics. 

The  maximum number of unique functions that can be derived in an analysis is 
equal to either one less than the number ofgroups or to  the number ofdiscriminat- 
ing variables, whichever is less. If there are three groups, we can derive two 
discriminant functions; if there are only two groups, as in the Booth Mountain 
example, then only one discriminant function can be derived. 

Coefficients (u's) for the first function are derived in such a way that the group 
means on the function are as different as possible-in other words, so that group 
differences are maximized. Coefficients for the second function are derived such 
that the differences among group means are maximized under the additional 
constraint that these coeficients are uncorrelated with those of the first function. 
Additional functions continue to be derived so that group differences are maximized 
and the coefficients are uncorrelated with those of the previous functions. 

Many multivariate statistics texts discuss the mathematical aspects of discrim- 
inant function analysis; particularly useful and readable examples are Cooley and 
Lohnes (1971), Harris (1975), Morrison (1976), and Tatsuoka (1971). We will simply 
review in the most general fashion some fundamental principles underlying the 
derivation ofcanonical discriminant functions. The  first requirement is to assess the 
degree of differences among the data cases. This is done with the sums-of-squares- 
cross-products matrix (SSCP), where the value of a particular element (tg) is given 
as 

where g is the number of groups, nk is the cases in group k, n. is the total number of 
cases in all grOups,Xikm is the value ofvariable i for the mth  case in the kth group,Xjk. 
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is the mean for variable i for all the cases in the kth group, andxi . .  is the mean for 
variable i for all the cases in all the groups. 

T h e  first set ofvalues in parentheses is the amount by which the value ofa case 
deviates from the grand mean of variable i. T h e  second set ofvalues in parentheses 
is the same information but for variablej. Each element of the diagonal in the SSCP 
matrix is simply the sum of squared deviations from the grand mean, since when i 
equalsj the  two terms are the same. Ifi  does not equalj  the result is the sum of a 
deviation on one variable multiplied by the deviation on the other. This is a way to 
measure the covariation (correlation) between two variables, since it tells us how 
the magnitude and direction of a deviation on one variable correspond to those on 
another. T h e  covariance matrix, the subject of much discussion in discriminant 
function analysis, is produced from the SSCP matrix by dividing each element by 
(n.-1). T h e  covariance matrix for the Booth Mountain analysis is shown in Table 5.6. 
This particular covariance matrix is called a total covariance matrix, since it is based 
on the cases from both the site and the nonsite groups. A covariance matrix can be 
calculated for each group if only the cases assigned to that group are used (see the 
individual group covariance matrices presented in Tables 5.4 and 5.5). 

TABLE 5.6. 

Total covariance matrix based on all Booth Mountain cases, both nonsites and sites 

RELIEF A S P E C T  D S T W T R  DSTRNKZ E L Y W A T  V I E W  

RELIEF 1355.334 

ASPECT 49.01849 3304.509 

DSTWTR -.6957326 1.527404 .1544362E-1 

DSTRNK2 -15.06373 68.12651 .5050638E-01 2.999910 

ELVWAT 61.73542 50.59744 2.360064 -.8492532 1570.413 
VIEW 372.4609 22.28450 -.6736664 - 17.08498 1005.576 10 173.27 

Another simple operation on the SSCP matrix converts it to a correlation 
matrix. Because the correlation coefficient is standardized to vary between +1.0 and 
- 1 .O, i t  is easier to understand as a measure of association between two variables than 
the covariance matrix. T h e  elements of the SSCP matrix are converted to correla- 
tions by dividing each element by the square root of the product of the two diagonal 
elements falling in the same row and column. A similar operation can be used to  
convert the covariance matrix to a correlation matrix. 

When the groups under consideration are distinct, the variability within the 
groups will be less than that between the groups. T h e  degree of variability within 
each group is measured by a matrix called the within-group sums-of-squares-cross- 
products matrix (W), which is very similar to the SSCP. Unlike the SSCP, the 
deviations are measured from the mean of the group to which a case belongs. 
Elements of W are defined as 
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As with the SSCP matrix, the elements of W can be converted to a within-group 
covariance matrix by dividing each by (n.-g). The within-groups covariance matrix 
for the Booth Mountain analysis is given in Table 5.7. The  W matrix can also be 
converted to a within-groups correlation matrix. The  within groups correlation 
matrix for Booth Mountain is presented in Table 5.8. Each correlation measures the 
pair-wise correlation of variables within the groups and will usually differ from the 
total correlation, which is affected by group differences. If the data cases come from 
group populations with similar covariance structures, the within-groups correla- 
tions will provide a better estimate of the relationships between variables than the 
total correlations. 

TABLE 5.7. 

Booth Mountain within-group covariance matrix 

RELIEF A S P E C T  D S T W T R  DSTRNKZ E L Y W A T  Y I E W  

2 3 4 5 6 8 

RELIEF 2 1342.60815 

ASPECT 3 -1 l9.l4%6 2825.79225 

DSTWTR 4 -.47614 2.37388 .01474 

DSTRNK2 5 -16.89625 65.26006 .05862 3.04355 

ELVWAT 6 29.42733 -62.49533 2.58699 -1 82792 1591 .a5587 

VIEW 8 167.73109 -700.8%36 .32771 -23.59708 888.24580 9537.58450 

TABLE 5.8. 

Booth Mountain within-group correlation matrix 

RELIEF A S P E C T  D S T W T R  D S T R N K 2  E L Y W A T  Y I E W  

2 3 4 5 6 8 

RELIEF 2 1 .00000 

ASPECT 3 -.MI 17 1 .00000 
DSTWTR 4 -. 10703 .36783 1 .00000 

DSTRNK2 5 -.26432 .70370 .27675 1 .00000 

ELVWAT 6 .02013 -.02947 .53421 -.a2627 1 .00000 

VIEW 8 .04687 -.I3501 .On64 -. 13850 .22802 1 .00000 

If the centers of the groups are in the same location, the elements of the SSCP 
matrix will equal the elements of the W matrix. If the centers of the groups are 
different, the elements of the SSCP matrix will be larger than the elements of W. 
T h e  difference between the SSCP and W matrices is measured by the between- 
groups sums-of-squares-cross-products matrix (B). The  W and B matrices contain 
all the information about the relationships within the groups and between them. 
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T h e  following set ofsimultaneous equations is solved for the values ofbpi and v. 

Lambda (A) is called the eigenvalue, the v's are a set ofp coeficients, and the b's and 
w's are previously defined quantities calculated from the sample data. The  equa- 
tions are solved subject to the constraint that the sum of the squared values of the 
a's must equal 1. Each unique nontrivial solution, with its lambda and set of a's, 
corresponds to  one canonical discriminant function. The  v's cannot be interpreted 
because the solution to  the equations places no restriction on the origin or mea- 
surement units used for the discriminant space. Also, the scores produced for each 
case have no meaning. T h e  discriminant space yields maximum separation between 
groups, but the groups can be anywhere in the space. 

T h e  u's of the first equation are given as follows: 

Using the u's gives discriminant scores (fs) for the cases that are in standard form, 
but the coefficients are regarded as unstandardized because the original data are not 
standardized. T h e  unstandardized discriminant function coeficients from the first 
(and only) discriminant function calculated for the Booth Mountain analysis are 
given in Table 5.9. T o  calculate a score for any case for this discriminant function the 
actual data values for aspect, distance to  water, and elevation above water would be 
multiplied by their respective coefficients and summed, along with the constant 
value. The  scores for all the cases will then have a mean of0 and a standard deviation 
of 1.0. T h e  score for a case shows where it is on the axis defined by the function. 
Employing the u's instead of the a's does not change the amount of discrimination 
nor the relationship among groups. It does, however, move the origin of the 
discriminant function axes to  coincide with the grand centroid, the point where all 

TABLE 5.9. 

Booth Mountain unstandardized discriminant function coefficients 

Function I 

ASPECT 

DSTWTR 

ELVWAT 

(CONSTANT) 
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the discriminating variables have their average values over all cases. This relocation 
makes it possible to see how a group centroid or an individual case is located relative 
to the center of the system. T h e  adjusted coefficients also produce discriminant 
scores measured in standard deviation units. Thus, if a case had a score of +2.9 we 
would know that it was distant from the center. 

While the unstandardized coefficients tell us the absolute contribution of a 
variable in figuring the discriminant score, standardized coefficients must be used if 
we wish to determine the relative importance of a variable. The  above equation 
would have yielded standardized coefficients ifthe original data had been in z-score 
form. Standardized coefficients (c's) can also be computed from the unstandardized 
coefficients (u's) by 

where mii is the sum ofsquares for the variable i, n is the total number of cases, andg 
is the number ofgroups. T h e  standardized discriminant function coefficients for the 
Booth Mountain example are given in Table 5.10. 

T h e  larger the magnitude of the standardized coefficient, disregarding the 
sign, the greater a particular variable's contribution to the discriminant score. From 
Table 5.10 we can see that aspect and distance to water are weighted about the same 
and are more important than elevation above water in discriminating between sites 
and nonsites. Scores from standardized coefficients can be computed by multiplying 
them by the data in z-score form, but scores are usually computed from the raw data 
values and the unstandardized coefficients, while the standardized coefficients are 
used to assess the relative importance of a variable. T h e  limitation on this standard- 
ized coeficient is that iftwo variables are highly correlated they will share the same 
discriminating information and, hence, will share the contribution to the calculation 
of the score. For this reason the standardized coefficients for the two correlated 
variables may be smaller than they would be if only one of the variables was used. 
T h e  individual variable coefficients might also be large but have opposite signs, so 
that the contribution ofone is cancelled by the contribution ofthe other. Structure 
coefficients, discussed later, are not affected by relationships with other variables. 

TABLE 5.10. 

Booth Mountain standardized discriminant function coefficients 

Function 1 

ASPECT . %700 

D S T W T R  - 1.09522 

ELV WAT ,75849 
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After the discriminant functions are computed they can be interpreted by 
considering (a) the relative positions of data cases and group centroids and (b) the 
relationships between the individual variables and discriminant functions. As pre- 
viously described, the discriminant scores are computed by taking the original 
value for a case on each variable and multiplying it by the coeficient for that 
variable-then the products are added along with the constant term. The  constant 
adjusts for the means, so the mean discriminant score will be zero over all cases. The  
unstandardized coefficients represent the amount of change in a case's position on 
that function if its score on the corresponding variable changed by one unit. 
Case-by-case inspection of a large number of cases usually is not that informative, 
though it may help in delineating outliers. Instead, it is more informative to focus on 
the group centroids, which are calculated by using the group means in the formulas. 
Sometimes it is easier to visualize the group centroids by plotting the data cases. 

When there are two groups, such as sites and nonsites, there is only one 
discriminant function for which data can be plotted. In this situation the data cases 
can be arranged along a straight line to show what part of the function is "occu- 
pied." A better strategy is to construct a histogram for each group, with the 
continuum divided into intervals of standard deviation units, such as 0.10,O. 15,0.20, 
0.25, . . ., or whatever seems reasonable. Visual inspection of the histograms allows 
us to assess the density and distribution of each group and the relative group 
locations. The  histograms for the nonsite and site groups are shown in Figures 5.9 
and 5.10, respectively. The  "stacked" histogram for both groups is shown in Figure 
5.1 1. These histograms indicate that nonsite locations are more scattered than - 

locations in the site group, with respect to the canonical discriminant function. The  
center of the nonsite group is at -0.726, while the center of the site group is at 0.897. 

T h e  locations of the group centroids and data cases can be plotted in an x,y 
coordinate system when there are two discriminant functions. A three-dimensional 
plot could also be prepared for a three-function situation, but four or more cannot 
be represented. In the latter situation, however, the first two functions are the most 
powerful discriminators, and a plot based on these two alone could be very 
informative. Two-dimensional plots are helpful when there is little overlap among 
the groups. If the groups are less distinct, and especially if there are a large number 
of cases, the plot may be dificult to interpret. In such a situation a plot of only the 
centroids or separate plots for each group may be more helpful. 

The  similarity between the discriminant function and a single variable can be 
assessed by computing the product-moment correlation between the two. These 
correlations are called structure coefficients. When the value of the coefficient is near 
zero, the variable and the function have little in common. When the value of the 
coefficient is very large, near +1.0 or -1.0, the function and the variable are highly 
correlated. The  coefficients make it possible to "name" a discriminant function by 
noting the variables with which it is most highly correlated. The  function can then 
be named after the characteristic(s) defined by the particular variable(s). For 
example, in a predictive modeling situation the first discriminant function might 
represent a configuration of variables depicting the relationship between site 
location and distance to water. 
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Figure 5.9. Histogram of discriminant function scores for Booth Mountain nonsite locations. 
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Figure 5.11. ~ i s t o ~ r a m  of canonical discriminant function scores for both nonsite and site locations, Booth Mountain. 

These structure coeficients are more accurately called total structure coefficients 
since they portray the information carried by the discriminant functions that is 
useful in discriminating between groups. Ifwe want to know how the functions are 
related to variables within the groups, however, pooled within-groups correlations 
are required. Known as within-groups structure coefficients, these are calculated as 

where53 is the within-groups structure coeficient for variablei and functionj, r'ikis 
the pooled within-groups correlation between variables i and k, and ckj is the standardized 
discriminant function coeficient for variable k on function j. The  pooled within- 
groups correlations between the Booth Mountain canonical discriminant function 
and the variables are given in Table 5.11. 

It is possible for a variable to have a low standardized coefficient in a discrimi- 
nant function but a relatively large total structure coeficient because the structure 
coeficients are bivariate correlations that are not affected by relationships with 
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TABLE 5.11. 

Pooled within-group correlations between the canonical discriminant function and the 
discriminating variables 

Function I 

ASPECT .54179 

DSTWTR -.33434 

ELVWAT .I4491 

RELIEF .07335 

VIEW .01212 

other variables. It is also possible for two variables to have large standardized 
coefficients ofopposite signs but small structure coefficients; when the discriminant 
function scores are calculated these variables tend to cancel each other out. For 
these reasons structure coefficients are a better indicator of the meaning of a 
discriminant function than are the standardized coefficients. 

When the number of groups and variables is large there will be a number of 
discriminant functions, not all of which will be nontrivial or statistically significant 
(Klecka 1980:34). In an effort to determine how many discriminant functions to 
retain we can look at the solutions of the functions. When each discriminant 
function is solved, an eigenvalue (A) and a set of coefficients are produced. T h e  
eigenvalues will be positive or zero; the larger the lambda, the more the groups will 
be separated on that function. The  eigenvalue associated with the discriminant 
function derived in the Booth Mountain example is 0.69. We can also determine the 
total discriminating power for each discriminant function by converting the eigen- 
values to relative percentages. Each eigenvalue is divided by the sum of all the 
eigenvalues and multiplied by 100. These relative magnitudes make it easier to see 
the discriminating power of each function. In our example, only one discriminant 
function can be derived so it represents 100 percent of the discriminating power. 

A third way to judge the utility ofa discriminant function is by examining the 
canonical correlation between the groups and the function. T h e  canonical correla- 
tion coefficient describes the relationship between two separate sets of interval- 
level variables. It ranges from 0 to + I ,  with zero indicating no association between 
the groups and the discriminant function and larger numbers representing increas- 
ing degrees of association. The  canonical correlation in our Booth Mountain exam- 
ple is 0.64. T h e  canonical correlation (r*) is related to the eigenvalue by 

where i denotes the i th  discriminant function. 

Another means ofevaluating the utility of the discriminant functions is to test 
the statistical significance of discriminating information not already accounted for 
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by the earlier functions. This can be done using Wilks's lambda, a multivariate 
measure of group differences over several variables. Starting with no functions, 
Wilks's lambda is calculated as each is derived. In the Booth ~ o u n t a i n  analysis, 
Wilks's lambda associated with the first discriminant function is 0.592. Lambda is an 
inverse measure of the discriminating power of the variables that have not been 
removed by the discriminating functions; the larger the value, the smaller the 
amount of information remaining. 

Wilks's lambda is actually more useful as an intermediate statistic than as an 
end product because the results can also be converted into a test of significance. 
This is easily accomplished by converting lambda to an approximation ofeither the 
chi-square o r F  distribution. Chi-square, the easier of the two to calculate, is based 
on the following formula: 

with @-k)(g-k-1) degrees of freedom. T h e  chi-square value can be compared with 
standard tables to determine the significance level. Many computer programs print 
the exact significance level. T h e  chi-square value associated with the Booth Moun- 
tain Wilks's lambda of0.592 is 18.058, with 3 degrees of freedom and a probability of 
0.0004. Thus, the group differences will be significant before any discriminant 
functions have been derived (that is, when k = 0). After the first function has been 
derived, a check is made to see ifany remaining discrimination is significant. Ifit is, a 
second function is derived and the test is made again. This process is continued 
until Wilks's lambda is not significant. Ofcourse, in this example only one function 
can be derived. 

T h e  point must be made that assessments of statistical significance are appro- 
priate only when the data are derived from a sample with a probabilistic basis (see 
Chapter 6). Generally, simple random sampling is assumed since the derivation of 
tests for other sampling situations is more complex. When the cases have been 
procured by some procedure other than simple random sampling, tests should be 
interpreted conservatively. 

Earlier the purpose of discriminant function analysis was divided into two 
parts, derivation of the discriminant functions and classification. By classification we 
mean the process of identifying the likely group membership of a case when the 
only information known is the case's values on the discriminating variables. Classifi- 
cation procedures can use either the discriminating variables or the canonical 
discriminant functions. Klecka (1980:42) notes that in the first instance a discrimi- 
nant analysis is not even performed. Classification functions are derived using the 
theory of maximum group differences and tests are not made for the significance of 
the discrimination or the dimensionality ofthe discriminant space. When canonical 
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discriminant functions are derived first and classification is based on these func- 
tions, a more thorough analysis can be performed. 

Fisher (1936) first suggested that classification should be based on a linear 
combination of the discriminating variables. His linear combination was based on 
maximizing differences between groups and minimizing variation within groups. 
Traditional classification functions are based on the pooled within-groups covar- 
iance matrix and the centroids of the discriminating variables. They have the form 

hk = bk0 + bklXl + bk2X2 + . . . + bkpXp 

where hk is the score for group k and the b's are coeficients that need to be derived. 
There is always a separate equation for each group; if there are four groups, each 
case will have four scores. Fisher's linear discriminant functions for the Booth 
Mountain nonsite and site groups are given in Table 5.12. A particular case is 
classified into the group with the highest score. A straightforward application ofthis 
classification procedure results in the correct group placement (nonsites/sites) of 
86.8 percent ofthe 38 locations. Of the nonsites, 90.5 percent (19 of21) are correctly 
classified, while 82.4 percent (14 of 17) of the sites are correctly classified. 

Another means of classification is to measure the distances from the individual 
case to each group centroid and to assign the case to the closest group. Mahalanobis 
(1963) proposes a generalized distance measure that circumvents the problems of 
intercorrelations among variables that do not have the same units of measurement 
or standard deviations. The  generalized distance measure is given as 

where D ~ ( A G ~ )  is the squared distance from caseX to the centroid of group k. The  
case is then classified into the group with the smallest 0 2  value. The  formula given 
above assumes equal group covariance matrices, but Tatsuoka (1971:222) gives a 
modified form of the equation for unequal group covariance matrices. 02 has the 
properties of the chi-square statistic withp degrees of freedom. Thus, the distance 
is measured in chi-square units, and if each group comes from a population with a 
multivariate normal distribution, most of the cases will be clustered near the 
centroid. The  density of cases decreases farther away from the centroid. 

TABLE 5.12. 

Classification functions for the Booth Mountain nonsite and site groups (Fisher's linear 
discriminant functions) 

VARIABLE 
3 ASPECT 
4 DSTWTR 
6 ELVWAT 

CONSTANT 
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These distances can be converted into probabilities of group membership if 
the assumption of multivariate normality is met (Nie et al. 19753445). Assigning a 
case to the group with the highest score is then equivalent to assigning a case to  the 
group for which the probability of group membership is highest. Thus far it has 
been assumed that each group is treated equally. A Bayesian adjustment of the 
probability of group membership, however, is often desirable (see below). 

T h e  canonical discrimination functions can be used for classification in place of 
the original discriminating variables. Klecka (1980:47) notes that when there are a 
large number of cases to  be classified, the canonical functions make the task easier; 
in the first case distances forp variables must be computed, while the second case 
requires only computation of q discriminant functions. The  classifications based on 
the canonical functions will usually be the same as those using the original discrimi- 
nating variables. One exception to this is when the group covariance matrices are 
not equal because the canonical discriminant functions use the within-groups SSCP 
matrix, which is the weighted average of the individual SSCP matrices. Tatsuoka 
(1!71:232-233) notes that the two classification procedures yield closely similar 
results and that the canonical procedure can be used unless the differences among 
the group covariance matrices are drastic. T h e  two procedures may also give - 

different results when one or more canonical discriminant functions are dropped 
because they are not statistically significant. In this instance, the canonical results 
should be more accurate than classification based on the original variables because 
the effect of idiosyncratic sample variability is reduced. 

Classification of the cases in the Booth Mountain analysis is presented in Table 
5.13. In addition to  the actual group membership and discriminant scores computed 
from the canonical discriminant function, several probability values are presented 
for the highest and second-highest probability groups. P(X(G) is the probability 
that a case that far from the center of the indicated group (0 = nonsites, 1 = sites) 
would actually belong to it, while P ( ~ x )  is the probability that the particular case is 
a member of the indicated group. For example, the first case in Table 5.13, a nonsite, 
is correctly placed in group 0 (nonsites). The  probability that a location that far from 
the nonsite group centroid actually belongs in the nonsite category is 0.5098, while 
the probability that the location is a member of the nonsite group is 09275. T h e  
probability that the location is a member of the second highest probability group, 
the site group, which in this case is the only other group, is 0.0725. T h e  probabilities 
of group membership of the other cases can be considered in a similar manner. 
Incorrect group classifications of cases are denoted with asterisks (++*) following 
the actual group listing. 

T o  this point all groups have been considered as if they were of equal size. In 
some situations this may be unrealistic, as when 90 percent of the locations belong in 
group A and only 10 percent belong in group B. We do not need to do a discriminant 
analysis to  know that in this situation there is a high probability that any given case 
will belong to group A, and that we would only want to  place a case in group B if 
there was a strong reason for doing so. In the Booth Mountain analysis there are a 
total of 38 locations, 21 nonsites and 17 sites. Thus, if a location was randomly 
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TABLE 5.13. 

Booth Mountain discriminant scores and probabilities of group membership. P ( X  I G )  is the 
probability that a case that far from the group centroid belongs to the group, while P ( G  IX)  is 
the probability that the case belongs to the indicated group. 

Care Second Higherr 
Sequence Ac tua l  Highert Probability Probability Dircriminant 
Number Group Group P(X IG)  P(G IX) Group PfG I x )  Scorer 

***  incorrect classification 
Note: Case 28 is a historical site tha t  was not  included in the  analysis. 
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selected it would have a slightly higher chance (0.54 vs 0.46) of being placed in the 
nonsite group simply because there are more nonsites than sites. This problem can 
be solved by adjusting the posterior probability of group membership to account for 
the prior knowledge that we have about group membership. Prior knowledge can 
be regarded as any information about the populations that does not result from the 
current research but that permits us to formulate hypothesized probabilities of 
group membership for a randomly selected case (Cooley and Lohnes 1971:263). 
Classification decisions involving a priori probabilities of group membership are 
examples of Bayesian logic. Adjustment of a classification function to take prior 
probabilities into account may improve prediction accuracy and help to minimize 
the cost of making errors. If groups are well separated, the use ofprior probabilities 
is unlikely to affect the results of the classification; use ofthese probabilities is most 
effective when group separation is weak. 

Classification boundary lines can be superimposed on one- and two- 
dimensional plots of the cases. These lines partition the measurement space into 
group territories within which individual cases are classified. When discrimination 
is weak, many cases may fall outside their group's territory and will be misclassified. 
If there is only one func;ion, the dividing point between the two groups is one-half 
the sum ofthe discriminant scores for the two group centroids. With two functions 
we solve for D 2 ( 4 G i )  = D Y X ) G ~ ) ,  which results in the equation for a straight line 
when the group covariance matrices are equal. With unequal covariances the 
boundary in the two-function case will be a curve around the group with the smaller 
dispersion (Van de Geer 1971:263-265). In the single-function case the dividing 
point will be closer to  the group with the smaller variance. 

A final consideration in discriminant analysis involves selecting the variables to 
be included in the discriminant function. 1t- is possible to use ;he entire set of 
independent variables, regardless of the discriminating power of each. This 
approach may be appropriate for theoretical reasons ifpriorities cannot be placed on 
specific variables. In other situations, theory may not provide a strong enough 
reason for specifying the exact list of discriminating variables. Theoretical knowl- 
edge may merely suggest potential discriminating variables, or the investigation 
may be exploratory and the discovery of discriminating variables may be a prime 
objective of the research. In these situations some variables may not produce good 
group separation because the group means are too similar. Alternatively, two or 
more variables may possess similar discriminating information and hence be 
redundant. 

A stepwise selection procedure can be used to select the most powerful 
discriminating variables. There are two means of doing this: forward selection begins 
by selecting the single variable that produces the greatest univariate discrimina- 
tion. T h e  first variable is then paired with each of the remaining variables, one at a 
time, to  find the pair offering the greatest group discrimination. T h e  first and 
second variables are then combined with each variable in turn to form a triplet. This 
process continues until all possible variables have been selected or until those 
remaining do not contribute significant discrimination. Output from a stepwise 
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selection procedure, used in the Booth Mountain example, is shown in Table 5.14. It 
will be considered in more detail below. 

In the backward selection procedure all variables are used at the beginning, and 
the one with the weakest discriminating power is eliminated at each step. Forward 
and backward selection procedures can also be combined. Generally this involves a 
forward selection procedure, in which each step begins with a review of the 
remaining variables in the equation. When a variable no longer makes a significant 
contribution, it is deleted; it may, however, be selected again at a later step. T h e  
order in which variables are selected does not always coincide with their relative 
importance. Because of intercorrelations, certain variables may be prevented from 
entering the calculations. 

Before a variable is tested on a selection criterion many computer programs 
require it to pass certain minimal conditions to ensure accuracy and to determine 
that the change in discrimination exceeds a specified level. Accuracy is assessed by 
means of a tolerance test; change in discrimination is evaluated by partial F ratios. 

I 
The tolerance of a variable not in an equation is one minus the squared multiple 
correlation between that variable and the other variables already in the equation. 
When the variable being tested is highly correlated with those already in the 
equation, its tolerance will be very small or near zero and inclusion ofthis variable in 
the computation of the inverse of the W matrix would cause inaccuracies. In Table 
5.14 the tolerances are given for the variables not in the analysis after a particular 
step. For example, after the variable "aspect" is entered in step 1, the variable 
"river distance to rank 2 stream" (dstrnk2) has a tolerance ofO.50, indicating that it 
is somewhat correlated with aspect. On the other hand, elevation above water 
(elvwat) has a tolerance of0.99, indicacing that of the remaining variables not in the 
equation, it is the least correlated with aspect. 

F-to-enter and F-to-remove are partial multivariate F statistics. F-to-enter does 
just what the name implies: it tests the significance ofthe additional discrimination 
that will be provided by a variable being considered for inclusion in the model. A 
small F value indicates that the variable will not offer much additional discriminat- 
ing power. In Table 5.14, with no variables in the analysis, aspect has the highest 
F-to-enter, 7.2682; hence it is entered at step 1. Of the variables not in the analysis 
after step 1, distance to water (dstwtr) has the highest F-to-enter (6.5958), and it is 
the variable entered at step 2, followed in a similar manner by elevation above water 
(elvwat) at step 3. After step 3 none of the variables meet the minimum F-to-enter 
value of4.0 used in the analysis. F-to-remove tests the significance ofthe decrease in 
discrimination that will occur should the variable in question be removed from 
those already selected. It is used to determine if there are any variables that no 
longer make a significant contribution to the discrimination. The  variabie with the 
greatest F-to-remove statistic makes the greatest contribution to discrimination. 
The  second-largest F-to-remove value indicates the second most important varia- 
ble, and so on. Of the variables included in the analysis at step 3, aspect has the 
largest F-to-remove (14.7298) and is deemed the most important variable, followed 
by dstwtr (13.0481) and elvwat (6.1746). 
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TABLE 5.14. 

Stepwise output from Booth Mountain discriminant function analysis 

VARIABLES NOT IN THE ANALYSIS AFTER STEP 0 

Variable Tolerance Minimum Tolerance F to Enter Wilks'r Lambda 

RELIEF 1 .0000000 1.0000000 1.3507 .%384 
ASPECT 1.0000000 1.0000000 7.2682 .a3202 
DSTWTR 1.0000000 1 .0000000 2.7678 92861 
DSTRNK2 1 .0000000 1 .0000000 4 9 5  .987 13 
ELV WAT 1.0000000 1.0000000 S199 .98576 
VIEW 1.0000000 1.0000000 3.4661 .91218 

AT STEP I, ASPECT WAS INCLUDED IN T H E  ANALYSIS 

Signijcance 
Degrees ofFreedom Betmeen Groups 

Wilks's Lambda 0.8320205 I I 36.0 
Equivalent F 7.268164 I 36.0 .0106 

VARIABLES IN THE ANALYSIS AFTER STEP I 

Variable Tolerance F To Remove 

ASPECT 1 .0000000 7.2682 

VARIABLES NOT IN T H E  ANALYSIS AFTER STEP I 

Variable Tolerance Minimum Tolerance F To Enter Wilks's Lambda 

RELIEF .9962583 9962583 1.4300 .79936 
DSTWTR ,8646998 .a646998 6.5958 .70009 
DSTRNK2 .SO48064 .SO48064 2.3535 .77%0 
ELVWAT .9991313 991313 S188 .a1987 
VIEW .9817724 .98 17724 4.08 16 .74513 

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS OF GROUPS AFTER STEP I 
(EACH F STATISTIC HAS 1 AND 36.0 DEGREES O F  FREEDOM) 

GROUP 0 

GROUP 
I 7.2682 

,0106 

**********++++++++++****************+**+++******++********************** 
AT STEP 2, DSTWTR WAS INCLUDED IN T H E  ANALYSIS 

Signijkance 
Degrees ofFreedom Betmeen Groups 

Wilks's Lambda 0.7000884 2 1 36.0 
Equivalent F 7.496845 2 35.0 .0020 

VARIABLES IN T H E  ANALYSIS AFTER STEP 2 

Variable Tolerance F To Remove Wilks's Lambda 

ASPECT .I3646998 1 1.4245 .a861 
DSTWTR .8646998 6.5958 A3202 
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TABLE 5.14. Continued 

VARIABLES NOT IN T H E  ANALYSIS AFTER STEP 2 

Variable Tolerance Minimum Tolerance F T o  Enter Wilk'r Lambda 

RELIEF .9879944 3575272 .7627 .68473 
DSTRNK2 .5044356 .4723641 1.7544 .a574 
ELVWAT .6555658 5573605 6.1746 .59249 
VIEW 974862 1 A436076 4.1 148 .6245 1 

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS O F  GROUPS AFTER STEP 2 
(EACH F STATISTIC HAS 2 AND 35.0 DEGREES O F  FREEDOM) 

GROUP 0 

GROUP 
1 7.4968 

. m o  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AT STEP 3, ELVWAT WAS INCLUDED IN T H E  ANALYSIS 

Signijkance 
Degrees of Freedom Between Groupi 

Wilks's Lambda 
Equivalent F 

Variable 

ASPECT 
DSTWTR 
ELVWAT 

Variable 

RELIEF 
DSTRNK2 
VIEW 

VARIABLES IN T H E  ANALYSIS AFTER STEP 3 

Tolerance F T o  Remove Wilkr'r Lambda 

VARIABLES N O T  IN T H E  ANALYSIS AFTER STEP 3 

Tolerance Minimum Tolerance F T o  Enter Wtlkr 'r Lambda 

F STATISTICS AND SIGNIFICANCES BETWEEN PAIRS O F  GROUPS AFTER STEP 3 
(EACH F STATISTIC HAS 3 AND 34.0 DEGREES O F  FREEDOM) 

GROUP 0 

GROUP 
1 7.7950 

.m 

MAXIMUM STEP REACHED 

SUMMARY TABLE 
Action 

Step Entered Remoped Variables In Wdks'r Lambda Significance 

1 ASPECT 
2 DSTWTR 
3 ELVWAT 
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All of the stepwise procedures described here need to employ some type of 
stopping criterion to determine when maximum group separation has been parsi- 
moniously achieved. Wilks's lambda is one popular criterion that takes into account 
the variability both within and between the groups. For example, in the summary 
table in Table 5.14 Wilks's lambda changes from 0.83 to 0.70 to 0.59 from step 1 to 
step 3. Ifa stopping criterion 0f0.59 had been chosen, no additional variables would 
enter the analysis because their associated lambda values are less than the min- 
imum. Lambda can also be converted into an overall multivariate F-ratio; in this 
situation the largest F value would be selected. The  overall F values after steps 1,2, 
and 3 are, respectively, 7.2682, 7.4968, and 7.7950 (Table 5.14). Alternatively, the 
partial F-to-enter can be employed. Any of the three tests will yield the same result. 

Rao's Y (Rao 1952:257), a generalized distance measure of the separation of the 
group centroids, can be used as a stopping criterion. A variable selected with this 
criterion may actually increase the within-group variance while adding to the 
overall group separation. The  V statistic is calculated as 

and it measures the distance from each group centroid to the grand centroid 
weighted by the group size. That is, larger groups are more important than smaller 
ones in calculating the grand centroid. P' is the number of variables entered, 
including the current one. With large samples the distribution of Y approximates 
that of chi-square withp'(g-1) degrees of freedom. The change in V owing to the 
addition or deletion ofvariables can also be tested for statistical significance because 
it has a chi-square distribution with degrees of freedom equal to (g-1) times the 
number of variables added or deleted. A variable should not be included if the 
change is not significant or if it is negative, indicating a decrease in group separa- 
tion. 

Other statistics based on the Mahalanobis squared distance between group 
centroids can be used to choose the variable that generates the greatest separation 
for the groups that are closest at that step. D2, which gives equal weight to each pair 
of groups, is one of the statistics that can be used to measure group separation. The  
differences between two groups can also be tested with an F statistic, which gives 
greater weight to comparisons between large groups. 

(n. - g - p ' +  1) njnj 
F =  

~ ' ( n .  - g)(ni - nj) 
0' (Gi IGj) 

Another criterion minimizes the residual variance: 
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T h e  average residual variance between groups can be obtained by dividingR by the 
number of pairs, or pairs can be weighted if some are given greater importance 
(Dixon 1973:243). R considers all pairs and hence tends to promote an equal 
separation of the groups. 

MODEL VALIDATION AND GENERALIZATION 

Validation 

For predictive modeling purposes the best guide as to how well the statistical 
operations of multiple regression, logistic regression, and discriminant function 
analysis work is their performance on independent data. The  accuracy and precision 
of sample-based predictions can be tested on independent data, on part of the 
sample that was excluded from the model-building process, or on internal criteria 
(see Chapters 7 and 8). In the validation procedure the  coeficients of the calibration 
equation (model) are applied to independent data, and predicted values are gener- 
ated that can be checked against actual values. T h e  actual and predicted values can 
be compared on several levels of measurement and with a variety of statistical 
techniques, depending on the particular model. Kohler and Parker (1986) note that 
many of the predictive models presented in the  archaeological literature during the 
past several years have not been validated and that there is little agreement about 
the "best" or "most correct" manner in which to  undertake verification. When 
tried on fresh data, many procedures fail dismally. Failure ofa predictive model may 
result from incorrect specification of the model, from the inclusion of too many 
parameters, or from sampling problems. 

There are two levels of validation, simple and double. Simple validation 
involves testing a procedure on data different from those used to  choose its 
coeficients. Double validation consists oftesting the procedure (i.e., the particular 
equation) on data different not only from those used to choose its numerical 
coefficients but from those used to guide the choice ofits form as well. By the form of 
the procedure we mean such questions as which variables of a total set enter an 
equation, whether the original or transformed variables are employed, whether 
products or ratios are used, and so on. Simple validation is more common since the 
double approach is usually prohibitively expensive in terms of time, money, and 
other considerations. T o  achieve as full a validation as possible, whether simple or 
double, the validation data should reflect the full range ofvariability expected in the 
final application. 

Mosteller and Tukey (1!977:37) note that when a predictive model is tested on 
the data that produced it overestimation of its performance is almost certain. This 
occurs because the optimization process that selects coeficients capitalizes on any 
and all idiosyncracies of a particular data set. As a result, the model will generally 
perform better for the data used in its development than for almost any other data 
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that will be encountered in practice. T h e  strongest validation ofa predictive model 
requires the utilization of data that were not included in its development. 

Double Validation (Independent Data Procedures) 

Double validation involves totally new data, possibly those gathered by 
another investigator after the form and coefficients of the procedure were deter- 
mined. The  most rigorous double-validation procedure involves additional field 
survey. Predictions can be generated for unsurveyed areas using some type of 
generalization procedure (reviewed below). T h e  values of the independent varia- 
bles must be obtained and then applied to the coefficients of the model (such as a 
classification function), and predicted values for the unsurveyed area must be 
generated. After the additional field survey is performed, the accuracy and preci- 
sion of the predicted values of the dependent variable(s) can be assessed with the 
data values. If the goodness of fit between the predicted and observed values is 
poor, the original model may need to be reevaluated and the cause of the discrep- 
ancy determined. 

Simple Validation (Split-Sample Procedures) 

Whether a predictive modeler is stuck with simple validation or just content 
with it, the ease with which computers can handle repeated tasks makes several 
approaches feasible. Some validation techniques have been used more than others, 
and additional techniques remain to be explored. T h e  basic idea is to divide the 
complete sample data set into subsets by some rational criterion or criteria and then 
to use one part to build the predictive model and the other to validate it. There is no 
best or unique answer to the question of how to subdivide a data set; several 
possibilities are outlined below. 

In what some call the classical, half-and-half, or split-sample approach, the data 
are divided into two sets. One part is used to  calibrate or build the model and the 
other is used for validation; sometimes, the two sets are interchanged and the 
process is repeated. It is possible to obtain a great deal of information about a body 
of data using a half-and-half approach, but many researchers do not have large 
enough samples to be able to do this and maintain any semblance of quality. 
Another problem is that the data cases may need to be randomized before splitting 
them into two sets to avoid trends or particular configurations among variables that 
may relate to the manner in which the original data were obtained. 

Snee (1977) has considered the problem of choosing the one-half subset for 
model building and discusses the DUPLEX algorithm ofR. W. Kennard. Basically, 
this algorithm tries to guarantee that the properties of the determinant of the 
covariance matrices are similar for the model calibration and verification sets. Snee 
also recommends that the data set not be split in half unless the total sample size is 
greater than 2p+25, wherep is the number of parameters in the model. 
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McCarthy (1976) suggests the use ofmore than one method ofhalving the data 
to obtain additional information. Instead of dividing the data into two parts, 
suppose it was divided into 10 parts. T h e  model could then be calibrated on nine 
parts and verified on the tenth, and the process could be repeated nine times, 
verifying on a different part each time. By doing this, all of the data are used to 
assess the quality ofwhat is to be gained by calibrating on a body of data nine-tenths 
of the total sample size. These procedures come closer than others to  helping us to 
determine what level of performance can be expected from a predictive model. 

Taking the process of multiple subsample validation to its logical end, one 
could calibrate the model on all but one case and then validate on the remaining 
case. This process is then repeated for every case. This selection procedure, 
referred to here as a jackknife test, but also called PRESS, was proposed by Allen 
(191). It is in some respects a combination of all possible regressions, residual 
analyses, and validation techniques. Ifit  were actually necessary to go through the 
computational process each time, this calibration-validation scheme could be pro- 
hibitive. Fortunately, it is often possible to calculate, either exactly or to a reason- 
able approximation, the effect of dropping an individual case or a small subset of the 
data. Draper and Smith (1981:326-327) feel that the PRESS method is advantageous 
because it provides detailed information about the stability of the model parameters 
over the sample space and because it can aid in defining influential data points. 

Many statistical packages now calculate statistics that define the influence of 
individual cases. For example, one of the regression programs in the BMDP package 
calculates the residual that would be obtained if the case were omitted from the 
computation of the equation; the predicted value that would be obtained if the case 
were omitted; the Mahalanobis distance, which is the distance of the case from the 
mean of all cases used to estimate the regression equation; and Cook's distance 
(Cook 199:15-18, 1979:169-174), a measure of the change in the coefficients of the 
regression that would occur if the case were omitted from the computations of the 
coefficient. 

T h e  results of a jackknife classification ofthe Booth Mountain nonsites (Group 
A) and sites (Group B) are given in Table 5.15. Incorrect classifications are noted by 
the letter of the group the case was placed in. The  jackknifed Mahalanobis DZ from 
the group centroid and the posterior probability P ( ~ G )  that the case (X) is a 
member of the indicated group (G) are also given. It should be noted that the 
probabilities are close, but not identical, to those presented in Table 5.13, which are 
not based on a jackknife classification. T h e  jackknifed classification results are more 
conservative and realistic, especially for small sample sizes. Jackknife classification 
results are also more like the results that would be achieved with a set of independ- 
ent data. Overall, 76.3 percent of the cases were classified correctly in the jackknife 
classification. Individually, 76.2 percent of the nonsites and 76.5 percent of the sites 
were classified correctly. 

In the jackknife classification, four sites were misclassified as nonsites. Two of 
these, 5Pe746 and 5Pe749, were apparently misclassified because they are located 230 
and 240 m, respectively, from the nearest water source. They are located near each 
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TABLE 5.15. 

Jackknife classification of locations from Booth Mountain; nonsites are group A, sites are group B 

Incorrect 
yackknifid Mahalanobis D2from and 

Posterior Probability for 

Group A 
- 

GROUP A 
CASE 

1 21.7 
2 B 19.7 
3 1.3 
4 .4 
5 2.5 
6 B 2.0 
7 13.9 
8 5.8 
9 B 2.0 

10 1.9 
I I .8 
I2 1.3 
13 3.4 
14 3.3 
15 1.5 
16 8.4 
17 I .O 
18 1.2 
19 2.1 
20 1.2 
21 1.1 

GROUP B 
CASE 
22 
23 
24 
25 
26 
27 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Group B 

Note: Case 28 is a historical site that was not included in the analysis. 
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other and in association with several other sites that seem to date to the protohis- 
toric period. 5Pe749 is a small lithic scatter that could be associated with 5Pe750, a 
large stone circle that is located about 200 m to the west, or with 5Pe746, which is 
located about 250 m to the north. T h e  latter site consistsofthree standing wickiups 
and a small amount of scattered lithic artifacts. On the site form for 5Pe746 the 
distance to water is listed as 400 m, although the distance measured from the 
7.5-minute quadrangle is only 230 m. Even so, the site is substantially farther from 
water than most others, which is surprising given the evidence ofhabitation. 5Pe746 
is a good example ofthe fact that even when predictive models work, there is always 
the chance that an anomalous site will be misclassified. 

T h e  remaining two misclassified sites, 5Pe366 and 5Pe741, are both small 
rockshelters. Their misclassification points out the difficulty in predicting rockshel- 
ter sites. Clearly, more research is needed in the development of variables that can 
measure a locality's "rockshelter potential." 

Even with all of the benefits noted above, simple validation is weaker, by some 
unknown amount, than it might initially appear to be. This is because the validation 
sample is often much more like the calibration sample than the target population to 
which one wishes to generalize. Frequently the calibration and validation data sets 
are obtained in the same sampling process. In most archaeological predictive 
modeling cases this appears to be the rule rather than the exception (see Chapter 7). 

Simplc Validation (Procedures with Simulated Data Sets) 

Many predictive modeling studies use reclassification ofthe cases on which the 
procedure was developed as a measure of discriminatory effectiveness. Simple 
reclassification of the original cases will be biased and the efficacy of the technique 
inflated (this is known as upward bias). Many times, though, sample sizes are small, 
and too few cases can be withheld and used as verification data. One  way to 
determine the bias involved is with simulated data. Frank e t  al. (1965) suggest two 
validation procedures that involve simulation. The  first approach involves creating 
a synthetic random data set that bears no resemblance to the actual data on which 
the classification functions are based. T h e  random data set can be designed to match 
the actual data set in terms of sample size, the number o i  groups, and variables. 
When the synthetic cases are classified by the function, any discriminatory power 
found can be interpreted as bias. 

T h e  second approach uses the original raw data. T h e  cases in the original data 
matrix are randomized and then randomly assigned to groups, and then a discrimi- 
nant analysis is performed. This process is repeated a number of times, and the  
results are averaged and used to assess the amount ofbias present. In this approach 
the covariance matrices of the simulations will be similar to those of the original 
analysis. Berry (1984:843-853) has recently employed both of these techniques in a 
discussion of sampling and predictive modeling on federal lands in the western 
United States. 
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The  validation procedures described above can be used with multiple regres- 
sion and its many variants, with logistic regression, and with discriminant function 
analysis. Some are now standard options on computerized statistical analysis pack- 
ages, such as BMDP, SAS, and SPSS, or they can be created easily by using sampling 
procedures to select the data to be withheld. These validation procedures, espe- 
cially those applicable to smaller samples, need to be explored and exploited further 
because the "acid test" of any prediction scheme is its performance on independent 
data. Kohler and Parker (1986) hypothesize that the lack of validation in many 
predictive models occurs because it was not specified in a contractual obligation. 
This could be a healthy sign if agencies intend to have validation done by another 
party. Alternatively, it may indicate that the importance ofvalidation has not been 
recognized as an essential ingredient of predictive modeling by the sponsoring 
agencies. 

Generalization 

Once a predictive model has been established and validated, the next step is to 
generalize the results to the target population. Essentially, in this process the 
results of a sample-based statistical ~rocedure  are employed to make inferences 
about a population. The  predictions are based on what occurred at a sample of 
points or in a sample of quadrats, e.g., whether a site was or was not present or 
whether a site ofa specific functional and temporal category was found. T o  be useful 
as a management tool these generalizations must be summarized; frequently this is 
done cartographically. While there is no limit to the data that can be represented on 
a map, the extrapolation of point or quadrat information to larger areas is not a 
simple task (see Chapter 10). 

In order for the results of the sample-based procedure to be generalized to a 
larger area, it must be possible to extract the values for the independent or 
predictor variable from existing maps, whether manually or via some type of 
automated geographic system. This is not a trivial matter, because the lack of 
preexisting maps or ofinformation that can be converted to a maplike format is the 
most commonly encountered problem in generating model-based predictions. The  
scale of resolutionof the generalizations that can be produced is determined by the 
quality of the existing information. If one of the discriminating variables in a 
predictive model is only available on a section-by-section basis, generalizations can 
only be produced on that scale. Alternatively, ifthe required information exists at a 
very fine level of resolution for an area, it may be possible to make inferences at that 
scale. A final problem with secondary information extracted from maps is that maps 
are also simplifications of reality; the mere existence ofthe data is not an indication 
of their quality. T h e  chances are that point or even quadrat values extracted from a 
map are probably themselves interpolated values, whether the variable is elevation, 
soil type, or vegetation. The  quality of the data extracted from maps affects all 
aspects of the predictive model. If the data are of poor quality, then predictions 
derived from them will likely be poor. Means ofassessing the quality ofpreexisting 
data and of compensating for variability in quality are discussed in Chapter 7. 
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Maps showing the distributions of such environmental variables as soil types, 
vegetation communities, slope, elevation, and the like are frequently combined in 
composite overlays that may or may not be associated with site locations. For 
example, a particular type of site may be found on southwest exposures of certain 
soil types in pinon-juniper forest within a specified elevation interval. Unless these 
sets of data are manipulated in a rigorous, objective manner (e.g., a game-theory 
approach), composite overlays merely indicate that certain types of sites tend to be 
associated with particular configurations of environmental variables without pro- 
viding any specifics as to the nature of that association (see Chapters 3 and 4). 

Multiple regression, logistic regression, and discriminant function analyses 
make composite overlays a more valuable managerial tool. These procedures 
provide objective delineations of the environmental variables that influence site 
location, and these results can replace traditional intuitive projections. Rather than 
just representing the intersection of numerous information sets, these procedures 
permit weights to be assigned to particular mappable variables that may be 
important determinants of site location. This capability then allows the researcher 
to associate probabilities with particular environmental features. 

T h e  process by which the predictive model information is portrayed carto- 
graphically is crucial to the interpretations that can be made. Unless the sample on 
which the predictive model is based is systematic, which would be most unfortu- 
nate from a sampling perspective, the values of the variable to be displayed (usually 
called z )  in an x,y coordinate system are not neatly spaced on a regular grid pattern. 
Most samples procured in predictive modeling endeavors consist of data points or 
quadrats scattered irregularly over a region. Most mapping packages and graphic 
display procedures, however, require that a regular grid be created from irregularly 
spaced data. The  basis for most generalization operations will be a grid ofvalues that 
is a numerical representation defined by two x andy coordinates of the surface to  be 
displayed. In predictive modeling these values might be the probability that a site is 
present. 

T h e  phenomena to be mapped, the z values, can be portrayed in several 
different ways. Linear interpolations can be made between grid nodes to locate the 
points where a specific contour line will cross the edge of a grid cell. T h e  grid can 
also be drawn in perspective, with each grid node vertically offset by an amount 
proportional to the z value. This operation results in a block diagram and does not 
require interpolation. Unfortunately, it is more difficult to extract quantitative 
information from a block diagram than from a contour map. (See Chapters 8 and 10 
for detailed discussions of mapping the results of predictive models.) 

T h e  predictive model for Booth Mountain, described above in the context of 
discriminant function analysis, can be presented as a contour map (Figure 5.12) 
generated with the SURFACE I1 GRAPHICS SYSTEM (Sampson 1978). SURFACE 
11 is a software system for creating displays ofspatially distributed data. T h e  Booth 
Mountain map used only the 38 nonsite/site locations employed in the discriminant 
function model. For each location, easting and northing UTM coordinates were 
used for x and y scales. The  third value was the cell's posterior probability of 
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Figure 5.12. Posterior probability of site presence, Booth Mountain. 
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belonging to the site grouping (Table 5.15). The SURFACE program then inter- 
polated between known points to create a generalized probability map, with 
probability scores ranging potentially from 0.0 to 1.0. The  contour interval plotted 
was 0.1. 

The  Booth Mountain region was not as rigorously tested in the Fort Carson 
survey as the two major drainage basins, Red Creek and Turkey Creek (Altschul 
and Rose 1986). Because its importance was initially underestimated, only small 
portions of the mountain were surveyed. Furthermore, because the survey loca- 
tions were not selected through a probabilistic sample design, it is difficult to 
generalize the results. Instead of generalizing the discriminant function model to 
the entire mountain, we felt only a portion of the area could be reliably modeled. 
The  area modeled is a rectangular region encompassing the middle ofthe mountain, 
specifically between UTM northings 4256000 and 4259500 and eastings 13510000 and 
13514500. About 50 percent of this area had been surveyed. 

The  areas of highest site probability on Booth Mountain lie on the southern 
and western slopes. Sites are found along small drainages that flow into Booth Gulch 
instead of directly into Turkey Creek. The  entire eastern half of Booth Mountain 
appears to have been deliberately avoided by the prehistoric occupants. The  only 
sites in the east are on the lower slopes of the mountain directly overlooking Turkey 
Creek (on Figure 5.12 this is the small high-probability zone located at about UTM 
northing 4257000 and easting 13514000). These sites tend to date to the Late 
Prehistoric period or earlier. In contrast, most sites on the western and southern 
slopes appear to date to the Protohistoric period. Therefore, it seems questionable 
whether the sites on the eastern slopes are culturally related to those located on the 
southern and western slopes. 

We can only speculate about the reasons for the intensive occupation ofBooth 
Mountain. It would have provided a relatively safe refuge for small groups for short 
periods of time. There is also no question that during the latter half of the 
nineteenth century bands of Indians were intermittently seeking such protection. 
One possibility is that the interior slopes of Booth Mountain were selected for 
occupation because of their inaccessibility. 

The  Booth Mountain predictive model remains to be tested with independent 
data, but it would seem that areas withp values greater than 0.5 have reasonably 
good chances ofcontaining sites. Areas withp values less than 0.5 would still need to 
be treated cautiously until the model is tested, nor should the model be extended to 
other parts of Booth Mountain in the absence of additional survey data. 

CONCLUSIONS 

The topics discussed in this chapter cover a wide range of material, but they 
indicate that the construction of predictive models is a multistep process. The 
procedure that has been advocated emphasizes an understanding of the nature of 
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the basic data on which the predictive models are based. Controlling for temporal 
and functional variability in the data is critical because of the effects of such 
variability on the resolution ofthe predictive model. The  basic data used in models 
are the measurements for variables that have theoretical importance but each of 
which represents only one dimension of variability. It was emphasized that the 
scales of these measurements must be congruent with the assumptions of the 
statistical model that will be employed. Distribution ofthe values is also important. 
Descriptive statistics can be used to determine if the variables are normally 
distributed; if they are not, alternative probability distributions can be used to 
determine the nature ofthe differences. Finally, bivariate statistical techniques can 
be employed to examine relationships between pairs of variables prior to their 
incorporation into a predictive model. 

After this discussion ofthe basic data used in modeling, three different types of 
predictive models were discussed. These models are applicable to many different 
types of dependent and independent variables. Multiple regression is normally used 
when both the dependent and independent variables are measured on interval and 
ratio scales. When the dependent variable is categorical and the independent 
variables are measured on any scale (from nominal to ratio), logistic regression 
provides an acceptable alternative. If all of the independent variables are measured 
on an interval or ratio scale, however, discriminant function analysis may be more 
effective. 

Regardless of the statistical procedure used to produce a predictive model, 
verification of the results is an important part of the modeling process. Several 
different procedures have been described that are applicable in different situations. 
Finally, some inherent problems in producing a graphic display to portray the 
results are discussed. Although the graphic example used provides a relatively 
simple model when compared with the results obtained from geographic informa- 
tion systems, it does highlight the steps involved in computing these models, which 
are often lost in the inner workings of the computer. 

In addition t o  the people mentioned in the  acknowledgments for Chapter  3 .  Martin Rose would 
like t o  thank his coworkers at Statistical Research, Inc., under whose auspices this chapter was 
written. T h e  comments, queries, and clarifications made by June-el Piper, Lynne Sebastian, Mike 
Garratt, Dan Martin, J imJudge,  Ken Kvamme, and the other volume authors and reviewers of the 
draft chapter and its subsequent revisions were particularly helpful. T h e  authors greatly appreciate all 
of their time and effort, without which the current status of the  manuscript would have been 
impossible. 
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Chapter 6 

COLLECTING NEW DATA FOR THE 
PURPOSE OF MODEL DEVELOPMENT 

Jeffrey H. Altschul and Christopher L. Nagle 

In Chaptcr 3 it was suggested that rhc first step in modcl building is to identify 
both short- and long-term objectives. Subscqucntly, esisting data pertaining to site 
location-archaeological records and reports, ethnographic information, historical 
and cthnohistoric accounts, and macro- and microenvironmental data-can bc 
collected to mcct thcse objectives. An cvaluation of the cxisting data (a topic 
discussed in detail in Chaptcr 7) will oftcn reveal data gaps, which must then be 
fillcd through the collection ofncw data before the modeling proccss can continue. 

lf the data gaps arc relatively minor, they can oftcn be fillcd through Iimitcd 
surveys targeted to specific modcl requirements. Funding for research-oriented 
projects is limited, however, especially in cultt~ral resource management contests. 
An alternative source of data to fill specific gaps is the rcsults of the inventory 
surveys that arc routinely conducted on relatively small parccls ofland to fulfill lcgal 
requirements. Fieldwork on thesc surveys is oriented toward mccting compliance 
criteria and nor toward research, and as a result data from inventory surveys have 
often not been incorporated into regional plans, such as statcwide comprchcns~vc 
plans or regional predictive models. Given that most prcdictivc models based on 
existing data need independent data against which to  validate thc modcl, the failurc 
to utilize inventory survey resuIrs is not only an unfortunate decision but also in thc 
long run an extremely expensive one. 

Even with thc inclusion of some new data there is a limit to  the predictive 
powerofa modcl based on esisting data. As discussed in greater detail in Cbaptcr7, 
these models arc primarily limired by the quality and representativeness of the 
existing data base. When the data are of uneven quality or arc biased in favor of 
certain resources or areas, the degrcc to which the resulting modcl can be general- 
ized is greatly rcstricrcd, and the use of more powerful modeling techniques is 
generally unwarranted. In such situations it may be prudent to start fresh and 
collect data that can be uscd to obtain the designated modeling objectives. 
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PLANNING FOR FIELDWORK 

While individual research projects will havc thcir own specific goals, all 
projccts designed to gathcr data to bc used in prcdictivc modcls of site location 
must sham thrce cricical objcctives. First, thcsc projccts must evaluacc thc range of 
variability in the nacurc of sitcs and site locations. Certain parameters of the 
phcnomcna bcing modcIed must bc dctermincd, such as the number ofsite types 
(including how thc term  fit^ should be dcfined), the covariation between sitc 
locations and environmental attributes, and thc potential reIat~onship among sitcs. 
Since thesc features are detcrmined by generalizing the results ofsamplz data to  a 
larger area, thc sample must be dcrivcd in an unbiased fashion, or at lcast thc nature 
of the bias must be known in order to obtain usablc estimates. 

A second objective for all projccts designed to gathcr data for predictive 
modeling should be co make certain that all "magnet" sitcs arc found. From a 
predictive modcling standpoint, a magnet site can be dcfined as onc whosc. location 
affects the location of other sites. While it  may be argued that all sires affect the 
location ofat least one other site (kc., the site one mows to is related to the site one 
has just left), for the purposes of this discussion the tcrmmugmv rift will be restrictcd 
to sites that affcct scttlcment on a regional scale. In the absence ofdata about such 
sites, the model might yield a high percentage of wrong predictions. For instance, 
the location of a Hohokam agricultural hamlet was probably conditioned nor only 
by environmental factors but also by the distance to the rcgional ccnter with which 
it was afiliated. In these situations, predictive modcls based solely on cnvironmen- 
tal factors have not been particularly useful. 

Magnet sites can nor only csert a pull on other sitcs but can also rcpcl them. 
The  location of a regional center often appears to have been adjusted partly on the 
basis of the "pulls" and "pushes" of neighboring centers. As the above esamplc 
indicates, magnet sites can bc major centers like Spiro, Moundville, Cahokia, and 
Snakctown. But it  is not just big, complcx sites that act as magnets, nor arc such 
sites confincd solely to comples socicties. T h c  Archaic and Woodland periods in the 
western Ouachita Mountains of eastcrn Oklahoma provide an example of hunrer- 
gatherer settlement systems affected by magnet sires. These settlcmcnt systems 
werc characterized by an extremely stable partcrn ofwinter bzsccamps in thc river 
valleys and specialized activity camps dispersed throughout the region in the 
summer. While the special-activity camps wcrc occupied on a tenlporary basis, 
many of the wintcr basecamps were occupied more-or-less continually for thou- 
sands ofycars (Altschul 1984). Furthcr, evidenccsuggcsts that thc locations of many 
special-activity sites covary with the Iocation of the basecamps. 'Thus, whilc it  
would bc possible to makc generalized areal predictions of site location for this 
region, it would be usclcss to construct a point-specific predictive model without 
knowing the locations of thc winter basccamps. 

Magnet sites are culture-specific and thus changc through timc. One of the 
most commonly cited esamples is Teotihuacan, a large precoiumbian city located in 
the Basin ofMexico in a northcastcrn subvalley ofthe same name. Teotihuacan has 



figured prcdominanriy in discussions ofsampling and survcy strarcgics in archacol- 
ogy for ncarly two decades (Flanncry 1976; ivlayer-Oakcs and Nash 1'964; Schiffcr er 
al, 1978). Time and time again it  has been pointed our that ifonc implcmcntcd a 10 
or 20 prrccnt sinlple or srrarif~ed random samplc sunrcy dcsign for the Teotihuacan 
Valley, rherc. is a good chance that the entire city would bc missed. 

Knowledge of thc location of'l'eotihuacan is critical to an understanding of 
sct t len~cnt  patterns in the Tcorihuacan Valley, and indeed in the larger Basin of 
Mexico, from about 150 BC until a b o u ~  AD 750. I t  is nor a t  all clcar, howewr, that 
info:-ration about the city's location would be necessary for predicting setrlcmenc 
in the Tcorihuacan Vallcy before 150 BC. Prior to the rapid growth of :he city, 
settlement in this part of the Basin of Mesico was charactcrized by sitcs locatrd 
primarily in the l'arlachique Rangc overlooking the vallcy floor (Sanders 
1%5:92-93). In contrast, the city ofTeotihuacan was located near freshwater springs 
on the valley floor. Inclusion of the city's location in a prcdictivc model of prc- 
Christian cra settlement in the rcgion might well lead to inaccurate prcdicrions. 

An altcrnarivc explanation for the lack ofevidence for early occupation of the 
arca that was subsequently encompassed by thc city of Teorihuacan is that such 
cvidcncc was destroyed or buried by latcr construction, an airernativc that brings 
us  to the third objective. In order to gather data intended tbr use in prcdictivc 
modeling, we must determine how behavior becomes part of the archaeologicd 
record and how postdcposit~onai proccsses al'fccr our ability to discover sires and to 
inrerprt-t them (Chapter 4). While many archaeologists have bccomc increasingly 
intrrestcd in depositional and postdepositional processcs, only rarely are rhcse 
factors explicitly considered in survey dcsign. Too often cultural rcsource managc- 
mcnt survcys make use ofstandardized field techniques that do not rake rhe spccilic 
situat~on into account. Thus, archacoIogisrs oftcn use pedcsrrian surface survcy in 
all portions ofa target arca, including heavily alluviated valleys and highly dissected 
bluffs. Tn the eastern woodlands of rhc United States, survey techniques oftcn 
includc rransccts ofsystcmaric shovel tests, bur the interval bctwecn rests and the 
sizc and dcpth of the tests are often specified in thc contract rather than being 
chosen with regard to geomorphic condirions or to the sizc and nature of the 
expccted sires. 

Evcn with the most appropriate rcchniqucs, howcvrr, it is highly unlikely that 
all sitcs in a survey tract will bc found. If the probability of discovery Tor ever). s ~ t e  
were cqual and indepcndcnt of all others, rhcn at lcasc the resulting paramctcr 
estimates would nor be biascd. But discovery probabilities are not equal. Smallcr 
sires cover less surfacc area than Iargcr ones and thus h a w  less chance of being 
found. Special-activity sitcs in general have fcwcr remains than more permanent 
ones and therchre are less likely to be found. 

The  problems cited above have to do with visibility; thus, tor sites that exhibit 
some surfact- manifestations the main objective is co cqualizc or at least control fbr 
differing discovery probabilities. A very difrcrent problem csisrs, however, for sites 
that eshibit no surfaccexpression. Sites that have been buried by natural processcs, 
such as river alluviation, mud flows, or shifting sands, or components that are 
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masked by later occupations arc the most dilTcult to predict. Archaeologists have 
gencrally dealt with this problem by ignoring i t .  Lip servicc is usually paid to the 
Quaternary geology ofan area, but rarcly is the study ofgeomorphic land surfaces 
made an integral part of a predictive modeling project's rcscarch design. Without 
such srudics, however, i t  is virtually impossible to construct accurate predictive 
models. 

SURVEY STRATEGIES 

In ordcr to create a predictive model, a survey dcsign must bc dcvelopcd that 
will provide sufticient data to calculate estimates on various aspects ofsires and site 
locations, allow the identification of all or of a high proportion ofmagnet sites, and 
allow us ro assess the eflecrs of depositional and postdcpositional proccsses. By 
nature, such a design must be multifaceted since each oft hesc objectives can best bc 
met through a different survey strategy. For examplc, parameter estimates rely on 
somc type of probabilistic sampling foundation, whilc discovery ofmagnet sites or 
paleo land surfaccs is bcsr done by purposely sclccting arcas forcsan~inarion. In the 
following sccrions, appropriate survc-y strategies to meet each of thc three objcc- 
tives are discussed. 

Probabilistic Selec~ion 

Onc of the main goals of a reconnaissancc survey program is to obtain reliable 
estimates on a variety ofsite attributes in a rcgion from only studying a port-ion of 
that rcgion. Usually, statistical inferences are drawn concerning sitc density, thc 
proportion of difierent sitc types, the covariarion between sitc locations and 
environmental attributes, and so on. These arc basically idcographic or descriptive 
observations about [.he population. T h c  problem, thcn, is how to select a sample of 
cases from which descriptive obscrvations about the population can be inkrrcd 
with a reasonable dcgrec of confidence. 

Much of probability sampling thcory is concerned with this issue. It is impor- 
tant to point out that thcrc is nothing in probability theory that guarantees the 
L 6 correctness" of sample estimates. Rather, thc advantage of using probability 

theory to selcct samples is that it allows us to  control the bias in the selection 
procedure. As Cowgill notcs, "thc advantage of probability sampling is not that it 
very often enables us to bewre about the population, but that it hclps u s .  . . toknom 
m h m  we rrand in rclation to various inferences" (1975:262, emphasis original). 

The  literature on sampling in archaeology written during the last two decadcs 
is voIuminous (Hodder and Orton 1976; Mueller, cd. 1 9 5 ;  Nance 1983; Orton 1980; 
S. Plog 1976,1978; S. Plog c t  al. 1978; Redman 1974; Sanders et al. 1979). It is not our 
purpose here to rc-view this literature or to restate thc basic principles ofsampling. 
Instcad, we wish to  introduce some of the issucs rhat should be considured in thc 
dcsign of a probabilistic samplc survey. 



In predictive modeling thc  primary objects of' interest arc sites (however 
defined) and rheir locations. In the  abstract wc mighr consider all t hc  sites in a 
region as rhc population of inrcrcst. Sampling thcn would consist of selccring a 
numbcr  of thcsc sires for obscrvarion. In reality, ofcoi~rse ,  i fwc knew whcrc all rhe 
sites were locarcd we would have no need for a predictive model of site loc~t ion.  

In practice wc. do nor knoll. where all rhc sirrs arc or even what proportion of 
the  total numbcr ofsitcs has previously becn recordrd. 'Thenlost common approach 
in this situation is to use rhe rcgion as the  frame ofreference. T h e  region can thcn be 
divided into a number of smallcr units such that  all portions of the rcgion arc  
situated in one and only one unit, Thcse  arcas thcn become t h r  sampling units. 

T h e  use of spatial units as sa~iiples from which to make inferences about 
cultural phenomena has Icd to a cerrain amount ofconfusion among archacologisrs 
(Mueller 1975) chat only recently has begun to be rcsolved (Nance 1983; S. Ploget 31. 

1978). Ac issue is the dificrencr between clement and cluster sampling. Simply put ,  
clement sampling rcquircs that each elcment of the  population bc considered a 
distinct sampling unit. IS the  sampling unir is a specified area, and i four  interest 
focuses on attr ibutes of those units, the11 we are conducting clement sampling. 
Common esampIes in archaeology include estimarcs o i  rhc mean number of sites 
per grid unit o r  of the  proportion ol' a site rypc pcr grid unit. Here  we are 
conducring elemcnc sampling bccause thc olenicnts o fu~ te res t  are the  grid units,no[ 
the  sites themselves. In contrast, i four interesr focuses on  making inkrenccs about 
a t t r ibutes  o is i tes  lbund in the grid units then we are crlgagcd in a form ofclustcr  
sampling. T h e  most common use ofcluscer sampling in predictive modeling is in 
point-specific models (e.g., Kv:mme 1983; Ix ra ld t .  and Chandler 1981; Recd and 
Chandler 1984). In these models, all sites found in the  v;lrious grid units arc 
combined into one  group whose environmental attributes arc compared with rhc 
at tr ibutes of a group of nonsitc locations; the  rcsults are thcn generalized to  the  
survey univcrsr. 

T h e  failure to distinguish betwccn clustcr and elemrnt sampling leads not just 
t o  confi~sion but ro miscalculation ofbasic sratistics. T h e  most common error is to 
calculate pariimetcr escimares as if t hc  cluster samplc data had becn collecred by 
element sampling. In gcneral this will lead to underestimation o f thc  sampling error. 
T h e  obvious solurion is to bc  clear about the  rypcofsarnple one is working with and 
then to LISC rhe correct equations to calculate rhc estimates. Unfortunately, we 
usually design surveys wi tha  multi tude ofobjectives. During analysis o f the  survcy 
resuIts, r h m ,  the  objecr of intcrest, or  the  sampling elemcnr, varicas, as docs its 
relationship ro the  sampling unit. Although ure will have some idea o f t h e  typcs of 
sampling clemenrs in which we will bc intcrestcd before thc  survcy and anaIysis arc 
carricd ou t ,  we cannot foresee all the  possible units of interest. This  is one of the  
main reasons why flrsible, multistep s;tmpling designs arc well suited to archaeolog- 
icaI research. 

T h c  first task in designing a survcy is to subdivide thc  rcgion into sampling 
units and then to sclcct a specilicd number  of these units to survey. T h e  immediate 
questions to answer arc what size and shape should rhc unlrb bc and how many do 
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urc nced to  survcy. T h e  critical factor in dc tc r~n in ing  the  precision ofan cstimate is 
t h c  absolute number  of units survcycd. In a 100,000 ha region, for example, given a 
known p o p ~ ~ l a t i o n  variance, a sample of1OGO ~rnits ,  each 10 ha in size, will !ield an 
cstimate of site dcnsity that is twice as precise as that  derived from a samplc of250 
units, each 40 ha in sizc. Th i s  does not mean, howevcr, that t he  best formula for 
sclccting sample units is simply to dividc the  rcgion into very small units; logistical 
cost and locational errors escalate as unir size dccreascs. 

W e  have been discussing thcsc issues primarily from t h c  pcrspcctivc of 
clement sampling. In the  sitc-dc.nsity csamplc given above, all t h e  sampling units 
cntcr  into the  computation of t h e  standard error. If our  inrercst shifts from 
attr ibutes o i  sampling units to  at tr ibutes of sites, then the  cfkct ive  number  of 
sampling units shiits from the  total nurnbcr of units survcyed to  t h e  number  rhar 
contained the  clcment ofinterest  (in this casc, sites). Thus ,  i f u e  had suwcycd  250 
40 ha units and found a total of30 sitcs distributed among 20 of chose units, t h e  
c l l~cr iv t .  number of sarnplc elements would not be 250 (the number  of units 
surveyed), nor would it be  30 ( the  nurnbcr of sitcs). T h c  e ikct ivc  number  of  
elements would be 20, thc  number  ofsampling units that  contained sites. Statisti- 
cians have suggested that ,  as a rule o f t h u m b ,  30 or  more such units are ncedcd 
before variance estimates and confidence intervals can be  computed (c.g., Cochran 
IW7; Dison and Leach L978; see also Nancc 1983:340). A perusal of the  predictive 
modeling literature in archaeology indicates that  this condition is rarely met. 

T h e  size and  shape of rhe samplc unit has been the  subicct of much discussion 
within archaeology Uudoe e t  al. 1975; Muellcr 1974; S. Plog 1976; S. Plog e t  al. 1978; 
Sanders e t  al. 1979; Schi. . rand Wells 1982; Schiffer c t  al. 1W8). T w o  typcs ofsamplc 
units arc common in archaeology, square quadrats and rcctangular transects. There  
havc been experiments with other types of units, such as circlcs (e.g., Goodyear 
1975), but  these are not generally used. Much of thc  discussion surrounding 
whether to use quadrats o r  transecrs conccrns t h e  so-callcd edge effect. In survcys, 
all sites found in the  samplc units are ~ ~ s t ~ a l l y  recorded. Th i s  includcs sires that  arc 
contained wholly within thc  unit a s  weil as those that  are only partially locared in 
the  unit. Thus ,  n+cn a unit is surveyed the  crew actually surveys an area that  is 
somcwhar larger than the  unir itself. How large? This  depends on  the  avcrage sizc of 
the  site. W e  will illustrate chis problcrn with an example drawn from a similar 
discussion in S. Plog c t  al. (1978:399). I,ct us asslrme that  all sitcs in a rcgion havc a 
radius of50 m. I fwe survcy four square quadrats in that  region that  are 0.25 km2 and 
are situated as in thc  uppcr part of Figure 6.1, an area of' 1 km2 is esamined. But 
bccausc all sitcs whose centers art: located within 50 11i of any border will bc  
recorded, t h e  survey will actually cover 1.44 km2. T o  show t h e  cffcct ofsamplc unit 
sizc, assllmc that  the  same arca had been surveyed in t ~ * o  rcctangular quadrats,  
each of which was 0.50 km2 (the lower portion of Figure 6.1). T h e  surveys crews 
would still walk thesame  I km2 arca, but  now they would only rccord sircs in a 1.30 
kmzarea. Finally, t he  edge cftcct differs bctwccn transccrs and quadrats. In  the  casc 
proposed above, a quadrat  with 500 m long sides actually covers 0.25 km* with a 
hypothetical co\rcrugc extending to an  0.36 km* area. In contrast, a transect 250 by 
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1000 In also covers an arca of0.25 kmz, bur the hypothctical unit surveycd is 0.385 
km2. Thus, the cdge cffecr is greater as the size of the sires increascs, as the size of 
[he sample unit decreases, and as rhc ratio of thc lcngth to width ofthc sample units 
increascs. 

T h e  edgc cffecr is in large part thc reason why site density and the total 
number of sires tend ro be overesrimarcd. For esample, ifa 10 by 10 km (100 kmz) 
area is sampled using 40 square quadrars, each 500 m on a side, rhe crews would 
actually walk 10 krnz or  10 percent of the survcy universe. Bur if none of thc  units 
adjoined and all sites werc 50 m in radius, then all sites in a 14.4 km2 arca should be 
found (i.c.,0.36 km7x 40- 14.4 km2). S. Plog cr al. (1978:395-400) have analyzed this 
situation in some dcprh. Their work, drawn from simulations ofsurvey results from 
the Valley ofoaxaca, indicares char the smal1c.r the sampling fraction the grcatcr the 
problem ofoverestimation, This is cxactly what one would expect. As the sampling 
fracrion increascs, the likelihood ofselecting contiguous survcy units also increascs, 
and rhc larger the numbcr ofconriguous units the smaller the cdge eflicct. 

Once the cdge ell-cct is undcrsrood, it can be compensated for in the calcula- 
tion of parameter estimares. F. Plog (1981:32) has suggcsred that the hypothetical 
area covered by a survey unir be used in calcularing sire dcnsiry rather than the 
actual unit area. T h c  hvporherical area covered is found by determining the avcragc 
sire size and increasing thc el'lcctivc area of the unit by the radius ofan average sire. 
Thus, ifrhe average site radius is 50 m then a 500 by 500 m unir would become a 600 
by 600 m unit, cit'ectively changing the area cram 0.25 to 0.36 km2. Nance (1983:3I I) 
has suggesred using modal sitc size as a more appropriate nieasurc because sitc size 
usually folIows a highly skewed disrribution. 

As illusrratcd above, transecrs-with their grearer cdge cffecr -allow us to 
cover larger areas than quadrats. 'Thus, we can expccr char more sites will be found 
in a rransect survcy than in a quadrat survey of thc same amount ofland. As long as 
steps arc taken to compensate for the edge efrect, rherc arc several good reasons for 
using transccrs, especially when our objective is ro construct an inductively based 
correlative modcl. Since the sire is most ofren the subject of interest in these types 
ofpredictive models! and since thc absolute number ofsires is usually the dctermin- 
ing factor of the powcr of rhc modcl, a rransect design is the best choice for 
obtaining dara for corrclarivc purposes. This is especially rruc when we divide rhe 
rota1 numberofsitcs among various site types and then try to model rhe individual 
sire types. Although in theory thcsc models m.&e rhe most sense (i-e., members of 
the individual groups all represent the same type of cultural behavior), in pracrice 
they arc rarely created bccause rhc sample sizes of the individual site classes are 
almost always too small. In addition, although the evidence is u w k ,  most studies 
done on archaeological data h a w  indicated that transects yield more precise 
estimares rhan quadrats (see Judge c t  al. 1975; S. Plog 1976; Sanders et  aI. 1979; cf. 
Mueller 1974). Finally, from a logisrical point of view, rransects arc generally easier 
to lay o ~ l t  in the licld and arc lcss prone to locational errors rhan are quadrats 
(SchifTer cr al, 1978). 



T h e  comparison bc ruwn  survcy unJts, however, is not all onc-sided. Quadrats 
arc probably more useful in studies of the relationship between sitcs and the 
cnvironment, Precisely bccausc of the smaller edge cffcct and lower Icngrh-width 
rario of these units, ir is easicr ro control for and characterize surrounding environ- 
mcnral fearures. Thus, when our interest shifts from obraining data primarily on 
site location to obtaining data on how sires are situated in rclarion ro environmental 
fc-atures (as is the case for many cxplanarory models), then quadrats may bc rhe 
appropriate choice of sampling unit type. 

T h c  choice of sizc and shape for the sampling units depends on whar we are 
trying tocstimate and on making our best guess about the underlying site disrribu- 
rion. Mosr discussions abour this issue assume rhar the paramerrrofintt-resr will be 
either sitc dcnsity or the total number ofsitcs (Judge et al. 1975; Marson and Lipe 
1975; S. Plog 1976; S. Plog er 31. 1978; Sanders et al. 1979). Tn caws where this 
assun~ption is correct, the primary factors to  consider in choosing a sampling unit 
have ro do with how these units affect the nunibcr ofsires discovered. During parts 
ol'thc prcdictivc modcling process, howevrr, we are coricerned wirh more than just 
numbers of sires. We musr also dererminc the rclariorrship between sires and the 
surrounding cnvironrncnt and bcrwccn sitcs and other sites of rhr sanw sire class 
and differcnr sitc classes. T o  study rhese larter issues we nccd grid units that are 
largc cnough to capture these patterns, and we nced to survey enough of these grid 
units so that use- can gcncralizc rhe resulting patterns wirh suficicnt confidence. 

The  divcrsc objcctivcs discussed above again srrongly point up the need for a 
multistep survcy srrarcgy. For esan~plc, nJc might survey a large number of small 
grid units ro obtain relatively prccisc cstimarcs ofsitc dcnsit?~ and then irsc a smaller 
number of large grid units to determine the spatial relationship between sitcs. 
Whatrvcr the esact strategies chosen, it is imporrant to remember chat several 
types of infbr~nation are required in order to  predicr sirc locations. Use of a single, 
ser strategy will probably mean char a larger proportion of the sampie universc must 
be survcycd in order to obtain rhe same degree of precision on a number of 
estimates as can be derived from a series of sampling strarcgics, each focused on a 
scpar;itc target. 

Oncc we have decided on a sampling unit, the nest question to ask is how 
many of these unirs should we survey? Here a ~ a i n  [he answer revolves around our - 
best guess as to the nndcrlying sitc distribution. In most cases sites will bc relatively 
rare phenomena, bu; when we do find rhem there will often be several cIosc 
togcthcr. This, of coursc, is another way of saying char sitcs arc rare and clustcrcd 
cvcnts (Kance 1983; Roggc and Lincoln 1984; Schiffcr c t  al. 1978). 1r is not surprising, 
rhereforc*! rhar the rcsulrs ofalmost every survcy show that the distributions ofsices 
pcmr quadrat (of whatever size) are positively skewed. 

T h c  rc.sul~s o l a  BLM sample survey in the San Ralhel Swell of east-central 
Utah can be used to illustrate a nrorc or lcss typical situarion (Tipps 1984). Figure 6.2 
prcsents a series of histograms ofsitc dcnsity for three nonconrig~~ous survey arcas. 
Ail  show posltrvc skewing. Man). quadrats conrain no sitcs and progressively fewer 
quadrats contain larger numbers of'sitcs. 
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Figurc 6.2. H3r graph of the licqiturlcy ot'qundr3r.r by rhc n u ~ n b c r  o f  bites, showing thc 
posirivcly skewrd distr~bution (afrur 'Tipps 1983:Fig. 7.1). 



Lrr LIS nssume thar the d;srribution of sires per qi..idrat for each sampling 
population as a wholc is also posit~wly skewed. The Central Limit Tllcore~n (Hayes 
and Winklcr 1971:292) states that the distriburion of sampling means for samplcs 
drawn from this population \vill still approsimare normality; the average of the 
sampling means w i l l  equal the population means, and thestandard deviation ofthe 
sample means will cqual o; . 'miE rhcse are based on repeated random samplcs of 
suficirntly large size. Cochran (197742) huggests as a ruIc ofthumb rhat samplc sizc 
should be grearer than 25G 12, where G 1 is Fisher's tnensurc of'skcwness. Table 6.1 
shows thar for the Utah survcy rcsults plorred in ITigurc 6.2, only the Circlc Cliff 
region survcy mecrs rhis crirerion, with a 10 percent sampling fraction. Clnly by 
combining the San Rafael Swcll survey arca with thc Circlc ClifTsurvey area was the 
researcher able ro obtain an adequate sample size for the San Rafael Swcll. From an 
anthropological standpoint, this is a questionable pracrice at best. 

Several archaeologists have noted that adherence to Cochran's rule will usually 
require a very large sainplc size (e.g., Thomas 1975:68-70). Nancc (1983:303) has 
suggested another mcthod, based on klonrc Carlo simulation, in which a hy pothet- 
ical popi~lation disrriburion is created on rhe basis of' thc sample dara. Rcpcatcd 
sample sclecrion from this popularion then allows for n thorough csaminarion of 
skewness. 

T h e  task of selecting an appropriate samplc size from a skcwed population 
disiriburion bccomes even more dificult when thc subjccr ofintcresr shifts from 
rhe sample unir to rhc sitc. 111 chis case only those units thar contain sites arc of 
importance. Thus, i t  is not the total numbcr ofsample unirs bur the rota1 number of 
sample units mitrrcl the numberofsamplc unirs without sires rhar will determine the 
sizc of'the sunrey. The  problem thcn is to csrimate how many units will have to be 
surveyed before an adequatc number oiclusters is obtained. The  work ofa number 
ofarchaeologists and human geographers suggests that fitting ofdiscrere probabil- 
icy distributions to supposed sctrtlcnwnr distributions ma), be a usefill approach ro 
rhis problem (e.g., Clarkc 1977; ClifF and Ord 1973; Daccy 19H; Harvey 1967; 
Hoddcr 1977; Hodder and Orton 1976; Hudson 1969; King 1969; Wood 1771). For 

TABLE 6.1. 
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examplc, Wood (lWI), Hoddcr and Orton (1W6), and Nance (1983) argue that, 
because sites are olicn rare and clustered events, the pattern of sire densities in 
many regions can be described reasonably n d l  by the negativc binomial distribu- 
tion. T h e  nrgative binomial is described by two parameters, the arithmetic mean 
and a positive cxponenr (k; see also Chapter 5). For a rcgion about to be surveyed, 
an archaeologist can arrive at an estimate ofaverage site density by using the results 
of surveys in nearby regions wilh similar environments. T h e  positive csponent, k, 
can be estimated in a variety of ways (set. Bliss 1953). T h c  usual approach in 
archaeology is first to arrive at some estimate of the samplc variancc and then to 
calculate k using thc equation 

whcre x and s2  are the mean and variance of thc sample (Nancc 1983; IVood 1971). 
Oncc the pararncters are defined, the probabilities ofobtaining a certain number of 
sites per unit can be calculated in a straightforward manner using thc probability 
generating function 

( b  + x - I)!  
P ( x )  = forx = 0,1,2 ,  . . .  

.Y!(b- I)! 

= O otherwise 

Nance (1983:334-335) has providcd an cxample of how the negative binomial 
distribution can be uscd to determine ho\v many units should be surveyed. Using 
sample cstimatcs for x and r2  from a simple random samplc survcy of 3 1 quadrats in 
the Upper Hat Creek region ofBritish Columbia, Nance calculated the  parameters 
of the ncgative binomial distribution, s and b. For a given quadrat sizc, then, he 
could predict the number of "empty" quadrats that would be surveyed, the 
number containing one site, the number containing two sitcs, and so on. H e  found 
that thc negative binomial distribution fit the observed sitc distribution v c q  
closely (Nance 19833335, Tables 8.8 and 8.9). This fit was expected sincc thy 
predictions u7cre being compared with thc data horn which thcy u w c  derived, but 
the results indicate the potcntial ofthis and other probabilit!, distribution I'uncrions 
for indicating approximately how nnny empty units are likely to be found for a 
given sample sizc. By estcnsion, if a reasonable estimatc of the probability that a 
unit will not contain a sitc can be calculated, we can also detcrminc the number of 
units that would have to bc survcycd in order to obtain a specific number of units 
containing sitcs. For esample, ifrhc probability ofany survcy unit being cmpty is 
0.50, then in order to obtain 30 units that contain sites we would need to survcy 

30 = rr - (number of empty units) 

30 - a - (ri)(probability of an empty unit) 

30 = t i  - (n>(0.50) 
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Nance (1983~338) has pointed out that the magnitude of the cmpcy unir 
problem is likely to vary widely from region to rcgion. Thc  problem will be evcn 
urorsc when interest focuses on specific sicc cypes as opposcd to sites in general. Ac 
this poinc we have cwo choices. Wc can either adopt very large sampling fractions or 
try co reduce the spacial he t c rogcne i~~  eshibited by most site distributions. 

T h c  primary means by which archaeologists haveatrempred to reduce hercro- 
geneity in sire distributions is chrough stratification of the sample univcrsc. Often 
archaeologists dh ide  a sampIe univcrsc on [he basis ofcriccria char they b c l i e \ ~  may 
have influenced sire location or chac [hey believe can serve as a proxy for such 
influence. Common criteria include soil ~ y p c ,  vegcration zonc, physiographic unir, 
or any combinacion of the above. In many ins ta~~ccs  chc rcsulring arcas are simply 
vicwed as separate sample universes. For cxamplc., Thomas (I!T5:65) dividcd the 
Rcesc River region into three units on the basis of biotic commimiries, and the 
resulring subdivisions were viewed as scparatc sample univcrscs. In ordcr co draw a 
10 percent sample of chr region, Thomas actually sclecced 10 percent of rhc 
sample units in  each sampling domain hy means of a separate simple random 
sampling procedure. 

T h e  main advanrage of this approach is that i c  ensures rhat all regions gec 
proportionally equal covcragc. Further, because simplc random sampling was 
conducced in each region, parameter estimates can he computcd for cach scrarurn 
using forn~ulas designed for such sampling. If interest focuses on estimates for the 
cntire sampling universe (i.e., thc arcas encompassed by all strata combined), 
howcvcr, then computing chew estimaccs is somewhat more involved. For cxam- 
plt., to escimace the scandard error of chc samplc mean derived from a simple 
random sample, thc following formula is used: 

SE = 
f 

\1? 
4- 

where SE is chc scandard crror, I is chc scandard deviation of [he sample, ti is thc 
sample sizc, and h' is chc s i x  of [he population. The  standard crror of thc sample 
mean derived irom a scratificd random sample is calculared as 

where SE is the standard error of the scrarificd sample, ni is the numbcr of cases 
choscn from Scratumi I .  is the standard deviation inscratumi, A is thc cotal numbcr '. 
of cases chosen, and h is chc cotal number ofcases in thc population. 

T h c  standard error is clearly easier [o calculacc for simple random samplcs than 
for scracilied random samples. The  remptation is co make the assumpcion that the 
variability within and betueen straca is approshnately the same and thus procccd 
with calculations as ifche sample were a simple random onc. T h c  problcrn with chis 
approach is that each variable being measurcd may be characterized by dif i rent  
levels of variabiliry in the stra[a and different degrees ofcorrelation with the criteria 
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used to create the strata (Dison and Lcach 1978:17). The  net rcsult for most 
variables is that chc standard error, as computed by the simple random sample 
formula, is overestimated. This is true cvcn if the same sampling fraction is used for 
each srrarum. 

T h e  stratification approach dcscribcd above is best suircd ro relatively large 
areas for which our information about sitc location is limited. Many Burcau ofLand 
hlanagemcnt Class I1 coal lease inventories in the Rocky Mountains fi t  this descrip- 
tion. These managcmcnt-defined universes can cover well more than 100,000 acres 
and contain portions ofseveral river basins. While at the outset archacologists may 
not be in a position to dcfinc strata that covary with sitc disrribucions, the!. may bc 
ablc to suggest that cach major river basin could havc encompassed a separate 
settlement-si~bsistencc system. Failure to dividc the region into natural units could 
lead to oversampling in some regions and undersanlpling in others and thus to 
rather poor parameter cst~marcs. 

An alternative to this type ofstratification is systematic sampling. In the latter 
drsign, survey units are selected at set intervals, with the first unit usually being 
choscn by a random process. Sevcral espcrimencs with archaeological data have 
shown that systematic sampling can lead to relatively prccisc parameter estimates 
(Judgc ct al. 1975; S. l'log 1976; Sandcrs ct al. 1979). T h e  main disadv~ntagc ol' 
systematic sampling is that the approach is liable to miss patterns in the underlying 
distribution chat cxhibit periodicity. Statistically, a sysrematic sampling design is 
somewhat rnnrc difficult to evaluate than a random dcsign because bias can only bc 
estimated (Cochran 1977; Read 1975). 

Discussions ofsample srracification usually do not refer to definition of'separatc 
universes. Generally, stra~ification means subdividing a samplc univcrsc in to two or 
morc strata and then sclecting dif i rcnt  proportions of cach stratum for obscrva- 
tion. When the population exhibits uneven spatial variability, as in the case of 
clustered clemcnrs, such as sites, an areal stratification schemc that samples the 
strata in proportion to thrir estimated variance will, if done correctly, lead to morc 
prccisc paranwtercstirnatrs than simplc random sampling, systcmatic sampling, or 
stratified sampling with proportional allocation (Cochran 1977:W-103). Let us 
assume, for esample, that a region consists of two vcgcration zones, I00 km2 of 
piion-juniper forest and 100 km20fsage,brush. Further, Ict the pop~lat ion valuc for 
site density in the piiion-junipcr zonc be four sitcs per square kilometer with a 
variance of three, and the site density in the sagebrush ronc be two sites pcr square 
kilometer with a variance of0.75. A 10 percent sample of the 200 km2 region using I 
km2 survey units would result in rlw survcy of 20 units. Under 3 simplc random 
sampling approach, cach unit selected has 50-50 chance of bcing locared in the 
piiion-juniper forest and a 50-50 chance of bcing in the sagebrush zone. Csing a 
binomial distribution we can calculate the probability of sclecting a speciilcd 
number of samplr units in onc of these zones as 
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whcrc P ( r )  is rhc probability ofsclccting r survey units, ?i' is t he  total numbcr  of 
survcy units selccrcd,p is t he  probability of selecting a survey unir in the  zonc in 
qucs tion, ,and q equals 1-p. 

Table  6.2 lists t he  probabilities ofselecting cxactly 0, 1,2, . . . 20  units in one of 
the  vegetation zoncs. T h e  mosr Iikcly outcome is that  ofobtaining 10 survey units 
in each zone, which will occur approximately 17 percent o f t h e  time. T h e  chances of 
obtaining distributions of 9-1 1, 8-12, or  7-13 are rclativcly good, with thc  7-13 
distriburion occurring about 15 pcrccnr o f t h c  time. While i t  is rruc that  ovcr many 
samplrs a relatively even split can bc cspcctcd,  for any onc samplc rhcre is a fairly 
good chance that one zonc will be  overrepresented and the  o ther  underrcprc- 
scntcd.  Given the  population valucs, a simplc random samplc will lead to rather 
imprecise esrimares. T h a t  is, samplv estimates o f t h e  population values are likely to  
flucruarc. very widvly and thus to  be associatcd with largr standard crrors. 

Sampling each zonc proportionally will not greatly affect this situation. In our  
cxamplc, if we were to  treat cach zone cqually, exactly 10 units in cach would bc 
surveyed. For  thc  sagebrush zone this might be  suficicnt ,  bu t  given rhe large 
variancc in the  pinon-junipcr zone such an approach would still lead t o  rathcr 
imprecise cstimatcs. In rhis siruarion what wc really wanr to d o  is to survey more 
unirs in rhe  piiion-juniper zone than in t h c  sagebrush zone. How many more7 T h a r  

TABLE 6.2. 

Probabiliry ofselcccing aspecificd numbcr ofsurvcy units in particular zoncundcrrimplc random 
sampling, p - 0,50 



depends on the variance of the samplc mean and [he  cost of raking the  sample. 
Cochran (1977:516) defines one function for computing cost as 

where c,j is t he  cost per  unit in Stratum h, nh is the  number  of units observed in 
Stratum h, andc, represcrts  an  ovcrhead cost. In archacology, costs per  unit would 
111cl11dc such items as recording time and travel time (often rhc lartcr is represented 
mathematically as 

If), 6 
where t h  is rhe travel cost per unit). T h e  objective, then, is to minimize cost for a 
specified variance of the  stratum's sample mean o r  to minimize the  variance of rhe 
samplc mcan for a spccificd cost. 

I fonc  is nor in a position tocstimarccosr and is willing to  assume char cost per  
unit i s  t he  same in all strata, thcn dercrmining o p r i ~ n u m  allocarion rcduees co the  
equation 

where nh cquals the  number ofcascs r o b e  selccted in Srracum h, n refers to  [he  rota1 
sample sizc, Nh equals t h e  number  of potential cases in St ra tum h, and Sh is t he  
variancc of [he  sample mcan in Stracum h (Cochran 1977:98). This  allocation is often 
referred to as Nqwan's allocation ( N e y m m  1934). For ou r  prcvious example, using 
Ncyman's allocation we would obrain thc  following results: 

- 20(100 x 0.75) 
"dcscrr scrub - = 4 

(100 x 3) + (100 x 0.75) 

T h c  point hcrc is that if sample size and samplc fracrion are relacivrly small, 
[hen use of prior knowledge about the  narure of chc phcnomcnon to be  modeled 
may be thc  best way to obtain the  precise csrimarcs needed for modeling. 'The use of 
such information in archacological modeling has been rarhcr limited, perhaps 
because many archacologisrs believe chsc they arc nor in a posicion to o f k r  even 
good gucsscs as co rhc underlying popt~lation valucs. 

O n c  approach ro circumvent this problem is to  perform a pilot study.  For 
insrance, if we were conducting a 10 perccnr sample survey of a national forcsr for 
the  purposes ~Cest imat ing site density, one  strategy would bc  t o  selcct a 10 pcrcent 
simple random samplc of predefined arral grid units. Th i s  approach, while perhaps 
meeting the  assumprions ofsampling r h e o ~ ,  many times leads ro very poor results. 
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Esrimates are often nor w r y  precise, and one is left with the feeling that for all the 
rigor we have still not lc=arneJ very much. A better approach might be to assume 
thar sire locations covary with certain mappable features (r.g., soils or landforms). 
This assumprion could be rested by some type of probing or purposive survey (see 
ncxt section) and/or by a relatively small, simple random sample survey. Based on 
the results of chis survey, specific criteria could bc defined rhat would lead to a 
uscful stratification of rhe region. 

If a small simple random sample s u n q  had been conducted, then rhe sample 
could bepormra~ificd; rhar is, each of thc units surveyed during rhe pilot simple 
random sample eould be reclassified into one of thy newly defined strata. Cochran 
(1077:134) noccs that posrstratification is almost as precisc as proportional stratified 
sampling in providing parameter estimates as Iong as the samples in eaeh stratum 
arc reasonablv large (say, more than 20) and thc efkcts of crrors in the strarum 
weighrs can bi ignored. Basically, care m k r  be cakcn to ensure rhar rhe final sample 
matches the population in important respects. If, for example, access to survey was 
denied on private land along river bottoms, thc sampling frame might have 
escluded a high proportion ofa certain site typc. Simply giving added weight to rhe 
sites of rhar type rhar srrc included in rhe survey may nor improve rhe sample's 
estimate for rhe density of rhat sitc type; indccd, it may make it worse (Dixon and 
Lcach 1978:2 1). 

If we can justify poststratifying the sampling universe, then we can use the 
variance estimates tbr each stratum to dctermme the opt~mal allocation of cases for 
the second stratified random sample. Chances are estrcmcly good that cven though 
the paranictcr esti~natcs ofthc stratified random sample would be based on a smaller 
numbcr of cases (that is, assuming rhat the pilot study and thc stratified random 
sample sunrey together cowrcd 10 pcrcent oE rhc rcgion) the gains madc by 
stratifying rhe rcgion would still lead to more precisc estimates than those based on 
a singlc 10 percenr simple random sample. 

As a final note, wr wanr to point out one more serious problcm with using data 
derivcd from strarilied random sampling to develop prcdictive models. Generally, 
when a multivariate pattern-rccognition modcl is developed somc type ofcommer- 
cia1 software is used. All  statistical sofrware packages ofwhich we are aufareassumc 
simple random samples-that is, thc variance-covariance matrices arc computed as 
iEthc data were obtained rhrough a sinlplc random sampling procedure. Ifstratified 
random sanipling was used instead, thcn thc matriccs will be computcd incorrecrly. 
The  statistical ramificarions of this error are not well understood, although it is clear 
thar rhe variances will bc overcstimated, Perhaps rhe best approach to this problem 
i s  to writc a simple program to compute thc matriccs correctly and then use these 
tnarrices as input to thc desired algorithm. 

Purposive Selection 

Onc ofthe main objectives ofcollecting new data for predictive modeling is ro 
make certain that no magnet site is missed. Many such sites will have been recorded 
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prior ro the survcy or will at leasr be known to local inlormants. In this situation all 
that need bc done is to verify thc site's location and [he nature of its surface 
assemblage and cnvironmental contest. In cases wherc chcre is rcason co belicve 
thac not all magnet sites arc known, survcy srratzgics that masirnizc rhc chanccs of 
finding sites in this category must be dcsigncd. Therc are two options. Whcn there 
is evidence thar imporcant ccnrers werc distributed according to some predictable 
fcaturc ofthe natural Imdscapc, such as at a regular interval along a major river or at 
the conflucncc of major warercourscs, specific areas can bc picked ro survey. A 
sccond approach, which is especially uscful in rcgions occupied by complex socie- 
ties, is to  use some type of remote sensing ~nformarion. Because regional cenrcrs 
rend to be thc largest and most comples sites in a givcn area, they can often be 
detected on aerial phorographs (see Chaprcr 9). Another technique thar enables thc 
archaeologist to cover extcnsivc ground areas in short periods of time is aerial 
survcy from a small-engine aircraft or a helicopter. In t h ~ s  regard, Roggc. and 
Lincoln's comments concerning the Tucson Aqueduct surveys (described in Chap- 
ter 3) are particularly appropriate. 

Our -1'ucson Aqueduct casc indicates rhat we did lrorn a great deal with cach nru.surwy 
but implicr that our predictive modcls wcrc not particularly robubt. Neithcr did 
conducting rlic surveys esacrly "by the book" ensurc meaningful input into our 
plmning process. . . . If wc urcrc to srarr rhc Tucson Aqucducr scries o i s ~ ~ r v c y s  over 
roday wirh thc 20-20 vision of hindsiprhr, u8c might dccidc to spcnd a fcw days with a 

hclicoprer looking ior platforn~ mounds and do nothing more until a rourc was sciccrcd 
1198J: 191. 

The  two approachcs arc nor mutually exclusive. Indccd, in onc of thc most 
intensive archaeological surface surveys evcr conducted, Millon (1972: 11  -12) had 
thc entire confines of thc city of Tcotihuacan photogrammetrically mapped to 
reveal low-Iying mounds, which are ofrcn the remains ofarchitccrural features. The  
maps wcre then uscd to guide subsequent fieldwork. 

Research dcsigns can incorporate both purposive selection and probability 
sampling. During the Tucson Aqueduct surveys, for example, had the Bureau of 
Reclamation conducted a helicopter survcy and round the three pIat form mounds, a 
srratified random sample survey could have been conducted. Thrce sampling strata 
consisting of arbitrary 10 by 10 km grids centered over cach platform mound and a 
fourth stratum rcprescnring the rcmainder of the survcy universe could havc been 
defined, with rhc surveyors covering relatively high sampling fractions in cach 
Hohokam community stratum and a much lowcr fraction of rhc remaining region. 

Finally, it is important to point out that evcn with the best ofsamplc survey 
dcsigns, magnet sites will still be missed. Some havc argued rhat chis is exactly why 
sample surveys and prcdictive models should nor bc used. In an absolurc sense, 
these critics are right; prescnc modcls make more mistakes (especially gross errors) 
than anyone is willing to  accept. But blind 100-percent surveys are nor necessarily 
the answcr. Complete inventory surveys that havc no cheorerical foundation often 
end up adding little to our understanding ofprehisrory. Further, depending on the 



ficld methods (i.e., crew spacing, recording technique, crc.), " 100-percent" surveys 
can easily miss all cypcs of sites, including magnet sircs. In short, regardless of 
whether the sampling fraction is 10 percent or 100 perccnc, there is no substirutc for 
a well-thought-out survey design that is groundcd in some theoretical foundation. 

Depositional and Postdepositional Processes 

T h e  final class of data nccdcd for the creation of a predictive ~nodcl concerns 
the processes aft-ccting site dCtcction and site survi\*ability. From a rescnrch per- 
spcctivc, it is important to bc able to predict arcas wherc sitcs probably wcrc 
located but where evidence of past activities has bcen destroyed by natural 
processes. IVhile negative cvidencc may nor be very helpful in substantiating 
hypothcscs about serrlemcnt location, proper gromorphic interpretation may be 
critical ifwc are to avoid incorrect rejection of a hypothesis becausc of the lack of 
culturai remains. From a management perspective, it  may be less critical to modcl 
site dcstrucrion thar has resulted from natural processes, but it  is still necessary to 
modcl locations ofsites that are intact but not visiblc on the surfacc. Buried sites arc 
perhaps the land manager's worst nightmarc. Often rhcy are not found in thc coursc 
of usual culturai rcsotlrce studies and are only detectcd after construction or 
development has begun. The  mitigation of advcrse cf'fccts on buried sitcs often 
ends up costing much more than the expenses of the nrchaeology alone. 

T o  find buried sitcs the first step is to detect and trace pako land surfaces 
suitable for habitation. This task properly falls into the ficld of geornorphology. 
While archacnlogists h a w  worked with gcornorphologists for many years (e.g., 
Butzer 1971, 1982; Davidson and Shackley 1976; Hnssan 1979; Hapncs 1%8; Haynes 
and .q;n$rici l%6; jacobscn and Adams 1958; Martin and Klcin 1984; Saucier 1974), 
this working relationship by and large has nor been transferred into the area of 
prcdictive modeling. Gcomorphic fieldwork should ideally precede at least one 
stage of archaeologicai fieldwork. The  results of the gcomorphic analyses are often 
presented as maps of paltm land surfaces that specify arcas whcre buried sitcs are 
likely to be found. Ifsuch studies were carricd out in conjunction with archaeologi- 
cal survcys, :Ireas dcsigmted by the gcomorphologist could be esamincd with 
subsurface tests. 

The  issue of subsurface testing on survcys has recently received considerable 
attention (e.g., Krakkcr ct 31. 1983; Lightfoot 1986; McManamon 1984; Nancc and 
Ball 1986; Wobsr 1983). Most of this Interest stcms from research in forvsted areas 
where thc ground surfacc is obscured. In ihese sit~rations visual inspection of the 
surface greatly underestimates rhe numbers of sites and leads to highly skewed 
locational patterns. If thcse fxtors  arc not rakcn mro account, then statements 
about settlcment patterns that implicitly assume thar the observed sitcs arc 
rcprescncntive of site locations in gent.ral are likely to be highly inaccurate. 

Thus far most research on discovering bui-icd sires has fbcuscd on sitcs that lie 
on or near rhe surfacc. T h e  approach that has gained \\ridespread acceptance in this 
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situation is to space small subsurface probes, usuaIly in thc form ofshovel pits or tcst 
pits, at a set interval along a survey cranscct. Nancc and Ball (1986) havc shown rhar 
the likclihood of discowring sites with subsurface rests varics directly u.ith the 
artifact dcnsi~y and the size of thc sires. Another kcy variable in determining site 
discovcry potential is rhe intensity with which thc fill of the test is inspected. The  
probability of sire discover)r increases dramatically with a shift liom visual inspec- 
tion ofthe fill to screening of the fill, and the probability incrcascs still furthcr as the 
size of the scrcen mesh decreases. It is worth pointing our, however, that cvcn with 
a small intcrval between subsurface tests and screening through fine mesh, the 
likclihood of missing small, low-density sites is usually very high. 

T h e  problem of buricd sites is not confined to forested areas or regions whcre 
the ground surface is obscured. Gcomorphic changes can lead to buricd sites in areas 
with good surface visibility. For cxample, in some desert arcas of the American 
Southwest, remains of the Hohokam culture (ca. AD 200-1450) can be found on the 
surface. Pedestrian surface survcy results usually correlate fairly well with intact 
subsurface deposits of this agc. Remains of the prcccding Archaic and Paleoindian 
periods, however, arc not generally found on the surfacc. Sites associated with these 
periods tend to be found in dccp erosional cuts or as the resuIt of modern land 
disturbance or construction. Thus, an interpretation of negative results of pcdcs- 
trian survcys in thesc rcgions as mcaning that no Archaic or Palcoindian sites lic in 
thc survey area involvcs an inaccurate and unjustifiable logical leap from the surface 
to the subsurface. 

T h e  problcm of buricd sites is fairly widespread and will always have to be 
taken Into account when designing surveys to build predictive models. One 
approach is to use the results of a geomorphic analysis as a means of stratifying the 
arca. The  paleo land surfaccs identified could each bc assigned a rclative probability 
ofsitediscovcry. This probability could be based on previous rescarch, the cypcs of 
depositional cnvironmcnts represenccd, or a combination of rhcse factors. Each 
stratum could then be divided into grid units and a number ofgrid units selected for 
survcy through a random proccss. Optimum allocation of the number ofgrid units 
selected in cach stratum could bc based on the rclative probabilltics previously 
dcfincd, Each grid unit could thcn bc subdivided into smaller units, ui th  a set 
numbcr orthest. units being sclccted for subsurface rcsts through either a random 
or 3 systematic proccss. 

'The sampling scheme described abovc is referred to by statisticians as ,a?a-mgz 

sampling or rubrnmnpling (Cochran 1977). Although the statistics can become rather 
involved, this type of survey design can lead to unbiased and precise parameter 
estimates. Parcnchetically, if the design is' extendcd to sampling the subunits 
thcmselvcs, then it is referred to  as rhrtc-irugc sampling or nrtlrisrugtl sampling. T h e  
latter term is oftcn misused by archaeologists to refer co sampling dcsigns chat are 
carried out in scquencid steps (e.g., conduct a I percent simple random sample 
survcy of a rcgion [stcp I ] ?  stratify thc region [step 21, conduct a 10 percent 
stratified random sample survey of the rcgion [step 31, and so on). Although the 
tcrmmrtlrirrrrgr scems cntrenchcd in the archacological literature, to  avoid confusion 



with orher usrs of'thc tcrm we refer to this typc of sampling design as rrrultijiip 
throughout this volume. 

D A T A  COLLECTION IN CRM CONTEXTS 

Thc  prcccding discussion of survey strategies was presented as though we 
already knew where wc were going to survey, how wc n.cre aoing to survcy, and 9 
how we were going to record data. In practice, tllcsc are three of the most important 
Sactors that are involved in designing a survcy. In an ideal setting, all three are 
dererminrd on thc basis ofrrsearch objectives. Gut surveys conducted in cultural 
resource management contexts are subiect to a sCr of unique constraints thac often 
greatly rcstrict the urays that t h rw  rhrer factors can be integrated into the overall 
survey design. In the following discussion we examine the ways in \chich manage- 
ment needs have shaped survey design and evaluate the common responses to these 
needs in terms oftheir uscfulness for model building. Thesc issues will be discussed 
undcr threc specific topics: survey universe, survey intensity, and data recording. 

Survey Universe 

Idr:ally, the selection ofnn area to survey or from which sample units arc to be 
selected is based on theoretical propositions underlying thc rcscarch design or 
topics. In theor)., rcscarchcrs want to select a survey universe that conforms to a 
cultural unit. In practice, howevi.r, a t  best we can only approsim~tc this situation. 
Cultural systcms rarcly have sharp boundaries. Defining u.here one system ends 
and another bcgins is usually impossible for ethnographers, lo say nothing of thc 
problem faced by archaeologists. Further, cultural systems change through tinw in 
nature and in size. Thus, a survey universe suitable for studyingoncculturc may be 
too large or too small for examining its predecessors and its successors. 

A common solution to this dilemma is to sclect a region chat conforms co a 
natural unit, such as a drainagc basin or an island, with the size and type of the 
natural unit selected depending on thc rcscarch topic. r\t 011c cstreme, Sanders 
chosc thc cntire Basin of'Mesico as rhe survey univrrsc for a study of thc origin of 
srate-level societies in highland Mexico. The  ensuing project lastcd 15 years and 
involved about 50 field months of actual survry (Sanders et al. l!J79:19). !vlost 
projccts arc. not nearly as largc as thc Basin of !v!esico sunJey, but in all cascs thc 
se!ecrian of a survey universe is a compromise between tu.0 opposing criteria. On 
the one hand, we wan[ a region thar is large cnough so that w c  can reasonably arguc 
either that thc remainsofthc prehistoric scttlcment systems thar characterized the 
area arc contained within the survey universe or that all major co~nponents ofthosc 
systcms arc at Icast represented. On the other hand, u.c want the survcy universe to 
b r  3s small as possible, thcrcby allowing us to rnasimizu our survcp enbrt. 



For s u r v q s  conducted in a culrural resource managcmcnt conccsr, t h e  survey 
universe is most o r ~ c n  defined not by archaeologists but  by land managers, who 
must takc into account many factors that havc little to d o  ~ v i t h  archaeological 
research. In some cascs the  survcy universc will encompass one or morc natural 
unirs, but  usually it will not. I t  is appropriate, thercforc, to consider the  implica- 
tions that  managcmcnt-defined survey universes havc on building predictive 
models. 

T o  illustrate t h e w  issues we will usc rhc esanlple of a Burcan of Land 
h,lanagerncnt cultural resourcc management prqiect in the  San Raf~c.1 Su1r-li rcgion 
of cast-central Utah that  n.as mcntioncd carlicr, T h e  San Rabc l  Swell is an 
elongated anticline approximately I I0 km (50 mi) long and 50 km (23 mi) wide. Since 
1979 the  Bureau oTLand Xlanagcmcnt has sponsored six major survey pro!ects in the  
rcgion (?'able 6.3). All of  these projccts were designed as probabilistic sample 
surveys of mnnagcmcnt-defined survey tmivcrses encompassing difkrent portions 
of rhe s a d l .  O l t h e  more than 550,000 ha (cn. 1,360,000 acres) comprised by the  San 
Rafacl Swell, morc than 10,000 ha(ca. 25,000 acres; 1,s percent o f the  total area) wcrc 
inventoried 1s part of thesc seven projects. 

T h c  modeling cnbrts carried out  in conjunction with these survey projccts 
mirror :he gcncral trcnds in prcdictivc modcling. T h e  first locational analyscs 
consisted ol'univariatc and bivariatc corrclatior~s bctwecn site location and specific 

TABLE 6.3. 

Escirnatcd denbi~y of prchis~oric &cr in project arras in and near chu San Rafael Swell 
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environmental variables (Hauck 1!779a, 1979b). Significant associations Serween site 
locario~~s and environment were then combincd into ovcrlay motlcls ('Thomas ct al. 
1981). Finally, most recent attempts use sophisticated multivariate discriminant 
function analysis and hierarchical clustering models (Tipps 1984). 

None of these models has bcen a very good predictor. This is not a result of 
glaring errors in the derivation of thc  samples or thc application of the statistics. 
Instead, thc poor accuracy race appcars to resulr from "runncl vision." Each modcl 
was based on an inductive, partern-recogmt~on approach that viewed the survey 
universe as the only region of interest. Even a casual glance at Table 6.3, howevcr, 
indicates that wide fluctuations in mean site density exist. This is probably also true 
of the sanlplc variances, but csccpt for a few cascs, thcsc are not published. These 
variations arc probably caused by settlement and subsistence pracriccs that arc 
regional in scopc. Thomas and his colleagues appear to recognize ttus situation and 
state thar 

T'hc Ccnrrsl Coal 11 Class I f  Inventory was dl-signcd 3s 3 10 pcrccnr s~rnplc rmdom 
~ m p k  of thrcc slmpling unircrscs (Srudp Tracts I ,  11, and Arcn 111). Thc notion 
underlying this t!.pc ofapproxh is r h ~ r  rhcsurvcy r c s d t ~  olrhc sanplcd portionofoch 
tract cnn b r  gcncralizcd over rhc cnrirr tract. This mcrhod n i q  Is u ~ c k ~ l  t l r  evaluaring, 
sire wn,iriviry in Tracts I and 11. Bur.  . . Area I l l  docs not appuarto bc a self-contained . . 
culturnl unit. Scrrlcmcnr in  his arc3 s e c ~ n ~  to Dc dirccrly rclatcd to pracriccs in rhc 
adjoining regions. . . .Trying ro gencralirc rhc rcsulrs oft hc sampled portion olArc;lllI ro 
thc cntirc trzcr is apr ro k misleading. hl:tny o i  rhc c r ~ t  ical i k r  urcs in t hc scr tlcrncnt 
sylitcrn clearly utcrc nor included in rhc sxnpling univcrsc, lr~sreacl o l  dcvcloping 3 

st:rtistically valid modcl rhar makes littlc logical sense, i r  rccma h r  preicrablc tocrcarc an 
in~crnally consisrent modcl oftlie scrtlcmcnt sysrcm that can rhcn be uscd ro cvahare 
rhc h c a  Ill position orthe systeni m d  rhus to prcdicr arcas o f  itc wnsiti\.it? ['Thomas cr 
sl. 19WI:199]. 

Thus, while a 10 percent simple random sample ofcentral  Coal 11, Area I I I  might 
yield a rcprcsenracive sample of rparioi urtirr for char area, it is quire possible rhar 
rcgional patterns in the sectlcmcnc system would go undetecred on the basis oft  his 
sample. Even though the parameter estimares might bc reliable, predictive models 
based only on pactrrns disccrniblc wichin rhc sample universe arc, in rhis caw, 
likely ro yield disappointing results. 

There is no easy solution to this problcm. T o  build r~seful prcd~ctlvr models 
che researcher must haw. reason to belleve that the survey univcrsc confornis to a 
cultural unit, or failing this, hc or she must usc a defcndablc prohy, such as a natural 
unit. If we musc usc managemcnc-dctined survey universes, then i r  is critical thar 
the fit betwern an appropriate cultural or natural unit and rhc arbitrary universe be 
assessed. In addition, the resulting model must take inro accounr rhe posit~on of the 
resources In rhe survey area rcIative co the larger scctlen~ent-aubsistcnce sysrcm, 
and it nus t  mcorporatc regional factors affecting serrlcmenr locarion. 

Designing a research straregy to accomplish this task may involvc some 
restructuring of many culcural resource managemenc programs. To  use the BLM as 
an rxamplc, one solucion would bc to subdivide cach district into natural units. 



Insrcad ofbuilding a model for each major coal lcasc projccr, archacologisrs might 
build a model for each individual natural unir within t h e  districr, with 
[he model being periodically refined as more dara becornc available. T h u s ,  rhe data 
from a large coal lease pro!ecr mighr be bci ter  used in several rcgional predictive 
models instcad ofonc ad hoc, pro!cct-specific modcl. Such a program would rcquirc 
rhat each project carricd out  wirhin rhc districr emphasize the collecrion ofcompnr- 
able dara. \Vhilc ir is possibk ro combine. probabilistic samples, rhis requires 
considerable srarisrical experrise. A much marcb serious problem is char ofcnsuring 
rhat rhc entire sampling univcrse is adequarcly covered. T h c  ~ ~ s u a l  govcrnmcnr 
policy is nor ro survcy privately owned land. 111 many areas privare properry covers 
much of rht: "desired" Imd ,  such as rhe borromlands in a river valley or the  
elevarcd, wc-ll-drained soils in a dclraic plain. Many sites, including a high propor- 
tion ofmagner  sires, will ofrcn b c  found on privarc land. If we eliminare such arcas 
from our sampling univcrse, our abilir-y ro predict site locarion will be grearly 
hindered. 

Certainly chcre arc many problems involvcd in designing culrural resource 
managcmcnr projects rhar focus on culrurally meaningfr~l sc i~dy arcas, but  projecrs 
char emphasize! dcvelopmcnr of ad hoc models for arbitrary unirs are clcarly as 
responsible for rhe poor shoivingof rhcse models as anyrhing else. Unless this focus 
changcs so rhar rhe models can be rclared to  culrural phenomena, ir is unlikely rhar 
rhe resulcs will improve. 

Survey Intensit? 

Withour doubr rhc single mosr imporrant facror affccring rhc number  ofsi tcs 
locaced on a survcy is r-hc cffarr made to  find rhcm. Survc!t inrcnsiry can be 
measured in rcrms oI" rhc ratio of person-days ro square milcs survcycd or on  rhc 
basis of rhe spacing b e w e e n  surveyors (ludge 1981; S. Plog er al. 1978; Schiffcr and 
li7clls 1982). Regardless of rhc mcasurc iiscd, all studies ro dare confirm Judge's 
(1981:128) staremenr chat "rhc more rime spcnt  in rhc field looking for sites, rhc 
more sites will be found." 

S ,  Plog er al. ( 1 9 7 8 : ~  -393) examined rhc relationship between survey inrcn- 
siry (as mcasurcd by person-days per square milc survcycd) and cstimatcs of sire 
density using the  rCsulrs of 12 surveys conducted in the  so~irhwcsrern United 
Staccs. T h e y  found a srrong positivc lincar corrclarion betwc.cn rhc two variables, 
which is ro  say thar as si.mlcy intcnsity increased so did sirc dcnsity. Part of rhis 
relationship is a rcsulr of the  rime spcnr in recording sites and making collections 
once rhc  sites are found. Thus ,  we would expect rhat as marc sires are found marc 
rimc must be spent in the  ficld. S. Plog l-r al. (1978:393) argue convincinnly, ? 
however, thar this is not  the  whole story, rhat indeed, ifone controls for cxt ra  time 

spenr recording sites, a strong positive rclationship still exists bct\vcc.n survey 
inrcnsiry and sire dcnsity. In theory, a point of diminishing returns should be 
rcached beyond which increases in intensity do nor rcsult in proporrionnl increases 



111 sitc density cstimaters; for thc  12 surveys studicd, Ilowevcr, no evidence was 
found that  rndicated that  such a point had becn reached (S. Plog c t  al. 1978:393; see 
also discussion in Chapter 4 of this volumc). 

Selection of an appropriatc Icwl ofsumcy intensity requires carefill considcra- 
tion ofsevcral factors. T h c  major consideration affecting survey intensity should be  
thc  research obiectivcs. Is it nrccssarg to locate "alI" rcsourccs, o r  are we primarily 
in tcrwtcd in spccific typcs ofsites? For example, the  Basin oThIcsico survcy 
discussed earlier v;as designed to recover ''a variety of data on &*here people had 
livcd during the  pre-Hispanic past in rhc survcy area" (Sanders e t  31. 1979:15). T h e  
surveys, therefore, focused on habitation sitcs and madc no a t tempt  to identifv 
more ephcmcral, limited-activity loci. T h c  sclecrion of a ilesible survey interval of 
bctwccn 15 and 17 m (Sanders c t  31. 1979:24) was appropriate to thcse objectives. 

In cuituraI rcsourcc managemcnr contests, survcys arc rarely focused on a 
particular type ot'site, and even surveys designed to acquire data for a specific set of 
research obicctivcs are uncommon. I!sually thc  stated goal is t o  find "all" the  
resources. Such a hubric ideal can never be achieved, hon,cvcr, and what is really 
mcant by "all" is some w r y  high proportion of the  rccovcrable resources. 

Selection of an adequate survey intcnsiry also depends on the  nature of the  
resource base and thc  prcvailing natural conditions. As discussed in Chapter 4, t he  
lat ter  directly influc-nce our ability to  detect  archaeological material, a factor 
catcgorizrd by SchiKer and others asriribilit~ (Schiffcr and Gumerman 1977: 186- 187; 
Schiffcr and U;r-11s 1982:349; Schiffer e t  al. i978:6). In gencral, high visibility means 
that  ifcultural remains csist on the  surfacc an observer shoi~ld  be  able to see them.  
High-visibility areas generally havc sparse vegetation, c.g., deserts, beaches, or 
pIoued fields. Lou.-visibiliry arras have masked or obscured surFaces. Pedestrian 
surface survey techniques yield poor rcsults in thcse arcas and must be supple- 
mcnted by subsurlicc investigations, such as shovel tesrs o t  test pits, or by 
techniques that  expose the  surfacc, like raking or plowing. 

Cultural I'actors aff'cctina the  likelihood of site detection include si tr  sizc, site - 
obtrusivenc.ss, site distribution, and surface artifact density. In general, larger sites 
have a bet ter  chancy of being found than smaller oncs; sitcs with high surface- 
artifact densities arc nlorc likely co be  soen than those with sparse or  no surface 
esprrssion; and sitcs with obtrusive icaturcs, such as mounds or  masonry, arc casicr 
to find than sites lacking such features. While thcsegc~~cral iza t ions  may seem to be 
self-ovident, thcy have important implications for the modrl-building process. 
Previously it \.as argilcd that  in order to construcr 3successful prodictivc model wc 
need (ti) to havc reliable estimarcs oTa number of p a r a m c t ~ ~ r s  associated with site 
location,{h) to locate all o r  most o i t h e  rnagnct sitcs, and (c) to assess the  cffccts of 
depositional and postdcpositional processes on sitc visibility. TO discover magnet 
sitcs, large areas must be covered, bu t  oftcn thcse areas can be  survcycd at  very low 
intensities withour affecting thc  rcsult. In contrast, accurate parameter estimation 
for less-obtrusive sitcs rcquires 3 much highrr Irvcl. of cll;rl- pcr arca stlrvcycd. 
Given these competing requirr.mcnts, several archaeologists have reccntly advo- 
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cnted multistep survcy dcsigns in which different typcs of data arc acquired at 
dilfercnt stages (e.g., Docile 1976, 1977; Schiffcr and Wclls 1982; SchiKer ct al. 1978). 

Sincc. survcy intensity directly affects the ratc of sitc discovery, one would 
think that this issue would weigh heavily in the cvaluation of proposed survey 
strategies. In practice, this is rarely thc caw. Many scopes of work spccify the 
interval bctwecn surveyors; the typcs of subsurfact, tcsts, if any, that will be 
conducced; and the informarion that is to be recorded on each sitc. T h e  rationale for 
providing these Lsed specifications appears to bc that this will cnsurr that all 
contractors bid on thc same work. While the objcctivc is understandable, it is 
important that the land-managing agencics realize the effccts ofthis dccision on thc 
model-building process. When these aspects of the survcy methodology arc pre- 
specified, survcy intensity becomes a parameter rathcr than a variablc. Thus, what 
is probably thc single most important factor alfecting the pourer ofany predictive 
model is bcing arbitrarily sct by the managing agcncics Ibr reasons that h a w  little to 
do with archncology . 

T h c  point is that selection ofrhc survey intensity is a critical and integral step 
in rhc model-building process. The  choice should be bascd on fieldwork and subject 
to testing and refinement, as wcll as to  changcs when the research objectives 
change. One contribution that the managing agencies can makc to thc accuracy rate 
ofprcdictive modcls is to allow survey inrcnsity to be sct on the basis ofarchaeologi- 
cal considcrations rathcr than procurcmcnt procedurcs. 

Data Recording 

In the prcccding section we discussed some ol thc factors aKxting the number 
and types of sitcs discovered. Yet we side-stepped perhaps the most important 
issue-what is a sire? T o  a large estcnr, site dcfinirion is actually an issue of data - 

recording. That  is, we need to deline consistent and replicable critcria by which 
space can bc partitioned into those areas that we want to call sites and thosc that we 
do nor. Traditionally, this issuc has nor been problematic. Archacolagists tended to 
focus on large sitcs with discrete boundaries, such as masonry pueblos or carthcn 
mounds. In the last decade, howcvcr, some researchers havc focused on loci wherc 
evidence ofcultural activity is morc ephemeral, such as isolatcd finds or low-density 
artifact scatters, and it has become clear that these phenomena can be quite 
important to our understanding ofthe prehistory ofa region (e.g., DoeUe 1976,IW; 
Goodycar 1975; Teague and Crown 1983; Thomas 1975). 

This awareness ofthe continuous aspects of the archaeological record has led a 
number of archaeologists to question the utility of the site concept (Dunnell and 
Dancey 1983; Ebert ct  al. 1984; Thomas 1975; see also the discussion by Ebcrr and 
Kohlcr in Chapter 4). These invcstigators have rightly pointed our that sites do not 
behave; rather, peoplc behave, and thcsc behaviors havc a spatial dimension that in 
no way correlates u.ith discrete boundaries on a one-to-onc basis. T h e  problem of 
sitc dciinirion is dircctlp analogous to the "communiry boundary" issuc, which has 



bccn csrcnsively debated in social anthropology for rhc past 50 years (Rcll and 
Ncuby 1974; Galcski IW2;Goodenougl1 1966; Leach 1961). Thecentral poinr oSrhis 
issue is rhat anthropologists h a w  taken the villagc or settlement as their unit of 
analysis even though they recognize that peoplcliving in a villagc may work oursidc 
thc village, may own land outside rhc village, may [ravel outside the village, and 
may have relationships with people living in other villages. The  basic question, 
rhcn, is ac what point does the researcher sct boundaries [or thc analysis and trcat 
the resulting unit as an object of scientific inquiry? IVhilc. no absolute answer has 
emrrged, most anthropologists havc usrd a spatial aggregate (whcrher it bc a 
village, town, or ciry block) as thc unir of analysis. The?  argue (a t  least implicitly) 
that the pcople within this unit are morc similar to cach orher than they are to 
pcople living outside the unit andj'or t h a ~  thcy have more relat~onships with each 
orher than thcy do with outsiders. In archaeology, Chang (1%7, 1%8) has put 
forward similar arguments in favor of using the sctclerncnt, defined as a single 
component, ah the unit of analysis. As man!, critics of Chang's approach ha1.c 
pointed out (Binford 1968; Clarke 1968:W), howcvcr, compon?rlts can only be 
defined after the assemblage has bccn analyzed. 

While it  may be obvious at the time ofa survey that a mile-long lirhic sc:ittcr 
represents multiple occupations, onc still has to dc;d wirh the problem ot'rccorcling 
it. Should an attempt be madc to define discrcre loci as separate sires, or should rllc 
enrirc area be labclcd o11c site? Further, if the artifact scatrer extends beyond the 
survey unit, should the entire scarcer be rccordcd or only the portion within the 
unir? On the last point mosr archaeologists would a g e p  that if part of a sitc is 
located in a sarnplc unit, tht. cnrire site should be recorded. In practicr, howcvcr, 
[here arc instances, such as coastal shell middens and Iithic quarry sites, that can 
easily extend into rwo or morc san~plc units and for which an): boundary is 
somcwhat arbitrary. 

Therc is no easy way to ansurer thcsc questions in the abstract, Many agcncics 
and institiitions havc tried ro resolve them by adopting arbitrary criteria, such as :i 
minimum of five flakes per 5 m2, for site definition. This practice is not without its 
problcms, and ir  has important implications for modcl building. For example, 
considcr two areas, one in which live flakcs were Sound in a 5 rn2aren:lnd anochcr in 
which four flakcs were discovered in an area of the samc size. Irnder thc arbitrary 
dcfinition given above, the first area would bc recordcd as a sitc and rhe second as 
conraining four isolarcd finds. During the development of a modcl, 
isolated finds arc usually cirhcr ignored or given the same wcighr as sires. For the 
examplc above, this would resulr in a model that would eirher incorpor;itc fivc sitcs, 
four of u.hich are in exactly the same environment, or one site, with the arc; 
conmining the four isolated finds being considered a nonsitc. Docs this make scnsc 
in terms of human behavior? h4ost likely i t  does no[. 

The  dccisions as ro what will bc designared as a sitc and how char phenomenon 
will be rccordcd must therefore be based on the issues being addressed. In [hecase 
of thc Basin of btcsico survey discusst:d above, in[t:rest focused on [he development 
of'complcx socirtics, and the snrrrey crews conccnrraccd on finding habitation sires 
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(Smders e t  al. 1970). I n  contrasr, in rhe Kccsc. River survey Thoma5 (1!?75) was 
interestcd in sctrlemcnt and subsistence pattcrns of Crcai Basin huntc-rs-and- 
gatherers, and the basic unit of analybis: shiftcsd from the site to the artifact. 

U'hile thc definition of a srte, or more precisely of the unir ofanalys~s, must 
necessarily be relatcd to thc research question being addressed, ~t is also critical that 
resources be rccordcd in a rcplicable and consistent fashion. Ideally, we should be 
able to record resources in a way that is indcpendc-nt ofhow a "site" is defined. For 
niany state and f'edcral agencies the siic itscli is little more char1 a bookkeeping 
device for niainrainlng accurarc records. For these purposes an arbitrary definition 
will suficr. The problrm, then, is to find a way to fill out sirc records for agencics 
using one definition, while retaining the capability to man~pulatc the data according 
to any of a number of other definitions. 

One approach to this problcrn is to view. archacolagical data as a series of 
hierarchically arrmged dimens~ons, The  scale at which data are coilccted will 
dcrerrnincin uhar  uays they can be used in subsequent analyses. Data collecwd at 
morc specific IcveI\ can usually be aggregated to cspress ~nfor~nation at a highcr 
level, but th r  reverse is nor true. For example, dara on artifacts can bc. grouped to 
provide charactcrisrics offeatures or sicrs (such as counts ofdiffcrent artifact types), 
but information collected a t  the sicc level canno1 be used ro derive information 
abour artihcrs or features found within \ires. 

In vicw of the ongoing dcbatc about the deslrabiliry of'conduccing "sitciess" 
archavology (Dunncll and Dancey 1983; Ebert ct a]. 1984; Chapter4 ofrhis volume) 
within the conresr of predictive modeling, it may be worthwhile to esplore the 
possibility of collecting field data in several hicrarchical Icvcls, with the dara being 
organized in such a way that relationships berwwn levcls arc casily recovcrablc. 
That  is, data could bc collc~ccrd at the levcls of(r7) thc survey units, (h j  the sites 
(howcvcr one miglir choose to define rheni), (0 the different activity areas or 
ieatures within sires, and(dj individual artifacts, whether from particular l a t u r c s  or 
as isolatcd entitirs. Identification ofthcsurvey unit in which sitcs arc- found, the site 
in which features occur, and rhe fcaturcs with which artifacts are associated (~1st. of 
poi i~crs  to  dificrent Icvcls in thc hierarchy) awuld permit data from more specific 
Icvcls to bc aggregated ot combined ill order ro provide variables containing 
information about the nest higher levc.1 in the hierarchy. Durand and Davis (1985) 
have rccenrly reportcd a similar scheme, which they designed to managc archaco- 
logic:d rcsources in Nct.ada. Other states, such as Hawaii, also have similar data basc 
sy"e"S. 

Table 6.4 presenrs a hypotherical example of this approach. I t  depicts a 
four-level hierarchical design esterlding from the survey unit (the highest level) to 
the artifact (the loucsr level). In Tablc6.4 the rclarionships bctwccn diffcrcnt levels 
in the hierarch! arc rnaint:iined by labels on each successive record that identify, in 
turn, the survey unit, the site, the fcacure, and thc artifacts (which arc either 
isolated finds or parts offcarurcs). A particular level in the hierarchy can takc on a 
null value in order to accommodate re:~tures t h : ~  are nor associated with sites in thc 
traditional sense, as welI as isolated arti[acts. In pracrice, rhz nurnbcr of hierarchical 
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TABLE 6.4. 

Hypothetical four-lcvcl hierarchical tield data file 

Survey Unit I . . . . . . . . . . . . . . . . . . . . . . . . . .  (survc): unit data) . . . . . . . . . . . . . . . . . . . . . . . . . .  
Sitc I 

I 
I 

1 

I 

I 

I 
I 

I 
Sitc 2 

2 
2 

2 

Sitc ? 

3 

3 

3 

3 

0 

0 

0 

0 

0 

0 

I Artihct3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Fcarurc 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 Art~fact I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
................................ 2 Ar1ihcr2 

2 Artihcr 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Isolatcd 
Fcarurc 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

lsolxcd 
Feature 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 .+rr~fact l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2 Arrrbcr 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 l ~ o l . ~ t c d  Arl&ct I . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  0 Isolarcd Artil'act 2 

Icvcls, their labrls, and other details ofimplcmentation would bc thc responsibility 
of rhe sysrem designer/user. 

This methodology would make i t  possible to deal with c u l r m l  remains 
occurring eithcr in packets termed ~ ~ [ L V I  or as individual irc-ms varying in density 
across the landscapc. In the latter instance, ifthe spatial coordinates ofartifacts have 
been recorded, their locations could be entered inro density-contouring algorirhms 
or k-means analysis (Kintigh and Ammerman 1982) as the basis for activity area, 
feature, or site definitions. Furthermore, characrerisrics of lower-order records 
could be used in any number of ways to construct variables descriptive of higher- 
ordcr entities. Artifact variables could be transformed, for esamplc, to product. new 
informarion to describe rhe fcntures or sires in which thcy werc tbund. Similarly, 
data from features might bc aggre-ated tocharactcrizc siccs furthcr, and data from 

P 
sites mighr produce additional intormation on the survejr unit in which thcy were 
locaccd. Counts of different rypcs of artifacts recovered from features might br 
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rranshrmed to  construct a new variable of artifact density for each Lacure, or  
d i m r e n t  types of features found on sites might be tallic=d to build 3 ncw v a r i ~ b l c  to 
characterize sires. It  is easy to envision many orhcr kinds of aggregated variables 
that  could be  developed from lower-level conhtructs to  characrcrizc higher-level 
entities. 

A stacond major issue in cultural resource manage~nent  that directiy affects how 
resources are recorded is the  question ofwhether  or not arril'acrs should bc collected 
horn rhc surface. O\,cr the  past decade a "no collection" policy has bccomc 
standard for more and morr  federal agencies. T h e  basic reasoning behind this policy 
is that  more information is lost by unconrrolled surface collection rhan is gained by 
having access to  cultural materials in t h e  laborarory (S. Plog e t  al .  1978; Schifkr and 
Gumerman 1977). Certainly many cultural rcsource inventory surveys arc con- 
duc:ed without benefit o f 3  rcscarch dcsign, and in thesc cases collecting artifacts, 
especially if they will not be ruialyzed, serves no useful purpose. But i f '  t hc  
development of regional predictive models, such as thosc advocated earlier in this 
chapter,  were to become a major objcctivc, then results from all surlrcys could b e  
used in the  proctss of model building. In this case, t h c  no-collc.ction policy would 
have serious ranlifications. 

Whilc in theon. a no-collection policy should not affect either t h e  quality or  
the extent ofartifact analyses, in practicc there is lit& question that  it does. In-field 
analysis requires a level of'compctence for crew members that  is gerwrally not m e t .  
\Vhcn in fact t h e  requisite expc.rtisc is assembled, the  costs of in-iicld analysis rise to  
a level comparable with laboratory analysis. T h e r e  is no question that ,  3s commonly 
used in cultural resource management, t he  no-collcction policy s a w s  money. T h e  
qilestion is, at what cost? 

As is t h e  case wirh so many survey decisions, the  impact of t h e  no-collection 
policy is different on diftPrcnt typcs of sires. For largt  s i t t s  with high surface- 
artifact densities, this policy may not have serious negative efkcts.  Ample numbers 
of wmporal diagnosrics can usually be found on the  surrace without much rrouble, - 
and even withour diagnostics thesc sitcs are generally classifiable into one of only a 
small number  o i  funcr.ional site types. Real problems can arise, however, when 
low-dansicy artifact scarters arc c.ncountcrcd. In s i ~ c h  cases we usually need all t he  
information wc can get in order to even hope co define useful analytic unics. Oiccn, 
distinguishing criteria, such as the presence or absence ofa certain chcrc type or rhe 
proportion of flake categories, will not have been devised at t h e  time of fieldwork. 
Thus ,  evcn ifcrews are \vcll trained Ibr in-field analysis, ic is simply no{ possible to  
foresee all t he  observations thac mighr prove to be informative. Further,  detailed, - - 
technically complex analysts, such as wear pattern or organic residue analysis, may 
be  required t-o address issues ofsi te function. These  simply cannot b c  conducted in 
thc  field. 

The* no-collection policy is in part responsible for our  current inability to 
distinguish useful site classes, and it is unlikely that this situation will change until 
t he  policy is altered, T h c  probleni of lost provenicnce for surface-co1lectc.d materials 
docs not necessarily call for the  radical rncasurc ofprohibiting collections; contract- 



ing agencies could simply require rhar provenience information be recordcd. If a 
projcct is designed to collcct data for predictive modeling, what is nccdcd is not char 
we record less informarion bur thar arc record more informarion and record ir more 
accuratcly . 

The  issue of accuracy is central to any discussion ofdata recording. Basically, to 
develop a predictive modcl threc caregorics ofdara are needed: In)  locational dara, 
(6) cnvironmcnral conrcsrual data, and I[,) cultural dara. I t  should be pointed out 
rhac, if nonsitcs are ro be uscd in the prcdictivc model, data on rhe first two 
catcgorics must bc rccorded for each nonsite location as well. 

The  importance of prccise locational data may 5ccm obvious for any projcct 
wirh thc stated goal of dcvcloping a prcdicrivc modcl of site location. Whnr is 
pcrhaps nor so obvious is rhe difliculry of obraining such data. S. Plog cr al. 
(1978:415) cite esperiments on Black Mesa in Arizona in which sitcs were revisited to 
chcck on locational accuracy. ConsidcrabIe variation was found, with some sircs 
located accurately and ochers having bccn plottcd morc than 200 m from rheir 
correct Iocation. Thesc probIems rend to multiply as morc rcscarchcrs work in an 
area through timc. In a Class I overview for thc LJppcr Gila River in Arizona, Phillips 
cr al. (1984) found thar thc samc sitc had bccn recordcd threc separarr times (rwice 
by rhe same institution) and plotted in three diffcrcnc locations. Portions ofanothcr 
sitc had been rccordcd as two scpararc sires by survcy teams who wcrc recording 
only the portion of the site that kll within their project area. 

Locational crrors such as thosc cited above indicate the need lor some type o i  
error-chccking program wirhin the survey design. Ideally, such a program would 
include "double-blind" tests in which a sccond survcy crew wirh no knowledge of 
thc first crew's results resurveys the samc quadrar. This procedure would be 
especially hclpf~il Tor federal agencies, such as the ELM, which havc placcd a high 
priority on maintaining comparablc data standards betwccn surveys. Double-blind 
resrs allow us to asscss locational accuracy, and because ru70 crcws record the samc 
resources, [hey also permit us to  examine variation in rhe orher aspecrs of site 
rccording discussed below. 

Another approach to assessing the accuracy of dara rccording is through 
random spoc checks. Such a program would ensurc char sires are rccorded accu- 
rately, but it  will not asscss whether sitcs wcrc missed. A third approach, oitcn used 
on largc surveys, is to use separatc sunrcy crews and recording crews. Survey crews 
mark cncountcrcd sitcs on a map (and, iipossiblc, in rhc field) and the sitcs are then 
visitcd by the rccording tcam. This approach has thc advanragc of providing a 
check on recorded site locarion and oiimproving the consistency oidata recording. 
T h c  rccording crews usually have fewer people than the survcy crews, and thcir 
menlbcrs have bcen specifically trained ro collect rhe desired dara. 

Collecting environmental data is pcrhaps the most confusing and dificult area 
of data recording. The  rcason lor this confusion appears to be thar archaeologists 
have only poorIy dwcloped theoretical notions about rhe relarionships between 
aspccts oisirc location and the cnvironmcnr. The  prevailing tactic sccrns to  be ro 
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use as many environmental variables as possible, in the hope that something useful 
will fall out. The  result has becn a mushrooming of the quantity ofcnvironmental 
data being rccorded. Less than a decade ago, one-or two-page survey forms arcrc 
thc norm. Today many forms arc standardized at thc state or institutional level, and 
oftcn they are 10-15 pages long and accompanied by a 20- to 30-page instruction 
manual! 

It is not at all clear thar the recent rrcnd toward standardization has cither 
improvcd thc accuracy of data recording or provided the desired data. This is 
cspccially rruc of features of the environment thar are difficult to distinguish 
without quantification, such as plant communities, or  thosc that arc known to 
changc through rime (e.g., vegctativc zones). Instead of having archacologists, who 
may bc poorly trained, make many ofthese observations, a more eficicnt approach 
would be to dcterminc for a specific project the cnvironmcntal factors associated 
with site location (cither through background rcsearch or in a pilot study) and then 
train crews to makc only thcse critical observations. This approach cncouragcs 
flcxibilit y rathcr than standardization in recording proccdurcs. It may be true that 
at some larcr date an archaeologist may find that data pertinent to a specific 
problem were not collected. But the same thing can happcn even under the 
alternative approach of trying to record cvcrything at once, and worse, the "rccord 
it all" approach probably increases the chance that whatever ddta are rccorded arc 
recorded inaccurately. 

Oncc we have decided what data to  record, are then need to decide how to 
record them. Some typcs of data can only be observed and rccordcd in the field 
(e.g., site location, artifact assemblage, etc.), but others, such as vegetation and 
slope, might bc recorded equally well cither in the field or in rhc laboratory. There 
is no question that data collectcd in the laboratory arc less expensive to acquire and 
easicr for others to replicate than ficld-recordcd data. Bcfore the decision is made to 
collect data in the laboratory, however, the researcher must determine that the 
resulting information will be suficicntly accurate and precise. Spcci6cally, if infor- 
mation is going to be takcn from 7.5-minute USGS quadrangles, thc adcquacy of 
thesc maps for providing thc data at the rcquircd scale must be tested, rather than 
assumed. Verification of test information takcn from maps should be carried out 
before the research dcsign is finalized, and thc test data should be selcctcd from a 
variety of environmental settings. 

The  dccision concerning whether to collcct ccrrain data In rhc field or in the 
laboratory will also be affected by scveral projcct-specific considerations. If fieId 
crew membcrs do not have the training to rccognizc- vegetation patterns or to 
distinguish different artifact typcs, it may be unrealistic to expect them to rccord 
such information in thc field. On the other hand, there may bc instances where 
variables eshibit interaction effects, making it necessary to rccord the data for these 
variables in the field-information that would otherwise be collected in thc labora- 
tory. As a case in point, if site size falls bclow a particular threshold, it might be 
desirable to rccord some aspects of microtopography in thc immediatc vicinity of 
rhe site during the field visit. Iflaboratory determinations of slope rely on calcula- 
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tions using relativdy small scale topographic maps, the resultant data may reflect 
only a general avcragc in the neighborhood of the site. 

T h c  third class ofinformation necded for predictive modeling involves record- 
ing ofculturaI phenomena. In gencrll terms we want to know as much as possible 
about the activities that took place at a locale and about thc timing of those 
activities. Data pertinent to thcse objcctivcs dcscribc the nature of artifacts and 
features prcsent and thcir spatial distribution. Many o l  thc issues that were 
discussed in the context ofarcal survey have correlates at the level ofsitc recording. 
For example, Just as the spacing between surveyors is the single most important 
factor in determining the numbcr and typc of sites found in a survey, thc spacing 
bctwecn surfacc collectors is the primary dcrcrminant of thc number of types of 
artifacts collected (or observcd) at a site. Questions ofsample size and fraction, unit 
size and shapc, and samplc design must also be resolvcd a t  chc sitc levcl. 

Thcrc arc, houcvcr, fundamental difkrcnccs bctwecn regional survcy and site 
collection strategies. A t  the regional level u7e begin with a clearly dcfincd sample 
universc. A t  the sitc IcveI, the first issuc to be dccided is the boundary ofthe unit. In 
areas of high surface visibility, determining thc areal extcnt of a sitc may not be 
problematic, in which case defining an appropriate collcction or obscrvation stra- 
tegy is relatively srraightfonvard. At sites with minimal or no surfacc esprcssion, 
much ofthe time spcnr rccording chc sitc will bc devoted to defining the boundary, 
with little or no attempt being made to obtain a rrprcscntativc samplc of the 
cultural assemblage. 

A sccond difference is that at the sitc level urc arc somctirnes in thc position of 
being able to  definc thc cntirc population ofsurface artifacts, or at  lcast a vcry high 
proportion thcreof. This is cspccially truc oflow-density artifact scatters. Ofren it is 
less cimc consuming to flag and map each artifact in thc entire site arca, and collect 
thcm ifpossible, than it is to grid thc site and sample i t .  Furrhcr, becauseonc ofthe 
major probIcms in prc.dictivc modcling is sitc-class definition, and cspecialIy func- 
tional dcfinirion of undiagnostic artifact scatters, complete distributional asscm- 
blage analysis is oftcn a requircmcnr rathcr than a lusury. 

In contrast, sircs with high artifact densities will probably have robe sampled. 
Thcse sites arc nor likcly to prcsent major definitional problems, howcver, sincc 
they will usually yield diagnostic rcmporal and/or functional data. Any type of 
probabiIistic sampling design that ensures that all arcas of the sitc arc inspecrcd is 
IikeIy to yield the data necessary for sitc-class dclinition. 

Anorhcr type of sire, rhe large, low-dcnsiry artifact scatter, is much more 
troublesome. In many cases the designation ofsuch a phenomenon as a "sitc" is a 
misnomer, ifsift is taken to mean anything other than a defined arca of cultural 
marerials. Thesc sircs arc usually interpretcd as resulting from multiple occupations 
ar which similar (or dissimilar) activities may have been conducted. lfwc arc to have 
any hope of disentangling these multiple occupations, prccisc distributional infor- 
mation from large block units must be collecrcd. Thus, the grain size ofa grid placed 
over such a sire must be at least as large as one cluster of artifacts and features. 
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Decisions about appropriate survey unic sizc and shape should be based on a 
preliminary rcconnaissanct. of the site. Once a grid has bcen established over the 
site, an appropriate number of survey unirs can be selected for sampling, wich 
arcifacts and fcacures in cach selected unit mapped and collected or observed and 
recorded. 

In some arcas ofwidcsprcad, low-dcns~cy artifact scarcers i c  is impossible even 
to disringuish where one site ends and anochcr scarcs. Van Tries Buccon (personal 
communication, I986), faccd wich such a siruacion in the San Luis Vdley oCColo- 
rado, devclopcd a survey procedure, rermcd ~ratrrt-t, rccordirrg, in which che locarion, 
lengch, and orientation ofsets of2 m wide transects were spccificd. Transecrs were 
spaced cvery 100 ft and provcnienccd co a 0.10 mi2 unic. Councs on all arcifaccs and 
on a specified list ofcnvironmcncal actribuccs found ineach transecc were made and 
computer coded. In chis way an encire 20,000-acre parcel was surveyed. This 
approach was highly successful in chis cast. because [he entire arca could be 
considered one large, low-densiry scacccr. By nor forcing rhc results inco an 
inappropriare concepc (i.c., sires), rhc researchers wcrc able to make uscful stacc- 
mcnrs about [he quanclcy and narurc ofcultural resources in a reliable and replica- 
blc manner. 

DATA PROCESSING 

T h e  collection and proccssingofnew data for predictive modeling, whecher in 
rhe field or in rhe laboratory, has cradirionally been a labor-intensive and largely 
inefficicnc process. T h c  advent ofcompurcrs held our the promise that rhc process 
of gecring information from rhe Geld into a form rhac could be analyzcd could be 
grcarly specded up m d  streamlined. During the 1960s and most o f the  1970s many 
projcccs urilized large mainframc comp~irers for chis purpose, wich varying degrees 
ofsucccss. Yec it was nor until rhe rise ol'relativcly inexpensive microcomputers and 
associarcd hardwarc and software chac rhe pocencial ofaucomaccd daca processing 
came wichin che reach of che vast majority of archaeologists. 

I t  is nor our purpose here ro review chis rapidly changing field. Insread, we will 
discuss somc of rhe faccors chac should bc considered by chose who wish co automace 
daca collcccion and processing. 

Preliminary Considerations 

The  process ofcollccring and recording daca for predictive modcling should be 
carefully planned from the beginning of the project. As Sarasan (1981:48) has 
poinced our, once the research design has bcen sclecrcd and musr of rhe dara for a 
projecr have been collected, rescruccuring of [he daca system may be excrcmely 
rimc consuming, costly, or buch, and in cerrain sicuarions ir may indeed be 
impossible. 
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In-Field Data Recording Options 

A t  the present time many difTercnt system options dcsigncd to convcrt raw 
dara into machine-readable form csist. Nor all ofthosc availablvare su~table for use 
in ficld-recordrng situations, however, and some rhat arc adaptable to ficld use are 
more practical in certain sertings than or hers. Factors orher rhan intcndcd location 
of use also influtmcc the choice of an oprimal dara-rccording sysrcm. O ~ i c  of the 
most important considcrations is to  minimize the number of steps berwcen data 
obscrvat ion and machinc-readable rccord, sincc this reduces rhe opporr ~ m i t  ies for 
transcription crrors (Gaines and Gaines 1980; Naglc and Wilcox 1982). Considera- 
rions affccring decisions abour dara recording will differ berween field and labora- 
rory sccrings of a single project, and data recording will probably be sub!ccr to 
diKercnr constraints during each new investigation. 

The  most commonly used recording formar is thc familiar, handwrirten dara 
codc shcct, which is used in various permutarions for coding site survcy or artifact 
data. Data codc shccts have been in use for a long rime and arc nor likely to be easily 
supplanted as the primary archaeological tool for field dara entry. Handwritten 
forms are highly porrable, survive all bur rhe most adverse Iield conditions, and 
provide a readily accessible hard copy of the informarion they contain. "When all 
else fails, one can always go back to the field notcs" is perhaps the mosr commonIy 
held (if not a1ways the most accurate) archaeological perception of data recording. 
On the orhcr hand, most code shccrs fillcd in by hand arc not machine-readable and 
must go through a secondary transcription to arrain rhis state, a srep that has the 
potcncial for introducing errors into rhc data, 

Ncvc-rthelcss, variations of the handwritten dara code shcct will conrinuc to bc 
used in gathering data, as they should for small to moderately sized projects. 
Bccausc sitc survcy and/or artifact forms have to be transcribed, thcy should bc 
designed to follow as closely as possible thc inrendcd flow of later machine entry. 
Chcnhall(IW5) lists many "do's" and "don't's" for [hose who ancicipare dcvclop- 
ing and using hand-complered forms as the firsr srage in dara cnrry. 

Another well-known papcr formar, rhe optical mark, OMR, or OPSCAN form, 
possesses many of rhc advantages of the handwrirrcn data code sheet bur is directly 
machinc readable as well (Nagle and Wilcox 1982). Customized forms have been 
employed to create arrifacr records in the field (Nagle and Wilcos 1982), to code 
faunal data (Bonnichsen and Sanger I W ) ,  and to caprure sire dara on several 
archaeological surveys (Klingcr 1977, cited in SchiKer et al. 1W8:14; Scholrz and 
Million 1981:18). If creatively designed, cusromized OYSCAN forms represent a 
viable alternative to the use of handwrirten code sheets for ficld data entry since 
rhcy are well suited to handling interval-scale data as wrll as other numerically 
codablc., ordinal- and nominal-scale variables in common use in predictive model- 
ing. OPSCAN forms might also be chosen as a means ofdara entry when poor field 
environmental conditions eliminate or restrict the use oC other automated 
possibilities. 
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One of chc niosr promising areas of automarion in field data collccrion is the 
conrinu~ng devclopn~cnt of portable dara collccrors. These machincs, ofren no 
larger than a srandard calcularor, rccord and storc dara in a machine-readable 
formal rhar can subscqucnrly bc transfcrrcd to a morc powerful and lcss porrablc 
machinc. I'orcablc data collcctors, or PDCs, have bcen used since rhc carly 1970s in 
the LcIds of forcsrry and mining (Cooney 1985). Many of the carly PDCs had 
dedicared functions, such as dcrcrmining rrce hcighr or board fcet, which resrricrcd 
rheir usr to one discipline. 

In the late 1970s a number ofarchaeologisrs began experimenting wirh the use 
of PDCs in field situations (Altschul and Sandcrs 1984; Stephen and Craig 1984). 
While the rcchnique was promising, rhesc rescarclzcrs ran into a number ofcommon 
obstacles: most norably, esccssivc power demands, programming dificulties 
(many orthe early machincs, such as thc Hewlert-Packard 41 scries, could only be 
programmed in a language specific to that machinc), srorage limirarions, communi- 
cation problems, and rhe inability ro produce paper copy in thc ficld. Wirh thc 
advenr of lap or notebook computers, virrually all of these problems have bcen 
solved. Computers are now readily available that can casily becarricd into chc field, 
arc barccry powered, have builc-in communication capabilities, and can urilize one 
or morc high-level programming languages. Furrher, the developmcnr olbatrery- 
powcred pcriphcrals, such as microcassette drives and printers, provide the ncccs- 
sary scoragc requiremcnrs demanded by archacoIogica1 ficld situations as well as thc 
capabilities ro producc on-site hard copy of field forms and bir-mapped drawings. 

Laboratory Data Recording 

Although much has bccn made of the potencial use ofmicrocompurcrs on-site, 
rhis is rarely feasible. By naturc, surveys arc mobile, and rnicrocomputcrs (evcn the 
so-callrd porrables) are ill-dcsigncd h r  this purpose. hlicrocompurers may be more 
uscful on-site during excavations, but by and large rhe primary purpose of having a 
machine in rhe Iield is to rccord and srore dara, and in this role rnicrocomputcrs 
(even with all their power and capabilities) are simply no march for thc lighter, less 
cspcnsivc, and mortb maneuverable PDCs. 

Wherc rnicrocompurcrs run be used c.ffecrivcly is in the laboratory. Here thc 
computer can provide data encry, daca srorage and managcrnent, rcxt cditing, and 
staristical manipdations and can serve as a mechanism to communicare wirh and 
transporr data to and horn orhcr micro- and mainframe compurers. For survey 
projccrs of cven moderare size, dara managcmcnt wirh a data base managcmcnt 
system is probably a cosr-cfTcctive strategy. A5 most archaeolog~sts arc familiar with 
rhesc cornputcr capabilicics, they will not be discussed f~irthcr. 

iVe would l ~ k c  to nocc, hou,cver, chat all commercial scaristical software 
packages (whether for a micro- or mainframe cornputcr) with which wc are familiar 
rcquirr input dara to be in rhe form ofa scqutmrial (and gcnerally ASCII formar) file. 
Rccords in such a file (so-called flat files) usually correspond to a survey unir, a site, 



or an artifact, although these record ty pcs would not bc intcrspcrsed on a single file. 
Since this will probably be thc filc format in which the vast majority ofpredictivc 
modeling analyscs are conducted, anyonc conccmplating using a generalized data 
base managcmcnt program to store and manipulate his or her data should be 
cognizant of the fact that it will be ncccssary to convert the records, or a subsct of 
the records, to a flat filc format prior to conductingstatistical analyscs. Fortunately, 
most softwarc packages incorporate utilit y programs to accompIish this stcp casily, 
but the capability of crcaring a sequential output file structure should still bc 
ascertained in advance ofsclccting m y  particular software for data base managcrnent. 

CONCLUSIONS 

'This chaprcr has prescnred an outline ofthe data nccdcd to crcatc a prcdictivc 
model, somc of the factors that should guidc thc development ofa survey strategy 
to obtain those data, and rhe constraints of data collection in a culti~ral resourcc 
management contcxt. By virtuc ofthe fact that different ty pcs ofdata arc needed at 
different times to build a predictive model, the process lends itsclf vcry well to 
multistep survcy designs. While cach situation will call for a distinct strategy, some 
gcncral guidelines can be suggested. 

The  first step of ficldwork should concentrate on three topics: (a) magnet 
sites, (6) depositional and postdepositional processes, and (c) estimates of sitc 
density and of thc range of sitc types. Some sort of informed probing of specific 
locations (i.e., using information from local informants or regional knowledge) 
combined with extensive areal coverage (cithcr through imagery or actual flyovcr) 
should detect a large proportion of the magnet sites. A detailed gcoarchacological 
analysis should provide the necessary information on paleo land surfaces as wcll as 
indicate past trends in environmental conditions. Finally, somc type of small-scale 
probability sample survey can bc used to calculate working density estimates and to 
obtain somc notion of the range in variability in site types. Sample univcrscs should 
conform to narural units, and the area to  bc survcyed should be stratified if previous 
information can had  to the definition of justifiable strata; otherwise, a simple 
random sampling approach is advisable. The  level of survey intensity for this first 
stage should probably be high. 

The  second stcp of ficldwork should bc devoted to obtaining thc specific 
information needed to deveIop the predictive model. Data must be gachcred on the 
relationship between site locations and cnvironrnental features and between sites 
and other sites. Based on the preliminary density estimates and the location of 
magnet sites, thc sample universe(s) should bc stratified if at all possihlr. For 
example, catchment zones can be def~ncd around cach intrinsically important site 
and treated as separate strata, as c m  environmental zones that show wide ranges in 
site density. Optimal allocation formulas can be used to  masimizc survey resources. 
I t  may be necessary to increase the grain size of the grid during this stage of the 
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survcy. This will cspccially be true if intcrest focuses on intersitc relationships so 
that a high proportion of survcy units must contain two or more sircs, 

A third step of fieldwork is ncccssary to rcsr the modcl. A t  rhis sragc somc form 
of purposive sclcction may bc used to designate for survcy arcas prcdictcd to  
contain sircs and arcas prcdictcd not to  contain sitcs. Alcernativcly, the region 
could bc stratified on thc basis ofhigh, medium, and low probability ofsite location, 
and each resulting stratum could bc sampled according to some probabilistic 
dcsign. Also at rhis cimc the geomorphic map of the survey area should bc testcd. 
Onc approach would bc to  placc subsurface tests, such as dccp cores, rest pits, or  
shovel probes, according to some multistcp sampling dcsign. A sccond possibility 
would be to use somc type ofsubsurfacc rest, such as backhoc trenches a t  spccific 
locales along an alluvial terrace. 

Discussions of multistcp survey designs are not new in archaeology (e.g., 
Binford 1964; judge et 31. 1975; S. Plog er al. 1978; Schiffer and Wells 1982; Schifferet 
al. 1978). Implementation of such designs, however, is less common, and multistep 
survcys arc almost nonexistent within cultural rcsourcc manaRemcnt contexts. By - 
its very nature predictive modeling is a multifacercd proccss; it is important, 
rhcrefore, that survcys designed to collcct data for predictive modeling projects bc 
multistep as well. 

REFERENCES CITED 

Ah schul, Jeffrey H .  
1984 8rig Hiti: Excuration @( , I  Multiromponcn~ Middtn .tiound rn rbc 'Jnckfirb Yullr~, Sourkusr Okluhomu. 

Rcport orlnvcstignrion No. 61-1. New World Rescarch, Pollock, Loniaiana. 

Alrschtrl, Jellicy H . ,  and John C .  S2ndcr.s 
1981 An Autornarcd Approach to Archaeo[ogical Sire Mapping and Rccording. Ms. on file, 

Statistical Rcsc~rch, Tucson. 

Dcll, Colin, and Howard Newby 
1971 Conrmunr~~ S~udrci: A n  lnrrodurrinrr ra rbc Sccrofog ujrhc L ~ r d  Cummunl!y. Pr~cger, New York. 

Binlord, Lcwrs R. 
196J A Conbidcr~tion oi,4rchaeologicd Rcscxch Design. Anurrcun / lnr iyuiy  229:425-441 

Bliss, C. I .  
1953 Fitting the Negative Biriomial Distribution ro Biologicd h 1 1 .  Bivmrtrrrr 9:176-200. 

Bonnichwn, Robson, and David Ssngcr 
1977 Integrating Faunal Analysis. Cvnudran 'Jo2rnal ~ ( . . ~ r c h u ~ o / u ~  1:IOY-133. 

Burzcr, Karl W. 
1971 tinvirrmnnnr and d ~ l r c b a r o / o ~ :  An lnrrodvrtion ro P l t i r f ~ n r c  G t o l o ~ .  Aldinc, Chicago. 

19132 Archutoiow ar Hamun Erolog: ;Iicrbod and ThtoT$r a C O H I ~ X I Y ~ I  Approach. Cambridge Univcr- 
sity Press, Carnbridgc, England. 



C O L L E C T I N G  S E W  DA'TA FOR MODEL D E V E L O P M E N T  

Chtng, K. C. 
1967 Rnbinking ArrbmoIogy. Rwdom House, New York. 

1% Strrltnrmr /Irrbaro/og. Narional Press, Palo Alro. 

Chenhtll, Robcrt G. 
1975 .\turrrnr Carnloging in rbr Conrpciitr Agt, American Associarion Ibr State and Local Hisrory, 

Nashvillr.. 

Clarke, Dtvid L. 
1W8 Anu!yrirul Archatology, hlerhucn, London. 

Clarke, David L,, editor 
1977 Spurial ,lrchaiolo~. Ac~dcrnic Press! New York. 

Clifl, A .  D., and J. K .  Ord 
1973 Spurial Aarocorrtlurion. London. 

Cuchran, \\'illianm C .  
1977 Slrmplin~ f'crbwiqurr, 3rd ed.  \Vilcy and Sons, New York. 

Cooncy, Timothy M. 
1985 Portable Data Collccrors, and How They're Becorning U w i ~ ~ l .  7aw11rtl a/Forrrt~ S3:IS-23. 

Cowgill, George L. 
1975 A Selection of Samplers: Conlrnents on Archwo-Statistics. In Smnplrng irt Arthucolo~, cdited 

by Janics W .  Mucller, pp. 2 9 - 2 3 .  University o i  Arizona Press, Tucson, 

Dacty, Michacl F. 
1964 Modi6ed Poisron Probability 1.3%' for I1oinr PalrernsX,lorc Regular rhan Kandom./lnnulrofrbr 

Arroriarion uj/lmtrirm G'rogrupbrn 54559-565. 

Davidson D. A, and &I. L. Shwkley, r-dirors 
1976 Gro-Arrbocologv Earth Srirtcrr Prrrf '2nd Prcrtsf, Duck worth, London. 

Dixon, C., and B. Leach 
1978 Sampling Afcfhods /or GcogrupbirdRt~turrh. Concepts and Techniques in Modern Geography 

No. L7. Gco Absrracrs, Norwich, England. 

Doelle, William H. 
1976 Dncrr R nuurrn rrntl HohokanSuhrrrrrnrc: 7'br Conoro Florrnrc Prqtrr. Archaeological Series No. 103. 

Arizona S t x c  Museum, Tucson. 

1977 A Multiplc Survey Srraregy for Culrurd Rcsourcc Managcmcnr Studies. In Conrrr~rrfion 
Arrbucolo~: A Cvidrjor Culrural Rnorrrt dlanugmmr Studicr, rditcd by Michael B. Schiffer and 
Gcorgc J .  Gurncrnman, pp. 20L-209. Academic Prcbs, Neu  York. 

DunncU, Robert C., and William S. Danccy 
1983 T h c  Sitclcss Survey: A Regiondl Scalc Data Collecrion Srrarcgy. In/td:wrm ia Arrhucolqrrrrl 

Mrrbod ond 'I'hcor), vol. 6, cdited by Michacl B. Schifir ,  pp. 267-287. Academic Prcss, Xew York. 

Durand, Stcphan R., and Jooalhan 0. Dwis 
1985 Archaeological Cornputcr Applicarion with an IBM-PC. Ah?(znrrr la Con;p!rrrr Arrhiirolog 

221-38. 

Ebert, James I., LuAnn Wandsnider, and Signa Larraldc 
1984 Fhcorctical, Xle~hodologicd and Economic Aspects of iionsite Surface Survcy, Nonsiw 

Sampling and Predicrivc Modeling, Paper presented at the 49rh Annual ?&wing of the Socicry 
for Anmerican Archaeology, Portland. 

Flanncry, Kcnr V., editor 
1976 Thc Errrlj Mrroamcrira~~ Yi/lrrKr. Academic Prcss, N c w  York. 



A T L S C H U L  A N D  N A C L E  

Gaincs, Sylvir U'.. .md W:trrcn h.1. Caincs 
1980 Future Trends in Computer Applications. A m r r r m  Anlrqurr). 45:462-471. 

Galcski, Boguslaw 
1972 Boiir Casccpf~ o / R : r r d  S o r i o i u ~ ~  rranslarcd by H .  C .  Stcvcns. X.lanchcstcr Univcrsity Prcss, 

Manchcsrcr, England. 

Goodcnough, Wdrd H. 
1966 Propwcj., Kilt, rmnd Con:rrr;rn:l). of Trrtk. .irchon Books, Hamdcn, Connccricut. 

Goodyear, Albert C. 
1975 Hrr la  I f  arld Ill: Arr 1nfr.rprtfirr SIX,$ r , j / lrtbrim/oprd Rtmom(rom rbc. Lotribnrr Pruyrl ,  Prrpagu 

Rrwrrorioa, Solrrh Crr / r r r /Ar~zonu.  I\nthropolo~cal Rcscarch Papcrs No. 9. Arizona State L'nivcr- 
sit)', Tcrnpc. 

I-larvcy, David 
1967 Models in thc Evolution of SPaci31 P;~ttcrns in Human Geography. In rClr)dclr In Gcogruphj, 

cdircd by Richard J .  Chr l cy  and Pcrcr Haggctt, pp. 549608. klcthucn, London. 

Hnssan, F. A. 
I979 t icoarchacolo~:  'Thr Geologist and Archaeology. ...Inr~.rrrurr /Jn/iq;lrf,' 44:267-270. 

Hauck, F. R, 
19793. C u / ~ u r d  Knwrrc. Eru/uurrort rrr Crnfrol L'ruh, 1977. Cultural Rcsourcc Scrics No. 3. Bureau of 

Land Managemcnr, S ~ l r  Lakc City. 

197Yb Cu/luru/ R m u r r r  E~alrruriolr in Slrufb C~nfrtal  C'fah, IY77-1978. Cultural Rcsourcc Scrics Xo. 4. 
Burcnu of Land Mmagcmcnt, S ~ l r  Lnkc City. 

Haycs, Willi~m L., m d  Robert I... Wlnklcr 
1971 Sfalrrfrrr: Prohobrlrrj., I n j r m r r ,  utrd Duirrrw. Holr, Rinch;m and Winston, Sew York. 

Hayncs, C .  Vancc, Jr. 
1968 Geochronology of Lare-Qi~atcrnary A~liivium. In .Mturrr of Corrdrrr~o~, ~ ~ ( e x u f r r r r a r j  Succtrriur:~, 

cditcd by R .  B. Morrison and H. F.. Mrright, Jr., pp. 5111-631. Procccdinp of rhc VII INQUA 
Uongrcsc, vol. 8. I.'niversity of Utah Prcss, Salt Lnkc City. 

Haynca, C.  Vnncc, Jr., and ti. A. Agogino 
1960 Prehistoric Springs and C;eochronology of rhc Clovis Sitc, N c u  .LIcxico. Amrrtrrrr An~iguiry  

31:L112-821. 

Hodder, Ian 
19n  Some Kcw Directions in the Sparial Analysis ofArchacological Dar a at the Regional Scale. In 

Sprrr idArrhr i rob~~; ,  cditcd by David I-. Clarke, pp, 223-352, Academic Prcss, S c w  York. 

Hoddcr, Ian, and Cliw Orton 
1976 Sprr:ra/ Arro/,wi irr /Irrbrrmlug. Cambridge Univcrsity Prcss, London. 

Hudson, John C. 
1969 A Locarion Thcory ior Rural Scrrlcmcnt. /In/ralr q f r b c  Arwnufirir; q f  dm-rrrrrn G r o p p h w r  

59:365-381. 

Jacobscn, T., and R. 1.1. Adan~s 
1958 Salt and Silc in Ancient .Llesopotamia Agriculture. Srrrncc 128:1251-1258, 

Judgc, W. jarncs 
1981 Transcct S ~ m ~ l i r ~ g  i r i  Chaco Canyon-Evaluation o i a  Survey 'Tcchniquc. In i t rchotolo~~rol  

5urrcj.r ofChrrr,>Crmjorr, ?im Alnrrro, by Aldcn C.  Haycs, David h*!. Bruggc, and IV. Jamcc Judge, pp. 
107-137. Publications in Archaeology 18A. Karional Park Scrvicc, Washir~gton, D.C. 

Judgc, W .  Jarncs, Jarncs I. Ebcrr, and R o k r t  K ,  t~irchcock 
1975 S ~ n p l i n g  in Regional Archaeological Survcy. In Srrmplirrg in A r c b e o l o g ,  cditcd by Jan~cs  W. 

Mucllcr, pp, 82-123. L!nivi!rsiry of ~ r i z o n a  Prcss, Tucson. 



COI.I.ECT'ING NEW DATA FOR MODEL DEVELOPIMEN'I' 

Ring, Lcslic J .  
11169 Sfari~tit-a/  A n d y i r  i r r  G r o p p b v .  Prcntice-Hall, E n g h o o d  Cliffs. 

Kinrigh, Kcith \V,, and Albcrt ). Animcrman 
1982 Hcurisr ic r\pproachcs ro Spar i~l  Analysis in Archaeology . Amrrrrarr Anrry:r:T 47:3 1-63. 

Klingrr, Timothy C., asscmblcr 
IW7 '\its Hopt: A n  ~frrhsto/rrgiral/l~~rirmrn~ n f a  Prop~rtd Sfrip .\lint T'rscf rn rbr Gul/Cosrrrl Plain of 

S o u ~ b r ~  Arkon~m.  Arkansas Archacologicd Survcy, Fcyc~tcvillc. 

Krakkrr.!., bl. Short, ;and P. \\'clch 
1983 Dcs~gn and Evdua(ion ofShovcl-Tcaar Sanipling in Regional Arch3cological Survey. 7nrtrndol 

Frrid ; t r ~ h a t o l ~  10:469-480. 

Kv~mmc,  Kcnncrh L. 
1983 A hlanual [or I'rcdicrivc Sirc Location Xlodcls: Examples for the Crand Junction Districr, 

Colorado. Draft subalitrcd to thr  Burc:hu o i  L.md Man;~gcmcnr. Crand Junc~ion Disrricr, 
Colorrdo. 

Larraldc, Sigrna, and Susan b1. Chandler 
1W1 : h b ~ d o $ r u /  Irrrcnforj in ihr Stcp Rrdgr C:r/r:trul Srudy 'I'rrrrf, Ulnfa  Counf~ ,  Crab, vrrh a Rrgiunal 

Prrdrlrrrl~r .Clodti f i r  Sir<, h e r i o n .  Utah Cultural Rcsourcc Series No. 5. Burevu of Land hlanagc- 
mcnr, Salt l . ah  City. 

Leach, Edmund R. 
1961 P:rl Ei!,:;a: A I'dlugrirr Cr;.lmr. Carnbridgc Lnivcrsity Prcss, London. 

I.igh~foot. Krnr G. 
1986 Regional Survcys in rhe Eastern Llnircd Statcs: Thc  Srrcngrhs and \Vc.akncrscs of lrnplc- 

mcnting Subsurlicc Testing l'rograrnb. Amrrua~r AnrrytriQ 51:458-50). 

Marrin, Paul S., and R ich~rd  G .  Klcin, editor5 
1984 . o i e r r r o v  Exrixrrmnr: A Prririrrr~rir R~rd:rrion. Univcrsiry o i  Arizona Press, Tucson. 

Matson, Richard C., and \\'illim U. LIP 
1975 Regional S;mpling: r\ Casc Study oiCcdar kfccsa. In Ssnrp/ i~rg;n.~lrrhacolc~~,  edited by James 

\V. S,lucllcr, pp. 124-143. Univcrsir) of Arizona Prcss, 'I'ucson. 

X,lzycr-Oakcs, W.  J., and R. J .  Sash 
1964 ,4rchcologiral Rcscarch Design-i\ Cririquc. Paper prrscnrcd ar thc63rd Annual blrcringof 

the ~nicr ican  d~nrhropologic~l r\ssocijtion. 

Mchlan;rn~on, F. 
[984 rhscclwring Sirca Unsrcm. I n  . , ldxecn iu ilrrhat-dogrtal ,\lcthud a d  Thror)., vol. 7, cdired by 

X~Iiclucl B. SchilTcr, pp. n3-292. kademic  I'rcss, New York. 

Millon, Rcnc 
IW2 ' ~ b ~ ' ~ r o r r h u a r ~ ~ ~ b S o p ,  Parr Onr: T r r f .  Urbanization ar Teorihuac;m, !vfcxico, vol. I .  Llnivcrsity 

o iTcsas  Prcss, Ausrin. 

bIucllcr, janws \V. 
1974 Tbr  Cr8 ofSamplr~cg ~rr Arc~ratdogrcol Sf irr t j .  Memoirs o r  the Socicr y Ibr American Archaeology 

S o .  28. 

LW5 Archaeological Ruscarch as Clusrrr Sampling. In Samldrtig in.-irrhatoiog, cdircd by James \V. 
Mucllcr, pp. 53-41.  Univcrsiry o i  Arizona Pre,s, Tucson. 

X,fucllcr, J . ln~cs \\'., cdiror 
1975 Sampling is A ~ L - i u m l o g .  L:nivrrsiry of Arizona Prcss, Tucson. 

Naglc, Chrisrophcr I-., and L!. 1;. \Vilcos 
1982 Opricd Mark Rccognirion Formsin D;rra Entry: Some Applicarions.'jnumolufFitidArc-horul- 

I J ~  9:538-517. 



ATLSCHUL AND NAGLE 

Sance, Jack D. 
1983 Regional Sampling in Archaeological Survey: T h c  Staristical Pcrspcctivc. In l i d ranr t~  in 

Arrb~toIng~r~rlMr~hodur;d  T h r c q ,  vol. 6 ,  edircd by Mich~el  B. Schifir ,  pp. 289-356. Academic Press, 
New York. 

Nmcc. Jack D., and Hrucc F. B.dl 
1986 No Surpr~zes? Thc Rcl~rbi l~ty  and V~hdi ty  of Tcsr Pit Sampling. Anurrtarl .-fnrryulrj 

51:457-~a~ 

Xcymm, J. 
1914 On thc T u ~ o  Dii?>renr Asprcrs of Reprcsenrarivc Method: T h e  .Method ofSrratifrd Sam- 

pling and rhr Mcrhod of Purposive Sclccr ion. 7aurml  t?f ;he R o y d S r a r i ~ k a /  SOCIC~J 97558-606. 

Orron, Clive 
19110 .Marhtmotitr m Arcbar.o/oa;. Cambridge University Press, London. 

IJhillips, David A.,!r., Linda L. Su-rnn, and JeRiey H. ,%lrschul 
1984 Prrhrrrvrj arrd H ~ r q ,  of r k  U p p r  Gila Rinr ,  <irizorrrr azd Fdtr ,\ltxrto: ,In Archarolog~calOr~tmrm. 

Wcsrcrn Division Rcporr of Invcszig~~ion No. 2. New World Research, Tucxon. 

Plog, Frcd T. 
198 I Managing -4 r r b d i n l o ~ !  11 Barkground Dommtnr l o r  Crritural Rtsourrt ,Lloaapwnr on rbt Apadx -  

S i r g r r a w ~ V u h 7 d  F O ~ R I I ,  A r i t o w .  Kcport SO. I .  Foresr Service, Sou thu~cs~r rn  Refiion, Albu- 
qucrquc, 

Plog, Steptwn 
1976 Relative Ellicicncies ofSamp1ing Tccbniques for Archa'ological Surveys. In T b t  Ear4  J lao-  

amtriton Yi l /agt ,  edirrd by Kent V. Flanncry, pp. 136-158. Acadcrnic Press, X c w  York, 

1978 Sampling in Archaeological Survcys: A Critique. Amtricun Anriquiy 43:280-285. 

Plog, Srcphrn, Fred PI*, and Walter Wait 
1978 Decision hlaking in Modern Surveys. In AJranctr rn Archoco/ogical ,!leibod and ThtoT, vol. I ,  

cdircd by Michael B. Schiifer, pp. 383-421. Acsdcmic Prcss, New York. 

Read, Dwight W.  

1975 Kcgional Sampling. In Semplimg ia / f r r h a t o l o ~ ,  cdired by James B7. hluellt.r, pp. 45-60. 
Univcrsi~y of Arizona Press, Tucson. 

Redman, Charlcs A. 
1974 .drcbutologital Sampling Sfra~cgirr.  Mod~rles in d+nthropology No. 55. Addison-Wesley, New 

York. 

Recd, Alan D., nnd Susan \I. Chandlcr 
1984 A Sample-Orlcntrd Cultural Resource Invenrory in Carbon, Emery, and Sanpctc Counties, 

Utah (draft). Nickcns and Associates. Submitted ro Bureau ofLmd Management, Contract No. 
YA-55J-CTZ-1090. Copies available from Burcau of Land ~Managemmt, h f o ~ b  District Oflicc, 
hioab, Utah. 

Roggc, A.  E., and T. K, Lincoln 
I984 Prcdic~ing rhc Distribution of Archwological Sites: A Case Srudy from the Central Arizona 

I'rojrct. Papcr prcscnred at the 491h Annual Mccting of rhc Socicty for Anlcrican Archaeology, 
Porrlartd. 

Sanders, Willimn 'T. 
1965 ' f b t  Cul!rcrrl Ecology ,if rbr l'torrhurrtlrn Y r l i q .  Depart mcnr of Sociology and Anthropology , 

Pmnsylvania S u t e  University, University Park. 

Sanders, William T., JcKrey K. Parsons, m d  Robert S. Sanrfcy 
1979 T h t  Basin uf.\ftxico: E r o / o g ~ r /  Procortr ir: rhr E;.alrrrion d o  C i d i z a ~ ~ o r r .  Academic Press, New 

York. 



COLLECTING S E W  DATA FOR MODEL DEVELOPMENT 

Sarasan, Lenore 
1981 Why .L!uscum Computer Pro,iccts Fail. Murrum h'rm Januan:Februan:jO-49. 

Saucier, Rogrr 'T'. 
I974 ,cuortrnar; Gtolnp~ o ( 1 h t L ~ ~ c r  r t f r ~ w ~ r p p ~  Ya / l rJ .  Research Serics S o .  6. Arkansas Archaeological 

Survey, Fapcrrcvik. 

Schiffcr, X l i chd  B., and Ccorge!. Curncrmm, rdirors 
1977 Cunjnrcl~ran rf r rhdro lo~:  /I G a r d r j ~ r  Cuhu rcll R r ~ o u r ~ r  ,Mmagnrnl Srrdrtr. Academic Press, S c  u 

York. 

SchiiTrr, Xlicharl B.. and S. Wcllr 
I982 Archacolog~cal Survcys: IJasr and Fururc. In liohokclm and Porcl)m: P r t h ~ r f 0 9  o j S n r r h ~ o r m n  

Rrrtoncl, cd~red  by R. H. McCuirc and .M. B. SchiiTcr, pp. 345-383. Acadcnl~c P r w ,  Ncuf York. 

Schiffcr, h4ichac.l B.,  Alan P. Sullivan, and Timothy C. Klingrr 
1978 Thc  Des~gn of Arch.wolqical Surveys. I l ' d  .*~rrhotolog IO~1):l-28. 

Scholrz, Sandra C,, and .Llichd C .  Million 
1981 A Manage~ncnr Information System for Arch~cological Rcsourccs. InDurr OankApplicafion~ ur 

.drrhaco/opj., cdircd by Sy lv i~  W .  Gaincs, pp. 15-26. I:nivcrsit)i o iArizon~ Prcss, Tucson. 

Srcphcn, David V. M., and Douglas 8. Craig 
1984 Recovering Their Past Bit by Bit wirh klicrocornputers. .*lrchatniog 37(4):20-26. 

Teaguc, Lynn S., and Palricia L. Crown, edirors 
1533 Sptrrdrxtd Arrrrily  sift^ Hohokarn Archacology Along the Salr-Gila ~\qucducr, Central An- 

zona Pro,ircr, vol. 3. Arcl~~cological Series S o .  150. Univcrsi~y of Arizona, Tucson. 

Thornas, David Hursr 
1975 Sonsirc Sampling in Archacology: Up rhc Creck withour a Sire? InS~mpl ing in R r c h a c o l o ~ ,  

edited by James W. Mucller, pp. 61 -81. Lnivcrsiry of Arizona larcss, Tucson. 

Thornas, Prcnr~cc M.,Jr., Carol S. Wccd, L. Jmicc Campbell, and Jcfiey H. Altschul 
1981 T h t  Cttrfntl Coal 11 Prujtrr: A C'lclrr 11 fnrcnrorj o jSrktrrd  Portiom ~!/'Cclrbon, E m q ,  ond S t m u  

Cornfur, Lrrh. Rcporr of lnvectigarion S o .  25. Ncu' World Rcscarch, Pollock, L.ouisiana. 

Tipps, U r r q  L. 
1904 Th T o  Smdr Pryrrf :  Crrh:trol Rcrorrrrr Inririror,. rrnd Prtdrrrirc dlodtlmng rn Crwfrd  drtd Sorrhtrn 

Llrab. P-I11 Associ~rcs, Culrural Rcsourccs Rcporr 505-1-8301. Submitted ro Bureau of Land 
X.lanagcmmr, Contract N o .  YA551-CT!-340038. Copies available horn Uurcau ofI.and Manage- 
Inmr, Richficld Disrrict Officc, Richfield, Utah. 

Wobsr, H. X i .  
19S3 \\.'r Can't Scr r he Forest for r heTrccs: Samplingmd rhc Shapcs ofArch.wologicnl Distribu- 

rlons. In Ar ih i r i ohq~u l  l i ammm rrrrd ?'hcvrirr, cdired by !. A. \,Inore m d  A .  S. Kccnc, pp. 37-85. 
Acadrmic Prcss, Sew York. 

Wood, john 1. 
1971 Fir ling Discrctc Probabiliry Disr riburions to Prchisroric Serrlcn~cnr Patterns. In ThDrrrrihu- 

/ton a j  Prrhirrorrr Pop:rlufion A g p p r ~ ~ ,  cdircd by C.J. Gumcrman, pp. 63-82. Anrhropologica1 
Rcports S o .  7. I'rcscurr Collegc Prcss, I'rcsco~r, Arizona. 





Chapter 7 

USING EXISTING ARCHAEOLOGICAL SURVEY 
DATA FOR MODEL BUILDING 

Kenneth L. Kvamme 

This chaptcr cxamincs chc usc of existing archacological survcy data for thc 
dcvclopment of archacological locational models. Obscrve thar if an a priori dcduc- 
tive modeling stratcgy is being pursued, thcn thcrc is no nccd for sitc survcy data of 
any kind for modcl dcvclopment (s~nce presumably the "rules" of prehisroric site 
placcmenr will be derivcd through thcorctical or other mcans). Hmcc,  this chaptcr 
necessarily is oriented toward quanritativc modcl developnlent based on patterns 
exhibited by cmpirical data, in this case existing site survcy data. 

A fundamcntal assumprion madc chroughour rhis chapter, unless otherwisc 
statcd, is that the urchatolugicdrite is thc basic unit of analy sis. For some stratcgics, a 
grid ccllofsmall size(e.g., 50 by 50 m) thac contains asitc or a significant amount of 
prehistoric cultural cvidencc is thc unit ofanalysis, but this grid ccll rypc ofunit can 
be assumed to be includcd in discussions using the sitc concept. 

Our primary concerns whcn using existing sitc survey data arc with locational 
and sitc content information bccause these two types of data arc impossiblc to 
obtain without additional survcy. Wc are intcrcsted in the locurions of known sitcs 
bccause most empirical modeling strategics arc based on patterns identified in 
various characteristics of sirc locations. We arc intcrcstcd in rirc coatt.nt information 
for clues that might suggcst site function or type, cultural affiliation, or pcriod of 
occupation. Thesc data arc important bccausc wc want ideally to dcvclop modcls 
for specific typcs or period groupings of sitcs. As noted in Chaptcr 8, howevcr, 
rrustworthy infcrcnces about site function ofien are difiicult to makc based on site 
survey information, and for many sitrs all that can be said is that a prchistoric sitc is 
present at some location. 

A third rype of information that usually is available in existing sirc survey 
reports includes various environmrntal dcscriprions pertaining to a site's situation 
(e.g., vcgrtation, soils, landform). Although cnvironmental data usually are the 
very information char is needcd for many modcling strategies, thc kinds ofcnviron- 
mental data commonly included with most sitc rcportsofttcn will not coincide wirh 
the data requirements of a IocarionaI analysis and modeling strategy, and in any 



case, thc environmcncal observations usually arc inconsistently recorded from site 
to  sitc. Fortunately, thc environmental information rcported in existing sitc survey 
dara is not critical to locational modeling bccausc. such data can be observed 2nd 
measured (and consistently and reliably measured) in virtually any manner on 
various kinds of maps, aerial photographs, or cven through remote-scnsing or 
computer-based geographic information systems techniques (see Chapters 9 and 10). 

Collcctivcly, csisting sire survey data form a large and iindcrutilizcd body of 
information that is available in almost any region of scudy. This body of data 
rcprcsrnts the curnularive eftort of, perhaps, decades of archaeological work pcr- 
formed ac considerable cost. Although archacologisrs might argue that random 
samples ofsitc survey dara (collccced on the basis of regional probabilistic sampling 
dcsigns) arc necessary to make valid rcgionwidc gcncralizations, new surveys are 
expensivc. Morcover, such an argument neglects an important source ofpotentially 
abundant and useful information in the form ofexisting site survey data. I t  could be 
that exiscing data zre well distributed throughout z region of study and are 
6 L approximately represencarivc" of a region's archaeology. Alternatively, using 

proccdures discussed in this chaprer, it might be possiblc to makc csisting data 
becter rcprescnt the archaeology of a region through removal or reduccion of 
apparent biases. If esisting site survey dara could be used in locational studies in 
placc of new survey daca, considerable savings in time and cost could be realizcd. 

Ofcoursc, che quality ofcsisting site survey data might be questionable and 
biases might esisc in those data. A major focus of this chapter is on ways of 
removing, or at least reducing, apparent biascs from existing data bascs in ordcr to 
obtain bcttcr-quality analysis data sets for use in modcl development or cescing. 
There is no proccdurc that can correct all biases, of course, and i t  certainly is noc 
possible to make good dataout ofbad, buc a number ofprocedures arc available that 
can be uscd in an effort to reduce certain biases. In most cases, esisting archaeologi- 
cal data bascs do not consritutc a rcpresentativc sample of the archaeological 
remains in a region of interest; cven in cases wherc some typc of random sample 
survcy rcsults are availablc, the procedures discusscd in this chapter will be useful 
for preparing other available data for usc as, among other things, a test sample with 
which to assess the performance ofsire-locacion models independently ( 7  x e  - "Asscss- 
ing Model Performance" and "Independent Tests," Chaptcr 8). Problems in the 
use of existing data are myriad, and only a few can be discussed in detail hcre. T h e  
following pagcs consider the implications ofthese problems for modcl building with 
existing daca. (Thc  statistical and marhcmatical dccails of model development are 
discussed in Chapters 5 and 6; thc application of these methods in modcl develop- 
mcnr and tcsting is illuscrated in Chaptcr 8.) 

USE OF E X I S T I N G  D A T A  FOR S I T E - L O C A T I O N  M O D E L S  

A few years ago 1 conducted a large survcy designed to yield a random sample 
of prehistoric sices that was to be used for dcvcloping archac.ological models ofsitc 
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location for the region studied. After the survey was completed I had the opportu- 
nity to meet with a statistical consulting group in a university mathematics 
department. I presented maps illustrating our random sampling design and rhc 
locations of'the sites rhar wc had discovered. The same maps also happcned ro show 
the locations ofa few hundred sites known ro csist prior to  rhc survcy. Although we 
discussed several interesting topics, the onc thar struck me most forcibly was thar 
the statisticians were amazed rhar I had conducted such a largc and expensive 
survey when several hundrcd site locations were already known for that region. 

This reasoning wcnc against all my archaeological training and against what 1 
as an accepted notion in sctrlcmcnt archaeology: that in ordcr to make 

valid regional infcrcnces abour archaeological site location (or any othcr) patterning 
one nccdcd representative samples chosen on rhc basis of probabilistic sampling 
theory. This position has been stated by Binford: 

I'robahility sampling is. . . 3 major rricrhodological improvcmcnr u.hich, ifcxccurcdon all 
Ir.vvlr of d3ra collecrion in full rccognirion of rhc inhcrenr dilfcrc~iccs in the naruri. of 
observstional populations which ~rchacologisrs investigate, can rcsulr in the produc~ion 
oladcqum :md rcprusenr3rivc data uscful in rhc study oCcult~~ral process 11963:439]. 

The  statisticians did admit that my samplc sccmed very nice, but they pointed 
out that sampling is a pragmatic cffort conducted for the purpose ofreducingcosts. 
Tha t  I had sampled in thc first place indicated a concern for cost, yet I conducted an 
expensive survcy cven though the prcviously known sires existed in large numbers 
and appeared to be well disrributcd in thc rcgion. When I asked them abour the role 
of starisrical theory in modcl dcvclopmcnr, they suggested that 1 worry less about 
thcory and more about how well the modcl works in practicc. 

In Chapter 8 it is emphasized thar from a statistical standpointunj procedurc- 
ranging from statistical techniques to simple mathematical rulcs or cven armchair 
theory-might appropriatcIy be uscd as a basis for site-location modcl develop- 
ment. What matters is how well a model works in application, how accurarcly it 
perlbrms on future cases. Givcn this pcrspecrivc, it  is appropriate to  use any typc of 
procedurc as well as any source of data (such as csisting site-file information) in 
model dcvclopment. In order to  determine how a ~ l l  a model will perform in 
practicc (and here I refer t o q  type of' model, including thosc formulated dcduc- 
tivcly), indcpcndcnr testing procedures arc required, and in this case methods of 
statistical inference nwjt be applied. Itrd<pwdcnr rrrring mcans that a model is applied 
to  data independent of rhe data set used to build the model (note rhar deductively 
derived modcls arc nor built with data, and rhercforr any data scr is independent of 
rhese models), which provides a test of model performance. Statistical theory can 
then be applicd to  thc tcsr results (if the tcst data constitute a representative 
sample) in order to asscss the significance of the resulting model performance and 
construct confidence limits around model accuracy r a m .  (The rcader is rcfcrrcd to  
thc section on assessing modcl pcrformancc in Chaprcr 8 for a more detailed 
discussion of these issucs and procc.dures.)Thc purpose ofthe currcnr chaptcr is to 
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Narrow spacing, however, dramatically increases survey time and effort and there- 
fore costs (Figure 7.1). 

T h e  nature or obtrwivznzrr of the archaeological cvidcnce detcrmincs the 
likelihood chat a particular archaeological feature, such as a site or an artifact, will be 
dkcovcred given a spcciiied level ofsurvey intensity (Schiffer ct al. 1978). A mound 
or architectural feature, forcxample, has a highcr chance ofdiscowry than a single, 
isolated flake. Low-intensity survcys (those with wide spacing) tend to bias result- 
ing archaeological samples in favor of more obtrusive remains (Schiffer and Wells 
1982). 

Difliculty ofacccss, a common problem in many regions of the urcstern Unitcd 
States, might mean that samples are biased against dificult-to-rcach regions. In 
regions with relatively feu. access roads, for example, sampling units might be 
placed with thc rcstriction that units lie within some masimum distance of an 
existing road. Even whcn it is possible to arrive at hard-to-rcach places, thelimited 
amount of time left in the day after trawl might lowrr the quality of rcsujting 
survey in those regions. Private land ownership presents similar difficulties when 
landowners refuse access (Schiffcr and Gumerman 1977:187). Indeed, in western 
regions, where most archaeological survey work tends to bc conducted on federal or 
state lands, the lack of comparable sitc data from private properties presents a 

CREW SPACING ( M ) 

Figuru 7.1. Rclntionship bcrwccn crcw spacing rnd suwcy rarc (&r Schinkr and Wells 
1982:W). 
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severe source of bias to regional archacological dara bases, because privare property 
ofrcn includes some of rhe bcsr agriculrural lands as well as rhc best arcas for 
hunring and planr collecting, and prchisrorically, i r  is thcsc very placcs rhat often 
were the most crirical to sitc placement. 

Variable archaeological visibility, due primarily to vcgeration cover, intro- 
duccs anorher major source of potenrial bias. Plantcd Gclds, swamps, or foresrs 
might offer poor visibiliry and low archaeological discovery rares, whilc dcscrr 
regions or sagebrush-grassland scrtings usually offcr high visibility and excellent 
sire discovery rates (Schiflcr and Gumcrman 1977:187). Study regions conraining 
zoncs with markedly dif i rcnt  levels of visibiliry arc likely ro have cxisring sirc dara - 
basts biased roward rhe more visible zones. 

Perhaps one of rhc principal weaknesses of existing dara bascs is rhat rhc sum 
toral of prcvious work in a given region constitutes an unplanned effort. In othcr 
words, srrong locarional biascs typically cxisr in the areas that have been field 
inspected wirhin a rcgion. For example, early work ofrcn was conducred only at the 
mosr accessible and visible sires, whilc much contcmporary sunTey is conducted 
primarily in areas of planned development. Thus, cxisring sitc dara may be strongly 
biased toward certain rypes of settings and may not constirutc a rcprescnrative 
sample of sites within a rcgion. 

An additional problem is rhat sitcs might not bc accurately locaccd on maps. 
For modcling approachcs that focus on the spccific locacions of sires, accurate 
placement ofsitcs on maps is ofcritical importance since characrcrisrics of rht: actual 
locations, such as cnvironmcntal properties, are often uscd as a basis for modcling. 
In actual ficld pracrice it is often difliculr to locate onesclfprccisely, particularly in 
fotested arcas with fcw nearby landmarks. Field crcws ofrcn get lost or misread 
maps. Moreover, early archaeological sunreys oftcn did nor h a w  access to good 
maps and oficred only vcrbal descriptions, directions, and rough locacional skcrch 
maps. 

This problem is furthcr compounded as site locations are transferred from map 
to map. In csamining existing sicc liles for one Bureau ofLand Management (BLM) 
srudy, I found that the original sitc forms were available as well as the district's 
master management maps. The  lartcr arc a set of maps [hat can bc found in any 
tegional BLM ofice and contain the most up-to-dare informarion on the locations of 
all known sitcs and field-inspecred regions. In this BLhI disrrict, the majority of the 
sitcs wcrc extremely small lirhic scatters (essentially points on maps). When thc sitc 
forms, which included copics of original maps, were compared with the BLM's 
master maps, many sitcs a7crc found to have been mislocaccd when they uferc 
copied from the original to rhc master maps (Figure 7.2). In facr, almost 10 pcrccnt 
were rnislocared by more than 100 m (one-sixth ofan inch on 1:24,OQO scale maps), 
and several a7cre even placed on [he wrong drainage! 
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Figure7.2. Errors in rhcloc~rions oisircs resulting tion1 copyingsitr loc~rionr konr onc map to 

PROCEDURES FOR REDUCING DEFICIENCIES AND BIASES 
IN EXISTING DATA 

A nunibcr of problems with existing data bases werc presented in the previous 
section. In ordcr for researchers ro use such data in archaeological modrl develop- 
mcnt they need to eliminate data ofqucstionable quality and to reduce the cffixts of 
apparcnr biases. 

If possible, the original site forms should be obtained in order to assess the 
quality oft  he inirial sitc-rccording efyort and to eliminate secondary sourccs ofcrror 
that might be introduccd by later handling of the data by othcr investigators (as in 
thc cxample discussed above). Cerrain minimal standards mighr bc established; 
prccisc location of the site on a C'SGS 7.5-minurc map might bc required, for 
esample, along wirh a description of somc minimal amount of archaeological 
evidence. Siccs not mccting these standards might be eliminated at  this stage. 

When a pool of minimum-quality sites has been obtained based on inspcction 
ofsite forms, it would be prudent, depending on available funds, to examine in the 
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ficld a random sample of the sitcs rccordcd by each major investigator in thc area. 
This practice would allow verification of locational accuracy on maps as wcll as 
assessmcnrs ofsite content and function. I t  would also bc worthwhile to  resurvey at 
high intensity regions that have been field inspcctcd by other rcsearchcrs in order 
to  obtain data on sitc discovery rates. Thesc rates might then be used as a means o l  
biah correction through the subsampling or weighted analysis tcchniqucs dcscribed 
below. 

When use of esisting data in site-location modcl dcvclopmcnt is considered, 
bias must be viewed in terms o l  current nlodcling goals. For example, a survcy 
conducted for rhc discovcry of only Paleoindian sites is not relevant to a site- 
location model for Puebloan villages. Similarly, a survey conducted in pine forests 
does not bear on models for grassland settings. 

The  nature of bias also must be considered in terms of thc type of modeling 
approach used. Models that esamine characteristicsobscrved at theactual locations 
of sites or modcls that use a small-size quadrat approach in which characteristics of 
quadrats with sites are csamincd are particularly sensitive to thc happcnstancc 
locational biascs of previous survcys. For esample, i l60 percent of one part of a 
study region has becn ficld survcycd but only 20 percent ofanothcr part, indiscrim- 
inate use of the site data without regard to these survcy proportions can bias a 
rcsulting modcl toward characteristics of thc mow esrcnsivcly sunreycd zones. On 
the other hand, modeling approaches that partition a region into discrete catego- 
ries, such as environmental communitics, and then project sitc densities in cach 
community are lcss sensitive to this factor. In this approach, i lone communiry has 
b e m  20 pcrcent surveyrd but another 60 pcrcent, so much the bctter for the latter 
community, sincc the resulting estimates olsitr  density would presumably be more 
reliable bccausc rhcy are based on more information. 

'T'wo major approaches might be invcstigatcd as a mcans of rcducing the 
influence of known biascs in csisting data. Subsamplirrg attempts to reduce biascs by 
undersampling arcas that h a w  becn cstensivdy csamined and by oversampling 
arcas that, by comparison, have becn little examined. This proccdurc usually 
requires that some information be disrcgardcd during the model-building process, 
but it should be realized that thc sitcs eliminated during this part o l  the project 
might be reserved to provide independent tests of locational modcls at some later 
point. !lf?igbrt~d nnu!).wr, on the other hand, permit retention of all information, but 
the impact ofan individual case (e.g., a site) on chc analyses can be weighted by, lor 
esample, the relative importance of that  casc relative to other cases (sec below). 

Subsampling 

A common problcm in rxisting sitc-file data bases is unequal survcy coverage 
in various regions of a study area; thcse inequalities are a result of the use of 
nonprobabil~stic deslgns and purposive survcy that is commonly rcquircd for 
various forms of cultural resource clearance. Early surveys typically esamined only 
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the most ideal or mosr easily acccssiblc rcglons, simply for purposcs of site discov- 
ery. Unequal survey covcrage also occurs among different archaeologists or projccts 
owing to variation in crew spacing, vegetation covcr, and other factors. A goal of 
subsampling is to obtain a subser o f the  total number ofsitcs available in thc cntire . - 
study area such that many of the regional biasing factors arc reduced in rhc final 
subset. A number o r  approaches might be used to accomplish this goal. 

One  approach that helps to reduce the effects of unequal amounts ofsurvey in 
different rcgions ofa study area is to divide thc area into discrete categories, such as 
environmental cornmunitics, and then to sample each carcgory in a u7ay that will 
correct for rhc inequities. A hypothetical study area containing thrce communities 
is portrayed in Figurc 7.3a. Forty percent ofcommunity A has becn field inspected, 
20perccnt ofcommunity B, and60 pcrccnt ofcommunity C. In dcvcloping a model 
for the cntire study area it is important to rcmove the biasing efthcts of the more 
heavily surveyed communities, This might be accomplished by selecting 100 
percent o f t h c  sites in stratum B for the analysis samplc and taking A simple random 
samplc of 50 percent of the sites in stratum A and 33 percent of the sites in stratum 
C; this wouId yield a 20 percent overall sample of sites in rhc study area. 

Anothcr subsamplirig approach attempts to provide an analysis sample with a 
more uniform distribution of sites from within a study area. It is important to 
a t tempt  ro obtain a regional sample that is well distributed across the areaofstudy 
in order to ensure that site location variation from throughout the cnrire region is 
included in the sample. In chis approach a grid may bc superimposed over the study 
area o r  ovcr each stratum in the study area (Figure 7.3b). Depending on the size and 
nature of the  study arca the grid might be as large as a toumship (6 by 6 mi) or as 
small as a hccrare ( I 0 0  by 100 m). T h e  analysis sample for the gridded study area or 
gridded stratum is selected by choosing sites from within each grid unit, which 
creates a more uniformly distributed sample. For example, let us assume that thc 
gridded region in Figure 7.3b is a portion ofenvironmenral community C in Figure 
7.3a. A simple random sample of 33 percent of all the sites in Figure 7.3b could, by 
chancc, causc some of the griddcd cells that contain sites to contribute no sites to 
the  sample and others to contribute many. If a 33 percent simple random samplc of 
the sires within cach grid ccll were taken instead, this wouId help to ensure a 
better-distributed analysis sample. 

A third subsampling approach may bc used whcn large clustcrs ofsitrs exist in 
a data base. Clusters ofsires can have advcrse cffecrs on latcr analyses because the 
clustered sites may h a w  highly related characteristics rat her than offering new and 
independent ~nformation. A field-inspecrcd region containing a single clusrer of 
many sites along with a number of dispersed sires is portrayed in Figurc 7 .3~.  If a 
subsample of 20 pcrccnt of all si tw in the region were randomly sclected for an 
analysis sample, it is likely that all o r  alnlost all of the sdccred sltes might be from 
thc single cluster. Yet, multiple sites from the same clustcr mighr yield much 
redundanr Iocational information, and ~t might be desirable to  incorporate the 
locational variation of sires o u t ~ i d t  the clustcr into the samplc when the goal is a 
regionwide model and most of [he region orconcern is outside the cluster. This can 
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be accomplished by stratifying the area inro a clusrer region and a noncluster region 
(Figure 7 . 3 ~ )  and taking a simple random samplc of20 percent of the sites in each 
region. 

It might cvcn be desirable, under certain circumstances, to rcducc the influ- 
ence of major clusters still further. This could bc accomplished, for example, by 
taking a larger sample of sites outside denoted clusters (e.g., 30 percent) and a 
smaller sample of sites within clusters (e.g., 15 percent). The  goal might be to 
devclop a model thar performs well for the portion ofa study region that lies out side 
clusters. This would be particularly uscful wherc previous investigation has shown 
thac sites from major cli~sters tend to posscss locational propercies different from 
those of sites outside clusters. By taking a smaller samplc ofsiccs from clusters, one 
can rcduce the influence of those sites in an analysis. On the other hand, the very 
presence of clustering can be indicative of desirable locations thac need to be 
includcd in a sample. Hence, some thought should be given to the goals of the 
analysis and to the behavioral implications of such patterns when one is using 
clusccred data. T h e  presence of significant clustering can be determined through 
simple staristical tests described by Clark and Evans (1954), Dacey (1973), and 
Thomas (1971:41-43). 

Weighted Analysis 

Wcighccd analyses can present an alternative to the elimination ofdata when 
existing sice information is used for model development. Individual cases or sites can 
be assigned a weight thar aflecrs the intluencc ofthar site in subsequent analyses. 
Sites with more "importanr" location information (e.g., those rhat lie in undersur- 
veyed regions) can be assigned more weight, and sites with less important location 
information (e.g., from wcll-surveyed regions or from major site clusters) can be 
assigncd less w i g h t .  In this manner it is possible to  utilize information from all or 
most of the sitcs, while correcting for certain biases at the same time. 

Common statistical analysis computer programs, such as rhe Statistical Pack- 
age for the Social Sciences (SPSS 1983), the Statistical Analysis System (SAS Irisritutc 
1985), and BMDP Statistical Sofrwarc (Dixon et a!. 1983), allow case weighting as an 
option for many procedures. A weighted sample mean is given by 

and a weightcd variance by 



r h 
where .r; is the sample value for [he i case (site), and w; is thc wcight associated 
with chac case. Nocc that if mi = 1 for all i cases, chese equacions reduce co the 
cradicional formulas for mcan and variance. 

T o  illustrate how these formulas might be applied, thc h s t  problcm area ofche 
previous scction, cnv~ronmental communities with disproportionate areas ofsurvcy 
(Figure 7.3a), will bc csamined. T h e  hypothetical region concains chrec communi- 
ties, A, B, and C, ofwhich 40,20, and 60 pcrcenc, respecrively, have been surveycd. 
Suppose, for simplicity, chac 4 siccs wcrc found in zonc A, 3 in zonc B, and 6 in zone 
C, for a coral of 13 known sites (Table 7. I). The  subsampling approach described in 
the previous sccrion called for sclecring half of thc zone A siccs and a rhird of che 
zone C sires, which would provide an approximaced ovcrall 20 perccnt sample 
consisting ofonly scvcn sites. The  weighting approach merely assigns u~cighrs ro all 
of rhc cases such char a sitc's contribution is invcrscly proportional co the pcrcen- 
tageofarea thar has bccn surveyed (Table7.1). Thus, a site in zonc B(ofu7hich only 
20 percent has bccn surveycd) carries twice as much weight as a zonc A site (of 
which 40 percent has becn surveyed) and thrcc times as much weight as a zone C 
site (of which 60 percent has been surwyed). 

In conducting a site-location analysis encompassing multiplc regions, as in 
Tablc 7.1 and Figure 7.3a, uGghting can pcrmit the archaeologist co cmphasizc 
features peculiar to undersurvcyed rt.gions. For esamplc, let us say chat zonc B 

TABLE 7.1. 

Example of weighu applied to data as a mcans of bias correction 

S~ir S h p  Dirlanrr ro W o ; ~ . r  Sfruram P I  S d  5f'cighl (s3 
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Slopc Distnr~ce to A'rrcr - 

r -  5.21 l l5 . jK  ,: - 3J.SSsY I0,l 10.237 



USING EXISTlSC DATA FOR MODEL BUILDING 

contains more variable terrain in the form of hills and'ridgcs and fewer sourccs of 
warer than zones A and C. Hyporhcrical mcasuremenrs of slope and distance to 
nearest water given in Table 7.1 show that, wirhout weighting (i.e., w; = I), the 
measurements from the sites in the more heavily surveyed zones A and C dominate, 
yielding a mean slope of only 5.23 and a mean distance ro nearest water of 115.38. 
When weights giving increased influcncc to the zone B data are used, however, the 
weighted mean values cxhibit greater slopes (a mcan of 7.81) and disrances to water 
(a mcan of 153.57), reflecting the greater steepness of hillslopes and the pauciry of 
water in zone 3. 

T h c  utility of case weighting is nor rcstricted to altering regional survey 
coverage bias; this procedure can be applied to other sourccs of bias as well, If 
reliable estimates can be made of site discovery races under different types of 
vegctation cover, the discovcrcd sites in zones offering lcss visibility might be given 
greater weight in analysis. A similar approach could potentially bc applied to correct 
for difiPrcnces in site discovery ratcs between different archaeologists or projects. 
T h e  use of weighting to correct any ofthcse forms of bias should bc carried out only 
after thorough consideration of the available evidence, howcver. 

Finally, it is important to note that not only can weighted means and variances 
be computed, but alsocovarianccs, which open the doors to the host ofmultivariatc 
procedures discussed in Chapters 5 and 8. 

EVALUATION OF SITE-LOCATION PATTERNING AND 
MODEL BUILDING WITH EXISTING DATA 

When this stagc is reached it must be assumed that thc researcher believes he 
or she has a reasonably good samplc of existing sites with which to work. The  data 
might exist in several groups, each corresponding to a different site type. T h e  
investigator must decide on the kinds ofphenomena char should be investigated for 
possible r~lationships with rhe Iocations ofsites and then devise ways to make these 
phcnomcna operational. In other words, rhe variables that are to be investigated 
must be defined. An ovcrview of some of the variables commonly used in sire- 
location research and of rhe ways in which they can be made operarional is given in 
Chapter 8. Once the variables arc defined, they must be measured or observed on 
maps at each of the sample site locations, either by hand (Chapter 8), through 
remote-sensing techniques (Chapter 9), or through computcr technology using 
geographic information systems (Chapter 10). 

A usual step in the model-building proccss (e.g., Larralde and Chandler 1981; 
Thomas and Bcttinger 1976) is to cuamine the data at this point through use of 
histograms, descriprivc starisrics, or simple univariate statistical procedures. In this 
way it  is possible ro identifi variables that are more likely and lcss likely to have 
some bearing on thc locations of sites in general or ofindividual site typcs. 



T h e  empirical data can then be subjcctcd to a variety of modcling approachcs 
ranging from simplc marhcmatical rules to multivariate srat~srical rcchniqucs. A 
single-class classlficr approach (Lln and Mintcr 1!?76; Thomas and Bcttingcr 1976) 
can bc uscd to  model thc distribution of individual slrc classcs, or  a control-group 
approach consisting of background environmcnr mcasuremcnts at locations whew 
sites arcobsm! might bc uscd ro conrrasr locarions whew thcrc arc no sitcs with the 
locations of known sircs using a varicty ofquantitative classification tcchn~qucs. A 
wide range ofapproachcs using a varlet! of tcchniqucs is illustrared In Chapter 8. As 
noted in rhat chaptcr, any form ofdccision rulc may propcrly bc uscd ro dcvclop a 
modcling procedurc for class~fying locations-for example, as sirc-Likely, sire-rypc- 
likcly, or site-unlikely locarions. Admitredly, some proccdurcs work berrcr than 
orhcrs, and statistical procedures generally work best when rhc required assump- 
tions are fully mer. Once a modcling procedure is devclopcd, howevcr, irs perfor- 
mancc must bc assessed using statistical theory, an independent samplc ofdara (of 
rhc kind of slte being invcsr~gared and from rhe region being modeled), and a 
sarnplc that can be argued ro be rcprcscnrative of rhc sircs in the region. 

Assessing a Model and Determining Additional Data Needs 

A fiindamenral qucsrion t h a ~  must be askcd when evaluaring a model bawd on 
exisring data is whcrher or not rhc mode1 might be biased. Even if a developed 
model successfully predicts locational parrerns similar to parterns cxhibircd in the 
existing sire data base, how certain can we be rhat rheesisting site data parrcrns are 
reprcsenrative of rhc IocationaI parrerns ofas-yer-undiscovered sircs in unsurvcyed 
regions? Despire careful dara evaluarion and crudc arremprs ar bias removal, ir is 
possible rhar the bulk of esisring sites really arc nor representative of sites in rhc 
general srudy area, and rherc is no way ro determine whcther or nor rhis is rhc case 
unless some form ofdata known ro be rcprescnrative of sircs in rhc region ar large 
arc obrained with which ro rest rhc model. 

An initial and simple test of model performance may be obrained simply by 
applying rhe model ro [he same data used to build the model. Alrhough at best rhis 
procedure yields an inflared view of rhc model's true performance, i t  can provide an 
immediarc indication of modcl deficiencies. The  predicrions of site locarions made 
by the model mighr be categorized along several dimensions to assess performance 
in a number of areas (Table 7.2; see Chapter 8 for a discussion of rhc necessiry tbr 
reviewing model predicrions of site-absent locarions or nonsires as well). For 
example, the modcl mighr be examined to see how well it predicrs various func- 
tional or temporal sirc ty pes or various subtypes ofsites ( t h t  columns in Tablc 7.2). 
Similarly, the performance of the model reIative to differcnr environmental set- 
tings, such as various plant communities or ropographical situations, might be 
assessed (rhc rows in Table 7.2). Deficiencies at this stage should be taken seriously; 
if [hey exist herc they certainly will cxisr when the model is applied to independent 
and new samples. 
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TABLE 7.2. 

As5cssing model perfonnancc along scvcral site-rypc and mvironmcntal categories. In testing a 
site-location model, the percentage of correct model predictiuns (or each site typc are assessed 
along the columns and the pcrccntage of correct model predictions for each environmental 
category arc assessed along the rows. 

Environmental 
Cltegory p 

~Modcl tests chat arc more indepcndcnt and can yield a truer picturc ofactual 
model performance may also be performed using existing dam. One indepcndent 
test uses sites in the csisring data base thar were rror uscd to construct rhe 
modcl-entries chat were eliminatcd during arccmpcs ac bias rcmoval, for esarnple. 
Such sires represent independenr information, and the modcl can be applied as 
shown in Table 7.2. A somewhat betrer approach is callcd rp l i~  rumpliq (Mosrcllcr 
and Tukey 1977:38); wirh this proccdurc rhc analysis data is randomly split inro rwo 
groups, a modcl is built wich one half, and rhc remaining dara are used to provide an 
independcnt tesr o t  [he model. The  jackknife procedure (Mosrcllcr and Tukey 
1977: 133) prcsenrs ycr another alternative. In this procedure one case in chc analysis 
daraser is tcnlporarilv "rhrownout," the remaining data are uscd to build a model, 
and rhc single casc is used to test the rnodcl. This process is repeated using each casc 
in turn to yicld an independent assessment of modcl performance. (Splir sampling 
and jackknifing are discussed in more detail in Chaprcr 8.) 

Since rsisting dara ofren are highly clustered (Figure 7,3c), the traditional 
split-sampling and jackknife approaches still might an inflaced picture of 



model pcrlormancc. A sire that is part ofa clusrcr ofsites might cshibit characteris- 
tics that are highly related to rhc orhcr sites in the cluster. When that sire is uscd in 
a splil-sample or jackknife procedure, i t  does not necessarily yield an independent 
rest since its characteristics are related to those of orher sitcs, some of which may 
have bccn used to develop rhc modcl. An alternative char might offcr Icss inflared 
resulrs is to superimpose a large grid, like that shown in Figure 7.3b, over the region 
and to use the grid cclls as the basis for thr spl~t-sample orjackkniG rcchniques. For 
splir sampling rhr individual cclls are splir a t  random into two groups, and rhc- 
analysis proceeds with sites in the selected half of the grid cells while sitcs in rhc. 
remaining half arc reserved for model resting. In the jackknife approach the sires in 

1h I h 
the k grid cell arc eliminated from thc k model and are rhcn used co rest that 
model independently, with this proccss repeatcd for all k cells. 

Such testing procedures, however, arc only as good as thc data to which they 
arc applied, and as rncnt~oned earlier, csisting data might inherently be strongly 
biascd. Independent and rcprescntativc dara are rhcreforc needed ifwc are to assess 
model pcrformancc in a reliable and confident manncr. 

In many federally adminisrered regions and districts soml- form of random 
sampling survey may well have been conducted in thc past. 'These dara can be uscd 
for modcl tcsting ifit can be argued that they arc representative ofsires (or the sire 
rypc ofinwrest) in the wholr region and if the site sample was suitably constructed 
and suflicicnrly large. Xot only can thew data be u x d  to asscss accuracy (Table 7.2)) 
but staristical significance can also be determined and confidence limits around rhe 
predictions can b r  calculared. Since thc width o ia  confidcnce interval is dircctly a 
function ofsamplr s i x ,  relatively large tcst samples arc dcsirabIc. For example, ifa 
model accuracy rate of 80 pcrccnt corrcct is obtained, a sample size of50 yields a 95 
percent confidcncc interval width of 19.8 percent (k9.9 percent), a sample sizc of 
100 yiclds an interval width of 15.5 perccnr (k7.8 percent), and a sample size of200 
yields an interval width of 11.0 percent (k5.5 pcrccnt; Hord and Brooncr 1976). 

Collecting and Integrating New Data in Model Development 

During modcl tcsring through i~sc  ofcxisting data or through usc of independ- 
ent test data it might be discovered that a model undcrperforrns for cerrain types of 
sites. Alternarively, a model might pcrform poorly when applied t o  ccrtain environ- 
mental scrtings-grassland settings, for esamplc (Table 7.2). 

In order to arrcmpt to rcmcdy these failings, rhe researcher mighr go back to 
the esisting data base(especially if it contains a number ofsitcs climinatcd from tho 
analysis through subsampling or for other reasons) and, using the above csamples, 
attempt to incorporate more grassland sites or more sitcs of the type being 
underprcdictcd. If a weightcd analysis approach is bcing used, the investigator 
might simply asslgn more weight to site types or sites in environmcntal scttings 
that are being poorly modeled. The  model-building and model-asscssmcnt stages 
then might be repeatcd. 



~ n o t h c r  approach to remedying modeling problems is to dcvelop a specific 
modcl for the particular environmcntalserting or site type chat is being incorrccrly 
predicted (Stone 1984). This tactic might be more successful than refinc~nent of thc 
original model, since a site-tvpc or environmentally spccilic modcl would only focus 
on the locational variation cshibitcd by che particular setting or sire typc. I t  should 
be noted, howcver, that when analyscs becomc too fine-grained, as when specific 
site typcs or cnvironmcntal communities arc investigated, available sample sizcs 
can become prohibitively small. 

A last altcrnativc. when one is faced with the problems ofunder- orovcrprcdic- 
tion by a sire-location model is to conduct a ncut survcy designcd to obtain more 
data from deficiently prcdictcd environmental rcgions or site types. This is a last 
resort, due to costs, and should be pcrformcd only when the researcher is certain 
that the rnodcling application warrants collection oCncw data. It might be that it is 
not possible to modcl the locations ofsires in a spccific environmental community 
successfully (owing to a low Icvel of patterning with respect to the variables 
examined, for csamplc) regardless ofthe amount ofdata available. l 'hc collection of 
new data in this case would not 01ti.r any improverncnt to rhc modcling situation. 
Beforc initiating a new survey the investigator should consider this possibility by 
examining the quality and amount of thc csisting data. 

Whcn implemcnring a survcy for the purpose ofproviding more information 
about a ~arr icular  region, such as a spccific environmental community, somc form of 
random sampling design should be used. Sircs discovcred by this survev could then 
be compared with previously known sites in the same community. This comparison 
can cnrail visual inspection of rhc shapes of histograms of thc measurcd variables, 
descriptive statistics, indices of difkrencc, and sratistical tesrs for differences, such 
as the r-test. Ifdifbrenccs bctwecn thc samples arc found, this would suggcst that 
new and difkrent information might be contained in rhe nl=uf sample. The  near data 
might then bc incorporated into the analysis data basc or analyzed as a separatc data 
basc, and the model-building and resting processes could bc rcinitiated. 

New site data inevitably become available as archaeological work conrinucs in 
a region. Model updating and resting using thesc new data can bc pcrfornlcd as an 
ongoing process. T h c  techniques used in evaluating cxisting data should also be 
applied ro thesc new data; LC., thc quality ofsicc recording and survey should be 
invcstigatcd, and appropriate bias-rernoving techniques, such as subsampling to 
reducc locational survey bias, should bc crnploycd. 

EXAMPLE ANALYSIS 

A settlement pattern study of Mesolithic sitcs in thc Fcderal Republic of 
Gcrmany (Kvarnme and jochim 1988; also sec Kvammc. 1986) will be described hcre 
as an csamplc of the usc of cxisting sirc data as a basis for locational rnodcling. 
Although this study docs not illustrate many of the bias-rcduction techniques 
discussed above, it does illustrate the locational patterning that can be found, and 
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rhe kinds ofinccrpretarions of results char can bc made, givcn thc biascs that might 
esist in a body of regional archaeological data. This study focuscd on a rcgion ncar 
Scuttgarr whcrc rherc arc many recorded Mesolithic sires. The journaI F'undbbrrichtr 
aur Scbmabm, which contains rcgional archacoIogical rcports of investigations by 
local arnatcurs, was used co obtain che locations of 170 known Mcsolithic sites in thc 
rcgion. Sincc rhc sitc dcscripcions wcre very ccrsc it was noc possible ro assess 
qualiry of reporting, nor was it possiblc to field check any of thc sices. T h c  sites did, 
however, appear ro offer a fairly good spatial distriburion char was wcll spread 
throughout the 940 kmz scudy area (Figure 7.4a). 

Previous research in the Mcsolirhic of northern Europe had suggested a 
number of relationships betwren the physical cnvironmcnc and paccerns of serrle- 
ment. Nine environmental variables wcrc selected for this srudy (Kva~nrnc and 
lochim 1988), largely on rhe basis of prcvious work. These variabIes are elevarion, 
slope, aspect, local relic$ a measure of view quality, a rncasure ofshcltcr pormrial, 
horizoncal distance co nearcsc warer, vcrcical distance co afacer, and horizontal 
discancc to nearest chird-order scrcam (scc Chapter 8 for a discussion of how rhese 
variables can bc d c h c d ) .  Mcasurcrnents ofeach variable wcrc made ar thc locarions 
ofrhe 170 known Mcsolithicsires, and rhc samc mcasurcmcncs wcrc made a t  100m 
intervals across [he cntirc background environment (a rota1 o f84 ,m  measurements 
for each variable). The  large number ofrneasurcmcnts was possiblc owing to the use 
of computer-based geographic information system (GIs) tcchniqurs (see Chapccr 
10 for discussion ofhow chc compucer approsimatcs mcasurerncncs on the basis ofa - .  
regular grid system). 

The  methodological premise of the study was that, in order to dcccrminc 
significant environmental patterning at site !ocarions, one must contrast empirical 
daca measurrd at known sites with chc samc daca measurcd in the background 
vnvironment. For example, ifonly thesitc locations u7cre cxamined, as is usually rhe 
case, [he daca rnighr indicace a major tendency for south-facing aspects. Such a 
rendency in the data could reflcct a significant parrcrn, or convcrscly, the encire 
scudy rcgion might generally possess a south-facing orientation, in which case thc 
pattern cxhibired by the sites would only be a reflcction of the background 
cnvironment; it is an cxaminacion of the background daca rhar allows us to makc 
this asscssment. For each variable, thc data measurcd at che 170 sites werc con- 
trasccd with a rcprescntativc sample of 3201 measurernencs cakcn from the back- 
ground cnvironment using Studrnr's ,-scacistics as a rough guide for differences 
bcrwcen the two groups. Sincc [he a priori chance of an as-yec-undiscovercd 
Mcsolithic site occurring in one of che background samples was assumed to bc 
cstremely low, rhe cwo classcs coilld be argucd to be reasonably distincr, alrhough 
rhe representativeness of the Mesolithic saniplc and thc general indcpcndcncc 
problem of spatial samplcs forced cautious interpretation of the scacistical results. 

T h c  analysis results (Table 7.3) indicacc a nurnbcr of strong patterns of 
contrasts bctwccn sitc locatiorls and the background cnvironmcnt (in chc original 
scudy, detailed hisrograms a w e  also csarnined). T h e  siccs show a strong tendency 
toward lcvcl ground slope (Figure 7.4a), for regions of great relief, and for higher 
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Figure 7.4. GIs-gtnerntcd images. ( A )  Locarions o l  rccordcd Mczolithic sires plottcd on a 
computer-pwrnrcd i ~ n ~ g c  o i rhe  study rcgion In southcrn Germany. T h c  irnagc was obtaincd by 
calculrr[ing slopc cvcry tW nm and h i d i n g  the i n q r  by dcgrvc. ofslopc. (B) Iningv of thc  rnultivwiatv 
model o l  Mvsolirhic sire loc:+riou r n ~ p p ~ d  over thc cnrirc 5tudy region. 



TABLE 7.3. 

Descriptive statistics for ~ h c  sitc location study of German Mesolithic sites 

Barkground 
Mrroilrbrr S i m  Ewrror~mrnr 

Yariabk (n - 170) {r: - 3201) ! - j i a ! i h  

kfean Mean 

Elevarion (m) 478 423 11.50 
Slopc (percent) 6.9 9.0 -4.90 

Aspccc (rescalcd; degrees) 95 95 0.10 

Local relid (m) %' 92 2.49 

Angle of vicw (degrees) 244 186 10.51 
Shelter index 2735 2256 11.83 
Horizontal dislance to ncarcst water (m) 272 1 'B 6.09 

Vcrcical distancc to nearest watcr (m) 23 13 5.48 

Horizontd distar~cu to ncarcst r hird-order 
sr ream (m) 757 709 1.21 

elevations, suggesting high-clcvation ridge crcsts and the edges of plateau tops as 
the primary locus of sire placement in the region. Although therc was no srrong 
preference for orientation or aspect, the remaining variables were supportive ofthe 
silggested pattern. The  sires possessed widcr views and lower values for shelter 
(reflected by a higher index in Table7.3) than the background environment, which 
is consistent with these high-point Iocations. ~Moreovcr, the results showed fairly 
strong tendencies for site location relatively far from water, also pointing to ridges 
and platcau edges, which tend to be located far from water. 

A multivariate model of the Mesolithic site-locational pattcrn was dcvclopcd 
during this study, not for prediction purposes but in order to  assess the locational 
pattern in the known site sample further. A robust nonparametric discriminant 
function known as logistic regression (see Chaptcrs 5 and 8) was used to develop the 
model, which supported the univariatc findings. The  model, in conjunction with 
the CIS, was used ro map the quantitative environmental pattcrn of site location 
ovcr the remainder of thc study rcgion(i.e., evcry 100 m) in order to provide a visual 
rcprcsentation that summarizes thc hlcsolithic tcndency (Figure7.4b; sec Chapter 
10 for a more detailed discussion ofhow this is accomplished). T h e  mapped pattern 
also supported the univariatc findings of a tcndcncy for sites to be located on ridge 
tops and the cdges of platcau tops, considerable distanccs from drainages (comparc 
Figures 7.4a and 7.4b). 

A number of cuutious interpretations can bc drawn from these empirical data 
(Kvamme and Jochim 1988). Patterns in this nonrandom sample ofsitcs might reflcct 
Mcsolirhic locational prefcrenccs, modem collector biases, geological or other 
processes, or a combination of these factors. Geological processes might have 
introduced bias to thc sample in a number ofways. Although thc gencrd patterns of 
landform and drainage in thc study area have not changcd since thc htesolirhic, 
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alluvial deposition has occurred. If there arc deeply buried sires in rhese areas of 
deposirion, the saniple will be biascd away from locarions in vallcy floors. Erosion, 
on thc other hand, might have desrroycd sitcs on steep slopes or along screams 
where meandering has occurred, thus biasing rhe sample away from stcep slopes 
and drainage locations. Another factor influencing sice visibiliry is modcrn land use. 
Maccrials in plowed fields rend to have higher visibility than those in forestcd areas, 
which biases the sample toward areas undcr cultivation, such as rivcr terraces, 
gentle slopes, and ridgc and plateau cops. 

GeoIogic processes and modern land-use parccrns have biased the efforts of 
modern collecrors away from steep slopcs and marshy valley bottoms and coward 
areas under culrivation or rivcr terraces, gentle slopes, and ridge and plateau tops, 
and this is indced a pattern similar to that dcmonstratcd by the sicc samplc (Figurc 
7.4b). T h e  sitcs, however, exhibit a more restricted partern in rhat thcy tend not to 
occur on river terraces or hill flanks, and they are found mainly on thc cdgcs of 
plateaus rather than on ail portions ofplateaus. Because the sice disrribution is more 
restricred than the pattern of areas inspected by thc amateur collectors who 
reported the sites, Jochini and I havc suggesred thar the observed distribution of 
sites appears to be partially thc result ofhIcsolithic locational prefcrcnces (Kvamme 
and Jochim 1988). 

Interpretations of rhesc patterns should also take into account rhe nature of 
the archacological sample. T h e  samplc uscd in this study included all Mesolithic 
sites recorded in the region regardless of function or scason of occupation (factors 
thar were unknown). Different site types could, of coursc, havc varied locational 
requirements. AS has been noted, 

The locarional partcrn of such a mired group ol'sitcs is dilticult to inrcrprtr. In part it 
rcprcscnrs 3 blending of chhracccrisrics spccilic to each sitc lypc and scason, weighted 
according to rhcir proporrional representarion in the samplc.. Since the sire rypcs and 
rhcir proportioos are not currently known, i t  is not possible LO separate those diffcrcnt 
sprcilic partcrns. In this srudy, for example, sites; showcd no tundcncy to hcc  any 
direction. I r  m3y be, howcvcr, that winrcr rcsidc.ntia1 cmpsshoucd  a tendency to face 
south, whilc sites ofothcr seasons and frrnctions h3d orher characteristic oricnta~ions. 
The mixed 5arnple would obscure rhcsu scp3r:11c pattern3 [Kvamrnu and Jochirn I W ] .  

Based on the results ofour research, howcver, we concluded that the overall 
pattern reflects environmental characteristics common to all sitcs and all sets o l  
activities and thar interpretation should emphasize general advantages of such 
locations rathcr than those relevant only to certain scasons or specific acrivities. In 
rhc region of study these advantages may have included (a) wide views allowing 
easy spotting of game and strangers in any season; (b) strong breezes providing 
comfort in sunimer, reducing snow cover in winter, and helping to keep away 
insects; (r) good drainage in every season; and (d) light forests adaptcd to these 
exposed, dry situations, which may have otTcrcd ease of travel, hunting, and 
burning. Large distances from water may reflect an avoidance ofriverinc forests, the 
unimportance of riverine resources, or a major importance of high elevations. The 



tendency for level ground probably represents the prcfcrcncc for performing 
activities on level ground (Kvamrne and Jochim 1988). 

In terms of the present voiumc, the multivariate model of the Mesolithic site 
pattern and its mapping (Figure 7.4b) can be viewed as a "predictive model" for 
Mesolithic sites based on esistmg data. The  model remains untested, however, and 
its performance as a predictive tool cannot be evaluated until [he model is applied to 
a suficiently large, indcpendcnt, and representative sample ofMesolithic sites from 
within the study region. A t  this point there is simply no way to dcterminr whether 
the known site samplc upon which the rnodcl is based is strongly biased (e.g., as a 
result of the unsystematic way that amatcurs find sires or ofgeological processes), or 
indecd whether it is represencarivc of the region's Mcsolithic pattern in general. 
Before the adequacy of the model could bc assessed, some form of random sample 
survey would have to be conducted within the region, and a sufiiciently large 
samplc of Mesolithic sites would have to be discovered. The  multivariate model of 
site location could then be applied to this new and rcpresentative sample, and the 
percentage of correctly predicted sites could be determined, along with statistical 
confidence limits around the prediction. 
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Chapter 8 

DEVELOPMENT AND TESTING OF QUANTITATIVE MODELS 

Kenneth L. Kvamme 

This chapcer is about the application of methods of empirical analys~s- 
mathematics, statistics, and computer-processing techniques- to the development 
and trsring ofmodels ofarchaeological distributions that havc a predictivc capacity. 
This chapter is written primarily for the archacologisr with a background in 
quanritativc mcthods ofdata analysis who is contemplating thc development and 
testing ofarchaeological locacional modcls. In order to appeal to a broader basc of 
rradcrs, the number of mathematical equations has been kept to ;I minimum, 
cstensive descriptions ofthe various nlethods h a w  bccn provided, and Iigilres have 
been uscd to illustrate rhc techniques whcncvcr possible. 

Past peoples lcft behind material cvidcnce oftheir actions-the archaeological 
rccord. This rccord is full of tcIltale patterns. Today we have access to a host of 
advanccd tools for analyzing such empirical patterns: rhe tools ofmulrivariatc data 
analysis and the great analytical cnginc, the computer. Wc might hopc to makc 
somc wnse of the past by noting relationships within and among these data 
patterns. Csing these tools I will describe in rhis chaprer several parhs toward 
dcvcloping and resting models of the pattcrns of prehistoric land use in a region. 

I t  should be noted a t  the outset that formulationofrigorous models through a 
prior; deduction ofundcrlying causal processes is a laudablc goal. Wc must tcmpcr 
this goal, houevcr, with a practical outcome. The  social disciplines presently lack a 
broad theoretical basc, and rhercforc deductively bawd modeling strategies typi- 
cally havc little foundation. Haining (1981:88) has ebscrved in geography, for 
example, chat 

rnosr progrsphttr~ have had a prricrcncc Sor dar.3 ;ln.dyA rarhcr rhsn rigc)rou\ rriodcl 
fbrmarion rhrough prior spccil;ca[ion o i thc  underlying proccfss. In Brtrairl rhis rc.ndcnc): 
par;lllcls rhc gmwlng inrcresr in problems ol"rcgiorial Ibrccasring. 'T'h~~cmcrgcncc o f t h i ~  
irltcrcsr in the 1WOs i h  in part rhc rcsult ofrhc discipline's nc-u q w s ~  ior "rclevancc." 3t ;l 

polir-!- Icwcl. As a rcscarch goal i r  c l cv~ t r s  the methods o i  dara analys~s over those o i  
rigorous ~nodcl iormuhtion through thc nucd ro provide answers ro diilicuh and ohen 
inhcrcnrly messy prohlcmc. Only [hu sirnplcst sparial proccsscs ;arc c:tpablt at  thu 
prescnt tinir of'bring givcn a rigorous iormu1;lrion and t h ~ ~ c  is J rcndcncy Ibr rhcm ro 
sccrti rriv~al .md unrc;distic whcn scr .tgainst [tic csp:msive p r ~ l b l ~ r n ~  of prc.diccing 
rrgiond uncmplo~mrnr Icv~.ls and iorec~sting thc spscc-rime cvrnlr~rion of cpidcinics. 



The  analogy with the archaeological problem of this volume is clear. Like gcog- 
raphcrs, archaeologists have a "messy" and expansive problem-modcling regional 
archacological distributions. Like gcographcrs, we can apply the mcthods ofcmpir- 
ical data analysis ro rhis problem of rcgional forecasting because thc-sc models are 
able to produce nontrivial results that can bbc used In applied, real-world contexts 
(c.g., Custrr et al. 1986; Kvamme 1986; Kvamme and Jochim 1988; Larralde and 
Chandler 1981; Parker 1985; Scholtz 1981). This chaptcr foc~~scs  on thcsc data- 
analysis modcling approaches. 

T h c  unit ofanalysis in this chaptcr is the /u(uticur, or land parcel. Treating the 
larid parcel as the unir ofinvcstigation allows greater frccdom in [he definition of rhe 
depcndent variable used in analysis ( C h r  1985:116). t i t  thc very simplcst l e d ,  a 
binary dependen[ variablc can be defincd and codcd according to whether an 
archaeological site is prescnt or is not present in a particular parcel (and it can be left 
up to the rcscarcher to define what consritutcs an archaeological site). Some 
invcstigators (c-g., Dunncll and Dancey 1983) arguc against usc of the site concept, 
pointing out that the term rils rypically refers only to  clusters of artifacts, 3 mere 
subset of the archacological rccord. By using the land parcel as a focus the rcscarcher 
can define virtually any archacological manifestation of' potential inrercst as the 
dependent variable. Other examples of dependent variable catcgorics include 
parcels with 20 or more artihcrs of any kind vs parccls with less rhan 20 artifacts, 
parcels with IOor more sherds vs parcels with less than I0 sherds, or parccls with any 
cultural manifestation vs parccls wichout prehistoric cvidcnce. Note that more than 
two catcgorics also are appropriate, allowing invescigsrion of mulriplc sitc or 
functional land-parcel types ~ imu l t an rous l~  (e.g., settlement, temporary camp, kill 
site, other archaeological evidence, no archacological evidence). By using the land 
pared wc are able to cxamine various environmental, social, or or her charactcrisrics 
of the parcels that are codcd as having archaeological manifcsrations or specific 
typcs ofmanifcstations, as opposed to parccls thar contain little or no archaeological 
evidcnce. An additional benefit oiusing the land parcel is that the size ofthe parcel 
controls rhc scalc of investigations: very small parccls allow investigation of 
microcnvironmental and orhcr small-scale intluenccs on archaeological distribu- 
tions and potentially allow grcawr derail and precision in modcling; large p a d s  
allow similar pursuits but on a grosser scale. (Notr that ifsmall parccls are used, and 
large archacological sites or scattcrs arc presrnt, then contiguous parcels may be 
coded as "site" or "scatter" prcscnt.) In the following pages, discussion principally 
focuscs on the simplest two-category situation for the dependent variablc, for ease 
and clarity of prAntacion. AH-of the methods gcnc.rhlly apply, of coursc, t o  
situations in which any ni~mber of categories are bring used. Since archaeologists - - 

traditionally have used thc sitc concept, 1 use thc rerm silr in a general sensc to rcfcr 
to land parcels possessing the archaeological manifestations of intcrcsr, however 
defined. Similarly, rhr term riotrrrlr is used to rrfcr to land parccls that do not meet 
the dclinicion of the archaeological manifcsrations. 

T h e  phraseprcdirlrr~ ur~/~a~~o/ugica/ntodt-/ ,  which has reccn tly come in to usagc, is 
somewhat misleading because most data analysis approaches do nor really predict 
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where as yet undiscor~ercd sitcs are specifically located. Instead, data analysis 
approachcs attcmpr to  abstract the locational pattern exhibited by a sample of 
sire-present locarions (or specific sire-type locations) in a region in terms of 
crlvironmcntal, cultural, or other variables, and then to project this pattern over the 
entire rcgion (using various computcr mapping tcchniqucs, if available; see Chapter 
10). if thc initial samplc ofsite locations liom which the model is abstracted eshibits 
a locational pattern similar to thar of the rcmaindcr of the rcgion's sitcs (i.c., if the 
sample is a reprcscncative or random sample), and the sitcs are strongIy patrcrned, 
then the mapping of rhe model can provide a very good indication ofwhcrc sites will 
b~ found in the rest of the rcgion. Thus, wc do not predict thc locarions of 
undiscovercd sites; wc merely map Locations rhat possess cnvironmenral or other 
characrcristics that arc similar to those of rhe initial sirc samplc. 

T h e  naturc of this mapping or extrapolation of an archaeological locational 
pattern depcnds primarily on the qualiry and rypcofmodeling approach used. The  
mapping might corrcspond with simple environmental carcgories, such as plant 
communities (Figurc 8.la), or i t  mighr plor a complex mulrivariatc funcrion of a 
varicty of facrors with esrimaccs of sire scnsirivity cvcry 50 m across thc rcgion 
(Figurc 8. I b). Thcsc products ofcmpirical data-analysis models (Figure 8.1) should 
include performance indicarions-sratistics chat dcscribr how well (e-g., how 
accurately) the model and rcsulring map portray the locations of sircs. 

I t  should be emphasized chat rhc abilily ro predict locarions (land parcels) 
whcrr archaeological sitcs arc likely to be locarcd logically implics thc abiliry to 
predict where sircs arc nor likcly to be found. Wirhour this abiliry thc modcling 
exercise becomcs mcaninglcss. I t  is easy to develop a modei, for example, rhat 
predicrs the Iocat~ons of all sitcs within a region with IOO pcrcenr accuracy; such a 
model would simply classify cvcry location (i.c,, every land parcel) within the rcgion 
as likely to conrain sires. Of course, nothing is gained from such a model. The  
uscfulness o f a  model must be judged not only by how wcll i t  predicts locations 
likely to contain sitcs but also by how wcll it  predicts locations unlikely to contain 
sites. Ifa model is able to predict 90 pcrcenr ofthc sirc locarions correctly in a rcgion 
representing only 50 percent of rhc coral land area (as opposcd ro 90 pcrccnr of the 
land area), [hen somcrhing is gained. 

Many ofthe locariunal nlodeling approaches discussed in rhis chapter makc usc 
of basic pattern-recognition principles and tcchniques (Duda and Harr 1973). 
Prcdicrive archaeological models devrlopcd wichin chis pcrspecrivc must work if 
rwo assumprions can br  met. 'l'hr first assumprion requires thar the IocationaI 
parrerns exhibited by the initial sirr (or sire-type) sample used ro "rrain" rhe 
partern classifier (rhc quanritative model) are reasonably rcprrsenrativc of7thc sire 
population undcr study. The  second assumption is rhat the sire locarions are 
nonrandomly disrributed with rcspecr ro the envirunmcntal or social facrors under 
invcsrigation. Use of some form of random sampling designs (Mucller 19i5) will 
usi~alIy cnsurc rhar the rcquircmenrs of rhe first assumption are nwr. With regard ro 
the sccond assumption, it  is a basic premise of modern archaeology thar human 
behaviot is patrcrned, and thc invcstigaror's familiariry with the region or with 
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setrlcmcnt data in general will usually guarantee chat some oirhc variables selectcd 
will reflect rhis nonrandom behavior. When I indicate that such modcls "musr 
work," I mean char cherc musr be some gairi (e.g., in rcrnls of percenr correct 
predictions) over a purely random model wirh no prcdictivc capacity. 

We mighr define the gain concept morc rigorously lor purpostns of this chaprer. 
I r  was stated above char rhe results of archaeological locarional niodcls should be 
mappable within the rcgion under scud?. When the modcl is mapped (e.g., Figurc 
8.1), certain areas of rhc region are indicated as bcing mow likely ro contain sires 
than other areas. Only a percentage of all the sircs (or oC che sire type under 
investigation) in che entire region will occur wirhin rhc arcas indicated on the map. 
ICrhc arca likely ro contain sitcs is small (relative to the rota1 ltrca ofrhe region) and 
if rhc sitcs found in char area rr.prcscnr a large percenragc of rhe total sites in the 
region, rhen we h a w  a fairly good model ofsirc location. On rhc other hand, if rhe 
area predicted ro contain sires is a relarively large portion of rhc rota1 arca and the 
pcrccnrage of sircs within chat area is not signilicancly greater than the pcrccnrage 
oCregional covcragc, [hen rhe model is not vcry useful. Bascd on these considera- 
rions we mighr csplicitly definc p i "  as 

Gain = 1 - pcrcrnrsge of tor31 arcs covered by 

pcrccntagc of total sites within niodcl arca 

As gain approaches 1,  the modcl has increased predicrivc utility; i C  i t  is near or 
approximarely 0, thcn the modcl has little or no prcdictivc utiliry. llgain is negative 
(<O), thcn the model has r m m z  predictive utility (i.e., a greater density of sires 
occurs outside rhe area sprcificd by rhe model). Such a modcl could srill bc ofsomc 
use ifrhe arca outside chat specified by the model weresubscquently considered to 
be the area being modeled (but rhc model developer should be fired!). 

The  gain statistic is used throughout rhis chapter as a means of comparing 
models. Most archaeological modelers tend to lbcus on percent correct predictions 
for sires, fk nonsitcs, or cven an overall pcrccnt correct statistic (sec Chapter 3). 
Thcse starisrics can be usrCul and important, bur t h q  can also lead ro serious 
misinterprctacions. In addirion, they o fc r  little basis for comparisons between 
modcls (thcsc issues are discussed in detail bclow), while the gain starisric prc- 
scnrcd here is easy ro incerprcr and Cacilirares comparison. 

An imporrant consideration that musr be addressed before model dewlop- 
rnenr is discussed is exactly what types of-sires or archaeological rnanifesrarions arc 
ro he modelcd. A cenrral assurnprion in archaeology is that tlic locations o i  sires of 
different functional carcgories or chronological periods will reprcscnr responses ro 
diffcrcnt situational contexrs, such as cnvironnienral circurnsranccs. It is imporrant, 
rhcrefore, to develop models for specific archaeological rypcs whenever possible. 

In practice, specific sire-type models arc ofrcn diCficult to csrablish for several 
reasons. T h e  problems lie nor in thc modeling rcchniques buc in rhc definition of 
meaningful and justifiable site rypcs, in assigning sites to thc rypcs based on lirnitcd 
and often questionable evidence, and in acquiring sulIicIently large samples of the 



types for subsequent analysis. T h e  practicc ofassigning sitcs to functional types on 
the basis of surface information or limited cscavation data is often questionable. In 
many regions, particularly where surface cvidence consisrs of only a handful of 
lithics, rhe investigator may be relying on the flimsiest of evidence (if any) and on 
sheer guesswork. Alrhough sires may be forced into type caccgorics under certain 
circumstances, rhc quality of rhc resultant groups and their utility for subsequcnt 
analysis must be questioned. In orhcr words, meaningless site types will yield 
meaningless analysis resulrs. 

A srcond dificulty involves carcgorization ofsites into many site typegroups, 
a procedure that can inrroducc sample-size problems. On the othcr hand, evcn 
when only a fcw site-type categorics arc employed, certain types within a region, 
such as major village ccntcrs or Paleoindim sires, might inhcrenrly exist only in 
small numbers. Since locational models dcrivcd from empirical data require rela- 
tively large samples in order to definr a locational pattern successfully and cxrrapo- 
lare ir to a larger rcgion, functional or temporal typcs containing few cases s~mply 
cannot bc modeled. In gcneral, empirical models can be dcvcloped only for rhc few 
types that contain a sign~ficant numbcr of reprcscntative cascs. Careful thought 
should be given to the nature of thc available cvidcnce and the reliability of 
resultant sirc rypes prior to subjecting the types to a modcling excrcisc. 

In orhcr publications (Kvamme 1983a, 1985a) I have suggcstcd an altcrnativc to 
rhc practical probicm of making traditional temporal-funcrional sitc rypes opcra- 
rional using regional survey data. Site typcs can be dcfincd on the basis ofamou~t of 
infcrred activity occurring within a land parcel, rather than gpzr ofinfcrrcd activi- 
tics. T h e  amount of activity is measured in tcrrns ofquantity and variety ~ndices of 
obscrved artifacts at a locat~on. Locacional srudics can then bc carried our by 
comparing environmental characrcrisrics among locations indicating much prchis- 
toric acriv~ty, locarions indicating little prehistoric activity, and locations indicaring 
no prchisroric activity. This approach allou~s one to invcstigate why certain loca- 
tions ufcre uscd in rhc pasr and why othcr locations were not. 

Historical sitc location modcl devclopmcnt poses problems similar to those 
encountered in prehistoric model developmenr, but hew additional problems arise. 
In most regions the amount oftitnc allot red for historical site model devclopmcnt is 
probably best spent researching historical documenrs and archives, which often 
indicate exactly where many rypes of historical sitcs arc located (see Chaprcr 7). 
Moreover, the bcsr predictor of historical site locations in many regions may be 
neither environmental phenomena nor the typically uscd cultural factors (such as 
distance to nearest road), bur simply the cadastral survey grid, since patrcrns of 
serticmenr were often dicrated by section and partial-secrion boundaries (e.g., 
Scholrz 1981:220). This is not to say that successfd models for historical sites cannot 
be dcvcloped utilizing the usual environmental or other predictors. Scholtz (1981), 
for esample, was able to construct a modcl for domestic historical sirc locarions by 
correlating 15 cnvironmenral variablcs with the locations of known sires in a 
southcrn Arkansas rcgion. Using a somewhat different approach, Monroc er al. 
(1980) developed powerful trend surface models for the spread of historical settle- 
ment in colonial Conncccicur. 
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At the extrcmc, and depending on the quality of the regional data, modcls can 
be developed for the locations of all sitcs as a singlc group within a region. This 
approach has bccn criticized (and in certain contests rightly so) because lumping 
sitcs of many different funcrional types and tcmporsl pcriods into a single group 
introduces a grcat dcal of variability to any analysis, making it more dificult to 
develop a succcssf~~l cultural resource model. As arc shall see in later sections, 
however, this variation usually is substantially less than [he variation present in the 
cnvironment as a whole, and it  is possible on the basis ofa gcncral modcl to define 
significant portions of a rcgion rhar are unlikcly to contain sitcs ofany kind. If wc 
lump together all vnvironnwntal and other variation mcasurvd at all sitc locations, 
the rcsultant characteristics might dcfinc an u c ~ i ~ i ~ j  lpdci (we  Kvamme 1985a), a 
subset of the whole cnvironment \vithin uhich the bulk of human activiry (aside 
from moving from onr  activity place to another) is pc-rformcd. Although diffcrent 
functional acrivities might be conduccc.d in cntircly diffcrcnt situational contests 
within the activity space, the activity space can be a useful construcr for locational 
modeling purposes if it is substantially smaller than the whole environmental rangc 
of a region. 

I t  should be recognized that thc goals of cultural rcsource management may 
not always bc consistent with traditional archacological perspectives. For example, 
cultural rcsource managcrs are often intcrcsted in regional models for the locations 
of all sitcs in gcncral, simply because all sitcs arc initially important from a 
management standpoint. Additionally, modcls for traditional site t y pcs might not 
be as important as models for significant sitcs, where signilicancc is dcfincd as rhosc 
sitcs being important to predefined rqyonal research qucstions. 

In the fo1Toning pages, sitc location models are oftrn referred ro in a general 
sense. Such statements should not bc taken to apply only to ~nodels for all sites as a 
singlc group, but also to ~nodels for specific types of sites, since the methods 
discussed arc applicablc to any class or classcs of sitcs. 

Finally, since this chapter covers such a wide diversity oitopics, th rw datasets 
are uscd to provide the best possible illustrations of the mcthods employed. The  
data scts arc(u) a acstcrn Colorado data set from a mesa and canyon rcgion known 
as Glade Park, used to illustrare model-building and model-testing procedures; (b)  
an easrcrn Colorado plains data set, used to compare diffcrrnt types of modeling 
approaches and tllcir mappings; and (c) a Mesolithic data set from the Federal 
Republic of Germany, uscd to illustrate modeling multiple archacological sire 
classes. 

VARIABLES USED IN LOCATIONAL RESEARCH 

A researcher usually selects a variable for investigation in locational analyscs 
because distributions of archaeological phenomena are belicvcd to have been 
somchou influenced by thar variable. Hence, most rcscarchcrs rely on thc results of 
previous and sirnilar studies in order to determine the variables ro be used in an 



investigation. A multitude of pcrspcctives have been applicd in archaeology to 
examine site locational information. Those rhat focus on the physical cnvironmcnr 
and its e f i c r  on setrlcmcnt behavior occupy a major portion of the locarional 
analysis Iircrarure. T h c  examination of site cacchmcncs, topography, vcgctarion, 
and orhcr environmental featurcs are major elements of this approach. Roper 
(1979a) has labeled analyses in this perspective the study ofman-land relarionships, 
as opposed ro man-man relationships. The  latrer rcrm refers ro analyses rhar assess 
[he imporrance of the human or social environrnenr in scrucruring partcrns of 
serrlcment. These analyscs focus on such areas as ccntral place rheory, the rank-size 
rulc, and population disrriburions over the landscape. Although man-man relarion- 
ships play a major role in rhc setrlcment partern of modern indusrriaIized society 
(Haggcrt rr al. 1W7) and offer an important and usrful pcrspecrivc in many 
archaeological applications (Flanncry 1972; Johnson IW), many key features ofrhis 
approach arc meaningless in a Iargc number of archacological situations. For 
csample, in most hunccr-garhcrcr contexts markets and central placcs are nor 
meaningful concepts. Moreover, the primary orientation ofman-man approachcs is 
the analysis of properrics related rojixzd sertlemenrs in space, again precluding 
investigation of much of prchisrory (e.g., many huntcr-gatherer groups). In con- 
trast, man-land relarionships arc intimately related to site locarion decisions among 
hunter-gatherer groups (Bcrtingcr 1980; Jochim 1976; Wood l978), and rhcy play a 
significant rolc in the sctclcmenr patrerns of more cornples sociecics (Green 1973; 
Grossman 1977; Hill 1971; Hudson 1969). An investigation ofman-land relationships 
can concriburc to our underscanding of locational bchavior rcgardlcss of cultural 
form, and this IS why most work in sitc locarional modeling; has focused on - 
cnvironmencal data. Another reason for [his focus is rhat environmcnral data are 
generally c a s k  to acquirc than social data. Although social factors undoubrcdly 
influcnce scttlcmenr decisions in most culrural conrcxts, givcn thc narure of the 
archaeological record it is generally impossible in any bur thc best understood and 
preserved archacological regions to rcconsrrucr concemporaneity bctwccn sites, 
population srrucrures, erc.-importanr rcquisires for investigating social pheno- 
mcna. For this reason, social, factors ofren cannot be cxamined as frequenrly as 
environmental factors in archaeological locational studies. 

Archaeologists haw  rradirionally reIicd to an extraordinary degree on the use 
of nominal-level variables ro describe phcnomcna undcr investigation in regional 
rcwarch. Examplcs includc a focus on biotic communirics, soil classes, or the 
pracricc ofclassifying a rcgion as "level" or "scccp." Landforms arc ofrcn catego- 
rizcd into discrecc types, such as riverine, arablc, mesa top, mesa side, mesa bottom, 
and southern aspccc (c.g., Euler and Gumcrman 1978; Gumcrman 1971; I'log 1971; 
Plog and Hill 1971; Zarky 1976); indced, interval-lcvcl data arc somctimcs rc-scalcd 
co thc nominal lcvel. Yet most archaeological phcnomcna are emincnrly quanrifia- 
ble. Geographically distributed phcnomcna, particularly characteristics of the nat- 
ural cnvironment, by their very nature are distributed in a continuous manner (and 
thus are porenrially quantifiable). Slope, aspecr, and distancc to nearcsr drainage, 
for csamplr, change continuously as onc moves over the landscape. Likcwisc, so 
docs vegetation diversity, density, and biomass, as well as soil pH  and mcan grain 



size. The  usc of categorical data and the practice of rescaling interval-level mca- 
surc.mcnrs ro thc nominal level causes critical information to be discarded, rcduccs 
the power ofsubsequcnr analyses (sincc nominal-level dara contain lcss information 
than corresponding inrerval-lcvel data), and prccludes iisc of many powerful 
analytical alternatives and research designs, 

A major focus ofthis chaptcr u.ill be on che usc olconc~nuotlsly measured data 
in site location research, and emphasis 1s placed on the importancc of developing 
suitable measurement conceprs. The  types ofphenomcna typically investigated in 
chis rescarch mighr convenicntly be grouped according to two major classes (scc 
Plog 1971:47-48): rrwironn?mral [actors and soctal factors. The  following discussion of 
a number of key  variable.^ that h a w  been frrquc~lrly examined in site location 
studics is by no rneans an cshaustivc. summary. In any parricular region, some of the 
variables nwntioncd may nor bc appropriatc. 

Environmental Facrors 

Landform and landform-rclatcd phenomena arc commonly considered in 
archaeological srudie:. A typical approach is ro categorize the landscape into a scries 
ofnominal-lcvcl typis, such as canyon, canyon floor, canyon side, cliff, mesa, plain, 
and slope (e.g., Vivian et al. 1980) and to observe the distribution of archaeological 
sites across thcsc categories. Such cacegarizarion ofcontinuous landscape forms, in 
addirion to che problems outlincd abavc, leads to problems ofdc4nition and trnds 
to imply a dcfiniccness about rhese catcgoric.~ that may not be warranrc-d (Robinow 
I98 1240)-for csamplc, how docs onc consistently dclineare boundaries around a 
consrruct sr~ch as an arroyo hcad? Additionally, class boundaries may be totally 
arbitrary; a line dividing 1cvt.l from stc-cp locations depcnds on currenr definitions of 
what is Icvcl and what is sreep. 

Steepness of ground is widely invcstigated in setrlrment srudies because 
settlcmcnts typically arc locatrd on level surfaces wherc srccp slopes do not 
inccrfere with activities (ludge 1973:133; Roper l979b:77-81; Williams et al. 
i973:230). This concept is easil?, made operational as a quantitative variablc in a 
variety of ways, such as slopz nJ ptxt+tr7 p u d z  (Figure 8.23; nore that the L.S. 
Geological Survey provides a template that performs rhis calculation). The  form or 
roughness of local terrain has also been investigated (Hurlbctt 1!377:25-26; Plog 
198 1:49), prcsumably because rough local terrain would inhibit day-to-day activities 
and travcl to and from sitcs (Ericson and Goldstein 1980), One measure of local 
rcrrain roughness is termed local rslirf (Hammond 196%); it  is measured as rhc range 
in elevation wirhin a predefined radius of a location under investigation (Figurc 
8.2b). High vaIucs suggest rugged terrain while low values suggest gentlc terrain. A 
tzrrain [rxl:rrtt measure, borrowcd from image processing (A?oik 1980:233), providcs 
another alternative. An elevation is cscimarcd at the locus of inrerest and at a fixed 
pattern of poinrs surrounding chc locus (Figurc 8.2~) .  T h e  variance of rhese 
elevations is then campured. High values suggest variable and dissected terrain, 
whilc lour valucs indicate a level, smooth surface. 
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Water resources arc widely viewed as important factors in locational studies. 
Ropcr (1979a) scaccs, "some resources, such as watcr, are so basic and so vital that 
the distance toobcain them must bc minimizcd." In a cross-culrural study ofcriceria 
influencing huntcr-gathcrcr sitc-placement decisions, Jochim (1976:55) designaccs 
proximity to  water sources as a ccncral factor in determining immediate sitc 
placcmenc. Most often examined in setrlemenc studics arc disrances to a variety of 
water source types, such as permanent rivcrs, seasonal srrcams, lakes, springs, or 
srrcams ofspecified rank (c.g., Brown lW9; Judge 1973: 120; Lovis 1976; Parker 1985; 
Roper 1979b:gi; Scholtz 1981). Lintnr dirranmr arc casy to measure; least-rflorf rrawl 
disrawer are somewhat harder to esrimacc (Ericson and Goldstein 1980). Archaeolo- 
gists using categorical vanablcs gcncrdly assign class boundaries to drainage basins 
and let the highest stream rank in each basin rcprcscnt thc class category (c-.g., Plog 
and Hill 1971:23; see Unwin I981:79-84 for a discussion o i  systems of stream 
ranking). 

T h e  importance of view to hunter-gatherers for s u n 4 l a n c c  of rhe surround- 
ing ccrrain is a widespread notion, and the neccssicy of a good field of vicw for 
sporring game animals isoften cited. Jochim (1976:5l, 55) suggests that a good vicw 
is one of rhe chief noncconomic objectives in the selection of immediate sitc 
locations among hunter-gathcrcrs. In a more comples social contexr, among rhe 
pasroral Maasai (Wcstcrn and Dunnc 1979) vicw is mcnrioned as an important 
serclcment Iocarion criterion purcly for acscheric rcasons. A good view might also be 
of imporrancc for social or dcfensive rcasons. 

A mcasure of v i m  yual ig  was incroduccd by Brown (1979:197) in a study of 
settlcmcnr patterns in western Kansas. This mcasure, which yields an angle "of 
surrounding ccrrain visiblc liom a sire" (Figure 8.3a), has been used in a number of 
archarological studies (e.g., Kvammc 1983b, 1983c, 1984; Larraldc and Chandler 
1981; Reed and Chandler 1984). A more common measure pertaining to the view 
concept is a lintar disrawr- ro mr ovt rr~iim or ~nttragt-pninr (c.g., Brown 1979: 197; Judge 
1973:133; Larraldc and Chandlcr 1981:118), whcrc vancagcs arc defined as high 
points, such as hill:ops, ridge cresrs, or mcsa and canyon rims. Ifvicw was important 
ro the prehistoric occupants, then sites might be locatcd on or in prosimity to 
vantages. T h e  importance of view, of course, might vary wirh cultural type, site 
function, the kind ofanimal being hunccd, and from rcgion to rcgion and season ro 
scason. 

Shelter and the quality ofthc shelter provided by a locarion is often recognized 
as bcing important in sire location studies. Locations of ir ing protection from wind, 
advcrse weather, or even sunshine (in desert rcgions) might have bccn sought after 
for sitc placcmcnc. Euler and Chandler (1978), for esample, csamincd thc shclter 
quality of setrlcmenrs in rhr Grand Canyon in Arizona. Among hunting-garhering 
groups, Jochim (1976:51) dcsignarcs shclter as a central factor in the choice of 
location. 

Shclccr is a dificult concept to make operational; Eulcr and Chandlcr (1978) 
examined situational catcgorics of shelter in the Grand Canyon, and Larralde and 
Chandler (1981) used an ordinal rank of I I sheltering categories (from low or no 
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shcltcr to extrcmcly high shcltcr) for site location investigations in Utah. In a recent 
paper (Kvammc 1984) I havc attempted to devise an mtrmal-le~elmearureo~sbeltrr by 
considering how exposed a location is in tcrms of the shape of surrounding terrain. 
T h e  measurc is derived by imposing an imaginary cylinder over thc location of 
interest. T h c  top of this cylinder is a constant height (x) above the locus, and its 
sides arc a constant distance (y) from the locus. The  volume ofair above the ground 
surface cncompasscd by this cylinder constitutes the measure of shelter. A large 
volumc (c.g., surrounding a hilltop location) suggests an exposed location with a 
low Icvcl ofshelter, and a small volumc (e.g., surrounding a valley bottom location) 
suggests a relatively sheltcrcd location (Figure 8.3b). T h e  ground surface is roughly 
approximated by ninc clcvations measured at a locus ofinterest (0) and at surround- 
ing loci every 45O at a fixed radius CI;). The  area of the base can be approximated 
(basc = ~ 2 )  or calculated exactly (base = [ fib2). T h e  volume within the imaginary 
cylinder above thc ground surface is calculated (aftcr simplification) as follows: 

volume = (base/l2)(I& + 8(EO] - El - E2 - E3 - E4 - ES - E6 - E7 - E8) 

where EO, E l ,  ctc., arc thc nine elevations. This index might be referred to more 
appropriately as an indcx that rcflects hill-like vs valleylikc characteristics (set 
Kvammc and Jochim 1988). 

T h e  esposurc or nrpect of a site is oftcn examined in sire location studies in 
connection with shcltcring effccts. A south-facing aspect, for example, tends to  
offer grcatcr warmth from the sun (during muchofthc year in most of the northcrn 
hcmispherc). Grady (1980:170) argues that sites may be located with primary 
esposurcs away from prevailing wind or storm approaches. 

Aspect is usually mcasurcd by drawing a line pcrpcndicular to  the elevation 
contours of sloping tcrrain and recording thc azimuth ofthis h e ,  which provides a 
measurcmcnt that ranges from 1 to 360° (Figure 8.2a). A dificulty that this scale 
poses is that 1" and 359" both indicate approximate north, yct in a quantitative 
analysis 359 is much greater than 1 .  This dificulty can be resolved by collapsing the 
west half of the compass scale over the east half, such that cvcry azimuth on the 
wcst halfis given thc azimuth ofits mirror image on the cast half. This transforma- 
tion allows the measurement of direction rclativc to  north or south where O0 is 
north, 180° is south, and 180° is twice as far south as 90° (east or west). Another 
approach is simply to  usc the cosine of the anglc of prominent direction (Hartung 
and Lloyd 1969). 

Resources (other than water) and their importance to site placemcnc arc often 
examincd in sitc location studies. The  resources usually investigated are biotic 
communities. A major approach is to divide a study region into rnuironmmtal 
crrtzgonzr, such as plant communities, and to cxamine the numbcr or density ofsites 
in each community (e.g., Bettingcr 1977; Thompson 1978). Catchment analyses 
utilize a variety of different perspectives. Thc  perccntagc of various resource 
communities found within a fiscd distance ofa sitc might be examined (Findlow and 
Ericson 1980)) or perhaps thc variability ofresources or indices ofcaloric potential of 
thc area within that catchment might be calculated. Simplc distance measures to 



various rcsourccs are often utilized. Lipe and Macson (1971:134) mention that sites 
might "bc located so as to maximize acccss to several resource zoncs"; Gumerman 
and Johnson (1971) investigate the biological transition zones between major com- 
munities, or  rcorona, arguing that these zones "arc also cultural transition zoncs." 
Simple discance measures to rhesc resource zones mighr bc urilizcd, such as a 
distance ro thc nearest ecotone or to a specific plant community (c.g., Bradley e t  al. 
1984:75). Carr (1985:123) discusses other distancc measures, Whcn using biotic 
variablcs, the researcher should kccp in mind that present-day vcgetarion may nor 
necessarily correspond to pasr situations owing to changcs in climarc or land-usc 
practices. 

Finally, i t  should bc recognized that other rcsourccs, such as fuel Uochim 
1976:51), might be importanr considcrarions in sirc locarion research. In the same 
vcin, such resources as Iirhic raw materials (lohnson 1977:484) mighr escrr a "pull" 
on sctrlcmcnr location, and a corresponding variable, such as disrancc from a lithic 
quarry, mighr be used in archaeological locarional studics. 

Social Factors 

T h e  variety of social variables utilized in archaeological locational srudies is 
certainly snlallcr than the range of environmental facrors rhar have bcen investi- 
gared. Gcneral concepts rhat havc been examined relate ro local rift  dznritics, rirz 
proximirizs, and spucing. Plog (1971 :47-48) mcnt ions rhc importancc of densiry -the 
disrancc to other sircs or sircs ofspecific ry pe-as u d  as distance ro grear kivas and 
orhcr ceremonial sites in a sourhwesrcrn archaeology conrexr. The  Southwestern 
Anthropological Research Group (SARG) computer sysrem incorporates such social 
locarional variables as number of sitcs urirhin I km and number of habiration sites 
within 1 km of rhe sire being recorded (Plog 1981:54). Horizontal distance to firsr- 
rhrough fifth-nearesr contemporary habitation sires was invcscigated by Adams 
(1974) in a locational analysis of Pueblo sircs in sourhern Colorado. 

Graviry models are oltcn uscd in cnvironmcnral analyses because scttlemcnt 
locations "appear to bc relaccd co movemcnt-minimizing behavior" uohnson 
1977:489), which helps ro justify arguments about locarional proximiry co critical 
rcsourccs (c.g., Jochim 1976). The same perspcctivc can be applied ro cultural 
features. Thus, distance ro the nearest road or road inrcrsection mighr bc a useful 
variablc ifprehistoric road nctworks were culturally imporcant, ifthcy can be traced 
across a rcgion, and ifconremporancity of sircs and roads can be esrabIished. An 
implicit basis ofccntral-place t h e o n  is rhat central places can be vicwed as resource 
cenrcrs. Hoddcr and Orron (1976: 108) illustrate empirical data rhat show decreasing 
sire frequency wirh distance from a resource center. 

Spacing betwecn serc1cmt.nrs is also a concern. Hill (1971:56) mcnrions "spac- 
ing due ro compctirion with other groups for crirical resources," which might tit in 
wirh certain territoriality concepts (Bcctinger 1980:225; Wilmsen 1973). A major 
concept in many settlement scudics is regular spacing characrerizcd by hexagonal 
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arrangcmenrs of settlement around major centers or ccntral placcs (c.g., Johnson 
1972; Flannery 1972). Viobst (1976) discusses hunter-gatherer spacing rcquircments 
from the standpoint of demographic constraints on biological rcproduction. 

ASSESSING PATTERNS IN ARCHAEOLOGICAL 
LOCATTONAL DATA 

Approaches to the study of archaeological site location arc, of course, myriad 
(see Kohlcr and Parkcr 1986 for an estensive overview). Quantitative data analysis 
approaches might initially be lumped into two categories: those based on trends in 
location and those based on trends in characteristics of locations. Models of the 
locational trcnds of sitc distributions are based solcly on spatial coordinatcs; 
locations in space are modeled, not characteristics ofIocations. As Parkcr (l985:202) 
notcs, 

Evun in rhc casc ~ ( ~ c c u r a t c  representalion ofa dis~riburion . . ., rhis mcrhodologp gives 
no inlormarion for 'xplaining why rhc disrriburion is in a parriular form. Explication of 
site scttlc.mcnr systems is cnhmccd by nicrhodologics which rclarc sitc prcscntc to 
Ioc~tion char;rcrcrisricr, thcrcby allowing inrcrprcr.arions as LO why sircr arc loc~tcd 
whcrc they 3rc. 

hlodcls of irends in locational characteristics, on the other hand, analyze 
cmpirical relationships among charac teristics of the natural or social environment 
and the locations of sites. Modcling of locational characteristics has been thc 
dominant approach, and such models are to be preferred not only because of thcir 
generally greater powcr (scc bclow), but also because they offer some potential for 
interpretation. 

Approaches Based on Trend in Location Only 

Approaches that focus on trend in location attempt to model regional site 
distributions only on the basis oflocational (x ,~ )  coordinates. No other infbrmation 
is uscd. Positions in space are modeled, not characteristics of the spatial positions. 
Hencc, these models a r t  generally rather crude. 

Trend-surface analysis (Unwin 1975), a regrcssion technique, is one proccdure 
for modeling locational trends, although it is not ideal for site location data. Based 
on spatial coordinatcs of known sites, most archaeological applications develop 
functions to model a contiwtorti  dcpcndcnt variable, such as trends in datcd sites, 
across a region (Bow 198 I ;  Monroe et al. 1980; Roper 1976). Other csamplcs includc 
modeling trcnds in length/width indiccs of Bagterp spearheads across northern 
Europc or varying pcrcentagcs of Oxford pottery across southern Britain (Hodder 
and Orton 1976:1&-174). 



Nocc char a11 oirhcst. srudies utilize a continuous dcpcndcnt variable, which 
poscs something ofa problcrn for sitc location analysts because ofren their goal is to 
dcsvelop models for discrcte classes of such information as sitc (or site-type) 
prcscmcc or absence. This amounts to a no~ninal-lcvrl dependent variable, for which 
mosr regression techniques arc poorly suited. C)nc analytical alrcrnarivc for sitc 
location modeling in rhe traditional regression cantcxt is to convert the prc.sence/ 
absrncc cr~terion to some numeric form that the technique is better able to handlc. 
This might be accomplished by placing an arbitrary grid over the rcgion and 
csrimaring site density or pcrforrning a simplc site count in cach grid cell to provide 
a dependent variable that is more chan dichotomous. This approach has been used 
in a n~rnberofarcha~ological studies to dcvelop regression models ofartifact counts 
pcr grid unit for intrasirc distributional arlalyses (Fedcr 1979; Hietala and Larson 
1979; Larson 1975). For sire location studies, a similar approach could bc applird on a 
largcr scale by gridding a region and trcating sites as rhc unit of analysis. 

major problcm with the trend-surface regression approach is that diflkrcnt 
results can be obtained depending on n~hich arbitrary grid size is choscn. A sccond 
problcm involves the delkiencies of the regression rnodcl whcn it is applied to a 
dependent variable consisting ofcaunts. Hadder and Orton (1976)and Davis (1973) 
discuss general problems in the use of trcnd-surface analysis. 

Kriging approachcs ro the same problcm (Parker 1985:202-205; Zubrow and 
Harbaugh 1978; Chaprrr 2, this volume) utilizc similar kinds of data, spatial 
coordi~iatcs and site counts per gridded unit area, and generally do a bvttcr job of 
modeling dcnsit~es across a rcgion than trend-surface approachcs (DcIfincr and 
Delhommc 1'275). This method also sufyers from problems resulting from arbitrary 
grid sizes, hou,c~,er. 

Recently, an approach to trcnd n~apping that is specifically designed for 
nominal-level class categories has been developrd (Wriglcy I m a ,  1977b). 'This 
method is based on a logistic regression technique ( sw below) and can be rcfcrred to 
as logirtic ~ w t r d - c y { k z  atrt+ir. It makes no assumprions about distriburianal form, 
and i t  is appropriate for a nominal-lcvcl dependent variable. Moreover, the 
dependent variable can consist of multiple class catcgorics (t:.g, site absent, sire 
type A prcscnt, site type B present, sitc type C presenr). Far a given locality, with 
sparial coordinates .r andJ, rht: outcome is a value for a class that is constrained 
between 0 and I .  This value can appropriately bc interpretd as thc probability of 
an outcome, such as site prcscncc, givcn its location coordinates (Wriglcy 19nb:  12). 
Examplcs of rhis technique all come from !geography and include the probability of 
households in a neighborhood shopping at a particular markct vs the  roba ability of 
the households not shopping ar that marker (a rwo-class problen~; \\'rigley IW7b) 
and trcnd surfaces ofhouseholds highly annoycd, moderately annoycd, 
and little annoyed by aircraft noise in rhe vicinity of Manchcsrer Airport (a 
three-class Wriglcy 1977a). 

A model of archaeological site trcnd in locarion can be dcvelopcd through 
application of the logistic trend-surl'ace technique. The  locations of 95 known 
open-air lithic scatters in a 5.5 by 8.5 k n ~  t e s ~  study rcgianon the southern Colorado 



T)EVELOPMEiiT .4YD TESTISG OF' Q L A N T I T A T I V E  MODELS 

plains arc prcscnrcd in Figure 8.42 (this study region will be estcnsively uscd for 
examples in later sections of this chapter). T h c  study rcgion has been gridded into 
approximately 19,000 cells (land parcels) mcasuring 50 m on a side; Figurc 8.4a 
illustrates rhose cells wirh open-air sircs present. 'The results of various cfforrs ro 
develop a probability trcnd surface for the presence ofrhis sitc typc based only on 
the spatial coordinates of thc known sircs are shown in Figurc 8.4b-d. This is a 
simple two-class problcm of sitc presence and sire abscncc, although wc arc 
intcrcstcd only in the mapping for the sitc-prcscnt class. (Note that in a two-class 
problcm the mapping of onc class is the "negative image" of the other class sincc 
probabilities at any locus must sum to unity. Thus, it  is not necessary to produce 
probability surface maps for both classes. In a problem context involving three or 
more classes, liowevcr, a separarc probabiliry surface map for each class is required, 
each dcrivcd from a separate cqiiation that is mathematically calibrated to thc other 
class equations.) T h e  site-absent locations were obtnincd at 54 locations (cells) 
systematically placcd every kilometer across the study area. 

First- through fourth-order logistic trcnd surfkes \i7cre fitted to thcsc data 
using thc BMDP logistic regression program (Dison et aI. 1983). Fitting trcnd 
surfaccs to empirical data requires use of polynomial funcrions, which cmploy 
various powers of a variable. A function 0f.r andxz(a second-order model) makcs a 
graph with one "bend"; a function of.r, s2, and .rJ (a third-order modcl) makes a 
graph with two bends, and so on. Since wc are working in a two-dimensional spacc 
with (xg) coordinates, we need to cxprcss powers olboth variables (x, xl,xJ, . . .j,j.Z, 

yJ,  . . .) plus all interactions between the two variables (q, xg, .$, xy,  . . .). 
Generally, the higher the order of the model thc bctter thc fit to the data. Because 
the rcsultanc functions arc only conlbinations ofthcsc rather meaningless variables 
and their powers, it becomes clear what Parker (1985:202) was alluding to in the 
quotation given above, when shc claimed that thew rnodcls have little esplanatory 
potential. 

T h e  first-order probability surface contains the terms r. andj .  The  second- 
order model adds thc tcrms x2, XJ, and??; the third-ordcur model adds to these the 
terms xJ, xp, and)'; the fourth-order model adds the terms x4, xy, . v ? ~ ,  q ' ,  andj '  
(see Fedcr 1979:%). Thus, thc fourth-order model cont ins  a totltl of 15 paramctcrs 
(including an intercept) that must be estimared. Second- through fourth-order 
surfaccs arc portrayed in Figurc 8.4, with sitc-prcscncc probabilities portrayed in 
steps of 0.2 probability and in levels of increasing darkness. 

In traditional trend-surface analysis (discussed above) the utility of the various 
polynomial surfaces arc usually evaluated on the basis of increases in R 2  (variation 
accounted for in the dependent variable) ovcr prcvious surfaces (Cnwin 1975). This 
is not possible with the logistic rrend-surface technique sincc thc dcpcndent 
variable is categorical. A number of pseudo-Hz statistics for logistic regression have 
bcen introduced. Onc, R 2 (Baxtcr and Cragg 1%'0), providcs a value thar ranges 
bc~wecn 0 and 1, althoug f~ midrangr valucs arc considcrcd very good for indices of 
this kind (Stopher and Mcyburg 1979:334). The  first- through fourth-order surfaces 
shown in Figure 8.4 yield the iollowing values of R p 2 :  0.0218, 0.3125, 0.3739, and 
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0.5043, tespecrivcly. Thus, rhc first-otdet surface accounrs for almost none of rhc 
"variation" in sitc presencc/absencc. T h c  sccond-order surface ptovidcs a substan- 
ria1 improvement (increasing Rp2 by about 0.29) becausc the resuhing probability 
ellipses center around the major concentration of sitc locations (Figure 8.4b). The  
third-order surhce provides an increase in Rp2 of about 0.07, and the fourth-order 
surface yiclds anorhcr Ieap, an increase of about 0.12. Norc that the fourrh-otdcr 
surface (Figure 8.4d) does a relatively good job of modcIing or  describing the spatial 
distriburion ofrhc known sitcs (scvcraI branches and clusrcrs ofsires arc picked up 
by the surface), considering that it reprusents a simple function based solely on the 
spatial coordinares of the site-present and site-absent data. It should be apparent 
char if the locations of rhc known sites in a modeled rcgion arc rcpresentativc of the 
locations of unknown sites in as yet unsurvevcd areas of that region, then high- 
order logistic trend surfaccs offer a predictive aspect, like any other model. 

We might also apply the gain statisric, discussed above, in order ro examine 
model performance in a more intcrprctabic way. The  gain statistic was defined as 
onc minus the ratio of the percentage of the total area cncompasscd by a model 
when mapped, divided by the percentage of total sites within a model's arca; a good 
model is suggested as values approach I (small arca with a high percentage ofsitcs). 
T h c  locations in Figure 8.4 with an estimated probability of membership in the 
site-prcsent class greater than 0.5 (the two and one-half darkest levels of shading) 
can be uscd as thc arca encompassed by each model. T h e  0.5 point, which is a 
traditional decision rule, is arbitrarily used hcrc and elscwhcre for comparative 
purposes only; later sccrions examine other decision rules. When the 0.5 Icvel is 
uscd, the sccond-order model (Figurc 8.4b) covers approximatcly 40 perccnt of the 
study rcgion and 74 ofthe95 sites(78 percent)occur within that arca. This viclds a 
gain scatistic value of 1 - 40/78 or 1 - 0.513 - 0.487. A similar assessment o i  the 
third-order modcl (Figurc 8 .4~)  rcvcals that the modeled area is 39 percent of thc 
coral area and that 80 perccnt of the sitcs (76 of%) lie within that area. Thus, the 
third-order model provides only a slight improvement in gain (gain = 0.513). The  
fourth-order modcl (Figurc 8.4d) providcs a major inlprovcmenr, encompassing 
only 31 percent of the total arca and including 82 perccnt of thc sites (78 of 95), 
yidding a gain statistic of 0.622. 

Approaches Based on Trends in Locational Characteristics 

Archaeologists have examincd trends in archaeological site locational charac- 
teristics, particularly cnvironmental fcaturcs, for a long tirnc. T o  illustrate, in a 
study of thc Pakoindian occupation of central New Mcsico Judge (1973) csamined 
water sources, vancagc points (from which game might be viewed), hunting areas, 
and trapping areas (locations whcrc large anin~als could be driven and trappcd), and 
thcir rclarionships with the sitcs in his sarnplc, In thcir investigation of prehistoric 
Shoshoncan sctrlement partcrns in Nevada, Thomas and Bettingcr(1976) exarnincd 
distance to water, disrance to the piiion ecotonc (pi;lon was considered an irnpor- 
rant economic resource), clcvation above thc valley floor, and ground slope. T h c  
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importance ofshelter, fuel (firewood), a good view (to observr game), and waccr to 
the immediate locations ofhunter-gatherer sites in general were outlincd by Jochim 
(1976:55) in a study based on cthnographic literature. .Analyses pertaining to morc 
complcs agricultural situations often csamine conditions related to the arability of 
the land. For this reason, Crecn (1973) invesrigatcd five variables relatcd to soil typc 
in an anaIysis of Maya settlement in Bclize. A soil testurc variable as as 
vegeration, hydrographic, and landform variables were csamined by Roper (lW9b) 
in a study of Woodland site locations in central Illinois. In all of these studies, 
characreristics ofsire locations arc the focus ofintcrest, and as noted earlier, various 
social factors, such as distancc to the ncarcsr contemporary road or to a site offering 
services or religious or social resources, map also bc considered characteristic ofa  
location. 

Approaches o i  the kind just described typically summarize cmpirical data 
observed or measured at known sitc locations through rablcs or various dcscriptive 
statistics. The  ability to "prcdict" in general terms on the basis of these data 
patterns is implicitly or esplicirly rccognizcd. Many archaeological studics of this 
type haw. depcndcd largely or wholly on rhc use of nominal-lcvel categories for 
investigating site location patrcrning. One such predicrivc model dcvcloped by 
Bcttingcr (1977:220) was consrrucred for "predicting the disrribution, function, and 
dcnsiry of archaeological marerials in thc Inyo-Mono rcgion." This mode1 simply 
divided the study region inro biotic communities and pro!ccred cspcctcd numbers 
of various sirc types in each cornmunity bawd on site dcnsiry esrimares obraincd 
from sample surveys. This is the most common approach in rraditional site-locarion 
invesrigations, and discussion of other csamples (c.g., Brosc 1976; Grady 1980; 
Reher 197; Thompson 1978) would be redundant. 

Orher ~nvestigators have focused on conrinuous site-location information 
(c.g., Judge 1973; Findlow 1880; Hurlbert 1977). Such empirical data can be quire 
useful in formularing projccrions abour sitc locations. Onc mighr show, for example, 
[hat x pcrcent of sires occur wi rh in j  discance of a drainage in a study region by 
obraining measurerncncs of disrancc to water from a reprcscnrative sample of 
known sites in [he rcgion. Thomas and Berringcr (1976:362-363) go a step beyond 
this by firting normal distributions ro cmpirical data on slope, distance ro warer? 
distance to piiion ccoront*, and elevation above valley floor obtained at site locations 
in rhc Recst Rivcr Valley of central Nevada. T h e  central portions of rhcse normal 
curves are taken ro represent "ideal locarions" forsitcs. Moving in either direction 
along the curves (c.g., to steeper ground) decreases the probabiliry rhar sites will be 
found. 

The  practice of fitting theoretical distributions ro data is a common one In 
many disciplines (c.g., Cooper and Wcckes 1983:20). The  above procedure of 
Thomas and Betringer rnighr seem useful for modeling site distriburions, e.g., 
projecring sitc probabiIirics across the Iandscapc. Such models are calIcd ~~ng/~-cirrrr 
riurri~crr in remote-sensing applications (Lin and Mintcr 1976; Minter 1975) because 
thcy arc uscd ro describe rhc distribution of a specified class (e.g., a site-present 
class) using data only from that class. (Such single-class approaches do not perform 



as well as approaches that utilize a second class as a control group to contrast with 
the group of interest; this latter approach will be described below.) 

A problem with archacological srudies ofchc type discussed abovc is that they 
often consider nominal- or interval-level variables only singly, on a univariate Icvel. 
Data often arc not examined in a muitivariate contcxc, and as a result intcrrclarion- 
ships and redundancies berwccn variables are seldom considered. Nor are theirjoint 
effects on site location taken into account for prediction purposes, even though a 
cursory inspection of the literature points to chc multivariacc narurc of the site 
location problem. 

Control Groups 

An important methodological difliculty of many archaeological site location 
studlcs is the failure rouse a control group u4rh which archacological disrributional 
pactcrning mJy bc compared. We mighr inlagme, for esample, a ncwspapcr rcporr 
indicaring that "90 percent o l  the inmates of S m ~ r h  Councy jail are nonwhite 
mmonries." Such staristics are often used in lay contexts, bur a scicnrisc seeks 
background conrrol dara before formulacing conclusions. Ifa control group obtaincd 
by selecting a random sample ofmembers of the cnrirc population ofSmirh County 
were to ind~care that 90 pcrccnc of the population arc nonwhirc minorities, thts 
would suggest that the jail inmare proportions do nor represent a noccworthy 
parrcrn. This cxirnplc has direct bearing on archaeological site location studies 
bccausc the same kind of initial argument is otfcred in many studies, narncly [hat x 
amount of sites are located wirhinj  disrancc of a resource. 

In many disciplines, control data sets arc routinely used. Quanrirativc psy- 
chologists, for esample, rypically mcasurc personality traits on a control group 
selected randomly from thc popularion. This reference body of data is [hen 
compared with data from the group under study, e.g., suicide-prone individuals 
(Overall and Klert 1972:257). Geologists have compared locations cxhibicing high 
levels of radioactive emissions with a control group of locarions exhibiting low 
emission lcvcls in order to develop predictive models for uranium exploration 
(Missalati et al. 1979). Remote-sensing scienrists obtain spectral dara from a variety 
oicnvironmental scttings in order ro arnass a cornpararive background with which 
hpccrral emissions oC crop types o i  interest, such as wheat, can be compared 
(Landgrcbr. 1978; Swain 1978). 'I'hesc techniques arc common in pattern- 
recognicion studies (Duda and Hart 1973). 

In archaeology a similar approach can be taken. Environmental or other 
information can bc measured at locations (land parcels) containing known archaeo- 
logical sires and [hen conrrasted wirh a control group of identical mcasurernenrs 
obtained at random locations in a study region wherc sites are known tn be absent. 
By this means, cnvironmenral and other fearures beating relationships wirh the 
locations ol'siccs might be identified. Data for such a variable as distance to nearcsr 
drainage, for example, mighr be collected at a reprcscntarivc sample ofarchacologi- 
cal locations within a region (Figure 8.5a, top). Sincc the distriburion of the dara is 
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concentrated in the arca of che graph representing short disranccs to water, a 
typical archaeological conclusion might be that proximity to water is an important 
factor in site locarion. Yet we niusr also ask how far any location within the region 
under study is from a water source before drawing such a conclusion. A control 
group of measurements of disrance co water rakcn ar random locations where sites 
do not occur might yield an identical distribution (Figure 8-53) middle), forcing the 
conclusion that water is generally close to any location and that prosimity to urarer 
is not a signilicant factor in site location in this area. 12 on thc orhcr hand, rhc 
control dara yicldcd a distribution wirh a central tendency some distancc from 
water (8.5a, bottom), the archaeologist might more justifiably arrive ar the conclu- 
sion that proximity co water is a signilicant locarional factor (set. Kvamme 1985a). 

As rhe above example suggests, a conrrol group approach may bc csscntial to 
forming valid conclusions concerning site location factors whcn empirical nrchaco- 
logical data are used. Control groups serve several imporrant functions. Thcir use in 
model dcvelopmcnt is discussed below, but perhaps the most important use of 
control group data is in modcl testing; i c  is only rhrough thc use ofa control group 
that che performance of a site location modcl may be properly assessed. Returning 
to the csamplc given in the introduction co this chapter, a mode1 might classify r w r y  
location (land parcel) within a region as sitc-likely and rhercby prcdict all actual site 
locations with 100 percent accuracy, but such a modcl is usclcss. (In chis case the 
gain sraristic would yicld - [I00 pcrccnt of tocal area classilicd by modc.l]./[100 
pcrcenr ofsires in model zrca] =0.) On the other hand, by usinga control group chat 
approximately rcprcsrnes the environmcnc ac large, i t  might be found that a site 
location model encompasses only 60 percent of the land area of'rhc rcgion when 
mapped, but it includes 90 perccnt of all sites wichin char arca, representing an 
amount ofgain against which the ucilicy ofrhe modcl may be iudged (in chis case, 
gain = I - 60/90 =0.33; sec the scccion below on "Assessing Model Pcrlbrmancc" and 
thc discussion of gross crrors and wasccful crrors in Chaprcr 3). 

T h e  use of a nonsite control group also helps to clean up some conccpeual 
sloppiness. Through use ofcertain scatistical procedures, wc oftcn wish co estimate 
che probabiliry ofsitc-group membership ac a location (land parcel). Obviously, this 
probability oftcn can be less than 1-00. But if chc probability of site-class member- 
ship is estimated as 0.6, what does the remaining 0.4 probability rcpresenr? Logi- 
cally, and consisrcntly, this rcnlaining probability rcprescnts site abscnce, thc 
complement ofsire presence. Thus, models for site presencc must also consider site 
absence, and nonsitc data permit us to do this. 

Konsitc locations should be sclccccd from throughout thc region in which the 
sires under question are being modeled. If the rcgion is large and diverse, with 
multiple natural subgroupings of thc cnvironmcnt (e.g., plains and mountains), 
then thc invcutigator might wish to examine sicc location pa~trrning within each 
grouping (a plains model and a mountains modcl). Such a pracricc could lead to 
enhanced precision ofpredictions. In this case, it  is appropriate to randomly sclcct 
nonsites according to the groupings (strata). 
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T h e  use olbackground data sets has bcen explored to sonic extcnr in archaco- 
logical site locarion studies. Plog and Hi11 (1971), Plog (1971), and Flanncry 
(197692-93) point co the  importance olknowing conditions in the  environnlcnt as a 
whole before assigning significance to a particular l jctor in terms ofs i tc  location, 
and Plog (1968) and Zarky (1976) actually determine background characreristics in 
their studies of prehisroric settlement systrms. Thcsc  stirdies focus on proportions 
of gross cnviron~nrnta l  categories (c.g, arable land, mesas, river bottoms) in the  
study rcgion as a whole as a basis for contrast with the  observed pattern of site 
disrribution with respect to  the  same categories; diflercnccs in proportion arc 
interpreted as implying some sort  of' sclccrion on the  part of the  prehistoric 
inhabitants for some of the  environmental categories. In contrast t o  this fbcus on  
large-arc3 environmental typcs, which oflcrs littlc information on thc  inmediare  
locations ofarchacologica1 sites, a technique in which control data arc. measured at  
random "point" locations (e.g., land parcels o r  quadrats ofvcry s~nal l  size)at which 
sitcs arr known to b r  absent can provide suitable background contrasts to idcntical 
information rrcordcd at  known sitc locations (Cust r r  ct al. 1983, 1986; Kvamnle 
1980,1983b, 119W, 19853, 1986; LarraldeandChandlcr 1981; Morain c't al. 1981; Peebles 
1981; Wells er al. 1981). 11 somcwhat d i fkrent  approach, but  one  that  uses an 
identical methodology, measurcscontrol data for largc land parcels (e.g., one-halfor 
one square mile) that contain n o  archaeological sitcs (Holmcr 1979; Scholtz 1981; 
Schroedl 1984; Zier and Peebles 1982). 

Scientists working in remote srnsing, pattvrn rccognition, statistks, and 
decision throry have dcvrlopcd a number  of ways to classif?' obiects (individuals, 
locations) into prrspccified groups. A grear dcal ofpractical rspc~ricncc in prcdictivc 
modeling in geographic contes ts  has been gained by researchers attempting to 
analyze and classik rcniotely scnscd images. 

In image analysis studics, multisp~.ccral scan~lcrs (1fSS)on platforms in orbit 
above the earth sensc reflected radiation from the  earth's surface ( w e  Chapter 9, 
this volumc). T h e  predictor variables arc the  various !vISS bands in which rcflcctcd 
radiation is mcasurcd. 'l'he basic unit of analysis is termed rhe pixi l  (picture 
clement), which corresponds to  a small area on the  ground. Reflected radiation 
i1aluc.s arc mcasurcd on cach 1,ISS band ( the  variables) for each piscl in thc  rcgion of 
interest; image clasjification scientists ~ h c n  use t hc  mcasurcd rcflcctancc chnracter- 
istics to classify cach pixel into iikely (prrspecificd) groups ofinterest, such as whcat 
1's nonwheat, foresr vs nonforcst, or urban vs nonurban arcas (Landgrt-be 1978). 

T11c analogy with our archaeological problem is clear: in many site-location 
modeling approaches H f e  want to classify locations (analogous to pisels m d  of'tcn 
small in arc:i) into sitc-likcly, site-typc-likely, o r  site-unlikcly catrgorics on  thc  
basis of the  variables (~tsually mcasirring terraln or cn1.ironmcntal characterisrics) 
mcasurcd a t  t hc  locations. hlodcling approachcs that utilize computer-based geo- 
graphic information system (GIs) techniques (Hasenstab 1983; Kvammct 1983b, 



1986; Cliaptcr 10, this volume) actually grid cntire study regions inro smaU cells 
(pixels) and treat thesc cells as the units of analysis. As a rcsulr of this general 
similarity between thc problems of rcmote-sensing classification and those of 
site-location modeling, many of the techniques presented in this chaptcr arc 
borrowed directly from pattcm-recognition and image-classification srudics. 

In pattern-recognition and image-analysis research, mcasurerncnrs obtained 
at locations bclonging to known catcgories are often called truirring duta because 
they arc used to dcvelop or "train" classification functions. Thcsc functions are 
numerical dccision rules that utilizc class charactcristics (i-c., rncasurements) to  
classify cntitics whose group mcmbership is not known (Swain 1978:142). In an 
archacological contest, samplcs of known archaeological sitc locations constitute a 
training sct, and mcasurcmcnts ofcnvironmental and other variables at each of the 
sitcs provide a site class characrcrization. If a control group of site-abscnt locations is 
uscd, measurements at thesc locations providc a nonsite class characrcrization. 
Patterning reprcscnted by the measurements of each class can be used to assign 
future locations (for which site prcscnce/abscnce is unknown) to one of thc classcs 
in a predictive sense. Exactly how this is accomplished dcpcnds on thc natureofthe 
techniquc used (scvcral alternative methods arc prescnred latcr), but a11 tcchniqucs 
for accomplishing this goal havc an underlying similarity. 

Archaeological locational data typically occur as a scrics of points or small areas 
on maps that represent the Iocarions of kn0u.n archaeological sires or artifact 
clusters. Thcse site locations might suggest an intuitively identifiable settlement 
pattern; for examplc, the sires might be located along high tcrracc ridges abovc 
major drainages within stands ofoak. In working with classiLcation procedurcs that 
can be uscd tomodcl a site location pattern in an objective manncr, however, a more 
abstract conccpt of rhc term pattern is required. Characteristics of a location arc 
reduced to a scries olmeasurcmcnts (which may be categorical), and thc classifica- 
tion proccdurc compares rhc measurcmcnrs w ~ r h  a set of prcviously madc mca- 
surcments that arc "typical" ofknown classcs, such as sitc-present and site-absent 
catcgories. The  location is assigncd to thc group whose mcasurcments are most 
similar to its own. In other words, as Tar as a classification procedure is concerned, 
after the rneasurcments arc obtained the physical form of the location and of thc 
surrounding cnvironmenr are unimportant: rhc set of measurcmenrs is the envi- 
ronmental (or other) pattern of the locatio~i (see Swain 1978:139). In gencral, we 
might think of the cnvironnienral terrain charactcristics of a location simply as asct 
of rncasurements, not in ccrms of their physical form. 

The  tr  mcasuremcnts made at a location dcfinc a point in n-dimensional space, 
which is referred to as the m~ust4rtmt'~t spuct. Thc purpose of a c1assif;cation procedure 
is to divide rhc measurement space into appropriate drdrm rtyjot~~,  each correspond- 
ing to a specific discriminable class, and to assign the mcasurerncnts madc at a 
location to the class [hat corresponds to the dccision region in which it fills. A 
two-dimensional measurement space whcrc X I  might be ground slope and X2 
might bc distance to nearest water is iIlustratcd in Figure 8.5b (abovc). The  
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sirc-prcsenr locations (hollow circles) tcnd to possess level ground and are close to 
watcr, while the site-abscnt locarions (the black dots) overall tcnd to bc on 
somewhat steeper ground and farther from water. The  dccision boundaries (scvcral 
arc. presented for later refc-rencc) attcmpt to  separate the two classes. 1fX1 and X2 
were mcasurcd on a map at some location where sire presence/abscnce is unknown, 
chc location would be identified as more similar to thc sitc or the nonsitc group, 
depending on whcrc its measurements fall relative to  the currently defined decision 
b o u n d a ~ .  Of course, some nonsire locations will always fa11 on the site side of the 
decision boundary and somc sites may fall on the nonsire side, which introduces an 
amount oferror that wc attcmpt to minimizc. (The  case exemplified in Figure 8.5b 
is an oversimpIilication since, in practicc, we work with many more variablcs 
[dimcnsions), which provide morc information and help to reduce error.) 

Although the abovc cxample utilizes continuous data, categorical data can be 
approached in the same way. When dealing with such variablcs thc mcasurcmcnt 
spacc is best sern as a table, with one dinlension representing class parritionings 
according to one variable (e.g., plant communities) and the other dimension 
comprising class partitionings according to another variabIe (e.g., topographic 
categories). 

Pracrical Srarisrical Concerns in Model Dmelopmenf 

In earlier chapters a great deal has been said about statistical inferential 
techniques and their proper application in site location studics, particularly with 
rcgard to meeting various statistical assumptions. I t  is often difitcult, howcver, to 
meet many of these assumptions in real-world applications. This section briefly 
discusses ccrtain statistical difficulties pertaining to  sampling and model 
dcvelopmenr . 

A concern commonly voiced in rcgional archaeological studics pertains to 
apprehensions about cluster sampling and the problem of obtaining representative 
ot unbiased samples of sitcs from within a region (e.g., Berry 1984; Mucllcr 1974; 
Thomas 1975; Chaptcr 5, this volume). What is mcant by represenrarivencss is that 
the characteristics of a sample (i.e., sample statistics) arc unbiased estimates of thc 
true parameters of thc population under study (e.g., the mean slopc valuc esti- 
mated from a sample of sitcs provides a good estimarc of the true mean slope value 
for the population of all sircs in the region of study). 

Some archacologists maintain that the only way to obtain unbiased sitc 
samples in a regional context is through simple random sampling, but to obtain a 
correctly drawn simplc random sample ofsitcs from within a region, the location of 
every sitc would have to  bc known beforehand, each would be assigncd a number, 
and a simple random sample would be obtained by random selection of the 
numbered sires (sec Thomas 1975:78). Clearly this approach is impractical; 
moreover, ifcvcry sitc wcrc known prior to the sanlplc selection, there would be no 
need for the site-location modeling exercise. 



An alternative proccdurc that would allow simple random sampling requires 
that thc rcsearcher superimpose a small-mesh grid (where tach grid cell is approxi- 
matcly chc size of a typical archacological sitc) over thc rcgion orstudy. Each grid 
cell is assigncd a number, a simple random sample ofcclls is drawn, and rhis sample 
is thcn surveyed. Mosc of thc cells will not contain sites, owing to [heir relacivc 
rarity (see "Basc Kate Probabilitics," below). If they are very rare, for example 
occupying only about 1 percent of the cells, rhen this procedure also presents 
dificulties since many thousands of cells would have to be surveyed co obtain 
reasonable site sample sizes. Additionally, chc problcm of travcling to and locacing 
numerous randomly placed small cells prescnts a nontrivial factor char must be 
considered. 

Even if we could obtain simple random samples in regional surveys, problems 
would still arise in attempts to draw scaristical inferences during model develop- 
mcnt. Most techniques of statistical inference assume independent observations. 
Statistical independence in ccrms of arcally distributed data implies that when 
observations are ordered in space it should not be possible to have a better than 
random chance of predicting values of some observations when other values are 
known. As Gould (1970:443) points out, "it is doubtful that one could find an 
assumption rhat is more at variancc" with geographical daca; spatially distriburcd 
phenomena generally possess rcgular spatial variation or positive spacial autocorre- 
lation (Cliff and Ord 1973), thus violating independence assumptions. Tobler 
(1970:234) has referred to this property as "the lirsr law ofgcography: everything is 
related to everything else, but near things are more related than distanc things." 

Many environmental phenomena commonly examined in archaeological stud- 
ies, particularly distance measures, exhibit significant levels of spatial aurocorrela- 
tion. T o  illustrate, I undertook a simulation study (Kvamme 1985b) rhat utilized 
simple random samples (n = 100) of I ha locations from a 100 km2 rcgion. T h e  data 
werc obtaincd from a working geographic informarion syscem (sce Chapter lo), 
which facilitated the simularion. Ac each location, eIevation and slope (percent - - -  
grade), two commonly used vaiiables in archaeological studies, werc determined. 
An au tocorrelation coefficient (Cliff and Ord's [ 1973 I statistic) was calculated for 
rhcse variablcs for each of five simulation runs (wherc a new sample was sclccted for 
each run). In an associatcd significancc test that yielded standard z-scores (a 
common statistic uscd to evaluate significancc; see Thomas 1976), rhe z-scores 
ranged from 3.71 to 10.17 for slope (with an average of6. 15) and from 7.72 to 9.95 for 
elevation (with an average of8.46). These scores indicate highly significant levels of 
spatial autocorrelation for these rather common variables, pointing to a lack of - 

independence betwecn the observations, since a z-score of 1.64 is significanr at the 
0.05 level and a z-scorc of 3.72 is significant at thc 0.001 level (thesc tcsrs werc 
one-tailed). Thus, rhe real world prcsenrs difficulties evcn for simple random 
samples; researchers who somchow arc able to obtain them and argue staristical 
correctness may be working wirh a false sense of securiry. 

In regional archaeological analyses we oftcn have no choice but ro use some 
form of clusrer sampling to obtain reprcsentarive samplcs of sites from wirhin a 
rcgion. As Holmes (1970:381) states, 



this dcsign somcrirncr niusr bc employed bccausc o i ~ d ~ s ~ ! ( i r a r i t ~ ~ ~ p r ~ b I t n ~ ~ .  In some c x c s  
idcnrification ofindividudls [or sampling is absolurcly imposriblc, whilcin o r h m  i r  is an 
cx[rrmrly laborious, unrewarding r x k .  T h c w  nonmathcmarical idcnrilicarion dificul- 
rics, arising iron1 the nxurcofrhcda13,  wi1lsl\r~ay.r persist in curtain types ofrcscsrrh, so 
thar rhc nced for area (clusrcr] s~mplus  s i l l  continucin rhrsc imporrant fklds [emphasis 
original]. 

Hence, it is important to examine the cffccts of cluster san~pling on quantitarive 
classification models brjore looking at thc modcling approaches rhcmselvcs, since 
many models of necessity are based on clustcr-sampled data. 

T h e  typical sampling practice employed in image-analysis scudics (Moik 
1980:Fig. 8.7; Schowengerdr 1983:192, Fig. 3-30) is informarive. This procedure is 
porrraycd in Figure 8.6a, which illustrates forcstrd areas (shaded) and nonforestcd 
arcas (unshaded). T h e  large blocks rrprcscnt ground-truthcd clustcrs of small cells 
or pixels of known group membership; in the remainder .of the imagc, group 
membership is unknown. In each of rhc pixels, measurements of reflecccd radiation 
are recordcd. A goal might be to develop a predictive model chat classifies forest 
locations in the remainder ofthe image bawd upon rcflcctance characteristics of the 
known forest and nonforcst pixels. This form ofcluster sampling is somewhat more 
extreme than chat typical in archaeological sampling, since thr analysis elemencs 
(pixcls) occur in tight, contiguous blocks (compare Figure 8.6a with Figure 8.6b, a 
ty pica1 archaeological sampling cxample). Onc might expccc that in thc Figure 8.63 
cxample there would be a high degree ofpositive spatial autocorrelation because of 
the increased relativr proximity bccween analysis elements. A stxond drawback of 
cluster-sampled data is that within-class variation tcnds to be undrrestimaccd (this 
follows from the reduced variability within clusters), making classcs appcar more 
diffircnt than they really arc. T h e  possible drawbacks of cluster sampling must be 
weighed against its bcncfits; in the remote-sensing case (as in archarology), cluster 
sampling is much less dificult and coscly than obtaining simplc random samplcs of 
elcmenrs. As Schowengerdc (1983:192) states, 

In 311 random sampling proccdurcs, i t  is dcsir~blc to selccr randomgrrn:rpr orpiscls r:nhur 
than sin& piscls becauw oithc pr:uxic;d diilict~lry in accurrrely locnring ringlc pixels on 
thc ground lcmph~sis  original I. 

In a classification perspective, the detrimental effects of well-designcd clusccr 
sampling secm to be small, as indicated by excellent classification results typically 
obtaincd by remote-sensing sti~dies (bloik 1980; Schowengerdt 1983; Swain and 
Davis 1978). Ic  is easy to  scc why this is true: a classificarion procedure only 
partitions chc measurement space (Figure 8.5b). Differences between the mea- 
surement spaces defined by simple random samples and those defined by suitably 
construcccd clustt!r samples are rather smali when compared with diCerrnccs 
bccween discriminablc classes, particularly when the sitc-prescnt and sicc-absent 
contrast discusscd carlicr is used. Onc simulation study (Can~pbell 198 1) comparcd 
the performance of the dense cluster sampling prxt icc illustrarcd in Figurc 8.6a 



Figure 8.6. Sampling pracriccs. (11) In rcmotcly senwd imagc studics analysis, clcmenrs or pixels (the 
smdl cclls) of known group mcmbcrs-hip arc typicnlly sclccrcd in large canriguous blocks 3s a praclicd and 
cosr-saving mcasurr., hcrc from forcstcd (shndcd) and nonforcstrd (unshadcdj icrr ings. (B) .-I typical archarolog- 
iczl satnpling pracrice consists ofrmdomly placed quadrats with a variable numbrr of ritcs (black dors) in each 
quidrat. 



with simple random samples in classibing forcstcd areas (vs nonforcsted arcas) in 
several diKkrrnt Landsat sccncs. The  classification accuracy of the predictive 
(discriminant analysis) models obtained from the less autocorrelated simplc random 
samplcs ranged from 15 pcrccnt better to 2 pcrcent worse (an average of6 pcrrccnr 
better) than that of the corresponding modcls obcained from thc more highly 
autocorrelated clustcr samples, The  lesson to be learned from this evidence is that 
we should not be too concerned with thc detrimental effecrs resulting from the use 
of cluster samples, considering the benefits that arc derived in return. 

Notwithstanding rhcsc results, rhc qucsrion about thc correctness of using 
statistical inferential proccdurcs in these contcxts still rcmains. Rcscarchers faced 
with similar problems have developed robusr modcl validation proccdures in 
remote sensing and elsewhere (Schowengcrdt 1983; Swain 1978). As desctibed 
carlier, a site location modcl can be viewed simply as a classilication or decision rule. 
For the moment let us forget how such 2 model might bc developed. Rathcr, let 11s 
focus only on thc idea that we have a decision rule, however i t  was derived, and that 
wc can apply i t  ro mcasurcmtrnts obtainrd at locarions (land parcels). Based on these 
mcasurcmcnts, the dccision rule yields, at the very simplest, an assionmcnt to one 
of two c:ttegorics-for cxamplc, sitc presenr or sitc absent. If the decision rule has 
some predictive capacity in terms of the populations under srudy, then it  should 
offer correct decisions more oftcn than could be attributable to chancr. This notion 
can be testcd in practice by obtaining new random samplcs of known site-present 
and sicc-absent locations (both cntireIy independent of any samples that might 
h a w  bcen used earlier in n~odel devclopmcnt), by applying the dccision rulc to the 
measurements at these locations, and by determining how well these sitcs and 
nonsites are classified. If thc percentage correctly classified is grcatcr than that - 

attributable to chance, thcn the dccision rule has some predictive capacity, and it is 
here, in this testing phase, that methods of statistical infcrcnce are nmtc appro- 
priately applicd. Relatively simplc statistical testing proccdurrs can be uscd to 
assess the significance of model classification rcsults (see below). 

T h e  usc o i  independent test samples makes this overall approach robrisl 
bccausc. performance is assessed on entirely nrw sets oC data, which gi1.c-s an 
esccllcnt idea of true model pcrformancc in practice and obviatcs thc need for 
reliance on the ass~rmptions of multivariate statistical theon. (c.g., multivariate 
normality and homogenciry of variance) in the model-dcvclopment stage. Notc 
that in this schcn~e it does not rnattcr what procedurcs arc uscd to develop a modcl 
or decision rule, ~ i n c ~  all ifij&cwctr abour rht urP(,i/~wrr of n mdt l  urt d r a m  /rum iht 
indtpsndtnt I L T ;  jnmpkx Thus, any procedure can appropriatrly be uscd to formulate a 
dccision rule, from simplc subjcctivc notions about sitc locations to complcs 
multivariate data models. Regardless of the modcI-building proccdurv used, how- 
ever, rhc starisrical asscssment of its n,orthincss is made through independent rest 
samples. This is thc approach taken in the remainder orthis chapter. Such rnulrivar- 
iate techniques as multiple discriminant analysis and logistic rcgrcssion arc used in 
subsequent scctions for modcl development, but onl;, as a mcans o i  obtaining a 
partitioning of the mcasurclncnt space in the form of a dccision rulc. Thcse 



algorithms are based on very powcrful ~nathcmatical  differencing techniques that 
arc  ablc to  provide exccllcnr parritionrngs of thc  measurement space even when 
undcrlying assumptions arc not fd ly  mcc. 

Example Analysis Based on Locational Characreristics 

A site location study performed in the  Glade Park rcgion of wc=stern Colorado 
(Kvam~ne  1983~) can bc used to illustrate model building based on locarional 
characteristics, In this section these data are used to illustratr onc  approach to  
n ~ o d e l  development bascd on environmental and terrain characteristics observed a t  
thc  known sitc and nansite locations found by that study; a later section will usc 
thcsc data to illustrate model-testing procedures. For simplicity thc  model is 
developed for thc  locations of all open-air sitcs within Glade Park, although 
identical methods would apply for specific site-type model devclopment (sec 
"Modeling Individual Site Types," bcloiv). Only environmental hctors  are consid- 
ered in this analysis. Variables measuring social factors wouId, if available, bc 
treated in an  identical manner, but  in thc present study,  which dealt \vith hunter-  
gatherer archaeology, contemporancity o f the  sites was impossiblc to establish from 
the S L I ~ V C ' ~  data and such features as central-place sett lements simply did not exist. 
'l'hc analysis was carricd out  by trcating cach hectare (100 by 100 m parcel) as thc  
unit of investigation and then comparing land parcels that  included sitcs with land 
parcels that  did not.  

T h e  Glade Park study region, encon~passing ncarly 650 miz, Iics on thc  western 
border ofColorado in rhc Rurcau of Land Management's Grand Junction Resource 
Arca. Th i s  arid rcgion of mesa and canyon country is covered by pinon-juniper 
forests intersperscd with grassy clearings and is archaeologically one  of the  richesr 
areas ofColorado oucside the  southwestern portion of  thc  state (Worrnington and  
Lister 1956). T h e  archaeological sires unifbrmly consist of small scatters ofchipped 
stonc arrificts, lithic debris, and occasional ground stonc; ceramics are cstrcmely 
rare. 

T h e  purpose of' t hc  archacologicai survey conducted in Glade Park was to 
obtain a random sample ofsitc locations to bc used in a modcling study of patterns of 
prchistoric s i t r  distribution. 'l'his was accomplished by surveying 38 quarter- 
sccrions randomly selected from a total ofncarly 2600. These  quarter-sections were 
griddcd into64 units o f [  ha each, which werc thc  primary analysis units. Prehistoric 
sites werc discovered in 157 of thesc  1 ha units out o fa  total of2432 units esamined. 
Of the 2275 land parcels that did not contain sitcs, a random sample of 157 was drawn 
to scrvc as the  nonsite control group. It should be  noted that, bccause nonsitc 
locations werc sclecrcd from a limited nnmbcr ofquartrr-section clusters, cnviron- 
mcntal (and other)  variation may have becn underestimated, which can have a 
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dclctcrious effecr: on the performance of the resulting modcl. This practlce of 
selecting nonsltcs from the same clusters as those in which sites are found also tcnds 
to  make nonsitc samples morc similar to sitc samples than is rcally the cast. in 
nature, and this also can wcakcn a modcl. Although the Glade Park sample may nor 
be optimal, it will be shown chat very good results can be obtained through the 
nonsicc sampling procedure used here. 

An alternative nonsicc sclecrion approach rhat resolves these problems to some 
extent was uscd in a Colorado plains site location study (Kvammc 1984). This 
approach recognizes that in many rcgions archaeological sites are an extremely rare 
phenomenon, occurring by chance on the ordcr of around 1 perccnc of the time (see 
the section below on "Base Rate Probabilities"). In orhcr words, for cwry  acre In a 
region chat contains a sitc there might bc 99 acres where no sites occur. T h e  
alternate approach draws a simple random (or ocher) sample of control locations 
from across the entire landscape of the region regardless of whcchcr or not the 
locations have been Geld inspected for archaeological resourccs. The  advantages of 
this approach arc (a) that the resulting control group represents the true range of 
background cnvironmencal variation and (6)  chat levels of spacial aucocorrclacion 
are reduced (sincc selection is not by clusters). T h c  disadvantage is that by chance a 
small percentage-in the above example around 1 percent-of rhc control locations 
actually falls on siccs, which introduces error in group idrntification. This error is 
usually negligible and has little effect on analysis. A control group obtained in this 
manner may still bc referred to as a "nonsitc" group since undcr such conditions chc 
vast majority of thc group (99 perccnt in chis esample) rcally arc nonsitcs. 
Obviously, in areas where the probability offinding a sire is high this procedure 
should not be undertakcn. 

Envirotrrne~rfal Variables 

Fourtecn environmental and terrain variables were measured ac the center of 
each ofthe 157 site and 157 nonsicc units. T h e  variables were measures pertaining to 
landform, water, vicw, and shelter. T h e  landform variables were slope measured as 
percent grade (Figure 8.2a) and local relief within 100,250,500, and 750 m (Figure 
8.2b). T h e  water variables consisted of horizontal and vertical distance co nearest 
scream and co nearest permanent river. T h c  view variables were distance to nearest 
point of vantage and a measure of the angle of view (Figure 8.3a). T h c  shclter 
variables consisted of aspect measured relative to north or south (using the 180" 
rescaling technique dcscribcd above) and shelrcr volume measured wichin 100 m 
and 250 m (Figure 8.3b) but rescaled such that low (negative) values suggest 
relatively lit tie shelter (hills) and high (positive) values suggest relatively high 
shelter (valleys). 

Univariate Exuminrltion 

T h e  samplt. means, trimmed mcans (removing 15 percent of the largest and 
smallest values), medians, and standard deviations (Chapter 5, this volume) for the 



sire and nonsirc samples are presented in Table 8.1. Tr is readily apparent rhar somc 
malor differences in environmental patterning exist between the site-prescnt and 
sire-abscnr (nonsire) groups. For example, sites tend co occur closer ro water, on 
relatively level ground, and in regions of less local relief; and they tend to have 
better vicws. Sires also tend to occur under limited ranges of' cnvironmcntal 
\*ariation (as indicated by somcwhat smaller standard deviations). 

Given such results, most researchers attcmpt ro assess the scatistical signifi- 
cancc of the data patterning (c.g., Lat'lirty 1981; Larraldc and Chandler 1981). The  
two-sample I-tcsr (Thomas 1976:227) is a test for the difkrencc between means, but 
usc of [his tcsr rcquircs such assumptions as norm:ilir!~ and equal group variances. 
T h c  hlann-Whitncy rest (Conovcr lWI:224) is a nonparamctrrc altcrnativc, and the 
Kolmogorov-Smirnov tcsr can be used to assess distributional differences of any 
kind (Conover 1971:309). As noted in  earlicr wcrions, howevcr, use ofthcsc rests in 
spatial contcsts is problcmaric because of positive sparial aurocorrclation, which 
violares the common assumption ofindepcndcnce. Since rhc Gladc Park spatial dara 
arc derived from cluster sampling, a rc  might cspect the level ofsparial autocorrela- 
tion to be rather high. 

One way to rcsolvc [his dificulry is co rreat such rests conservxrivcly by using 
rhe 0.005 level insread of the 0.05 level, for csample. When rhc I-tesc is uscd, rhc 
absolurc valuc of1 itself can serve as a rclarivc index oidifiercnce or separabiliry 
b e t a w n  classes. Currently there are no readily available significance rests for 
assessing class diiTercnces in sparially autocorrclarcd concexrs (however, see Cliff 
and Ord 1975). 

A modified I-resr valid for uneql~al group variances (Sreel and Torrie 1980:206) 
was applied to rheTablc8.1 dara using a robust procedure char rrims the largest and 
smallcsr values in each group (Dixon et al. 1983:101), since [he r-resr is overly 
scnsitivc ro extreme scores. The  I-srarisrics and associared rwo-railed probabilities 
arc given in Tablc 8.1 and arc prcsenrcd only as a relarivc index of separability 
berwecn the sirc and nonsire groups. The  I index suggests char cerrain variables, 
such as slope, aspect, and view, are more separated than other variables. Srarisri- 
cally, the resulrs of rhr I-rcsc should be viewed conservarivcly bccausc ofviolarions 
of rhc indepcndcnce assumption thar rcsulr from spatial aurocorrelation. Addirion- 
ally, cven if rhe dara could be assumcd ro be indepcndenr, the rcsulring statistics 
would still be inflated becausc simultaneous inference methods (Miller 1966) werc 
nor employed. Besides correlarion bcrwccn (asis resulring from spatial aurocorrela- 
tion, thc 14 variablr.r are also positively correlated (e.g., horizontal and vertical 
distance ro warcr arc highly related). Thus, the 14 individual significance cests arc 
nor indcpendcnr assessnlents; moreover, with 14 tcsrs somc are likely ro appear 
significant by chancc alone. 

Before attempring ro modt-l the sirc and nonsicc difiercnces thar appear to 
esist in thc. Glade Park dara (Table 8.l), i t  mighr be instructive to asscss group 
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TABLE 8.1. 

Descriptive statistics fo r  Glade Park sites and nonsires 

Trimcrd I - f t r r  
Jrurdrj,bk Mtm M ~ U J I  Mfdian r.d. I'P 

X I  slopc ( S t  grade) 
sircs 12 10 
nonsirrs 24 18 

X2 rel icf wi th in 1M) m (ni) 
sires 30 27 
nonsitct 39 34 

X 3  relicf within 250 n i  (m) 
sires 70 65 
nomites 85 79 

A'4 relicf witt i in 500 nt (m) 
sltcs 133 130 
nonsires 160 14.5 

X5 r d l c ~ w i t h i n  750 rn (mi) 
sir r s  1 80 180 
nonsircs 217 200 

S6 horizontal ditrancc to pcrniancnr water (m) 
sitcs 2273 I 9 4 3  
nonsircs 2426 2254 

X7 vcrt icd disrancc to pcrltiancnt w x c r  jm) 
sitcs 129 93 
nonsitcs 168 I25 

X8 liorizonral distincc ro nrarcxr watcr (m) 
sitcs 164 139 
nonsircs 194 183 

X9 vertical discancc to  nvnrcsr watcr (m) 

sirrs 33 26 
nonsircs 44 33 

XI0  vantage (m) 
s~rcs I59 4!4 
nonsirrs 130 86 

X1 view angle (0-3600) 
sircs 219 222 
nonsircs 174 178 

X12 ""CC' (0- lW) 
sitcs c2 57 
nonsircs 89 87 

XI3 shcltcr wi th in IM) ni  
sitcs - 1 1  -9 
nonsircs 3 -I 

X14  shelrcr wi th in 250 rn 
sires - 140 -91 
nonsircs -28 -78 



difiercnces by considering a11 availablc information (thc 14 variables) simultane- 
ously. Hotelling's T7, a multivariate cxtension of che r-tesc, and one-way multivar- 
iate analysis of varlancc (MANOVA) arc traditional parametric proccdurcs for 
performing such a task (Morrison 1976). Recently, a nonparametric alcernacivc has 
been presented for a similar problem contest in archaeology. Multi-Response 
Pcrmuracion Procedurcs (MRPP) originally were introduced to archaeology for 
assessing artifacc class locacional diffcrcnccs in rtvd space bascd on positional coordi- 
narcs (Bcrry ec al. 1980, 1983, 1984). MRPP can be used in the present situation to 
assess mulcivariace sitc and nonsitc class IocacionaI ditlkcnces in rnra~urm~nr spacc 
(Figure 8.5b). Since MRPP are based on a randomization procedurc, they arc 
extremely robust. If substantial class differences are found, chis rcsulc would 
suggest that che site and nonsite locations occupy different regions of thc measurc- 
mcnr space. Site location modcling procedures then might have a reasonable chance 
ofparcicioning the measurement space into appropriate decision regions, providing 
a successful classification modcl. 

T h e  Glade Park sitc and nonsitc locacional data werc subjected to an MRPI' 
analysis. T h e  simultaneous comparison of all 14 sitc and nonsite environmental 
characteristics indicates an extreme difference betwecn the two classes that was 
significant at p = 0.00000000032. This suggests that the Glade Park locations with 
sites tcnd to be markedly different from locations without sites in terms of envi- 
ronmental characteristics (see "Interpretation and Explanation of Data Patterns" 
for a discussion of how such data patterns can be interpreted). 

Sire Locarion Modelr 

T h e  technique chosen for site location model development at Glade Park is 
multiple logistic regression. This classification algorithm is particularly robust 
becausc, unlike many otherclassitkation techniques, it does not assume a particular 
underlying dktribucional form (Press and Wilson 1979) but achieves a partitioning 
of the measurcmcnt space (Figure 8.5b) based on the crnpirical distribution of the 
particular data set used (see Chaptcr 5 and the discussion below for more details 
;bout logistic regression). The  foilowing logistic regression equation was obraincd 
through che BMDP program LR (Dixon ec al. 1983): 

where the variables refcrrcd to by thcX; may be found inTable 8.1. T h e  value of L 
theoretically can rangc between posicive and negativc infinity; positive values 
denote locations in the site portion of the measurement spacc, negativc values 
indicate locations in the nonsitc portion, and L = 0 represents locations that fall 
exactly on the decision boundary (Figure 8.5b). Thus, L represents a decision rule 
chat can bc used to  assign locations to site or nonsite classes on the basis of their 
measurements. Additionally, large positive or ncgativc values indicate locations 
having characteristics that, overall, are more like the site or nonsite classes, 
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respectively, than locations with small positive or negative values. L thcreforc 
represents a single scale or axis representing an underlying environmental contin- 
uum with "site-favorable" conditions on the positive extreme and "site- 
unfavorable" (nonsite) conditions on the negative extreme. 

In practice, the use ofL. is unwieldy because its values arc unconstrained. A 
simple transformation yields a valuc that ranges from 0 (large negative values of L) 
to I (large positive values of L), with 0.5 indicating locations on the decision 
boundary (L = 0). 

whcre L, is the logistic regression score measured at the , I h  location and pi is thc 
transformed valuc. Note that if (a) the data are obtained through simple random 
sampling (generally impractical in archaeology, as noted above), and (6,) the data 
represent independent observations (generally impossible owing to the spatial!y 
autocorrelated naturc of archaeological data), rhen thcpi values can be interpreted 
as cstirnatcs of a location's probabiliry of membership in the site-prescnt class 
conditional on the nlcasurcmenrs (Xi) made at thc locarion. Sincc these two 
conditions arc not met in the Glade Park analysis, the pi valucs can best bc 
interprcted as standardized relative indications of location within the site-present 
or site-absent portions of the measurement space. 

T o  illustrate usc of thcse formulas, suppose that a location is found to cshibir 
measurements on 14 predictor variables identical to thosc prcsentcd for the site 
group mcan valucs in Table 8.1. When thc site mcan values and the first equation 
are uscd, L =0.633 1; the second equation givcsp 90.6532. Thus, a location with thosc 
environmental charactcristics would be assigned to the site-present group sincep 2 
0.5. When this procedure is applied to the mcasuremcnrs of all 3 14 sire and nonsite 
locations, rhe initial classification rcsults are as shown in Table 8.23. The  percent 
correct statistics in this table are undoubredly inflated because the same data were 
uscd both to build thc model and to yield thcse performance indications (a model 
like logistic regression tends to maximize fit to the particular data at hand). In a Iatcr 
section, independent tests are applied in an attempt to  assess the "true" perform- 
ance of a Glade Park model. T h e  gain statistic for this model is 0.60. 

One problcm in applying a modcl such as the one prescntcd in the above 
(:quation is that measuring many variables and performing many calculations 
requires much work, even for a computer. A common data reduction technique is 
principal componcnts analysis (Morrison 1976) by means ofwhich the variation in a 
large number of variables is typically summarized by a smaller number of dimcn- 
sions (principal components), which arc linear combinations of the original &a- 
blcs. This technique is also used to  eliminate redundancies rcsulring from intcr- 
correlations (collincarity) among variables. The  reduccd number of components 
can bc used as predictor variables in classification analyses (Schowcngcrdt 1983: 160). 



KVAMME 

TABLE 8.2. 

Clwification performance of initial Glade Park models 

A. 14-Variable Model 

Actual Group 

Sirc 

Nonsitr. 

B. 9-Variable Mode! 

Aclual Croup 

Site 

Nonsire 

Number 
Percent 

Number 
Percent 

Number 
Percent 

Number 
Percenr 

Prrdicrrd Group 

Sirr Nomirr 

p 2 0.5 p < 0.5 
107 50 
(a4 (3 1.8) 

43 I I4 

(n.4) (72.6) 

Gain - 1 - (27,4/68.2) - 0.60 

PrrdrrrrJ Group 

Sirr Nunri~c 

p > 0.5 p < 0.5 

1 lo 47 
(70.1) (29.9) 

53 IOJ 
(33.8) (64.2) 

Gain - 1 - (33.8/7O.l) - 0.52 

Principal components analysis has not been used extcnsivcly in site location modcl 
developmcnt, principally because it is vcry dificult to intcrpret the meaning ofthe 
components obtaincd. Moreover, in ordcr ro obtain component scores for cach case 
(location) to which rhc modcl might be applied, the teehnique rcquircs mcasure- 
menrs of the original variables anyway, and rhus thcrc is little savings in time and 
effort. 

Various srepwisc proecdurcs prescnt an alrernarive (see Chapccr 5). Thcse 
ccehniqucs attempr to sclcct a "best" subset of variables for a modcl. Bar in rhis 
case mcans that [he addition of other variables will not substantially improve the 
model bccause rhcy contain only redundant information (owing to intcrcorrcla- 
cions). In forward stepping, the first step scleccs the singlc variable that offers the 
maximum discrimination between groups (indicarcd by somc scacistic) and enrers 
rhis variablc into the modcl. T h e  sccond step sclects the variablc from thc remain- 
ing pool of variables that offers rhc grearcsr increase in discrimination between 
classes by considering the rclationship of this sccond variable with the variablc 
already in the modcl and with variables nor yet in the model. On  cach succeeding 
step addirional variables arc selccred and cntcrcd into the model until the rcmain- 
ing variables (those not yet enrered) arc determined to contain only redundant 
information (again owing to corrclarion berween them and the variables already in 



the model). T h e  result is a subset ofavailable variables that yiclds a model whose 
performance may be similar to that of a modcl in which all variables were used but 
that requires less information. One drawback ofsrepwise procedures is that rhc final 
subsct ofvariables obtained in a particular application can vary depending on thc 
particular stepwisc procedure and the selection criteria used and can also vary from 
sample ro sample. It is usually the case, however, that a certain core of besr 
discriminating variables is selected. 

'The 14 variables ofthe Glade Park data wcre subjected to stepwise procedures 
using the BMDI' stepwise logistic regression program (LR; Dison ct al. 1983). 
Variables wcrc entered at each step on the basis of largest chi-squarc value - 
(suggesting best discrimination). A subset ofnine variables was ultimately selected 
by graphing at cach step changes in several statistics, including (u j  thc improve- 
ment chi-square, (61 rhe modcl log likelihood, and ( 0  the goodness-of-6c sratisrie 
RD7 (described above), all of which are monotonically related functions. After the 

4 
nmth variable was en-tered, changes in all of thew sratistics leveled off, suggesting 
that no subsrantial model improvement would occur ifthe remaining five variables 
wcrc included. The  rcsulting nine-variablc model is 

and for this n~odel gain equals 0.52. 'The classification pcrfotmance of this nine- 
vatiablc model, when it  was applied to the same data uscd to  crcate it, is shown in 
'Table 8.2b. (Independent tests of Glade Park modcls are given below.) A compari- 
son of the nine-variable model shown here and the 14-variable modcl described 
above shows that not only arc the models very similar (in terms of the coc~c i en t s )  
but so are thcir suggcstcd performances, as indicated by thc stat~stics in 'Table 8.2. 

APPLICATION COMPARISON OF QIJANTITATIVE 
LOCATIONAL MODELS 

In this section scvcra! forms of data models of characteristics of 
locations that have been used in archaeological research are prcsentrd and com- 
pared. Each type ofmodcl achievcs a partitioning ofchc measurement space(Figurc 
8.5b) in a difkrent way. The  goal of this section is ro dcmonstratr the broad 
similarity of these divrrse modeling techniques and of thcir rcsults. For comparison, 
cach modeling technique is mappcd across the same study region using GIS 
computer mapping techniques (see Chapter 10); rhc patterns of the mappings are 
often strikingly parallel. The  results of this section support chc conclusion alluded 
to earlier and arrived at by Hixon et al. (1980): thc particular classificatian algo- 
rithm uscd ia h r r  important than the reprcsrntativencss of thc samples uscd in 
prediccivc model dcvelopmcnt. 

All models presented in this section wcre devcloped using the same data from a 
Colorado plains study region (Kvamme 1984, 1986). This srudy region of nearly 575 



km2 was gridded into approsimatcly 230,000 cclls (land parcels), cach measuring 50 
m on a side; chese cclls wcrc the  clemcncary units of analysis. T h e  archaeological 
data used for rhc models consisted oC269 locarions (cclls) containing open-air lithic 
scatrcr sircs. A background control group of 1154 locarions without archaeological 
remalns (nonsitcs) was also used. Thesc  large sample sizes should hclp ro illustrace 
the  rclativc performance of each modellng procedure. Eighc environmental varia- 
bles calculated at  these locarions by acompurer  rhrough CIS rcchniqucs formed t h e  
data basc, and in all models all eighr variablcs are used for consistency in compari- 
son. T h e  variablcs arc. aspccr (XI), slope (X2), local relief wirhin 100 m (X3), local 
rclicf wirhin 300 m (X4), a canyon rim indcx valuc ([he "shclrcr" volumr measure 
dcscribcd above; X5), disrance co ncarcsr poinc ofvanragc (mesa cdgc, canyon rim, 
o r  hill or  ridge cop; Xb), disrancc to  rhe closcsc drainage (X?), and discancc to rhc 
closcsc second-order (or greater) drainage (using Srrahler order ranking; Xa). T h e  
reader is rcfcrrcd to  t h e  section "Variables Used In Locacional Research" lor a 
descriprion of how chcse variables arc measured. 

Robust Classification Models 

Robusc classificarion models can bc grouped according to two types- 
paramtric and 1io71parunztwic. Parametric rechniqucs assume a particular type  of 
sratistical distriburion (usually mulrivariarc normaliry) and then cstimace paramc- 
rers of char discriburion (c-g., mcans, variances, and covariances). Nonparamerric 
classificarion procedures makc no assumptions abour distributional form and are 
somerimes considcrcd particularly robusr bccause thcy work under a wide rangc of 
distributional types (if t he  groups to be classified are reasonably distinct). Ic should 
bc norcd char under rhc same conditions (v;aricd disrriburional rypes) paramcrric 
merhods usually provide good results, evcn when the  assumed (multivariate nor- 
mal) distriburion does nor occur (Schowcngerdc 1983: 176). 

T w o  paramccric tcchniqucs, a lincar discriminanr function (commonly callcd 
discriminanr analysis) and B a y ' s  maximum likelihood, arc compared bclow with 
logistic regression, a nonparamctric ccchnique. T h o  section onds with a brief 
discussion of a quadraric classification tcchniquc. 

Discriminant Ana@s 

Because many archaeologists arc familiar with discriminant analysis and 
because the  software necdcd to use this rcchniquc is readily available in common 
statistical packages, it has bccn chc dominant technique used for site location model 
developmenr (Kvammc 1980; Larraldc and Chandler 1981; Fecblcs 1981; Schroedl 
1 984). 

T h e  ovcrall srrarcgy ofdiscriminant analysis in [he rwo-group situation encails 
summarizing class diffcrcnces by a lincar combination of rhe original and multiple 
variables, where cach observation is assigncd a score on  the  single rcsuhing 



dimension or divrimincrtu axti. Tht .  discriminant function has the  characterisric of 
maximizing the  separation between groups along the  asis, assuming multivariarc 
normality and equal group variation. A masirnum likclihood technique is then used 
on the  discrinlinant axis to  e v a l u a t ~  prob;~bilitics ofgroup rncmbcrship (scc Chaptcr 

5). 

Whcn thc  csample data of 269 sire and 1154 nonsite locations arc uscd, the  
following discriminant Llnction is obtained through the  BMDP discriminant analy- 
sis program 7181 (Dison er a!. 1983). 

whcre I ) ,  is rhe discriminant score for the  r'" case (location) and S I through Xg are 
t h e  variables dcfincd above. Likc L ,  D can rangc between and negative 
infiniry. A s ~ m p l e  transformation yields a \,aluep, which rangrs from 0 to 1, ;~llowing 
interpretation (when the  assumptions of this model are Gully met) as the  probability 
of a location's menibcrship in thc  sitc group, conditional solcly on the  measure- 
menls. Th i s  transformed value is calcula~cd as follou s: 

t. -0.5 (D; - DS)' 
Pi = 

L> -0.5 (Dj - Dj)2 + ,. -0.5 (Dj - DnJ)2 

where DI is t h c  estimated mean (centroid) ofdiscriminant scores for the  site group 
and D,, is t he  mean discriminmit score for the  nonsite group. 

T o  illustrate usc of thcsc formulas, t he  cnv~ronmcnta l  characreristics of site 
5LA5364, one of rhe 269 sample sitcs, arc sh0u.n in Tab le  8.3. \\'hen t h e w  data are 
used, t h c  first equation yields a discriminant score ofD = 2.1939. I f  this value 2nd thc  
si tc and nonsitc sample centroids on the  discriminant asis (D$ = 0.83M,Dl,,. = -0.1936) 
are insertcd in ~ h c  second equation, rhenp -0.8719. S ~ n c e p  is greater than0.5, which 
i s  t he  traditional dccision rule, rhis location would be correctl!~ classifkd as a sitc. Of 
course, this model can bc  uscd for predicriot~ when i r  is applied ro locations of 
unknoum group membership. 

Replicating this procedure Ibr the  1423 site and nonsitc sample locarions yiclds 
thc  initial model accuracy indications (percent correct statistics) shoufn in Table  
8.4. T h e  gain staristic can be estimated from thcsc data. T h e  percentageofthe total 
are:] covcrcd by thc  modcl (at t he  p = 0.5 cutofi) can be  estimated by using the 
percentage oT nonsitc locations classified by the  modcl to  tlic site group, 32.1 
percent in [his case. \\re can use rhis figure as an cstim:tte bccausc in the  rcgion 
under study (as with mosr- regions) t h e  arca occupicd b ~ ,  sitc locations constitutes 
only a tiny percentage of thc  study area-in the  present case abour I percent of all 
t he  locations (50 m cells) in the  region, which tncans that t he  nonsirc locations 
represent about 99 percent of rhe total area(sce Kvamme 1984). Thus ,  if rhe model 
classilies 32 percent of t h e  nonsires to thc  sitc group, we can infer tha t  approsi- 
rnately 32 percent o f t h e  total area o f t  he region would be  classified in the site group 



TABLE 8.3. 

Valucs for eight cnvironrncncal wriablrs: 5LA5364, aU 269 sites. and 1154 nonsire locarions in 
thc Colorado plains study rcgion 

aspccr ( O j  

slope (5 g. ndc) 

rcl~ci\r.irhrn 1CO m (m; 

rciici within !G3 ni (m) 

canyon nm indcs 
(m' '  10) 

v m r r g c  d i s r ~ n c c  (rn) 

distance. to closcsr 
dri~inage (m) 

disr.lucc ro second-ordcr 
d r i nagc  (m) 

by rhc model if'it were mappvd. Tht. pcrcentage oiallsitcs within the model's arca 
is cstimatcd by the pcrcentage of sircs correctly classified by the model ro the site 
group-76.2 perccnt for the currcnt modcl (T'ablc 8.4). Based on thcse calculations, 
the discr~minant model yiclds a gain of 1 - (32.1 176.2) or0.579. Ir: should be noted that 
both thc percent correct and thc gain statistics presented in Tablc 8.4 are inflated 
owlng to a variety ofhctors, thc most norable ofwhich is that the same data wcrc 
~rscd b o ~ h  to build thc modcl and to cvaluatc its pt.rformancc (procedures given 
bclow help to correct inflated stariatics through indcpendcnc tests). 

We can illustrate thc application of this modcl whcn mapped over a rcgion by 
using che Colorado plains 5.5 by 8.5 km tcsr study region discussed ~n the scction 
entitlcd "Approaches Based on Trend in Location Only." This region, which can bc 
characterized as a lcvcl plain dissected by a number ofdceply entrenched canyons, 
represents only a small portion of the larger study arca from which the salnplc data 
ucrc  dcrivcd, Approsimately half ol' thc 95 sitcs in this test study region are 
contained in the larger sample of 269 sites med for development of this model. 
Computer measurement and mapping techniques in the form of a geographic 
irilormntion system (see Chapter 10) wcrc used to estimate values for the eight 
variables in cach 50 by 50 m cell and to map chc rcsdts  of the rnodel ovcr thc 
approximately 19,000 cclls of this tcst region (Figure 8.73). 

In this figurc, and in those that illustrate mapping of the subsequcncly 
discussed models, cstimated probability values are portrayrd in five IevcIs (in steps 
oT0.2 and in levels of increasing darkness). Thus, the rraditionalp = 0.5 decision ride 
lies midway within the second lcvel of shading. T h e  acrual site locations in rhis 
study rcgion wcrc shown in Figurc 8.4a and may bc compared with this prediccivc 
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TABLE 8.4. 

Comparison of classification performance rates of several site location modeling procedures 
(row percents arc given in parentheses) 

D 1 ~ f r i m 1 w ~ 1 1 1  ,-1n+ff 
Pridirrionj 

Sire. : Y m i / t  

Actual p 2  0.5 p <  0.5 

Sitc 205 t.4 
(76.2) (23 3) 

Nonsirc. 370 784 
(12.1) (67.9) 

p i 1 1  - 0.5iY 
Ettclrdcsrr D r ~ r m r t  (d,?) 

P ~ < & I M H I  

Si:r A ' r i r i l c  

Accual p 2 0.5 p < 0.5 
Sir 1. 2 17 52 

(80.7) (19.3) 

Sonsitc 482 672 
(41 .S) (58.2) 

gain -- 0.462 

S l l f  1Yomirt S l t t  : Y o w r t  

Acrud p 2  0.5 p < 0.5 Actual p? 0.5 p < 0.5 
Site 202 67 Sirs 222 47 

(75.1) (24.9) (52.5) (17.5) 

Notlsitc 382 772 Nonsirc 399 755 
(33.1) (66.9) (34.6) (65.4) 

gain - 0.559 p i n  - 0.581 
Cir j  B k t  Di,fancr ( d l )  

Prd i r rwnr  

Sir4 ~Vortrrtt 

Actual p 1 0.5 p <  0.5 

Sirc 218 5 1 
(81.0) (19.0) 

Nonsitc 498 656 
(43.2) (56.8) 

gain = 0.467 

L c c t  S/:cr (*I .  75 ~ d , )  
Prfdicric~nr 

S i z ~  A'artrirr 

Actual p? 0.5 p <  0.5 

Site 156 83 
(69.1) (30.9) 

Sonsire 500 654 
(43.3) (56.7) 

gain - 0.373 

map. Since discriminant analysis assumcs equal class variation, achieved by pooling 
rhcsamplc covariancc matrices, a greater proportion of thc cnvironmenr rcnds ro bc 
classified with h igherp-va l~~es  (as indicated by the cstent of thc shadcd regions) 
with this tcchniquc than with other mcthods described bclow rhat do not make chis 
assumption (compare Figures 8.7b and c). 

Maximum Likrlibood Chsrifiur 

T h e  maximum likelihood classifier is the nlosr commonly used classilication 
procedure in many disciplines, particularly in rcmore-sensing modcling applica- 
tions (Moik 1980; Schowengerdt 1983)) although it  has been used loss frequently in 
archaeological sito location studics (Morain et al. 1981). 

T h e  probability that an observation bciongs co thc k class, according to 
mriltivariatc normal theory, is described by rhe following fimction: 
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where Xi refers ro vector ofmeasurcmencs of thc multiple variables at location i, pk 
concains the vcctor of multiple mcan values associarcd with class k, and Zk is thc 
corresponding dispcrsion marrix conraining J rows and columns of variances and 
covarianccs for class k (Swain 1978: 1%; also scc Grcen 1978 for a discussion of marrix 
algcbra ccchniques). In pracricc, the Incans and dispcrsion marriccs arc unknown; 
thcy are estimaccd by samplc means, variances, and covarianccs. ,In observation i s  
assigned ro chc class for which i t  has the greacesr probabiliry value. 

Although discussion of macris algebra is beyond thc scope of chis presencacion, 
a simplified dcscripcion of chc rechniquc follows. For a single variablc we can 
imaginc a normal probabilicy curve wich its maximum hcighc or dtnritj ac the mean 
valuc and wich a widch that is indicarive of che variarion in chc disrribucion. For any 
value of a variable we can dcccrmine chc densiq (height) of thc discribucion. 
Similarly, in a multivariacc concexc mulriple mcasuremencs can be asscsscd by rhe 
abovc formula relative co the multiplc mcan valiics for a class, considcring ac chc 
same rimc che nature of thc dispersion wichin char class, and chis yields a multivar- 
iacc normal dcnsicy value. A density c3n be dcccrmined for each class under 
consideration. T o  illuscratc wich hypochecical values, ifthe multivariate densiry for 
Class A is decermincd to be 0.3 for che nlulriple environmental measuremcnts made 
ar some Iocacion and rhe densiry for Class B is dcccrmined to bc 0.2 (in a cwo-class 
problem), then thc measurrments have 3 higher probability of belonging to Class A 
than to Class B; in fact, the probabilicy ofmembcrship in Class A can becsrimaccd as 
p =0.3/(0.2 +0.3) = 0.6. T h c  mathematics of chis proccdure perform optimally when 
multivariace normality and indepcndcnt observations can be assumed ( i . ~ . ,  classifi- 
cacion error is minimized), even though chis technique docs not require equal 
covariance macrices (sec Chapter 5). The  Scaristical Analysis System PROC DIS- 
CRIM performs multivariate classilkation through thc masimunr likelihood 
method (SAS Institute 1982). 

T o  illustrate application of this technique, data from site 5LA5364 arc again 
used (Table 8.3). Entering these data into the above equation, together with 
estimated means, variances, and covariances for [he site and nonsite groups (some of 
which are included in Table 8.3), yields a density for the site group of4.8539 x 10 -2 '  
and a dcnsity for the nonsice group of 3.4153 x 10-32. Thus, thc mcasuremcnts at 
5LA5364 indicatc that this location has a higher probability of membcrship in rhe 
site-present than the site-absent group, and it u~ould be appropriate bascd solely on 
these measurements to assign the 5LA53a location co the sitc class. Thc  conditional 
probabilit ics become 

4.8539 x 10-21 
p (sire ( Xi) = 0.9343 

4.8539 X 10-21 + 3.4153 X 10-22 

p (nonsitc I Xi) = 1 - p (sitc 1 Xi) = I - 0.9343 = 0.0657 
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Applying identical calculations to the 1423 sample locations yields the initial 
model accuracy rates and gain statisric shown in Table 8.4. T h e  rcsults of the 
maximum likelihood technique applied to each of the 19,000 locations in the test 
study rcgion are mapped in Figure 8.7b. Although the classification accuracy is 
about rhc same as that provided by the discriminant analysis, note that the 
maximum likelihood procedure maps a relatively smaller portion of the rcgion as 
sitc likely because it takes into account the lesser cnvironmental variation usually 
exhibited by a site-prcscnt class urhilc the discriminant analysis model used abovc 
does not. 

Multiple logistic regrcssion has recently comc into use as a classification 
tcchniquc (e.g., Maynard and Strahlcr 1981; Pindyck and Rubinfcld 1976:237-263; 
Schmidt and Srrauss 1975), and i t  has been applied in several studies ofarchaeologi- 
cnl site location (Custcr ct al. 1983, 1986; Holmer 1982; Kvammc 1983b, 1983c, 1986; 
Parker 1985; Scholtz 1981). This nonparamttric technique makes no assumptions 
about distributional form (Wriglcy 1976) and has been shown to offer improvcd 
classificatory performance over discriminant analysis when the data arc not multi- 
variate normal (Maynard 1981; Press and Wilson 1979). Maynard and Strahlcr(l981) 
argue that logistic regression is the optimal statistical classrficr for rcmotely sensed 
data, and becausc no distributional assumptions arc madc, this tcchniquc is appro- 
priatt. for nominal-, ordinal-, or interval-scaled data or for various combinations of 
these levels of measurement. (Logistic regression has been applicd in several 
cxamplrs in earlier sections of this chaptcr.) 

Logistic rcgrcssion can be better understood if we consider the results of 
applying a midtiple linear regrcssion model to a dichotomous dcpcndcnt variable, 
such as site prescncc and site abscncc. Such a model has a number of scrious 
problems in this contest (Wriglcy 1976:7-9; Chaptcr5, this volume), not the Ieast of 
which is that predictions can range in value betwecn plus and minus infinity, 
making ir difficult to inrcrpret these predictions as probabilities. Logistic regression 
is able to overcomc these diff~cultics and yicld a result that is constrained between 0 
and 1.  This result can be interpreted as a predicted probability of class membership 
(when assumptions of independence and random sampling arc met) through use of 
the logistic trans format ion. 

where thc logistically derived discriminant filncrion at thc i"' location is 

Li = I Y  + P1Sli + P f l 2 i  + .  . . + p j X j i  

and a and the pj are the estimated intercept and rcgression weights. 



A logistic regression analysis was performed using thc example data of 1423 
site-prescnt and sitc-absent locations and the BMDP program LR (Dixon ct al. 
t983), and thc result was the following function: 

Whcn applied to thc rneasuremcnts from 5LA5364 (TabIc 8.3), thew equations yield 
= 1.9085 andp-0.8708. Based on its environmental characteristics, 5LA5364 would 

be correctly classified to thc site-prescnt group. 

Modcl accuracy for thc logistic rcgrcssion application, as mcasurcd by the gain 
statistic in Table 8.4, is slightly highcr than it  was for the prcvious, parametric 
techniques. Figurc 8 . 7 ~  shows the rcsults of mapping chc logistic regression modcl 
ovcr the tcsc study area. Sincc logistic regression makes no assumptions about 
distributional form, it  is usually rcgarded as a very robust proccdurc. This would 
appcar to bc an advantage for archacologica1 locational modcling bccausc sitc 
location data are decidedly nonnormal, but in fact, thc application of this technique 
to the sample data produced rcsults that arc vcry similar t o  thc results obtaincd by 
the previous classil;ers, both in pcrformancc (Tablc 8.4) and in mapped results 
(Figurc 8.7). 

@.tadraric Closrificorion Procedure 

T h e  quadratic classification mcchod is a gcncral tcchniquc that can bc applied 
t o  such statistical models as discriminant analysis and logistic regression whcn 
group varianccs and covarianccs have bcen found to be markcdly unequal. This 
proccdure has been shown to offer improved classificatory performance in these 
situations (Anderson 1975; Eiscnbcis and Awry 1972:44; Michaclis 1973; Smith 1947). 
In archaeological predictive modcling, Kohler and Parker (1986) h a w  applicd 
quadratic discriminant analysis to simulated data, and I h a w  applicd quadratic 
logistic regression as a tcsc case in actual modcI dcvclopment (Kvammc 1983~). T h e  
quadratic procedure incorporarcs all quadratic terms (LC., squared ccrms for each 
variable and all possible interaction pairs) into a modcl, along with the predictor 
variables being used. This causes the decision boundary to wrap or curvc around 
thc group with lcss variation (a hypothetical quadratic decision boundary is shown 
in Figure 8.5b), which can provide an incrcase in model accuracy. 

Any benefits obtaincd arc not without cost, however. The  discriminant 
analysis and logistic regression models prescnted in the prcvious scctions requirc 
escimatcs ofj + 1 parameters (whcrcj is the numbcr orpredictor variables) to yicld a 
linear dccision boundary in the measurement space (Figurc 8.5b). T h c  nonlinear 
dccision boundary of the quadratic model (Figurc 8.5b) requires estimates of (j + 1) 
+j( j  + 1)/2 parameters(thus a nine-variablc modcl would requirc estinlates o r  ( 9+  1 1  
+9[9 + 1 j/2 = 55 paramctcrs). This incrcasc in the number orparametcrs may require 
a corrcsponding increasc in sample size in order for estimation to bc reliable. 
Another problem is that, like the polynomial rcgrcssion technique discussed in thc 
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section on "Approaches Based on Trend in Location Only," the quadratic proce- 
dure does not produce a model that can bc readily interprctcd. Finally, in an 
application of the technique to  archaeological sitc and nonsitc data, I found it to  be 
overly scnsitive to outliers, which offsets most ofthe advantagcs gained t hough  the 
inclusion of the extra terms (Kvamme 1983~). 

Some Simple Classification Models 

T h e  models of the previous scction constitute onc set of approachcs for 
partitioning thc measurement spacc (Figurc 8.5b) to achievc classification. When 
appropriate theoretical assumptions (such as multivariate normality) are met for 
each of thcse models, classification crror in the partitioning that is obtaincd is 
minimized. As noted in earlicr sections, however, many of thcsc assumptions arc 
dificult to meet when one is dealing with geographically distributed phcnomena. 

A number of simple mathematical rules have been dcvelopcd to achieve a 
partitioning of the measurement spacc in pattcrn-recognition and image-analysis 
studies (Duda and Hart 1973; Moik 1980; Schowengerdt 1983). These procedr~res can 
be classed as nonparamerric because no assumptions arc madc about probability 
distributions, and in some cases rhcy perform with accuracy rates comparablc to 
those of the models discussed in thc previous section. An important advantage of 
these procedures is that they arc casicr to calculate (many can be done by hand) 
than the computationally burdensome procedures described above. Although a 
wide range of possible examples csist, only cwo arc discussed hcrc: the minimum 
distance classifier and the Icvcl slice classifier. 

Distance Measure, 

T h e  minimum dirtunce algorithm simply classifies a location to rhc class that it is 
"closest" to  in the mcasurcmcnt space (Figure 8.5b). In other words, a location 
(with characteristics summarizcd by mcasurcd variables) is assigned to one of thc 
classes if its distance from the centkr of that class is less ihan itcdistance from thc 
center of the other class(es) ( S c h o w ~ n ~ e r d t  1983:49-53). T h c  cencer ofeach class is - 
represented by the point in the mcasuremcnt space having the class mean value for 
each variable under cxaminarion. T h e  distance from thc kt" class is given by 

d2k = [ ( ~ l i  - /J ~k)' + (.rz - /JB)' + . , . + ( ~ j ,  - / ~ j ) ) ~ ]  Fl 

which is simply the Euclidean distance bctwccn the values ofchej variables (x 1,x2, 
. . .,x.) measurcd at theith location, and the mean .clalues for each variable (/J 1, / ~ 2 , .  . ., 
f i j )  r' or rhc k'" class. 

T o  illustrate application of this algorithm, the measurements for 5LA5364 and 
the estimated means for the samplc sirc (s) and nonsite (rrr) classts (Table 8.3) can be 
entered into this equation to yield the following: 



Sinccd2$< d2,1s, 5LA5364 is closcr to the sitc group mcan valucs in the mcasurcment 
spacc and is assigncd to the site-prcscnt class. 

In actual practice thc data should bc standardized so that cach variable 
(dimension) contributes equally to thc calculations. In cascs wherc the variances for 
cach variable for cach class are cquaI and whcre the variables arc uncorrclated, this 
algorithm minimizes classification error (Schowcngerdt 198354). Even when rhesc 
special conditions do  not arise, studies have shown that the accuracy of thc 
minimum distance classifier is comparable to that of the maximum likelihood 
method (Hixon e t  al. 1980). T h e  minimum distance classifier may be calculated 
using thc Statistical Analysis System PROC NEIGHBOR program (SAS Institute 
1982). 

Figure 8.83 maps thc results ofapplying the minimum distance (d2) classifier to 
the 19,000 locations in the tcst study area described above. The  shaded areas are 
those portions of thc region that were classified as being closcr to  the site class mcan 
values in the measuremcnr space rhan to the nonsite values. This "site-similar" 
region compares favorably with the sitc subspace dclineatcd by the scatistically 
derived maximum likelihood classifier (for compararivc purposes, the site subspace 
defined by ~nasimum likelihood as all locations with conditional site probabilities 
> 0.5 is portrayed in Figure 8.8d). Similarly, the classification accuracy and gain 
statistic of thc rcsults ofapplying t h c d  clnssificr to  the sample dataof 1423 locations 
(Table 8.4) compare favorably with thosc of rhc multivariate data analysis proce- 
dures of thc previous scction, if the rclative difilculties of the two types of 
procedures are taken into account. 

A slightly different distance measurc, tcr:ncddr). block disrancc (Schowengerdt 
1983:51), is mcrely thc sum of absolurc distances from rhe i1?ocation t o  the class 
mean values: 

'This distance measure is somewhar easier to employ than the Euclidean distance 
measure because it requires fewer calculations. When mapped across the study 
region (Figure R.8b) this decision rule yields results almosr idcntical to chose of the 
62 classifier (Figure 8.8a). T h e  classification accuracy and gain statistic for the 
application of the dl rule to the 1423 sampIc locations are given in Table 8.4, and 
these, too, are almost identical to thosc Lbr r h e a  results. Despitc thesc similarities, 
the 62 rule is more commonly uscd beca\ise it is morc interpretable and tends to 
perform somewhat better than the dl rule. 
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This dgorithm is sometimes called the parcrlhkcpiptd rlarrifitr (Moik 
1980:271-272). I t  csrablishes decision boundaries thar arc parallcl to  arb axis in the 
mcasurcmcnt space (hcncc rhc tcrm 1zvt.l rlrct.) by forming a hyperrecrangic or 
parallelepiped abour rhc class(t.s) of inrercst; a hypothetical level-slice dcckion 
boundary in a measuremenr space 1s porrrayed in Figure 8.5b. In image processing, 
minimum rccranglcs are usually iirrcd around class boundaries derived through 
maximum likelihood csrimation. T h e  best known archaeological applicarion of chis 
rechnique is the polyrhctic choice model ofprehistoric setrlcment developed for tht. 
Rccse River Valley of Nevada (Williams e t  al. 1W3). This poiythetic choice model 
used arbitrary cutpoinrs (level slices) on each ofscven environmcnral vanable axes. 
In this case, howcvcr, a location was classified ro the site-prcsenr group (no actual 
nonsites were used) ifany five of thc seven values measured ar a location were below 
the rhreshold levels. T h e  Ievcl slice classifier can be defined for any variable as 

(2 - t )  5 xi  5 (F + l )  

wherexj is the value of? variable at rhe it" location,F is the estimarcd mean valuc for 
the class of interest, and I is a threshold or curpoint value (see Moik 1980273). 

T o  illustrate application ofrhis mcthod with our example data, measurements 
from 5tA53M and the mean and standard deviation dara from the sire group sample 
were used to  produce the results shown in Table 8.4. The  threshold value, I ,  is 
arbitrarily set at f 1.75 srandard deviation of the sitc group mean. Nore rhar any 
threshold value may bc selected and that rhis choice will directly affect subsequcnr 
pcrformancc; in the prcscnr caw, several values of/ were examined bcfore c h e f  1.75 
s.d. value was selectcd becausc of its relatively good performance. Inscrring the 
relevanr dara for each variable, we find that thc following relations hold: 

Thus, 5LA5361 is classified to  thc site grottp. 

Applicarion of chis procedure to  all 1423 locations in the sample yields the 
accuracy ratcs and gain staristic givcn in Table 8.4 for the f 1.75 s.d. threshold 
valuc. When the level slice is applied to each ofthc 19,000 locations of thc test srudy 
region, the resulting mapped subser (Figurc 8 . 8 ~ )  is very much like those resulting 
from the application of minimum disrance (Figurc 8.8a and b) and maximum 
likelihood (Figure 8.8d) classifiers, As with all of [he above techniques, ir is quite 



easy to alrer resulrs in cirher direction simply by changing a curoff poinr or 
rhrcshold value. 

COMBINING MODELS FOR LOCATIONAL CHARACTERISTICS 
AND lMODELS FOR LOCATION ONLY 

A fimdamcnral dichotomy in typcs of archaeological locarional modcling 
approachcs was esrablishcd carly in this chapter. Models wcrc classified as those 
based only on locarional data (sparial .r,j coordinates) or  chose bascd on characreris- 
rics ofthc locations, such as cnvironmcnral information. A fourrh-order polynomial 
logistic regression modcl was presented as a modcI based only on locarional data in 
rhc sccrion "Approaches Based on Trcnds in Location Only." The  preceding 
sccrions have illustrated scveraI approachcs for modcls based on the environmental 
characteristics of locations. Sincc borh approaches to  modeling provide 
information-and gcncrally independent  information-summarizing where 
archaeological sircs are locared, it would sccm a logical stcp ro combine rhcse 
approachcs in ordcr ro cnhancc our ability to model prehisroric site disrriburions. 

T o  conducr rhis cspcriment thc Colorado plains srudy region is uscd again. 
Unlikc the analysis in thc previous scction, which utilized 1423 sitc and nonsite 
locations from rhc cntirc 575 kmz study rcgion, the prescnt analyses make use only 
ofrhe samplcsof 95 sitc-present and 54 sitc-absent locations from the 5.5 by 8.5 km 
study portion of thc largcr region. (The  smaller rcgion has been uscd in Figures 8.4, 
8.7, and 8.8 to portray various model mappings.)This smaller region is used here for 
two reasons. First, thc logisric trend-surfacc rechnique for location only is bcsr 
suired for modeling rhc rcduced complcsiry ofa smallcr rcgion (and such a model 
has alrcady been esrablishcd for rhc prescnr region in Figurc 8.4). Second, rhc 
environmcnrally bascd modcls of rhc previous sccrion were based on Iocarional 
parrcrns from a collccrion of sircs from a hugc rcgion; rherclore, these models 
avcragcd the locarional parrcrn ofall the sires and nonsires from rhe wider region. Ir 
is germane ro illusrrare thc powcr ofthe environmenrally based approach by firring 
such a model ro a rclarively small rcgion, which must contain a lower degree o l  
environmcnral variability than the larger study area and rhercforc o f i r  rhe porcn- 
rial o f a  righrer fir o l  rhc model to the dara. 

In ordcr co facilitarc comparison of rhcse modeling approachcs, rhc locations of 
rhe 95 sire-prescnr cells (our of nearly 19,000 cells) in rhe srudy region arc shown in 
Figure 8.9a. T h e  logistic rrend-surface model derived rhrough use of the fourrh- 
ordcr powers ofrhe spatial ( x g )  coordinates of rhc 149 sire and nonsite locarions is 
shown again in Figure 8.9b. T h e  classification accuracy of rhis lororiun-up14 model for 
these dara is given in Table 8.5. T h e  pseudo-R2 goodness-of-fir sratisric (defined 
carlier) lor rhis model is Rp2 = 0.53 18, and the gain srarisric is esrimarcd as 1 - 3 1.5/82.l 
= 0.616. 
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TABLE 8.5. 

Comparison of classification performances of sire location models for (a) locational coordinates, 
(b) locarional characteristics, and (c) locational coordinates and characreriscics for a ponion of 
the Colorado plains study area (row percents given in parentheses) 

Acrud p Z  0,5 p <  0.5 Actual p 2  0.5 p < 0.5 Acrud p ?  0.5 p <  0.5 

Sile 78 17 Site 87 8 Sire 90 5 
(32. I )  (17.9) (91.6) (8.1) (94.7) (5.3j 

Nonsite 17 37 Nonsitc 9 45 Nonsne 7 47 
(3 1.5) (68.5) (16.7) (83.3) (13.0) (87.0) 

RP1 - 0.5318 Rpz - 0.7156 Rpl = 0.8081 

gain - 0.616 gain - 0.81 R gain = 0.863 

A logistic regression model for environrncntal /o;aMuna/ ;harucrt.rirrin was also 
fitted to the sire-present and site-absent data in rhe 5.5 by 8.5 km study rcgion 
using rho cigl~c variables describcd in the preceding scccions (Figure 8.9~). Since 
this modcl is based only on the data pactcrns of the 95 sires and 54 nonsircs in thc 
smaIler study area and not on all of the 1423 site and nonsite locations of the larger 
region, the resulting modcl provides a much tighter Fir to the site dara than rhe 
previous logistic regression modd (Figure 8 .7~) .  T h e  classification accuracy statis- 
tics for chis locational characreristics modci are given in Tablc 8.5; Rp2 = 0.7156 and 
gain equals 0.818. T h e  facr that cnvironmcntal charactcrisrics of locations provide 
more information than simplc Iocational coordinates is amply illuscratcd by compar- 
ison of tho resultant models (compare Figurcs 8.9b and 8 .9~) .  

Finally, a model was developed rhar combined both positional data and infor- 
mation about locarional characteristics. This was accomplishcd by utilizing rhe 14 
polynomial terms of the locarion-only model and the eight environmcntal terms of 
the locational characteristics modcl simultaneously in a single logistic regression 
model (Figure 8.9d). T h e  results of this model exhibit charactcrisrics of both thc 
rrcnd-surface and rhc cnvironmcncal modcls, as indicatcd by rhc mappings (Figure 
8.9b-d). By incorporating borh sources of information, classification accuracy is 
increased (Table 8.51, as suggested by the higher goodness-of-lit (Rp?= 0.8081) gain 
(0.863) statistic, and model mapping. 

MODELING INDIVIDUAL SITE TYPES 

Tho  methods discussed in rhc prcvious scccions may be applied not only to 
questions of site presence and absencc but also to modeling multiple sicc types 
within a region, as has been noted. These might be funcrional site types or site 



typcs rcprcsenting different chronological periods, for esamplc.. The  maror problem 
in devcloping locational models for individual site types lies not in thc methodologi- 
cal difficulties ofdcveloping thc models but in the definition and operationalization 
ofmcaningful site-type catcgorics and in acquiring suficiently large samples of the 
types for analysis. These problems were discussrd in greater detail in thc introduc- 
tion to this chapter. 

When dcaling with probabilistic locational models of archaeological phenorn- 
ena, it is often desirable that the individual class p-values (probabilitics of class 
assignment) for all of the classes undrr consideration sum to 1.0 for any location to 
which the model(s) arc applied. A number ofstandard and not-so-standard procc- 
durcs cxist that allow one to constrain estimated probabilitics from multiple groups 
(e.g., sitc-type groups) to sum to 1.0 a t  a location. 

The  simplesr modcl is one that assumes for any location (a smalI land parccl, 
such as an acre) a limited and finite n ~ m b c r o f ~ o s s i b l e  outcomcs and then estimates 
che probability of any given altcrnativc (e.g., by means of some of the modeling 
procedures discussed above). In an archaeological contcsc the alternatives that may 
occur at a location includc an alccrnativc for each possiblc sitc type (including 
isolares or other remains) and the alternative ofno sitc (no archaeological remains of 
any kind), and 

where rrj is the site-absent alternative and the rli refer to thc individual sire types. 
This model assumes that all possible sire types have been specificd, but this 
difficulty may be circumvented simply by d c h i n g  3 type called "othcr."This kind 
of model is assumed by many packagcd computer programs For statiscica1 analysis, 
including those for multigroup discriminant analysis (e.g., PROC CANDISC; SAS 
Institute 1982). 

An alternative. modcl chat perhaps offers a number of advantages, grvcn our 
li~niced knowIcdgc of the past and the normal dificulties of dealing with the 
archaeological record in terms ofdefining site types, is a hierarchica1 modcl that firsc 
assumes only two possible outcomes a t  any given location (again, a small land parccl, 
such as an acre). One outcome is chat some rvidence ofhuman activity (ha) occurs at 
the location ( i . ~ . ,  some kind of site or cultural manikstation will be found there); 
thc other is that no evidencc of activity (rts) occurs at [he location, and 

Outcomes indicating specific kinds of accivitics, archacologically represenred by 
funccional typcs of sites or remains, are [hen conditional on the outcome that 
evidence of human activicy is indicated (Wriglcy 1982), and 

P(" I )  + p('r2) + . * . + ~(f 'n )  = p(ha) 

T h e  cermp(ha) refers to  a human accivity space within which all activicy in a region 
is conducted (scc 31~0 the inrroduction to  this chaptcr). This space is represented 
archacologically by all marcrial culture remains, including scrtkments, sites of 
specific function, and isolated occurrences (see Kvanimc 1985a for a more detailed 
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discussion ofthis concept). Although somc researchers might argue that in certain 
regions past activity occurrcd everywhere, the concept ofimportance here is that of 
n c t i ~ i q  densiiicc in any region certain locations may have been morc favorable for 
activity ofmy kkind than others (e.g., locations with level ground surfaces). In fact, in 
mountainous rcgions or in regions containing significant acreage ofswamplands, for 
example, rhe human activity spacc can be restricted toa  major extent. Site location 
models that lump sites of all types into a single analytical group-whether because 
of an inability to  form meaningful types from the available evidence or as part of a 
prcplanncd research tactic-arc simply developing modcls of the human activity 
spacc. Such modcls should, in principle, demonstrate less-pronounccd patterning 
than modcls for specific types of sires since the former incorporate many typcs of 
sites with varied locational requirements. Nevertheless, strong and predictable 
patterning can somctimcs be achieved (e.g., Figure 8.9d portrays a remarkably 
strong model for all open-air lithic scatters in the region even though these scatters 
undoubccdly represent a variety of functional site typcs). This hierarchical schemc 
has the advantage that locational modcls for specific sitc types may be incorporated 
as well (e.g., at a later time). The  site-type models, however, are conditional not 
only on the environmental and other rneasuremcnts upon which they are based but 
also on p(ha). 

The  following illi~stration oflocational models for multiple site typcs uses data 
from a study ofGerman Mesolithic sites by Kvamme and Jochim (1988). This study 
was used as an cxampk ofmodel budding with existing data in Chapter7. As noted 
there, the data available for the 170 known sites in the rcgion were extremely 
limited, making it dificult to distinguish sitc types with specilic functions. T h e  
amateur collectors who discovered them, however, rcportcd a number ofsires that 
contained rcIatively abundant remains. Ofthc 170 sites, 39 could be catcgorizcd in a 
"settlement" group and 74 were classed in a "small-sites" group (the remaining 
sites were unclassified or represented "isolates" and arc not uscd hcre). Although 
the validity of these sitc types is questionable, we can assume for the purposcs of 
this discussion that the types nrz valid and use these data to illustrate the simultanc- 
ous modeling of multiple sitc-type groups within a single region. 

An advantage of using thcsc Mesolithic data as an example of site-type 
modeling is that a computerized GIs has been established for the entire 940 km2 
study region (see Chapter 10 for a discussion of geographic information systems). 
T h c  GIs contains a gridded rcprescntation ofthe study region comprising approsi- 
matcly 84,000 cells measuring 100 m on a side. Within each grid cell values wcre 
estimated for elevation, slope, aspect, local relief, a measure of view, a mcasure of 
shelter, horizontal distance to ncarcst watcr, vertical distance to nearest water, and 
horizontal distance to ncarcst third-order stream. Additionally, grid cells that 
contain Mesolithic sites were denoted and information on the sitc types present in 
the cell was cncodcd. T h e  mathematicd details o f t he  site-rypc modcls are prc- 
scnted in Kvamme and Jochim (1988) and Kvamme (1986); for the purposcs ofthis 
discussion, "pictures" ofeach model will be used to indicatc thc results ofsite-type 
modeling. Thcse mappings wcre accomplished by applying the models across the 



entire study area (i.e., in each of the 84,000 cells) and using computer cartographic 
techniques to display the results. 

T h e  site location models were developed by contrasting the 39 sectlcment 
locations (cells) and the 74 small-site locations against a representative sample of 
3201 locations taken from the background environment at large, rather than from a 
group of known site-absent locations (because the latter information was unavaila- 
ble). T h e  site types could be contrasted with the background environment becausc 
Mesolithic sites of any type could be argued to be an extremely rare phcnomenon, 
causing the background environment to constitute a reasonably distinct class for 
analysis purposes (in other words, in the sample of background locations only a very 
small percentage of the selected locations could be expected to contain as yet 
undiscovered Mesolithic sites by chance). T h e  classifier used was logistic regression 
(discussed above), and all nine variables listed above were incorporated in the 
models. 

T h e  study region consists ofhigh ridges and plateaus overlooking a number of 
river valleys and plainslike areas (Figure 7.4, this volume). T h e  analysis suggestcd 
that sites of the settlement class tend to be locarcd at lower elevations, on less 
sloping ground, in regions of less local relief that were more sheltered (i.e., less 
likely to be on hilltops and more likely to  be on valley bottoms), and in places with 
lower values for the overall view measure than the small-site class. Additionally, 
sites of the settlement class tend to lie closer to relatively secure water sources, 
including major drainages (third-order streams), although they did cxhibit a slight 
orientation toward location at greater distanccs from nearest drainages when 
compared with the small-site class. 

These findings are largely borne out by the site type locational models when 
they are mapped over the entire region through a GIs (Figure 8.10). T h e  map ofthe 
model for the settlement class (Figure 8.10a) shows a locational pattern ( the darker 
regions) emphasizing areas along a major drainage near the southwest border of the 
region and in a plainslike low-elevation area in the far wcstern portion ofthe region. 
T h e  locational pattern mapped for the small-site class (Figure 8, lob) does not show 
an emphasis on these areas. More important, however, the locational models 
indicate that thesettlement class is much more highly patterned in terms oflocation 
than the small-site class, as indicated by the relativc sizes of the dark areas in the 
two maps. In other words, the settlement class tends to exhibit a tighter and more 
restrictive locational pattern while the small-site class pattern sccms to be more 
variable. 

Elsewhere 1 have shown with regional survey data from the western United 
States that large sites or settlements do indeed tend to be more patterned in 
location than smaller sites, which as a group are functionallv more variable 
(Kvamme 1985a). In that study, it appeared that the greater f~rnctional variability 
within a small-site class led to greater locational variability (presumably owing to 
different Iocational requirements of individual functional sitc types that were 
pooled within the small-site class) and that these sources of variability caused the 
less-pronounced locational patterning of these sites. T h e  large-site or scttlcment 



DEVELOP?VIEN?' AKD TESTING OF QLJANTITATIVE MODELS 

Figure 8.10. klesolithic sitc-typc Iocxionnl  motlcls mapped through n GIs: ( A )  sc~tlcmrnt 
cl;~ss, (B) small-si~c dass. 

class, on the other hand, possibly consisccd of sites rcprcsenting a mow similar 
range of activities (e.g.,  estendcd occupation) with similar and thus righter loca- 
tional requircmcnts. Alchough the integrity of the sitc classes and samplc in the 
Mesolirhic study may be questioned, the patterning discerned does resemble the 
large-site/small-sirr patterning discussed hem. 



INTERPRETATION AND EXPLANATION OF DATA 
PATTERNS 

T h e  foregoing sections have prcsented a number ofquantitativc data analysis 
tcchniqucs that are rclevanc in the devclopmcnt ofarchaeological locational modcls. 
As scientists, archaeologists are also intcrested in (a) nlethodological rigor and (b) 
cxplanarion. T h c  mcrhods prcsented offer great potcnrial for both. The  most 
obvious bcnctit obtained from use of quantitative methods of data analysis is that 
research findings can be obtained with greater objectivity. Additionally, results 
tcnd to be more easily replicated by other investigators: anothcr researcher can 
duplicatc an expcrimcnt or analysis using identical procedures and the same or cven 
similar data, allowing independent verification of findings. 

Quantitative analysis procedures yield other benefits that may bc lcss obvious. 
In traditional archacological rescarch strategies the researcher only has access to(a) 
the raw phenomena (objects, cncities, individuals) under invcsrigation; (b) data 
(observations or measuremcnts) pertaining to those phcnomena; and (r) rclation- 
ships subjectively perceived between and among the data or  phcnomena. T h e  
researcher who has knowledge of and acccss to empirical data analysis methods, on 
the other hand, can grcatly augment these most fundamental capabilities bccause 
these procedurcs yield additional information in the form oT(d) descriptive and 
summary statistics, which describe and gcneralizc tendencies and pattcrns in thc 
data and make relationships explicit; (t) complcx data models, which portray the 
raw data in different ways, often illustrating or summarizing the csscnce ofmultiple 
empirical pattcrns; and CI) unforcseen (multivariate) relationships between classes 
of phcnomena. Thus, the practicing scientist who makcs use of cmpirical analysis 
proccdurcs can greatly incrcase his or hcr abilities to postulate a pattern among the 
basic facts of thc disciplinc, an important basis for theory formulation. 

Quantitative methods of analysis arc also beneficial in other domains of 
rcsearch. In classic deductive rescarch approaches, certain predictions often are 
madc based on the premiscs o f thc  initial hypotheses. In chc hard sciences chcsc 
predictions usually rest on mathcmatical dcductions or established physical laws 
such that thc predictions m ~ s t  mathematically (or by law) follow from the hy- 
pothcses. In archaeology, which lacks a basc of laws or  theory, our bridging 
arguments that lead to predictions, as Thomas (1979) notes, arc "scat-of-thc- 
pants" kinds of statements. Well-established relationships of a statistical kind 
might bc used here as an altcrnative or supplcmcnr to such argurncnts whcn 
predictions are formulated from theory. Finally, the methods ofstatistical hypothc- 
sis tcsting arc particularly well suited as a'mcans of verifying (or rcfi~ting) hy- 
pothescs. A myriad oftcsting and validation procedures cxisrs for virtually any typc 
of problem context. Hence, the quantitative invcstigator is armed with morc tools 
and capabilities for conducting basic rcsearch and for porcntially interpreting and 
csplaining archacological phenomcna. 

Previous sections generally prcsentcd only thc basic statistical facts brcausc 
thcir goal was to describc the proccd~ires used in modeling. In chis section, the 
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inccrprctation and explanation ofrhcsc facts arc bricfly considered. The  GIadc Park 
descriptive statistics in Table 8.1 suggcstcd a numbcr orempirical rendencics. For 
example, thc sites exhibited rcndcncies to  be located in prosimiry ro pcrmancnt 
and nearest watcr sources (when contrasted to the background nonsitcs) and also 
tended to bc located with good views ofsurrounding terrain and close to points of 
vantagc. T h c  GIadc Park sites were distributed with a north-facing prefcrencc, on 
level ground, and on high points or mesa cdgcs in regions of limited local relief. 
Traditionally, explanation of empirical pactcrns such as thesc have generally 
assumed human selectivity (e.g., FindIow 1980; Grcen 1973; Kvamme 1985a; Laffeny 
1981; Parker 1985; Ropcr 1979b). For esamplc, using the above cvidcncc we might 
argue char sites tend to be close to water because the Gladc Park region was arid, 
forcing people to  carry out most oftheir activities in arcas near wa t r r  courses. The  
aridity argument might also explain the strong tendency for north-facing aspects 
since these locations would tend to increase shclter from sunshine during the hot 
summer if, indeed, the sites wcrc occupied during the sumn~cr.  Locacional tenden- 
cies toward good views, vantages, and high points might be intcrpreted as resulting 
from thc need to watch for gamc, since rhc inhabitants ofGladePark were primarily 
hunter-gatherers. Such arguments, although plausible, need to be substantiated 
with additional evidence bcforc they are taken seriously. Alternative esplanations 
might also be possible. 

T h e  actual cquacions of the empirical models based on characreristics of 
locations also have intcrprccivr potential. T h e  discriminant analysis discussed in 
chc "Application Comparison" section yieldcd the following modrl: 

Dj = -5.7058 - 0.0047 (aspect) - 0.08 (slope) +0.0152 (relief, I00 m) - 0.005 (relief, 300 m) 
+ 0.001 (sheltcr index) - 0.0002 (vanrage distance) - 0.001 (distance to  nearest 
drainage) - 0.0008 (distancr to  second-order drainage) 

Positive coefficients associated with a variable suggest that high values of the 
variabIe arc related to  site presence, while ncgative cocfficicnrs suggest char low 
values ofthe variablcs are rclaccd to site pres?nce. Hence, this model indicates that 
high values of relief (within 100 m) and the shclter index and low values of aspect 
(i.e., north-facing), slope, relief (within 300 m), vantage distance, and distancc to 
ncarcst and second-order drainages arc suggested by the data to be related to the 
site-present locations. 

It is possible to  go bcyond this level ofinterpretation when the independent 
variables are measured in the samc units and are uncorrelated. Onc way to acquire 
variablcs measured in the same units is to standardizc the data. Parker (1985) utilizes 
this tactic to interpret logistic regression site location mod& in Arkansas. In thc 
above nonstandardizcd discriminant analysis model, sevcral variables arc measured 
in che samc units. We might compare thc absolurc values of thc associated cocffi- 
cients of thesc variablcs to assess the rclativc importance of the variables. For 
example, the distanw variables arc all mcasurcd in meters; if we compare them we 
find that the data suggest that distance to  nearest vantage (wilh an absolute 
cocfficient ofO.002) has about one-fourth as much influence as distance ro second- 
order drainage (0.0008) and one-fifth as much influence as distance to  nearest 



drainagc (0.001). Distance ro ncarcst drainage is slightly more important to site- 
location placement than distance to second-order drainagc. In the prescnt case, 
howcvcr, these variablcs arc positively correlated, and such interprytation shodd 
be madc with some caution. 

One way to renwdy the correlation problem is to a principal compo- 
nents analysis (described car1ic.r) on the variables. This procrdurc yiclds linear 
combinations ol thc correlated variablcs, and a model can then be built thac uses the 
components rather than the raw variablcs as predictors (Schowcngcrdt 
1983: 159-147). Since the resultant components will be uncorrclaccd, model interpre- 
tation can be facil~tatcd in this manner. Although chis approach has certain merits, 
it oficn is the case thar: interpretation of the components themselves is quite 
difficult. 

Explanation of any facrs pertaining to archaeological distributions, whether 
raw facts or higher-order statistical generalizations, may take a number offorms. A 
good approach might be to treat each possible esplanation as an alternative 
hypothesis. Possible alternative hypotheses for an obscrvcd rclationship between 
archaeological sites in a region and somc environmental feature might include (u) 
human sclcctivity, (h)  geologic processes, (c) vegctation patterns, and (d )  sampling 
biases. 

T o  illustmte rhis multiple-hypo~hcsis approach, recall that the models dis- 
cussed in the scction on "Application Comparison of Quantitative 1,ocational 
ivlodels" all indicate that the locations of open-air lithic scatters tend to occur in 
closc proximity to second-order (or g r a t e r )  drainages (Figure 8.7). In Chapter 10, a 
histogram of this variable measured at all 230,000 land parcch (50 by 50 m units) in 
the study region is compared with a histogram of the same variable mcasurcd only 
at the nearly 600 parcels with sitrs in the area (Figure 10.11). These histograms 
clearly support thesuggested pattern; for example, halfofthe sites occur within 150 
m ol'drainagc:, of'rhcsc ranks, whilc only 17 percent of the :,tudy rcgion lies within 
this distance of such drainages. 

T h e  explanation of this pattern that probably cornus to mind first is thac of 
human selectivity: thc prehistoric inhabitants purposefully placed their sites in 
prosimity to relatively securc sources ofwater in ordcr to obtain water more easily. 
Various sources ofcthnographic evidence and the aridiry of the southern Colorado 
plains could be argued to he supportive of this hypothesis. An obvious and related 
altcrnativr hypothesis is that thc inhabitants tended to locate activity close to 
drainages not for the water but for some- other related resource. For example, they 
might have been esploiting plants that tend to be found near water, or [hey might 
have chosen stream-associated locations in ordcr to hunt a variety of gamc animals, 
such as bison, that might be drawn to water. This is a common caw, whcrc one 
variablc (prosimity to water) might bc only a prosy tor some 0th" variable 
(availability of plant foods or prey animals) that actually was important. Supporting 
data Ibr thi:, competing hypothesis would be hard to obtain. Such data might 
include appropriate floral and faunal remains in a suitable archaeological association 



from sircs both close to and far from the drainages. In addition, rhr sample of sircs 
would nccd to be large enough to yield statisrically reliable conclusions. 

A third hypothesis might be that the observed pattern is a rt-sulr ofgeological 
proccssrs or vegetation patterns that have buried or hidden sircs located great 
distances from thesc drainages and csposed sires lying in prosimity to the drain- 
ages. In thc present casc, a geomorphological study of rhc region (Schuldenrcin 
1983) found the reverse to  be true; the primary arras ofaI1uviation wcre alorig major 
drainages. Additionally, vegetation in this region (which aikcts sire visibility) is 
denscsr along major drainages and very light or nearly absent far from drainages 
(Van Ncss 1984). 

Finally, a fourth explanation of the patccrn might be that it is the result of 
sample selection bias. Since a random sampling design was cmploycd for site 
discovery (based on randomly ~ l a c c d  transects), and assuming the rrustworthiness 
of the survey crcurs and uniformity of chcir procedures, this hypothesis serms an 
unlikcly candidate. 

Certainly there are other aiternacivc h~~pocheses Sor cxplaining thc obscrvcd 
rclationship. In this caw, as in all cases involving hypothesis ccs~ing, the altcrnativc 
for which the greatest amount of supporting rvidcnce can be obtained should be 
advanced as the most likely explanation. It is also quitc possiblc that sevcral of the 
hypotheses could be true. 

ASSESSlNG MODEL PERFORMANCE 

In prrvious scctions initial or "apparent" accuracy rates were prrscnccd for 
scvcral models. Apparenc accuracy rates were obtained by applying a modcl to rhc 
ramz dara used to gcncratc tho mode!. This practice, as noted in thosc discussions, 
rends ro givc an inflaced view of true model accuracy and underrepresrnt true 
model error races. T h e  purpose of this section is ro csamine methods thac can yicld 
truer indicarions of actual model performance and to ofkr scarisrical sigrlificance 
tests of modcl performancc. I t  is emphasized that regardless of how a model is 
developed-from cheorc.tical rspectations or from empirical data-most of thc 
following mcchods for resting apply. These methods should be used to validate che 
performance of u y  model prior to its application to management or research 
problems. 

Adjustable Accuracy Rates 

Site location models discussed in previous scctiorls were designated as having 
classified a percentage ofsites correctly and a percentagc olnonsites correctly. Somc 
of thc modcls classified only about 70 prrccnt ofrhe sites correctly (and some had a 
lower rate than this), which might nor be very useful from a practical srandpoint; 



the 70 percent correct figurc mcans that 30 percent or rnorc of the sites wcre 
incorrcctly classificd. This is fairIy costly givcn the nature ofrhc resource and our 
goal of developing modcls rhat have some potential for real-wodd application. Onc 
way co resolve this problcm might be ro obtain bctrcr data or to make operational 
new variables rhat would yield stronger models, bur cither solution could cntail 
additional cost and effort. Even ifsuch modcls a w e  dcvclopcd, some sitcs and some 
nonsires will always be incorrccrly classikd by 3 modcl, and the accuracy ratcs 
might bc less than dcsirablc or bc unacccprable for practicaI applications. 

A solurion to this problcm is to acccpr a rradc-off, to  cschangc incrcascd 
accuracy in classifying sires for decrcascd accuracy in classifying nonsitcs since it 
costs us less to calI a nonsirc a sitc comparcd with the rcvcrsc (using rhc terminology 
inrroduced in Chaprcr 3, we dccrease gross crror by increasing wasrcful error). T h c  
dccision rulc- used for examining the initial apparcnt accuracy ratcs ofall previous 
modcls (c.g., Tablcs 8.2,8.4, and 8.5) was a maximum-likelihood rulc; locations wcre 
assigncd to rhc cIass (sirc or nonsirc) to which they wcrc most slmilar. For several of 
rhc modcls rhis amounrcd ro assigning a location to thc sitc class bascd on a cutoff 
poinr ofp = 0.5. In order to cradc nonsirc classification accuracy for increascd sire 
accuracy, wc nccd only changc rhis p-valuc to a lowcr cutofT-for cxamplc, t o p  = 

0.25. In rcrms of the mcasurcmcnt spacc (Figurc 8.5b), rhis changc movcs thc 
dccision boundary upward, causing nlorc of rhc sitcs to be corrccrly classificd (but 
causing morc nonsitcs to be incorrectly classificd). The  logical csrrcmc for this 
tactic would bc to  choosc a curoff of p = 0.0, which would cause thc cnrirc 
rneasurcment spacc ro be classificd to thc site group (but rhis would creatc thc 
absoIurcIy accurate but usclcss predictor of sire locations dcscribcd in an carlicr 
section). 

Wc can use rhc Gladc Park nine-variable sirc location modcl prcscnted in rhe 
"Examplc Analysis" section as an ilhstrarion ofthis procedure. This model is bascd 
on a sample of 157 known site and 157 known nonsitc locations, obtained through a 
clustcr sample of 38 quarrer-sccrion quadrats. T h c  Gladc I'ark model was applied to  
cstimatc site-group p-values for cach of these 314 locations bawd on rheir nine 
cnvironmcnral measurcrnents. Histograms of chesc p-valucs arc givcn in Figure 
8.1 la. If we use rhc rraditional cutoff point (p = 0.5)) 70.1 pcrcent of the sitcs fall 
above this point in rhc site hisrogram, whilc(56.2 percent of nonsites fall below this 
cutoff in rllc nonsire histogram. (Ir is this proccss rhat yields rhc accuracy raw 
predictions given in the two-by-two matrix inTablc 8.2b.)Ifwe wcrc to use alower 
curoff, it is readily apparent from Figure 8.1 Ia that more sires would be classificd 
correctly and morc nonsites incorrcctly. This efTcct is summarized in Table 8.6 
using cutoffp-values ofO.O,O. 1,0.2,. . ., 0.9, 1.0, and it is graphed in Figure 8. I lb. Of 
course, when cutoff probabilities ofp = 0.0 and p = 1.0 are used, r w r y  location is 
classified cithcr as a sitc or as a nonsire, respccrively, and we have a zero-gain 
predictive model. On  rhc other hand, at a cutoffofp = 0.2,96.2 percent of the sites 
and26.1 pcrcent of the nonsitcs are correctly classified; atp = 0.4,82.8 percent ofthe 
sircs and 52.9 percent of rhc nonsites arc corrccrly assigned, crc. 
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K V A M M E  

Although application of a modcl to the same data used to  build rhc model can 
yicld inflated performance indications, chc rcsearchcr can use thcsc data, together 
with the adjustable rate method, todcsign a modcl that performs a t  an approximate 
levcI of accuracy. For example, using the information givcn in Table 8.6 and 
graphed in Figure 8.11b, the researcher can contrive a model that apparently 
predicts approximately 90 percent of thc sites correctly by selecting a cucon'value of 
p = 0.3. Ac chis cutoff point approximately 38 percent of thc nonsites would also be 
correctly assigncd. (Of course, these figures arc undoubtedly inflated to some 
extent becausc the Gladc Park model has nor yct been tesced with independenc 
data. T h e  same proccdurcs apply afcer tcscing, however, and it is shown bclow that 
very similar results are obtained.) 

TABLE 8.6. 

Illust~ation of changing culofipvalucs and their effects on site and nonsite classification 
accuracy using the nine-variable Glade Park niodel data 

Corrrtr P r d i r ~ i o n s  1ncov~cr  Prrdicrwnr 

CuroffPoinr Numbrr  Prrcmf N v m b a  Pcrrcnr S n m b a  Pcrcm! S u m h t r  Ptrcmf 

0.0 157 100.0 0 0.0 0 0.0 157 100.0 

0.1 157 100.0 21 13.4 0 0.0 136 86.6 

0.2 151 96.2 4 I 26.1 6 3.8 116 73.9 

0.3 I 42 90.5 60 38 2 15 9.5 97 61.8 

0.4 130 82.6 82 52.9 27 17.2 75 47.8 

0.5 110 70.1 IC4 66.2 47 29.9 53 33.8 

0.6 87 55.4 1 26 S0.3 70 54.6 3 1 19.7 

0.7 58 36.9 144 91.7 99 63.1 13 8.3 

0.8 33 21.0 1 57 100.0 124 79.0 0 0.0 

0.9 I2 7.6 157 100.0 145 92.4 0 0.0 

I .O 0 0.0 157 100.0 157 100.0 0 0.0 

Clearly, the actual number oflocations (c.g., small-arca units, such as acres) in 
a region ofstudy that arc nonsites is usually far greater than the numbcr rhar are 
sites-on the ordcrof 100 nonsires for cvery site. (This is usually refcrred t o  as the a 
prior; or baw raft probability problem and will be discussed below.) Thus, our claim 
that 38 percent of thc nonsitcs are correctly assigncd by a modcl essentially mcans 
that nearly 38 perccnt of thc arca of the study rcgion as a wholc is unlikcly to contain 
sitcs (in this example, if the 38 perccnt area werc mappcd, it would only contain 
about 10 perccnc of all sitcs). I f  the study arca IS cxtcnsivc this could amount to  a 
sizable area that is largely devoid ofsites. Thus, another important function of thc - .  
nonsitc control group is to provide area estimates about modcl performance. In 
othcr words, the nonsires provide data concerning the estimated arca of a model at a 
particular cutoff point when mappcd. If the data in Tablc 8.6 are correct indications 
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of the Glade Park model's accuracy, we could claim that 90.5 percent of the sites 
should occur in only about 100 - 38.2 =61.8 perccnt o f thc  total Glade Park land area, 
which could be called a "high site-sensitivity zone," and that 9.5 perccnt of the sites 
should occur in the other 38.2 pereent o f  the land area, which constitutes a "low 
site-sensitivity zone." Computer mapping techniques shown in thc previous scc- 
tions and described in detail in Chaptcr 10 may be used to provide maps of thcse 
sensitivity arcas. 

This cutoff adjusrment approach is not necessarily restricted to models that 
yield a 0-1 scale of esrimated probabilities. The  simplc mathematical n~odcls 
discussed in previous sections can also be examined in this context. The  perfor- 
mance of minimum distance modcls mighc bc assesscd by investigating accuracy 
races at various curoff ratios of distance co class centroids, for oxamplc. Similarly, 
performance statistics from a numbcr of"slices" might be csamincd in a level-slice 
approach. 

From the forcgoing it should be apparent that che usc ofovcrall accuracy rates 
(i.e., the combined site and nonsitc accuracy) to evaluate the performancc of a site 
locacion model, a falrly common practicc (c.g., Berry 1984), is not only misleading 
but inappropriate. T o  illustrate, suppose that a sample survey from a large region 
discovers 100 site locations. It is possiblc to obcain virtually any sample size of 
nonsitcs as a control group since it is not uncommon for 99 percent ofmany study 
regions to be classifiable as "site absent." Lct us say that 9900 locations arc chosen 
for the nonsite control group, for a tocal sample size of I0,W. (Although this may 
secm co bc a ludicrously largc numbcr, such sample sizes are possible through usc of 
compucer daca bases, as Chapter 10 will show.) Ifall 10,000 locations wcre arbitrarily 
classcd as nonsices, an impressivc overall accuracy rate of 99 pcrccnt would be 
achieved (100 x [coral correct) / [tocal cases] = 100 x [9WO + 0]/(1O,OOO]), but thc 
resulting modcl uvould be useless. It is clcar chat performance must be judged by 
focusing on percent corrccc rates for sites and nonsitcs individually. 

Model Validarion Procedures 

T h c  nine-variable Gladc Park model has already bcen used ro illuscrate 
performancc adjustmcnr; in chis section it will bc uscd to  demonstrate scvcral 
model validation tcchniques. \\re can assume that the apparent pcrformancc rate 
scatistics givcn in Figure 8.11b and Tablc 8.6 are inflated, but to an unknown 
degree. In other words, when this model is applied to  ocher locations in thc study 
region, actual accuracy rates may be lower than those indicaccd in rhe figure and 
cable. The  inflatcd performancc statistics result from a numbcr of facrors. Primary 
among rhcse is char rhc same daca wcre uscd to build the model and ro cstimacc the 
pcrccnt correct prediction race (Tablc 8.6). Sincc the Gladc Park modcl is based on 
diffcrcnces bctween site and nonsicc locations in char spccific sample, che statistical 
proccdurcs capiralizc on variation in that sample such that apparent accuracy rates 
are maximized (Swain 1978:163). Violations of staristical assumptions, such as rhc 
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indepcndenee assumption chat resulrs from spatial aurocorrelation (see above and 
Chaprcr 5), furrher widen rhc diffcrencc berwcen apparenc and acrual accuracy 
rares, particularly in chis clusrer-sampled conrexr (Basu and Odcll 1974; Campbell 
I98 1; T'ubbs and Coberly 1978). 

Randomization procedures for assessing [he upward classificarion bias thac 
results when a model is applied ro the same dara with which ir was generated have 
becn developed by Frank er al. (1965). These proccdures were applied by Berry 
(1984) in a paper rhar generally arrempred to discredir cerrain cultural resource 
modeling approaches. The  procedures of Frank er al. (1965) and rhe findings of 
Berry (1984) arc both germane ro this discussion. Onc randomization procedure 
rcquires generaring random normal dcviarcs as a "synthetic" validation sample, 
and then developing a modcl bascd on rhcsc random dara. The  rcsulcanc classifica- 
[ion accuracy, whcn chc modcl is applied ro chc synthecic daca set, reflects upward 
bias acrriburable to the procedure itself, sincc rhc robusr properties of many 
mulcivariare classification models can causc a better-rhan-chance f i r  even ro random 
daca. Berry (1984) points our rhac in rwo such simularions by Frank er al. (1%5), 
which used rhe discriminanc analysis modcl, average overall classificarion rarcs of 
68.2 and 72.6 percenc were achieved, which would seem ro reflecr poorly on 
discriminant analysis cfforcs in general, including rhose in archaeology. Berry does 
nor mention, howcver, char one simulation used 19 prediccor variables with 150 
cascs and the othcr used 25 variables wich only 98 cascs (Frank ec al. 1%5:256). T h e  
large number of variablcs relacive co the number ofcases is an example ofwhac can 
be called hjperfirring of a modcl ro [he daca. Ic is possible, through use of large 
numbers ofpredicror variables, co obcain very scrong firs regardless ofchc degree of 
pactcrning in chc data (using n-l predictor variables in a discriminanc analysis 
guarancecs a perfccc classification, for cxamplc). This propercp is demonstraced in 
Berry's Table 2. Using random data and 30 cascs, Berry shows through simulation 
that four variables yicld an overall correct rate of53 pcrccnc (3 perccnc upward bias); 
8 variables, 70 perccnc (20 percent upward bias); 12 variables, 77 percent (27 pcrcent 
upward bias); and 20 variables, 93 percent (43 percenc upward bias). T h e  dificulcy 
in real-world applications is to  obcain a good f i c  wich few variables rclarive to  [he 
number ofcases. This randomization procedure seems uscful, howcver, whcn chc 
numbers of variables and cases arc matched co chose accually used to develop an 
archacological model. T h c  rcsults could give an cxcellcnt indication of the size of 
upward bias an invcsrigacor mighc be facing. 

T h e  second randomization procedure for investigating upward bias described 
by Frank et  al. (1965) utilizcs the actual model daca for [he predicror variables. In 
this case, though, [he true value of [he dcpcndent variable, class membership, is 
randomized and a cl3ssificarion model is produced based on [he randomized groupr. 
T h c  advantage ofchis procedure is thac the actual model data are used, allowing [he 
upward bias result co perrain more closely to the modcl under invcsrigacion. Berry 
(1984949) utilizes this rcchnique, with 10 replications, to illustrate a mean random- 
ized classification rate 0f71.6 percent, suggesting that the apparent overall accuracy 
rate of 85 pcrcent for an archaeological locational model developcd for the Bureau of 
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Land Management is mosrly artriblitable to upward bias. The  particular model that 
Berry examined was 'based on six variablcs and 174 cases (Burgess er al. 1980). Berry 
achicved his result, however, by using the six variablesplrrr 10 additional ones that 
were c4iminatcd from considcrarion in the original study owing ro the lack of 
significant findings of several univariare and multivariate rests made on these 
variab1i.s. Thus, Brrry achicvcd a mean randomization ratc of 71.6 percent by 
hyperfirring 16 variables to 174 cases. I reran this randomization procedure with 10 
replicarions on the original six variables, which yicldcd overall classificarion rates 
ranging from 49.4 to 60.9 prrccnt with a mean ratc of 56.9 percenr, an upward 
inflarion oflcss than 2 p ~ c e n t  (rhc rare expecred by chanct. in chis case is 55.6 owing 
to unequal class sample sizes; Berry 1984). Thcsc findings arc morc in line with the 
amounr ofupward bias one m ~ g h r  cxpccr when the number ofprcdiccor variables is 
small relativc ro rhc number of cases. 

Thcrc arc a number of ways ro conducr independent rcsrs of a sire locarion 
modcl's pcrformance. In an indtprnd~.trt ~crl,  data thar arc diflcrcnr from the informa- 
[ion used ro build a modcl are used to tcsr the model in ordcr to eliminare the 
possibility of mode1 capitalization on chance sampling variation. Thc  strongest resr 
of modcl pcrforn~ancc would require an additional indcpendenr survey. Sire loca- 
[ion models could be applied ro rhcsc independent dara ro dcrive unbiased esti- 
mares ofmodcl pc.rforrnancc accuracy rates. (Ideally, thc independcnr survey would 
be conducted by archaeologisrs diffcrcnr from those who collected rhe dara used to 
construct thc inirial site location model.) In many cases it is difficulr or impossible 
owing to cost consrraints to conduct a sccond, independent survey. For this reason, 
a number of nlternativc procedurcs have been developed thar arcrmpt to provide 
indepcndcnt resting information but do not rcquire that a second survey be 
performed. Two of thcsc procedurcs, which were introduced in Chaprcrs 5 and 7, 
are ylif ramplirrg and rhc juckkt~ifi mcthod. 

Splir sampling traditionally requires randomly splitting a sample ofcases (sitcs 
and nonsircs) in half, building a modcl uirh one half, and rar ing [he model with the 
second, indepcndcnr half(Mosrc1lcr and 'Tukcy 1977:38; see Chapter7). A problem 
wirh [his mcrhod results from the use ofcluster sampling. 'There is wirhin-clusrcr 
spatial corrclacion bctwccn analysis locarions so that sites and nonsites in one of the 
split groups may nor necessarily reprcsenr complcrcly independent informarion 
relativc to sites and nonsitcs in the other group. 

A berter split-sampling ccchniquc for cluster-sampled dara requires chat the 
r/rr~.lcrr bc randomly splir inro rwo groupsofequal size. The  model is rhcn built wich 
data from one-halfofrhe clusters and rested wirh rhc second half, which now can be 
argucd to bc indcpcndenr of'rhc first half. This approach was applied to the Glade 
Park analysis data. 'The 38 sampling quadrats were randomly split into two groups of 
18 (two of the quadrats contained ncithcr sitcs nor nonsitcs and arc excluded here); 
models wcrc then built using the same nine variables uscd in thc previous Glade 
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Park analyscs for cach half, and thcir performance was assessed using the data from 
the other hall: T h c  classification accuracy curves for all possible model cucoffs arc 
illuscratcd in Figurc 8.12a, as arc the avcragc performances of the two modcls. T h e  
inflation in accuracy of thc original model, which amounts to a few percentagc 
points, can bc sccn when thc performance curves in Figure 8.123 are comparcd with 
those in Figurc 8.1 lb. 

A drawback of the  split-sampling approach is that only ha l fo f thc  available 
information is utilized in dcvcloping a modcl (since the  orher halfmusr be reserved 
for resting), which is a u~asrcofcoscly information. One  approach that utilizes all of 
[he available daca is discussed in the nesr scccion. 

T h e  jackknifc method (Lachenbruch and Mickcy 1968) was dcvcloprd as a 
means of providing a Icss biased assessment of rhc performance of a classification 
modcl while allowing all informarion to be used in modcl construction. In che 
rradirional jackknifc, onc of then cases is ccmporarily discarded, and rhe rcmaining 
n-1 cascs are uscd to build a classification model. T h e  discarded case is rhcn 
independently classified by chc modcl. This procedure is repeated, climinating each 
caw in turn, co establish an independent tcsr of modcl perforrnancc. Thus, unlike 
split sampling where halfofrhc cases arc normally discarded, thc jackknifc requircs 
chat only onc case be lcfc our ar any one cimc, which allows rcrcnrion ofmost of rhe 
information. An additional bcncfir ofchis procedure is that chc n rcsulting modcls, 
cach providing a slightly dirercnc rcsulr, can be combined into a single model co 
providt* a bercer cstirnarcd or jackknifed modcl (Mosreller and Tukey 1977:152). A 
model dcrivcd from n modcls is usually superior ro [he tradirional modcl based on a 

cases bccause each cocfficicnr in rhc combined model is based on ti escimaced 
cocfficirncs from thc individual modcls. T h e  BMDP discriminant analysis program 
7M provides rhc jackknifc as an option (Dison cr al. 1983). 

In an archaeological site locacion modcling contexc, where somc form ofcluster 
sampling is normally applied, a modified jackknife procedure can be uscd. This is 
necessary because, as noced in chc section on splir sampling, analysis locations in cht 
samc clusrer might be spatially correlated. Testing a case againsr a rnodcI derived 
from the orher cases in chc same cluscer may not yield an entirely independent 
asscssmcnc. T h e  modificd jackknife tcchniq~ie requires discarding all cases in one of 
rhe k clusccrs, building a modcl wirh thc cascs in the remaining 4-1 clusrers, and 
resring the modcl on rhe data in thc discarded cluster. This  procedure is repeared, 
with data in each cluster in [urn being rescrvcd as the  tcsr cascs, until b models have 
becn dcvcloped and dara in cach of rhe clusrrrs have bccn tested. 

When this jackknife method was applied co chc Glade Park model data, 36 
models, rach conscrucrcd by climinaring locations in a diffcrcnt sampling unic 
cluster, wcre devclopad. In Table8.7 the original modcl,L(O), based on all 314 ofrhc 
siccs and nonsircs is givcn first, followcd by rhc 36 models derived by leaving out thc 
Iocacions in a single cluscer. T h e  pcrformancc rates found by applying the ktA modcl 
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Figurc 8.12. Ghdc  Park modd prdormmcc curvcs: (;\) split-arnpltd rnodcls, (R) jackknifed pcriormancc and 
iackknikd rnodcl applied ro indcpcndcnt d;rra. 



TABLE 8.7. 

Original nine-variable Glade Park sire-location model (L[ Oj),  36 jackknifed models. and final composite 
jackknifed model (L[ 1) 

,MU&/ X I  .y2 x7 xq x , ~  .x~, x I Z  s , ~  x14 Inttrrqv 



DEVELOPX~lENT A S D  TESTING OF QL'ASTITA'TIVE MODELS 

to the discarded cases of thc k'" cluster are given in Figure 8. I2b. At thcp=0.5 cutoff 
poinr (Figurc 8.12b) about 66 percent of rhc sitcs and 64 percent ofrhe nonsires arc 
correctly classified, compared wirh 70 and 66 percenr, respcctivcly, for thc initial 
model (Figure 8.1 I b and Table 8.6). A t  rhcp = 0.3 cutoffthc jackknifed dara (Figurc 
8.12b) suggcst that 87 percent of the sitcs and 32 perccnt of rhc nonsitcs arc 
correctly classified, in contrasr ro 91 and 38 pcrccnt, rcspcctively, for the initial 
model (Figure 8.12b). Thus, the jackknife suggests modcrarc decreases in model 
performance, and thcse rates may bc taken as better estimates of "true" modcl 
performance rates. Similar rcsults have bcen noted elsewhere (e.g., Campbell 1981). 

T h e  jackknifed sitc location model, created by raking a weighted average of 
thc cocfticients of thc 36 individual models, is givcn as L(*)  in the last line ofTable 
8.7 (see Mosteller and Tukcy 1977: 152). 

Complete4 Independmt Samples 

It was indicated above that one of the mosr reliable ways to  rest the perform- 
ance of a site location modcl is ro apply it to data from a sccond, indcpcndcnt 
survcy ofrandom sampled data. Such data wcre not available in Gladc Park, but the 
existing sitc Mes, which contain information on many hundreds of known sites, 
provide a largc body ofindependcnr sitc location information. Sire forms on file at 
the local BLM ofticc were carefully screened for quality of information, particularly 
with regard ro accurare locational data (see Chaprcr 7). A simple random sample of 
50 sircs that represented a wcI1-spread distribution of sircs from throughout thc 
Glade Park rcgion was sclected (sct. Kvamme 1983c for details). A control group of 
nonsitc locarions was also chosen so that model performance could be assessed. 
These nonsites were not necessarily selccted from previously surveyed rcgions and 
thus actually represent the "cnvironmcnt at large" (rather than true nonsircs), but 
they may still be referred to as nonsires. As discussed earlier, when the prior or 
chance probability of a site is very low in a region (and in this case the sire prior 
probability has been estimarcd to be as low as P[SJ = 0.02; sec be lo^), nonsites can be 
sclecred at random from throughout astudy region regardkss ofwhcthcr ornot the 
locations have been field inspected. T h e  advantage of this procedure is that better 
estimates ofnonsitc variation can bc obtaincd rhan ifthe nonsites were restricted to 
a limited number of survcycd cIustcrs. The  disadvantage is that some small 
percenrage (here about 2 percent) of thc nonsites are misclassificd because they are 
rcally sitcs. In the prescnt case 87 nonsites wcre scllictcd at points located a t  thc 
center of each of 87 randomly se1ccrt.d sections throughout the rcgion (on a chancc 
basis, only onc or  two of them should fall on sites). 

T h e  jackknifed site location modcl (last line of Table 8.7) was applicd to 
measurcmcnts performed at the 50 indttpendcnt site and 87 indepcndcnt nonsite 
locations. T h e  rcsults of this test, superimposed on the jackknifed results (Figure 
8.12b), arc very supportive of thc perforn~ancc rates dctermincd by other means. 



Statistical Tests 

Model classification performance indications are often unreliable owing to a 
faillure to meet the \~arious assumptions of thc model used and particularly when the 
same data arc used co build a model and to assess ir. In making a sraristical 
asscssment of a modrl's performance, i t  is much safer to usc indcpcndtmr test 
samples. In other spatially oriented disciplines, sraristical significance of model 

and confidence limits around prc!dictions are commonly determined 
through rhc use ofindcpendcnt rcsr samplcs (c.g., Hay 1979; Roscnfield et al. 1982; 
Schowcngcrdt 1983: 109- 195). 

T h c  mosr common performancr asscssment ofa  classification model involves 
determination of accuracy rates (percent correct statistics). The  following sections 
present a significance tcst for modcl classification results and procedures for cstab- 
Iishing confidence limits around perccnr correct statisrics obtaincd when a model is 
applied ro indcpendcnt test samples. Also presented is a graphic techniquc for 
assessing the goodness of fit of a model to the empirical data, which offers an 
alternative to accuracy rate statistics. Associated with this techniquc is a signifi- 
cancc tesr that ir appropriate for application to the same data set from which the 
Iocational model was derived. Finally, a sequential analysis approach is presented 
that minimizes the sizc of independent test samples needed to tesr a model by 
requiring rhc collecrion of new data only until a dccision about model performance 
can be reached. 

When an archaeological locational model is applied ro independent tcst sam- 
ples in a two-class problem (e.g., samples of sitcs and nonsircs), rhe resulring 
classification can be statistically assesscd through a relatively simple chi-square test 
for differences in classification probabilities. This tesr assumes that (a) indcpendcnt 
tesr samples from both classes (populations) ate being used, ( b )  the test samples are 
random samplcs,(c) the two samples arc- mutually independcnt (i.e., the locations in 
rhe site samplc rcally have sitcs and the locarions in the nonsire sample do not have 
sites), and (4 the locations can be unambiguously assigned by a modcl (dccision 
rule) to  either d r h c  classcs. T h e  data are arranged in a2  by 2 contingency cable, as 
shown in Table 8.8a. 

A one-railed rest is mosr appropriate sincc wc are testing for direction in the 
table, i.e., we are testing whether the model has some utility for making correct 
classifications. The  null hypothesis states that the probability that a location 
belonging to the sitc-prescnt popularion will be classified by the model ro that 
population is less than or equal to thc ptobability that a location from the site- 
absent population will be classified to the sitc-prcsent class. Rejection of the null 
hypothesis implies acceptance of the alternative-char a location from rhe sire- 
ptesenr population has a greater probability of being classified to that population 
than docs a location from the sire-absent popularion, indicating that the modcl has 
some prcdictivc utility. The  test statistic 
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(see Table 8.8a for explanation of symbols) is compared against the (I-&) quantile 
of the chi-square distribution with one degree of freedom. IfT exceeds that value, 
the null hypothesis may be rejected (see Conover 1971: 141-146). 

TABLE 8.8. 

Asscssrncnt of modcl classification results: (a) set-up for a 2 by 2 table; (b) classification results of 
jackknifed model applicd to  independent Glade Park data (ar p - 0.4 cutoff point); (c) goodness- 
of-fit tcst data with fixed cutoff points applicd ro data used to establish initial Glade Park model 

A, Table Scc-Up 

l 'ruc Class h t ~ r n ~ r s l l i p  

Populalion I 
(sitc prcsrrir) 

Popular ion 2 
(sicc abscnr) 

B, Classification Rcsults 

Truc Closs k1crnbership 

A C ~ I I B I  sitc prc?i~'tir 

Sirc abscrir (backgrourid) 

C. Goodness of Fit 

Modrl C:rta(f Points 
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T h e  indcpendcnt Glade Park test data results from the previous section can be 
uscd to illustrate application of this test. Thc  independent sample of site locations 
was taken from cxisting site file information at a local BLM ofice (this sample was 
discussed above); because it is possiblc chat survey biases might bc rcflectcd in this 
sample, in practice it  would be more desirable to use sitcs obtained from an 
independent ficld survey conducrcd under a random sampling dcsign. The  inde- 
pcndcnt sample of nonsite locations is actually a sample of locations taken at random 
from thc background environment ac largc (this sample was also describcd above). 
Without ficld chccking, thcrc is no way of knowing for certain wherher or noc a 
particular location in this samplc contains a site; an estimate of the basc ratc or a 
priori chance of a sitc occurring at a location in thc region (see below), howcvcr, 
indicates that approximately 94-98 pcrcent of this sample should not contain sires. 
Alchough the third assumption listcd above technically is violated, thc pcrformancc 
of thc tcst should be modified only slightly given the low rate ofsite occurrence (the 
principal effect will bc to  make acccpcance of the null hypothesis morc likely 
through a reduction in the apparent signiticance of the model). Note chat cvcn ifa 
sample of actual nonsicc locations werc obtained, there would always bc some 
uncertainty about the absence of sites from all sample locations owing to the 
possibility ofsices having been missed during survey and to the potcncial presence 
of buried sites. 

T h e  independenc cest daca indicate that at the p = 0.4 cutoff point approxi- 
matcIy 86 pcrccnt of the locations with sitcs and 43 pcrccnt of the locations without 
sites arc correctly classified by thc Gladc Park jackknifed model (Figure 8.12b), 
which produces thc 2 by 2 structure shown in Tablc 8.8b. Whcn compuccd using 
these data, thc test statistic yiclds 

At a levcl of significance of 0.001 thc null hypothesis will bc rcjectcd if 7' cscccds 
9.549 (from a cablc of thc chi-square distribution with one degree offrcedom). Ic is 
therefore rejccted in thc current casc, which suggcsts chat rhe modcl has somc 
predictive utility ac thcpc0.4 cutofTpoint. (A common complaint with contingency 
tablc tcsts in archaeology is that a significant result might bc due to only one cell 
wich a large deviation from cxpcccation. In this tcsting context, howcver, ifmost of 
the tesr statistic is due to one ccll i t  mcans that eithcr the modcl does a becter job 
than chancc at ctassibing sites or chat the model does bcttcr than chancc at 
classifying nonsites. In either casc urc win bccause thc model o h r s  somc gain over 
pure chance.) 

Bcforc leaving the subject of testing model accuracy rates, it should be notcd 
chat a number of additional procedures currently being cxaminc-d in other disci- 
plines warrant investigation by archaeologists. Thesc include specialized analysis of 
variance techniques (Rosenfield 1981) and the set of methods known as discrete 
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multivariate analysis (Congalton et al. 1983). Both of these approaches offer the 
potential for significance testing of individual and overall classification results in 
tables largcr than 2 by 2, making them suitable for multiclass modeling problems 
(e.g., models for multiple site-type classes). 

Since the classification of a test location by a model or decision rule is either 
right or wrong (i.c., a site or nonsite location is correctly identified or i t  is not), the 
correctness of a classification assignment at cach location represents a binomial 
population. T h e  Gladc Park independent data test results (Tablc S.8b) indicate that 
86 pcrcent of rhe sitc locarions and 43 pcrcrnt of the nonsite locations should be 
correctly classificd by thc jackknifed model (at thc 0.40 cu toq .  These percent 
correct statistics, which rcprcsent estimated mcan probabilities of correct classifica- 
tion (whcn divided by 100), can be considered random variables with a binomial 
probability distribution. Associated 1cvc.l~ of statistical error can be found in cables 
or graphs ofconfidencc limits of the mean ofa binomiaI distribution (c.g., Conover 
1!X'1:380-381; Hord and Brooncr 1976). Hord and Brooncr (1976x572) give the 
f01Iowing as che approximate 100(1 - a) percent confidence incerval for p, the 
proportion of'succcsscs, given n trials. 

When the Glade Park results for the site class are used, the proportion o l  sites 
correctly classificd by thc model isp = 0.86 and rr = 50. For a 95 pcrcenc confidence 
interval, a table of the nornlal distribution (found in any statistical tcsc) gives za/2= 
2,025 = 1.96. The  limits of the 95 percent confidence interval become 

o rP (0 .745pI  0.93) = 0.95. Similar calculations for the nonsite class (withp =O.M, n = 

87) yieId a 95 pcrcent confidence intcrval of0.34 5 p (1 0.54. 
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In thcory, such confidence intervals indicated that, 95 percent of rhc time, 
independcnr test samples should yield proportion corrcct stacistics (p) between 
thcsc limits. In othcr words, ifwe had numerous independent test samplcs ofknown 
sitc-prcsrnt locations (and n = 50), in about 95 pcrccnt of those samples the 
proportion ofsires correctly classified by the model would be bctwecn 0.74 and 0.93. 
T h e  range produced by thcsc limits thus givcs a more realistic idea of true rnodcl 
performance. 

T h c  width o f a  confidence interval at a givcn levcl of significance is a direct 
function of the size of the sample uscd to compute the interval. Hence, it is 
important to obtain large test samplcs in ordcr to producc narrower confidcncc 
limits. T o  illustrate, if we increase n to 150 for thc above sirc-class 95 percent 
confidcncc interval (lcavingp = 0.86), wc obtain 0.80 I p I 0.91. Increasing n to 300 
givcs 0.82 I p I 0.89. Upper and lower confidcncc limit valucs can be insertcd into 
other formulas (e.g., the gain statistic or those shown in the base rate probabilitics 
section, below) to assess upper and lower bounds on other dimensions of modcl 
performance. Confidence intervals arc not restricted to 2 by 2 tables but may be 
applied to  results obtaincd from tables ofany size (c.g., in problems with multiple: 
sirc typcs). Parker (1985) illustrarcs use of the Poisson distribution when esrimatcd 
mean archacological probabilities are csrrcmcly low (e.g., p 5 0.05). 

Arresring Model Goodms c$ Fit  

Parkcr (1985) prescnts an alternative approach for assessing archaeological 
model performancc thar docs not focus on pcrccnt corrcct statistics but compares 
observed with prcdictcd probabilitics of site prescnce. In this approach, which 
yields a graphical result, a probability scale (i.e., a scalc ranging from O to I) ofsitc 
prescncc is divided arbitrarily into multiple groups or  intervals (e.g., 0 I p  5 0.02; 
0.02 I p 5 0.06; 0.06 5 p I 0.10, etc.; Parker 1985:192). Using predicted sitc 
probability valucs estimated at samplc locations by a logistic rcgrcssion model, the 
number ofknown sites and rhc numbcr ofknown nonsitcs thar fall in cach interval is 
dctcrmincd, and the proportion of the total numbcr of locations that arc sites is 
calculated. This proportion is takcn as an cstimatc of thc obrmed probability ofsite 
prescnce in cach intcrval. Exp~tcd probabilicics for each intcrval arc calculatcd 
simply as thc group midpoint value (e.g., the midpoint of the intcrval 0.02 I p  I 
0.06 is 0.04). T h e  observed and expcctcd pairs for cach intcrval arc thcn plottcd on a 
graph that can bc used to asscss modcl goodness offit. Ifthc plotted points follow a 
line with an intercept of0 and a slope of 1 (a 45' angle), the model offers a good fit 
(Parker 1985: 190- 192). 

A problem with Parker's method is that it is largely subjective; goodness offit 
must be dctcrmincd through a visual asscssmcnt of how well the observed and 
expected values follow a straight line. There is no associated significar~cc test. 
Moreover, thc spccific group intervals used in Parker's application werc ofvarying 
width and wcrc apparently rormcd during analysis to maximize agreement bctwecn 
observed and expected values. This tactic may have bcen necessary, howcvt!r, 
owing to the estrcmcly small sample size (30 sitcs) under investigation. 
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Medical researchers have devclopcd a remarkably similar approach for asscss- 
ing the goodncss of fit of predictive models bascd on logistic regression. In this 
approach, though, the grouped probability intcrvals are specified prior to the 
analysis, allowing more objective rcsults, and an associated significance test is 
availablc. Of primary irnportancc for archaeological purposcs is that thc test may 
appropriatcly bc applied to  thc data sct from which a model was derived, forming an 
important tool for screening out useless models prior to  further testing. This 
approach to goodness-of-fit assessment also utilizes thc probability of site presence 
estimated for a location by a statistical mode1,p. Intervals ofequal width are formed, 
e.g., 0-0.1,O. 1-0.2,. . ., 0.9- 1.0, and locations (cases) are assigned to the intervals on 
the basis ofp. If the model has predictive utility, then thcp  for locations with sites 
should fall into the uppcr intcrvals. T h e  observed number oflocations with sitcs (oj) 
is compared with an expected numbcr of locations with sites (t,) for each interval. 
T h e  latter is usually calculated as the sum of the estimatedp-valucs for all locations 
in a particular interval. iviorc explicitly, 

where k = I , .  . .,gintervals; oIk is the observed number of sites in the krh interval, ejk is 
the expected number of sitcs in the krh interval, iek denotes that the ith casc is a 
member of the kth interval, and yj is coded I for sites and O for nonsites. In othcr 
words, for a particular krh in te rva~(e .~ . ,  0.8-0.9), oIk represents the observed count of 
sites having site-classp-values that fall in that interval; q k  is simply the sum of the 
sitc-class p-valucs for all locations, sitc and nonsite, that fall in that inccrval 
(Lemeshow and Hosmer 1982). As in Parker's (1985) application, the g pairs of 
observcd and expected values may be plotted, allowing a subjective asscssmcnt of 
goodness of f i t  when compared with a line with an intcrccpt of O and a dope of 1 
(Brand et al. 1976). 

T h e  comparison of obscrvcd and cspectcd site frequencies has bccn dcveloped 
into a statistical test for goodness of fit by Lemeshow and Hosmer (1982). Sincc 
considerable information is lost when only the site group is considcrcd, a more 
powerful tcsting procedure is made possible by considering observed and expectcd 
frequencies for sitc and nonsite classes simultaneously. Obscrvcd and expected 
frequencies for the nonsite group are calculated as follows: 

where on) is thc observed number of nonsites in the R:' inrcrval and rnh is the 
expected number olnonsites in the k'%nterval. T h e  statistic developed by Leme- 
show and Hosmcr (198297) is 



u~hcrc thc summation is from k = 1, . . ., g intervals. 

T h c  site location modcl uscd to illustrate this rest for goodncss of f i r  is the 
initial nine-variable Gladc Park logistic rcgrcssion model given in an earlier section 
of this chapter. Results of applying this model to the same data chat u7crc used to 
consrruct thc modcl arc tabulated in Tablc8.2. A requirement ofthe test is that thc 
numbcr of intervals (g) should be grcater than j + l ,  w h e r e j  is the numbcr of 
predictor variables uscd by the model (Lcmeshow and Hosmcr 1982:%). In the 
prcsenc case, j  + 1 = 10; hence, 12 intervals, with constant widths of0.0833, arc used. 
T h e  observed and cxpec tcd frequencies tabulated for the site and nonsitc groups in 
Table 8 . 8 ~  arc used to calculate 

The  distribution of this statistic is approximatcd by a chi-square distribution with 
g-2 - 10 degrees offreedom. At a lcvcl ofsignificance of& = 0.05 the null hypothesis 
ofa good f i r  can be rejecrcd i f ~ i e x c e e d s  18.31. Since  is smaller than that value, 
we can accept the null hyporhesis. In facr, the null hypothesis could be acccpted at 
a = 0.5. 

A similar goodness-of-Gt test is prcsentcd by Costanzo ct al. (1982). 'Th' IS tesr 
focuscs on residuals rather than predicccd probabilities. 

An approach to modcl testing that potentially requires smaller trst samples 
was presented in an archaeological study by Limp and Laffcrty (1981:226-229). The  
approach utilizcs a sequential probability ratio test or SPRT (Dixon and Massey 
I957:3M-3 10; Wetherill 1975). The  SPRT requires the collection ofncw sample data, 
but only until a decision about a model's performance can be reached. That is, thc 
sequential method does not require the collection of more observations than arc 
necessan to make a decision. This approach can be beneficial for model trsting 
sincr it offers the potential for reduced amounts ofadditional survey and, therefore, 
lower costs. 



D E V E t O 1 3 M E N T  A S D  TESTING O F  Q U A S T I T ' A T I V E  M O D E L S  

T h e  SPRT allows a dccision between cwo simple hvpothcscs. Supposc chcrc is 
interest in the parameter 0, the truc site density in a low sitc probability stratum 
establishcd by an archaeological modcl. We wish to  test thc null hypothesis that the 
true site densicy cquals some specified level, O = 00, againsr thc alrcrnative 
hypothesis that the true site density equals some othcr specified level, O = 01. T h e  
SPRT dccides in favor ofeicher 0 0  or 0 1 on the basis of sample observations. I f 0 0  is 
true, we would like to decidc in its favor with a probability of I-cr or greater; if O I is 
true, we would like to decide for 01 with a probability of I - f i  or greater. 

T o  ilIustrate, a predictive archaeological modcl devcloped in southern Arkan- 
sas yielded a low sire probability stratum char was mapped throughout the entire 
region of study (Limp and Lafferry 1981). T h e  unit of analysis was a 4 ha grid unit 
(;.em, a land parcel200 m on a side); the encirc region was griddcd into more than 3000 
such units. Based on [he sample data used to  establish the model it was rscimated 
that in the lour probabiIity stratum the proportion of alI grid units with sites was 
only 0.009. Limp and LaKerty (1981:227) were willing to  accept the model if thc truc 
proportion ( 0 )  of units with sites in the low probabiliry stratum really was 0.009 or 
less. Thcy thereforc established an SPRT to tcst wich indcpcndent data thc nulI 
hypothesis that the true sitc proporrion is O = 0.009 (setting the probability of 
falsely rejecting the null hypothesis at a! = 0.10). Their alternative hypothesis was 
that the  true portion of units with sites was O 1 = 0.025, an arbitrary proportion that 
they dccmed would yield an unacceptably high number ofsite-prcscnt grid units in 
the low probability stratum. (They set the probability of falsely accepting thc null 
hypothesis, i.e., accepting 00 when 01 is really true, at fi = 0.10.) Thus, thcir 
sequential test was established in order to  decide whether to  accept 00 = 0.009 (or 
less) or an alternative, 01 = 0.025 (or greater), as the true sire proportion. 

T h e  SPRT requires that obscrvations (grid units) be made, by random scIcc- 
tion, one at a timc. After tach observation, onc of thrce decisions is made: (a) 

acccpt the null hypothesis ( 0 0  = o.W),  ( b )  rejcct the null hypothesis by acccpting 
the alternate hypothesis ( 0 1  = 0.025), or (i) make an additional observation. T h e  
test olTcrs an easy-to-use graphic counterpart established by the following formu- 
las. An upper limit is given by 

(G,yn(@ 1/00) + (Gnyn[(l-O t)/(l-Oo)] = /n[(l-fl)/a] 

and a lower limit by 

(Gsyn(@ 1/00) + (Gnyn[(l-0 !)/(I-Oo)] = /n[fl/(I-a)] 

where G, is the number of grid units currently inspected with sitcs and G,I is thc 
number of grid units with no sitcs. Inserting values defined above yields 

and 

(Gs~n(0.025/0.W) + (Gnyn[(I-0.025)/(1 -0.009)l - /n[O. 10/(1-0. lo)] 

yielding, after simplification, the following rcspectivc upper and lower limit cqua- 
tions: 



and 

1 .0217(CJ) -0.0163(Cn) = -2. I972 

Thcsc limits can be plotted as parallel Iincs in a graph by finding two poinrs for cach 
and drawing a linc through them. Setcing I;, = O givcs 2.15 for the uppcr limit and 
-2.15 for the lower limit. SettingGn - 200 gives 5.34 for thc uppcr limit and 1.06 for 
thc lowcr limit. T h c  uppcr and lower limit l ine~~plortcd through thesc points are 
graphed in Figurc 8.13. 

In a modcl tcsting contcxt, graphs such as Figurc 8.13 are established prior to 
testing. During the survcy, the rwult for cach test obsemarion (grid unit) is plotted 
by drawing a linc one unit to the right if thc observation does not contain a site and 
one unit upward if the observation contains a sitc. Sampling is continued until the 
plottcd line crosses thc upper or lower limit, a t  which time a decision is rcachcd 
concerning the acceptance or rcjcction of thc modcl. I f thc truc proportion ofunics 
with sites is csactly equal ro 00, then the null hypothesis will be acccpced 
approsimacely 100(1-a) perccnt of the time (upon repeated testing trials); if the 
true proportion of units wirh sites is cxactly equal to (31, then the null hypothesis 
will bc accepted about 100#?) percent of the timc; if the true proportion of units 
with sites is bctween (30 and O 1 ,  chcn [he null hypothesis will bc acccptcd bcrwcen 
iW(1-a) and 100(8) perccnt of the rime, the percentage of acccpcance decreasing 
progressively from 100(I-a) ro loo@) as the truc proportion increases from 00 to 
0 1 .  

U N I T S  SURVEYED 
Figure 8.13. Scqucnrid sampling dcsign far a southcrn Arkansas srudy. For 3 givcn numbcr of units 

survcycd, if rhc number of sircs cncounrc-rcd cxcirds rhc llppcr limit, rhc sitc dcnsiry cspecrcd hy a prcdictivc 
model is cxcccdcd and rhr modcl may br rcjccred (after I . imp and I..tfrcrty 1981:227). 
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In Limp and Ldferty's (1981) application (Figure 8.13), it is readily apparcnt 
that if rhc first 135 grid units sampled did not contain sitcs, the model could be 
accepted immediately (i.e., 0 = 00 =O.OC@). On  the other hand, discovery ofonly 
thrcc units with sites for sample sizes under 53 would be causc for immediate 
rejection of thc model and acceptance of @ = Ol = 0.025. T h c  space berwecn the 
acceptance and rcjcction regions represents an "inconclusivc" rangc whew neither 
decision can be rcached. 

Formulas for estimating the average sample sizc needed to arrive at a dccision 
arc given by Dixon and Masscy (1957:309-310). Application of these formulas to the 
Limp and Laffcrty data yields n = 253 whcn the truc proportion ofsites is @0=0.009; 
n = 183 whcn the truc proportion is 01 a0.025; andn =290 when thc true proportion 
is between 00 and 01 (this latter figure is approximately the maximum avcragc 
samplc sizc). 

It should be emphasized that the Limp and Lafferty (1981) example illustrates a 
rather extreme application of scqucntial methods because t hcy focused on such low 
probabilities (i.e., @O = 0.009). In any statistical procedure dealing with rarcs and 
proportions, a number ofproblems arise when estimated probabilities arc very high 
or very low. First, sincc the estimated probabilities arc based on relativc frcqucncies 
derived from empirical data, very large samples are needed for reliable estimates 
whcn the relativc frequencies are cxtremc (e.g., less than 0.05 and greater than 
0.95). Limp and Lafferty (1981) derived 00 = 0.009 by finding two sites in only 235 
units in their initial sample. A change of only two sites in cither direction would 
have caused 00 to range berwecn 0 and 0.017, substantially altering the structure of 
the sequcntial test given above or even prcvcnting its use (in the 00 = O case). A 
sample sizc ofscveral thousand would be needed for a reliable estimate o f 0 0  =0.009. 
Second, extreme estimated probabilities in a sequential test require that largc 
satnplcs be examined before a dccision regarding acceptance or rejection of OO can 
be madc. T o  illustrate, ifa morc reasonable low probability stratnm that contained 
approximately 20 percent oTall sites had been defined, then @ O  =0.2. Suppose that a 
determination had been madc that this stratum could acccprably contain as many as 
30 percent of all sitcs; then 81 = 0.3. T h e  average samplc size needed to arrive at a 
dccision (leaving a = /3 -0.1) would be n =69 when the true proportion is 00- 0.2; n = 

63 when the true proportion is 01 = 0.3; and n = W when the true proportion is 
bctwecn 00 and O 1 (compare n = 253, ti = 183, and n = 290, respectively, for the Limp 
and Lafferty application above), 

Several important assu~nptions and technical difliculties bchind the sequential 
method limit its practical use. Sequential methods assume complcte randomization 
ofsampling units. After cach unit is inspcctcd a new decision is madc; therefore, the 
nest unit must be chosen at random. This prohibits the typical practice ofselecting 
clustcrs of u n m  located near one another for each day's work in ordcr to minimize 
travel. Each unit must be selcctcd at random, and the units must be inspected in 
random order. This rcquircmcnt necessarily causes increased enbrt to be espcndcd 
in travel to  sampling units. This difficulty may be reduced to some extent by 
selecting sampling units in groups (e.g., groups of 10) rather than individually; this 



would allow some flexibility in travel plans. T h c  scqucntial test would thcn be 
assessed after surveys of cach group had been complctcd. T h c  principal effect on 
the procedure wouId be to increase the average samplc sizc necded to arrive at a 
dccision by an amount cqual to thc size of each group (Dixon and Masscy 1957:3 10). 

Base Rate Probabilities 

Previous scctions have prcsented a number of procedures for assessing the 
pcrformancc ofa model through independent samplcs and significance tcsts. Before 
wc can fully asscss a particular model or understand how well it will work in 
practicc, wc must take into account onc final domain-thc base rate or a prion site 
and nonsitc probabilities, which have becn mentioned scvcral times in previous 
scctions. By using thcsc probabilities one can make estimates of the probabilicy of 
site class mcmbcrship within a region mapped by a model or, altcrnativcly, estimate 
thc probabilicy of sitc class mcmbcrship at ~pec$c loci within a rcgion of study. 

Archaeological sitcs are rarc phenomcna. This can bc clcarly demonstrated by 
csamining the a priori probability ofsite occurrcncc within a region-the purely 
chance probability ofsite presence considcring noother information. This probabil- 
ity is usually cxtrcmely low, ranging in the vicinity of 1 to  5 percent or evcn much 
less. This probability can bc cstimatcd as 

total area covcred by known sitcs 
P(sitc) = PIS) = 

total arca surveycd 

T h c  total area covcred by known sices is most accurately cstimated by measuring 
sitc arca in the field or by determining the area of the dots and polygons usually 
used to  record sitc locations on maps. I fa  small grid (e.g., onc of50 by 50 m cclls) is 
superimposed over the study region and the nurnbcr of grid cells that contain 
cultural remains arc counted, then P(S) can be cstimated simply by dividing the 
total number ofcclls with sites by the total number of field-inspected cells. Reliablc 
estimation ofP(S) always rcquires fairly large samplcs. It is important to notc that 
thc gridding method can cause anovercstimate ofP(S) when a large grid sizc is used. 
A large cell is more likely to contain a sitc than a smallcr onc, and this causcs the 
relativc nurnbcr of cells with sites to increase while the total number of cclls is 
decreased. 

The  Glade Park data can be used oncc again to revcal that 157 of thc 2432 
surveycd analysis units (each measuring 1 ha) contain sites, yicIding an estimatc of 
P ( S )  = 157/2432 =0.065. Most of the sites discovered, however, were very small lithic 
scatters covcring an area much smaller than a hcctare, which suggests that the 
above figure is an overescimace. Examination of the  site records indicates that the 
157 sites occupy a total area estimated at about 538,000 m2, or an average size ofless 
than 3500 m2 (compared to 10,000 m2 in a hectare). Since 38 quarter-sections occupy 
approximately 25 million square meters, a better estimate of the actual base ratc 
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probability of archacological site prcsence in Glade Park might be P(S) = 

538,000/25,000,000 = 0.021. Since Glade Park is one of the archacologically richest 
areas in Colorado, this figure is relatively high. 

Incorporation of prior probabilities into a classification modcl will decrease thc 
o~ t ra l l  rate of misclassification (Morrison IW6:235), but when the prior probability of 
onc group is extremely low (as in the archacological case) the error rate for the 
low-probability class is increased substantially by this procedure (Morrison 
1%9:160; Overall and Kletr 1972:263). The  extreme magnitude oft hc prior probabili- 
tics in such cases "overpowers" the esrimatcd probabilities thac are conditional on 
environmental and other data, with the effect that the final model esscncially 
utilizes only the prior information in classifying observations. It is bcst, therefore, 
not to include prior probabilities in modcl dcvclopment but to reserve them for 
model performance assessment (see below, however, for a discussion of the use of 
prior probabilities in estimates of probabilities at specific loci). Some disciplines 
actually manufacture a priori probabilities, arbitrarily setting P(S) = 0.9, for csam- 
ple, in an effort to increasc the chance that a rare group ofintcrest will be correctly 
identified by a predictive classification model (Schowengcrdt 1983:43). This procc- 
dure is mathematically equivalent to the curoK point adjustmcnc approach 
explained in an earlier section. 

Estimating Sitt Probabilities in Regionr 

Since archaeological sites arc a valuable rcsource, i t  is more important tbr 
archaeological locational models to classify site-presenc locations corrcctly than for 
models to classify site-abscnt locations correctly. We would likc, thercforc, to 
produce models that classih- a major proporcion of sites correctly, say 90 pcrcenc. 
This can be accomplished using the method of modified cutoff points described 
abovc and the nonsice data can bc used co indicate the approximate percentages of 
the study area within which a specified pcrcenrage of sites should occur. But in 
order to determine other dimensions of model performance, such as the sicc 
densities chat can bc expected, we can use prior probabilities with the model 
performance indications obtained through the cutoff point adjuscmenc approach 
and Bayes's Theorem (Hays l981:39-41). More specifically, given an area ofa region 
mapped by a modcl as site-likely or site-l'avorable, the following procedures yield an 
estimate of the probability ofsite class membership within that modeled region and 
an estimate of thc probability ofsicc class membership outsidc the modeled region. 

T o  illustrate this procedure the percent correct statistics yicldcd by applying 
the jackknifed Glade Park model to the indcpendenc test daca (Table 8.12b) are 
used. Thesc data indicate (at a modcl cutoff point of p = 0.4) that approximately 86 
percent of the sites should be classified correctly (Table 8.8b). Lec S be the event 
thac asite is actually present, andletM be the event that the model indicates that a 
site is prcscnt. We want to find the conditional probability, P(SJIM), of sirc class 
rnembcrship givcn that the model suggests site prcsence. I f  we usc the grid-based 
analysis, the a priori probability of sitc prcscnce at a location is estimated as P(S) = 



0.065 (see above); then P(SC) = 0.935, where S( indicatcs thc complement of site 
presencc, i.e., sire absence. The  p robab~ l i t~~  that thc model will indicate a site givcn 
rhar a sitc is actually present is P(MIs)= 43/50 = 0.86, and thc probability that the 
model will indicate a sirc givcn that a sire isnuz prescnr ~ s P ( M ~ s ~ ) =  50/87- 0.575 (data 
from Table 8.8b). According to Bayes's Theorem, 

Consequcnrly, in the portion of the study rcgion that this model would map as 
sire-likely (at the p = 0.4 cutoff), thc probability of sirc class membership at any 
location (hecrare ecll) within the rcgion is~($M) = 0.094, which is 0.094/0.065 or 1.45 
timcs better than a purely chance model (P[S] = 0.065). On the orher hand, the 
probability ofsirc class mcmbcrship given rhat the model docs not indicate a site is 
roughly 

In the portion of rhe environmcnr nor mapped by rhc model as site-likcly rhe 
probabiliry of site class membership is only P(J~MC) = 0.022. This suggests thar 
haphazardly throwing darts at a map ofrhc region (a purely chance model) might be 
three times (0.065/0.022) more probable of indicating a sitc than the probability 
produced by thc model in this subarea. iviorcover, the probability of sire class 
membership ~n rhc mapped sire-likely region is more than 4.2 rimes (0.094/0.022) 
more likely than rhe probability oTa sitc occurring in thc site-unlikely region. (It is 
emphasized, once again, rhar thcse ~rocedurcs  can be cxrendcd to problcms 
invoIving mulriplc sitc classes.) 

T h e  meaning of rhese statistics is made clearer by imagining rhat rhe Glade 
Park model (at thep -0.4 curoff) is mapped over the cntire srudy region (roughly 
160,000 ha), much like thc mappings in Figure 8.8. About 6.5 percent of rhese 
hectare-unit locarions (P[S] = O.065), or 10,400 of them, will contain sites, and about 
93.5 pcrcenr (P[S(] = 0.935) or 149,600 will not (Figure 8.14), as estimated by their 
base rare chances or  occurrence. Of rhe 10,400 locations thar contain sites, rhe 
predicrive sitc location model (at chep = 0.4 cutoffpoint) will (as indicated by rhe 
independent tests) correctly classify about 86 pcrcent (P[M~sI = 0.86) or 8944 as 
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Figure 8.14. lllusrrxioti of  Baycs's l'hcorcrn and thc cjlbcrs o i s i tc  and nonsirc a priori prohbi l i~ ics  on Chdc Park 
rnodcl pcrformancc. 
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containing sitcs and will incorrectly classify about 14 pcrcenr ( ~ [ r t i l s ]  = 0.14) or 1456 
as belonging ro the sitc-absent caregory. Of the 149,600 nonsite locarions, 42.5 
pcrcent ( P [ I M ~ s ~ ]  = 0.425) or 63,580 will bc corrrctly identified and about 57.5 
percent (P[,M~S~] = 0.575) or 86,020 will bc classified as  sites. Thus, although rhc 
model assigns 8944 + 86,020 = 94,944 locations as sire-likcly, only 8944 of thcse 
actually conrain sitcs, or 8944/94,964 = 0.093 = ~(sl l t i ) ,  a roundabout, and hopefully 
more understandable, prcsenration of Baycs's Thcorcm. Thcse calculations are 
illustrated in Figurc 8.14. 

It is important ro rccognizc that thc predicred94,9& sire-likely hectares ofrhe 
model can potcnrially bc mapped rhrough use of cornpurcr mapping techniques 
(sce abovc and Chaptcr 10). About 86 perccnr of all sites would occur within rhe 
approximately 57 percent of the total land arca that is mappcd by rhe model as 
having high sirc sensirivity. The  area ortrrrJc the mapping would form a low- 
sensiriviry zone covering about 43 pcrcent ofrhc land area and would contain only 
14 percent of all sircs. In facr, 100(63,580)/(63,580+1456) = 97.8 percenr of the 
locations in rhe low-sensitivity zonc urould not contain sitcs. Abour one locarion in 
every 10 would contain a site in the high-sensitiviry zonc, but only one location in 
every 45 would contain a site in thc low-sensitivitv region. These sratisrics, of . - 
coursc, are based on [he model using rhe p = 0.4 cutoff and on accuracy raws 
obraincd from one samplc (Table 8.8b). Pcrformancc indications such as thesc will - .  

vary depending on rhc cutoff point and accuracy cstirnates used. 

Ertimating Sitc Probabilities a! Specrfic Loci 

Cultural resource managers ofren wish to estimarc rhe probability ofarchaeo- 
logical site cJass membcrship givcn the data measured at a particular Iocation, such 
as a single hecrare grid cell, rather rhan simply estimating the probability ofa  sire 
wirhin a larger rcgion, such as a high-sensitivity zone as a whole. Probability 
estimates for specific loci also require usc of rhe a priori probabihtics P(S) and P(SC). 
These probabilities are used in conjuncrion with modifications of the formulas for 
estimating sirc probabilities condiriond on environmenral and othcr rncasurcmcnrs 
(given in rhe sccrion "Applicarion Comparison ~[Quanricative Locarional Models" 
abovc). 

It  was dcrnonstrared with cmpirical test evidence rhat if rhe Glade Park 
jackknifcd model (at rhcp = 0.4 cutom were to  be mapped, the probability ofsirc 
class membership wirhin rhe mappcd sire-likely region would be about 0.095, and 
rhc probability ofsite class membership outside rhe mappcd rcgion would be about 
0.022. These csrirnatrs, onc for rhc entirc area mapped by the modcl and one for rhe 
rest of rhc study region, respectivcIy, serve as a kind of "average" probabiliry 
figure for rhcse portions ofthe study arca. In other words, ifwe know rhar a location 
falls somewhere wirhin rhc region mapped by the model as site-likcly, then we can 
say rhat the probability of sire class membcrship is about 0.095. 'This tcchniquc 
makes use only of the knowledge rhar a location is, or is nor, in a modeled rcgion as a 
whole, mapped at somc curoffpoinr; it  does nor consider any parricular facrors, such 
as environmenral characteristics at a particular locarion. 
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It is also possible to estimate the probability of site class membership at a 
specific locus (land parcel) by ignoring the mapping and considering the environ- 
mental characreristics ofthe Iocus together with thc base rate orchancc probability 
of a site (but for complete validity this procedure technically requires that all the 
assumptions of the classification mode1 used arc mct). T h e  discriminant analysis 
described in the application comparison section (above) provides an example. That  
analysis yielded a discriminant score of D, = 2.2009 for thc environmental data 
measured at the location ofsite 5LA5364 (Table 8.3). This location's probability of 
membership in the site class, conditional onb on the environmental measurements 
and assuming that the assumptions of the discriminant model were fully met, was 
estimatcd as 

(recall that D, = 0.8304 and On, = -0.1936). Again, this probability is estimated from 
the measurements only and does not consider the base rate proportions ofsites and 
nonsitcs in the arca. A modification of this formula to incorporate prior probabili- 
ties, P(S) and P(Sc), yields 

and the estimated probability of site class membership at this location, incorporat- 
ing both environmental and basc rate data, is approximately p - 0.323 (using P[S] = 
0.065 and P[S[] = 0.935). T h c  lower ligure results from the inclusion of thc prior 
information on sitc proportions and providcs a more realistic estimate ofanticipatcd 
probabilities. Similar modifications of other formulas (e-g., logistic regression) can 
be found in standard statistical texts. 

lMODEL REVISION 

Analyses described in the previous sections suggested that about 86 percent of 
Glade I'ark sites might bc predicted correctly by mapping a high site-sensitivity 
zone that covers approximately 57 percent of the total Glade Park land arca. This 
particular rcsult may not seem very irnprcssive as an illustration of thc pourer of 
empirical site location models. It was notcd carlier, however, that Glade Park 
contains one of the highest sire densities in Colorado. This fact, togcther with thcse 
arca pcrformancc indications, suggests that Glade Park was a very favorable place 
for prehistoric peoples to  perform activities and, in the process, create archaeologi- 
cal sitcs. The  57 percent figure suggests that about 57 percent of thc land area of 



Glade Park contains environmental charactcristics that are very similar to characrer- 
istics exhibited by known sites (in terms of a partitioning of mcasurement space, 
Figure 8.5b). This means that prchistoric pcoplcs had a wide choice of settlement 
locations within the rcgion. Other regions and studies do not indicate such favora- 
blc conditions for prchistoric inhabitants. T h e  Colorado plains study dcscribed in 
earlicr sections (also sec Kvamme 1984) found that sitcs wcrc restricted primarily to 
a narrow zonc around major drainagcs. Statistics obtained through indcpcndent 
tcsting suggestcd that about 90 percent of thc sites might occur in only 50 perccnt of 
the total land area of that study region. In a study in central Utah morc than 90 
pcrccnt of the sites wcrc cstimatcd to occur in about 15 pcrccnt ofthe study region's 
area (Reed and Chandler 1984:80). 

I t  is through the usc of nonsite control data that thesc area projections can be 
made. Because many nonsite locations exhibit environmental characteristics identi- 
cal to those of sitcs.(and thus fall on the site side of thc dccision boundary in the 
measurement space), and bccausc thcy arc extremely prcvalcnt, thcsc approximate 
arca calculations can be madc. Although much of thc (nonsitc) environment may 
possess characteristics similar to those exhibited by known site locations, much of 
the (nonsite) environment is very dissimilar, which allows the designation of 
substantial portions of the environmcnt as a low site-sensitivity zonc. Thus, at 
Glade Park 43 pcrcent of the land area could bc dclincatcd as having low site 
sensitivity, a result that would includc only about 14 pcrcenr of thc prehistoric sites 
within that zone. At present, no method has been demonstratcd that can discrimi- 
nate site-present from sitc-absent locations in thc site-favorable portion of a 
mcasurement spacc. In other words, givcn that therc are many locations in the 
environment that possess environmental and other characteristics identical to those 
exhibited at site locations, there presently is no procedure that can differentiate 
between sitcs and nonsites with identical environmental and other charactcristics. 

A projection like "90 percent of the sites will occur in 90 percent of the land 
area1' offers no gain. In assessing whether gain is sullicient, such factors as test 
samplc sizes and confidence interval widths should bc considered. If it is dcemcd 
that a model is inadequate, new variables that potentially offer better predictive 
power might be investigated or altcrnativc samplcs might bc cxamined and a new 
modcl developed. It also might be determined through testing or usc chat a site 
location modcl consistently misclassifies certain types of sites. In this case a modcl 
designed specifically for that site typc might be considered. 

T h c  mcthod ofsequential analysis (dcscribcd above) is specifically designed to 
indicate thc need for model revision in an ongoing research framework. When test 
sampling indicates that model-predicted site'densities cxcccd or fall bclow specified 
limits, thc modcl should be rejected. II this should happcn the need for model 
revision is indicatcd. Even for already tested models, ongoing testing through 
sequential methods might bc conducted as future archaeological survcys are carried 
out and new information becomes availabIc. 

T h c  use of geographic information systcms tcchniques (computer data bases 
encoded with environmental and ocher geographic information; see Chaptcr 10) 
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might cvenrually lead to inrcractive model building, tcsring, and revision as an 
ongoing proccss. Ifcnvironmental and or her variabIes rclevant to archaeological sitc 
location models are encoded in the data bast along with known site locations, 
predictive models of many forms and varieties, such as models for multiple site 
typcs or temporal periods, could be generated instantaneously. As ncw sitcs and 
nonsitcs are discovered, additional model tcsts could bc performed or these data 
could be incorporated into the data base to update existing models. As models 
change, so do the rcsults of models. Compurcr graphic techniques can allow new 
maps of model results to be rapidly and cost-effectivcly produced so that thc most 
currcnt information can be used. 

hmlany oft he rrsults presented i~erc  srcm from 3 history olpersonal involvcment in archacological 
prcdicrivc modeling that spans rhc p u t  decade. T'his involvcment owes its origins to a 1959 contract 
awarded by rhe Bureau o i  Land hlanagcrnenr, Grand Junction Disrricr Oficc, to Nickens m d  
Associarcsofh~ont row, Colorado(uherc 1 was employed), ior a regional predictive model. The  Grand 
Junction District Otficc again supported my work in 1982-1983 for a larger study that resulted in 
considerably improvcd methods, including exrrnsive surrey and model resting, and a procedural 
manual. Docroral work ar the Univcrsit>- olcalil'ornia ar Santa Barbara c s p s e d  me ro geographic 
information systcms and rcmorc rcnsing ~echnology,~hc quantitative cxpcrrisc of Albert C. Spauld- 
ing, and the hunter-gathcrcr settlement ideasofh~lichacl A.Jochim, and it resulted in adissettalion on 
archaeological prcdictirc modcling in 1983. The  Cnivcrsiry ol'Dcnvcrls Pi6on Canyon Archacological 
Project, sponsored by rhe U.S. Army, called lor cxtensiw use and application o i  archaeological 
predictive models and GIS technology. 54y involvement uirh thar projcct from 1983 to INS xllowd 
furrhcr rcfincmcnr and development olmodcLu~g mcrhods with a very large data set, and production 
ofGlS capabilirius compstiblc with archacologicsl analysis and modeling nccds. In recent years ar the 
University of Arizona my [caching ofa spatial analysis clars, which focuses on CIS and archaeological 
modeling, has forced me to express thc basic idcas and nlethods on an easy-to-undcrsrand Icvcl. Of 
more imporrancc, howewr, arc the many insights and applications of those technologies thar my 
students have given rnc, Chapters 7, 8, and I0 o l  this volume owe much to the above persons and 
institutions. 

lf thcrc is any gaugeoft he success ofonu's work, it is in how much it is uscd. Although I have nor 
received royalties as ofycr, 1 am lrequcntlv sent copies ofprojccr reports char urillzr (and in many cases 
copy directly) rhc mrthods surnmarircd in Chaprer 8. These studies, largcly slcmming from culrurd 
resource managcnicnr contexts and performed for various governnlent agcncics, represent a staggcr- 
ing amount of vork(probab1y approaching 100srudics and projects). 5,ly hope is rhat the resitlts o f ~ h i s  
work will be used responsibly by Inanagemcmr pc.rsonnc1 as tools ro bcrtcr care for, prrscrrc, and 
protect cultural resources. Ifthcy arc nor uscd rcspons~bly, then the iault lies uirh manageinenr (not 
thc models) and wr musr focus our mcnrion on defining responsibility. 

1 wish ro thank the Lbllowing individuals in particular for their contriburions toCbaptcrs 7,8, and 
10 olrhis volume. JoAnn Chrisrrin devoted considerablr cKor~ in manuscripr producrion over scvrral 
rewrites, in digiritatiorr ofmuch of the data for chc CIS work, and in giving moral support over this 
long and rrying projcct. I am gratcful toh,likcJochim for Jlowingme to present somcofhis Xlcsolithic 
data in t hesc chaprcrs. Finally, Dan Martin dcservrs~peciJ praisc for h!s support ofthc whole vol\~mc 
and particularly lor his conrinucd cncouragerncnt of my utork. 



REFERENCES CITED 

Adam, EL Charles 
1'974 Location Srra~cgy Employed by Prchisroric Inhabitants of the Picdra Districr, Colorado. 

Sorclhmrrmi Low 4J: 1 - 15. 

Anderson, J. A. 
1975 Quadratic Logistic Discrimination. Brctm<rriko 62149-1%. 

Aronofl; Stan 
1982 Thc Map Accuracy Report: A Users Vicw. Phurugr~mmt~ric Engimcrin~ ond Remolt Stmine; 

48:I309-13lZ. 

Basu, J. P., and 1'. L. O d d  
1974 Effect oflntra Clabs Corrclation Among T r ~ i n i n g  Sanlplrs on rhc Misclas~ihcation Probabili- 

r ics of Bcycs Proccdurc. P d m m  Rrrognirron 6: 13  - 16. 

Bmrrr, X ,  D., and J. G. Cragg 
1970 Corporate Choice Among Long-Tcrm Financinglnstrunrc~~rs.Rtric~o~Ecu~mi~~ undSr~~trrirr 

6:I l -  16. 

Berry, Kenneth J., Kenncth L. Kvamme. and Paul W. Miclke, Jr. 
1%0 A Permntarion Technique for the Spatial Analysis of rhc Distribution of Artifact Classes. 

rlmrriro~i Anriquiry 43:492-486. 

1983 Improwmcnts in the Prrnrurarion Tesr Ibr thc Spatial Analysis of the Distribution of 
Artifacts into Classes. Anuricw A n f i g u i ~ ~  4k5.47-553. 

Bcrv, Kenneth J., hul W. Mielkc, Jr., and Krnncth L. K v ~ m m c  
1984 Eflicient I'ermutation Procedures for Analysis o l  Artifact Class Patrcms in Archaeological 

Spacc. In In~ro~i~rSpo~iolrl~wl~~i~ in Artburolog)., edited by Harold]. Hictala and Paul L. Larson, pp, 
53-74. Cambridge Kniversity Prcss, Cambridge, England. 

Berry, Xfichacl S. 
1984 Sampling and Prcdictivc Modcling on Fcdcral Lands in the West. Amrricarr /iIntiyui~y 

49M2-853. 

Bcr ringer, Robert L. 
1977 Predicting thc t~rchacological Potential of thr. Inyo-Mano Region o i  Eastern California. In 

Canrrmarron ..lrrhum/ogy, edited by Michael B. Sctri1'fc.r and Gcorge J. Gumcnnan, pp. 217-226. 
r\cademic Prcss, Scu York. 

1980 Explanatory /Predictive Xlodels of Huntcr-Gat hercr Adaptation. I n  .-lhsncrr in Arcbaru/ogtcal 
Mrrhud m d  Tbtoq-, vol. 3 ,  edited by Michael B. Schiffcr, pp. 189-255. ttcadcmic Prcss, New York. 

Bow, Frederick 1. 
198 1 Trend Surface Analysis o f t  he Lowland Classic Maya Collapse. R m t r ~ ~ d n  /Iniiquity 4 6 9 -  I 12. 

Brndlcy, john E., William R .  Rillam, Gcorgc R. Burns, and Marilyn A. Martorano 

4 / I  Clurr I 1  S u n 9  ~ndPrrdrc~rn~~.ClocltlofStltrttdr/rtur in rht CIKO D a m  GrondCou~ri; Urub. Goodson 
and Associxcs, Inc. Submitted to rhc Burcxu oiLand Xfanagcmcut. Copies available kom Bureau 
of Land hIanagcmenr, Xloab District, Utah. 

Brand, R. I., K. H. Rosennran, and R. I. Sholtz 
1976 hlultivariatc Prediction of Coronary Hcart Disease in the Wcsrern Colhborstivc Group 

Study Conrp~red to the Findings of thc Framinghanr Study. Cirrulafiun 53:348-355. 

Brose, D ~ v t d  S. 
1976 Locational Analysis in the I'rch~story ofNorrhcast Ohio. In Cul!uralCbangr~ntlConrinur~v: EI- 

ray tnllon~rr oj7amt1 Bmnrrr Grrfjin, cditcd by Charles E. Cloland, pp. 3- 18. Acadcnric Press, New 
York. 



D E V E L O P M W T  AND T E S T I N G  OF QL?I \STITATIVE M O D E I S  

Brown, Kenneth L. 
1979 Late Prehistoric Sc~tlcrncnt Parrrrnz in Sourhwrstrrn Kans~s.Pl~mr~nrhr~pol~irr 43:482-486. 

Uurgcss, R. I., K.  L. Kvamrne, P. R. Nickens, A. D. Krcd, and G.  C.  Tuckcr, Jr. 
1980 Chrr I I  C : r / / w a /  Rrrourrt lrrrmror;. rbf Gltrtzrood Spring$ Rhourn Arra ,  Crowd ~ U ~ C ~ I ~ J I I  Dllrrrcr, 

Coloro~h. Xickcns and Associstcs. Submitted ro Ourcau of Land Managclncnt, Grmd Junction 
District. Copies available from Burcau oiLand Manngcmenr, Grand Junction, Color~do, 

C~mpbcl l ,  Janies B. 
1981 Spatial Corrclarion Elt'ccts Upon .+ccuracy of Superviscd Classificaiion of I.md Cover. 

Pborqrornmtmr Engrnrrrmg and Rtmorc Srnrrng 47: 3 55-363, 

Carr, Christopher 
1985 In troducton Remarks on Regional Analysis. In Far Conrordanrr irr .drr h a t o l o p a l  Jnaljrr~: 

Bridprtg Dat<rSfrurr:rr~, 4Q~t~nfi:a:irt  Ttrhnrqu, ~ n d  Tlcorj., edtrcd by Chris~opher Carr, pp. 1 14- 127. 
Wcstporr, Kansas Ciry. 

Clifi-, A .  D., and j .  K. Ord 
1973 S p f d  :lufororrtlotion, Pion, London. 

I975 The Coniparison o i b l e a n ~  When Samplcs Consist ofspatially Aurocorrcl .cd Obscrwtions. 
En~lrfinmtnl ond Plannin~ A 7:725-734. 

Congalron, Kusscll G., Icichard G. Odcwald, ~ n d  Koy A. Mcad 
I983 Assessing Landsar Clxsilical ion Accuracy Using Discrete Ir~lulrivariare Analysis Srarisr icd 

Tcchniqucs. Phu~ogrammrrrir Engirrtrrrng and Rrmort Srnrrng 4Q:1671- 1676. 

Conovcr, William J .  
1971 Prarrrrol Nmparrlmrrrr S r ~ f i j r i n .  John Wilcy, Xcw York. 

Cosranzo, C.  M., \I1. C. Hdpcrin. K. D. Galr, 2nd G .  D. Rich3rdson 
1982 An Al~crnativr Mcthod for Assessing Goodness-of-Fit for Logit Modcls. Enrrronmrrtr dm! 

Plmnrrrg A 14:%3-97 1. 

Cusrcr, Jay F., T'mothy E~*clcigh, and V .  Klcmas 
1983 A L~ndsar-Gcncrarcd lJrrdicrivc Model for Prchi~toric Archacologicd Sites in Drlawrc's 

Coast31 Plain. n x l l t ~ i v  of rbr A r ~ ~ b a m l o ~ r d l  Sotirrj. o(Dr1amarr n.5. 14:19-3s. 

Custer, jay I;., Timothy Evcleigh, V. Klclnns, and I. Wells 
1986 Applicnrion of Landsat Data and Sgnopr~c Remore Scming ro Prcdicrivr \4odcls tor I'rchis- 

toric Sites: An Esarnplc lion1 the Dclaware Coasrd Plain. / f m r r : r ~ s  A n r ~ y u r ~ i .  51:572-588. 

Davis, John C .  
1973 Srurii:irr md Dora .4no!yrir rn G n h ~ ,  lohn Wilcy, S r w  York. 

Dclfincr, P., and!. P. Delhomrne 
1975 Oprimun~ Inrcrpolarion by Kriging. In D r ~ p l q  a ~ r d r l n o / ; r r ~  o,fSporh/ Ddrr ,  cdircd by John C. 

D3vi.r and hlich~rl!. McCull;lgh, pp. 96-1 14. John Wilcy, New York. 

Dixon, Wilfird J., and Frank J. Masscy, Ir. 
1957 Inrreh;rcri"r/ 10 S r ~ f r ~ ~ r r d  Annlyrrr. X~IcCraw-Hill, New York. 

Dixon, W, J., X.1. B. Brown, L. Engclrnsn, J .  W. Franc, M. A .  Hdl, :md R. I.!r.nnrich 
1983 BMDP S r ~ r i ~ t i c ~ i S o ( , u ~ a r t .  University ofCdifornia Press, Bcrkclcy. 

Duds, R. C:.. and P. E. Harr 
1973 Porrcrn Clarr!firorron ortd Srrnr AnJ1;jn. john Wilcy, New York. 



Dunncll, R. C., and 11'. S. Dmccy 
1983 The S~rclcss Survey: A Regtonal Scak DaraCollcction Strategy. In /IAruntn m ~ l r r h ~ i r o i q i r a l  

. t f ~ rhoda~rJ7 'h~or j ,  vol. 6, cd~ ted  by Michael B. Schitlk, pp. 267-287. Acadcniic Prcss, New York. 

Eiscnbis, K. A., and R. B. Awry 
1972 Dtrcrimrnanr i f n a ~ ~ r r  and Cla~rifira~ton Pructbrtr.  Lcx~ngron Books, Lcx~ngron, hla~aachuserrs, 

Ericson, Jonathan E., and Raymond Goldstein 
1980 \\'orkspacc: A Ncu, Approach ro the Analysis ol'Encrgy Expenditure Within Sitv Carch- 

rncnrs. An/hropi~poA;g b'CLA IO:21-JO. 

Eulcr, Robert C., and Susan M. Chandler 
1978 Aspects ofI'rrhistoricScr rlcn~cnr P~ t t c rns  in Grand Canyon. In Inrrrrrgariunr o/rhrSourhwc~rrrn 

clnrbropologirol Rtirurrh Cro~lp: A n  E-rpcrimrnr in Arrhoro/ugicalCooprra~iun, edired by Robcrr C. Euler 
and Gcorgc J. Gunivrrnan. Museum of Northern Arizona, Flagstaff. 

Euler, Robcrr C., and Gcorgc G. Gumerman, editors 
I978 Inrrrrtprionr ! f rbr  Suxrhrcmrn Anrhrupotogicrl Rnrurrh Croup: A n  Exprrirncnr in :lrrhurologirul 

Cooprmriun. Museum of Sorthrrn Arizona, Flagsraff. 

Feder, Kenneth L. 
1979 Geographic Psttcrning of Tool Typcs as Elicited by Trend Surlacc Analysis. In Compurrr 

Gruphirr in/ lrchomlog, edited by Stcadrnan L'pham, pp. 95-102. Anthropologicd Research Papers 
No. 15. Arixona State University, Tempc. 

Findlou, Frank J. 
1980 A Catchment Analysis of San Luis Phasc and Animas Phasc Sites in Southwesrcrn Ncu. 

klexico. Anrhryolog UCLA 10: 157- 1713. 

Findlow, Frank)., and lonarhan E. Ericson, edirors 
l a 0  Cxchmrnt  Analysis: Essays on Prehistoric Rcsourcc Spacc. Rnrhropolug C'CLrl 10 (u*hole 

no.). 

1976 The Village and Its Carchmcnr Area. In Thr  E o r ! ~  ,Ilrroumcrirar~ / ' i f lap, cdircd by Kent V.  
Flannery, pp. 91 -95, Acadcmic Press, Sew York. 

Frank, Ronald E.,  11'illiani F. Massy, and Dolmd C.  Morrison 
1965 Bias in ~Mulriplc Discriminant Analysis. 7oumol u/hfarktring Rrrrorth 2:250-258. 

Could, Pcrer 
1970 Is Strrrrrrix ir+rtnr thc Geogrsphical Namc lor a Wild Goose! Eronomrc Grograpby 46:439-W. 

Crady, Jamcs 
1980 Enrironmcnrnl Farrors in Arrhrtolugiru/Sitr Lorariiin. Culr ural Rcsourcc Series 9. Bureau ofLmd 

hlansgcmcnt, Colorado. 

Green, Ernestine L. 
1973 Locar ion Andysis oiPrchisroric Mayr Sires in Northern British Honduras.AmrriranAn~iyui/y 

38:279-B3. 

Grccn, Paul E. 
1978 Mr/htmuriral Tcolr ,/br Applrtd ,\iu/ri7orrclrc Anrbrrr, 2nd ed. Acadcmic Press, Scu+  York. 

Grossman, L. 
1977 Man-Environment Relationships in Anthropology and Geography. Annuh q~rDrtlrrocrarion o/ 

.4nrcr1can &o~raphrrr 67: 127- 144. 

Gumcrnian, Gcorgc!., editor 
1971 Tbr  Dirlrihrrron o/Prthrrrorir Popri/urron A g p g a r r r .  Prescotr Collcgc Anrhropological Rcporrs 

No. I. Prcscorr. Arizona. 



DEVELOPMENT AND TESTING O F  QUANTITATlVE MODELS 

Gumcrn~an, Gcorgc J,, and R. Roy Johnson 
1971 Prehistoric Human Population Distribution ina Biological Transition Zone. In ThrDirfribution 

~{Prrhirforic Poplarion Aggrrguftr, edited by George J. Gumcrrnm, pp. 83-102. Prcscott C o k g c  
Anthropologinl Keporrs No. I .  Prcscorr, Arizona. 

Haggcrt, P., A. D. CliK and A. Frey 
1977 Locorional Anrbrir in Human Gcoppby ,  2nd cd. John Wiley, New York. 

Haining, R. P. 
1981 Spatial and Temporal Analysis: Spatial Modelling. In ~ m t i t r r i v r  G t o p p h j :  A Bririrb V i m ,  

cditcd by N. Wriglcy and R. J. Bennett, pp. 86-91. Routledge and Kcgan Paul, London. 

Harnrnond, Edwin H.  
1964 Analysis of Properties of Land Form Geography: An Application to Broad-Scale Land Form 

Mapping. Annalr of rhr Arrotrrfion 01 Anrrirrn Cmgrrphtrr 54: 1 1 - 19. 

Harrung, R. E., and W. J. Lloyd 
1969 Influence of Aspccrs on Forests of ~hcClarksvillc Soils in Dent County, Missouri. 7 o u r ~ u f  of 

F o r n q  67:178-182. 

Hasensrab, Robert J. 
1983 Thc Application of Geographic Information Systems to the Analysis of Archaeological Site 

Distribu~ions. Paper presented at the48rh Annual MceringofrhcSociety for American Archacol- 
o w ,  Pit~sburgh. 

Hay, Alan M. 
1979 Satnpling Designs ro Test Land-Use Map Accuracy. Pborograxxtrric Enginttring and R m r t  

Srnring 45:529-533. 

Hays, William L. 
1981 Srrrirritr, 3rd rd .  Holr, Rinchar~ and Winston, New York. 

Hictda, Harold I., and Paul L. Larson 
I979 SYMAP Analysis in Archaeology: lntrasite Assumptions and a Comparison wirh TREND 

Andy sis. ~Yorrrtgian Arrbatologirul R&m 12:57#. 

Hill, James N.  
1971 Rcscarch I'roposilions for Consideration: Southu.estcrn An~hropological Rcxarch Group. 

In 7'br Dirtriburion 01 P rrhirtor:r Population Aggrtgatt~, edited by George J. Gumerman, pp. 55-62. 
Prcscott College Anthropological Reports No. I .  Prescott, Arizona. 

Hixon, M. %I., 8. J. Davis, and XI. G. Baucr 
1980 Sampling Landsat Classification for Crop Arca Esrimations. Phoro~anmtrrir Enginttring und 

Rtmr t  Stnriafi pp. 1343 - 1348. 

Hodder, Ian, and Clivc Orton 
1976 Sparial Anolyrir in Arcbsro lo~ ,  Cambridge Universi~g Press, Cambridge, England. 

Holmer, Richard N. 
1979 Splir btounrain Cul~uralSfudj Truct. Utah Arc11aeoIogicaI Center. Submirted ro rhc Bureau of 

Land Management. Copies available from Bureau of Land Managcmenc, Vernal Disrricl, Urah. 

1982 Currlt Vallr). RailLint, Dtnvtr anJRio Crandr M'nrtrnRrilroad: Knomn Arrbacologitolarrd Hirrorkal 
Sirt Eralnafron and Prrdictiw Mudtl. Univcrsit y of Utah Archaeological Center. Submit red to 
Swrdrup and I'arccl& Associates, Inc. Copies available from University of Urah Archaeological 
Ccnrcr. 

Holmcs, John H. 
I970 T h e  Theory of Plane Sampling and Irs Applications in Geographic Research. Economir 

Grqyrpl?. W379-392. 

Hord, K. Michacl, and William Brooncr 
1976 Land-Use Map Accuracy Criteria. Phrqrammtrrir Enginwring and Rtmort Stnring 42:671-677. 



Hudson, J .  C. 
1969 A Location Thcory for Rural Scttlcment . Annul1 01 rhr Arrorlurron o j  Amrrirun G r q r u p k r ~  

59365-381. 

Hurlbett, Robcrc E. 
19n E n ~ i r o n m m ~ a l  Conrrrolnr ond Stttlrmrnr Prtdirtubrlirj, ?iorrhwntrrn Colorab. Cultural Resource 

Scrics 3. Bureau oFhnd Managcmcnt, Denver, Colorado. 

Jochim, Michael A. 
1976 Hunrcr-Corbrrrr Sub~irttncr u n J S r r t l m r n ~ :  A P r r d i r r i ~ r  4 l o L I .  Acadcmic Press, S e w  York. 

Johnson, Gregory A. 
1972 A Test oft he Ut ilit y ofCenr ral Place Thcory in Archaeology . In ,$fun, S a r l m m r  and Urbunirm, 

edited by Pcrer 1. C'cko, Ruth Tringham, and C.  W. Dirnblcby, pp, 769-785. Duckworth, 
England. 

19i7 Aspects of Regional Analysis in Archaeology. Annvnl Rcricm ojAnrhrupoiug 6:479-508. 

Judge, W. James 
1973 Pultoindiun Orcuprlon qfrht Ctnlrol Rio Grundt Yal lc ) ,  ,Ytw Mtxico. University of New ~Mcxico 

Prcss, Albuqucrquc. 

Kohler, Timothy A., and Sandra C. Parker 
1986 Predictive Models for Archacologicd Rcsourcc Location. In ,+dawnrrr in ArrbccmlogirulMtrhd 

und T h t o q ,  rol. 9, cdircd by Michael B. SchifTer, pp. 197-452. Acldcrnic I'rcss, New York. 

Kvarnn~c, Kenneth L. 
1980 Predictive Model ofsite Location in thc Clcnwood Springs Rcsourcc Area. In Clurr 11 Culturu/ 

Rtrourcr I n ~ t n r o v  d r h t  Glmwood Springr Rnovrrc ,irtrz, Grund 7unr1iori Dirrrirr, Colorado, Part 11, by 
Robert J.  Burgcss ct al., pp. 88-136. Nickem and Associates. Submitted to Burcau of Land 
Managc~nenr. Copies available from Burcau of Lmd Managc~ncnt, Grand Junction District, 
Colorado. 

19%3a A'tw Mttbudr {or Inrtrtrguttng rht G n ~ ~ r o n m t n ~ c i l  Bum o/Prthiriurrr S ~ t t  Locurram. Unpub[rslied 
Ph.D. disscrtation, Dcpartmcnc of Anthropolugy, University ofcalifornla, Santa Earbnra. 

1983b Compurcr Processing Tcchniques for Regional Modeling ofArchwological Sire Locations. 
Advunrrr rn Compvrtr A r c h u t o h ~  1:2rI-52. 

198Jc A Manual for Predicrivcsitc Location Models: Examplcs from the Grand Juncrion District, 
Colorado. Draft submitted to the Bureau of Land Management, Grand junction District, 
Co[orado. Copics available from Bureau oiLand Managcmcnt, Grand Junction District, Colo- 
rado. 

1984 Models of Prehistoric Site Location Ncar Pinyon Canyon, Colorado. In Puptrr u j rhr  Pbilmon~ 

Con(rrtnrt on rht , i r r h a t o / o ~  of;Yorrhrarrtr~i N r w  Mtxico, c d i ~ e d  by Carol J. Condic, pp. 347-370. 
Proceedings of the N c s  Llexico Archaeological Council MI). Albuquerque. 

1985s Dctcrmining Empirical Relationships between the Natural Environment and I'rchistoric 
Site Locar ions: A Hunter-Garhcrer Examplc. In ForContordcincrin~rcbuto~ogrcu/Anu~~ir:  Bridging 

Llarcc Slrurrurt, , ~ u u n t i r u t r ~ r  Ttchniqut, m d  Tbrorj ,  edited by Christopher Carr, pp 208-238. Wesr- 
port Prcss, Kansas City. 

l%5b Geographic Informarion Systcms Techniques for Regional Archacological Rcsc;lrch. Papcr 
prcsentcd at  thc Inrernarionat Symposium on Data Management and X4athcmaticd Modcls in 
Archacolog., Inrcrnational Union ofl'rc- .ind Protohisronc Sciences, Denvcr. 

1986 The Use ofGeopr.~phic Information Sy stcms for Madcling Archaeological Site Distributions. 
lnGrogrupbrrlnfi~rmcl;ionS~~~rmr rnCo~rrnmrr i~ ,  uol. 1,cdited by B. K. Opitz, pp. 345-362. A.  Dccpak, 
Hxnpton, Virginia. 



DEVELOPMENT AND TESTING OF QUANTl ' l ' hT lVE '1ODEIS 

Kvnlnnlc, Kcnneth L., and Michael A. Jochini 
1988 Environmenul Basis ofMcsolirhic Sctrlcmcnt. InThr Mmdithir in Europt: Papirr Prrrr~rrd af fbt 

'I'birdIntcr~rationalS~rnparism, cditcd by Clivc Bonsall. John Donald, Edinburgh, Scor land, in press. 

Lact~enbr~~ch,  P,  A., and M. Mickey 
1968 Estimation of Error Rates in Discriminant Analysis. Trchrrastrrics 10:l-11. 

Laffcrty, Robert H., 111 
1981 Disrrlburion of hrchacological >latcrials. In Strrlttnrnr Prtdzc~iunr In Sparta, by Robcrr H. 

Laffcrty Ill, Jeiliey L. Otingcr, Sandra C. Scholtz, \I1. Frederick Limp, Bcvrrly Watkuis, and 
Robert D. Joncb, pp. 163-206. Arkansas Archaeological Survey Research Scrics No. 14. 

Lafirty, Robert H., I l l ,  Jcffrcy L. Otingcr, Sandra C. Scholtz, I\". Frederick Limp, Beverly Watkins, 
and Robcrt D. Jonch 

1981 Sntltnttnr Prtdicri~mr in Sparta. Arkansas Archaeolcgical Survey Research Scrics No. 14. 

Landgrcbe, David A. 
1978 T h c  Quantira!ivr Approach: Conccprs m d  R~iona lc .  In R m f r  Smrirrg: Tbs @ianrrtafrw 

/Ipproad, edircd by Peter H. Swab and Shirley M. Davis. McGraw-Hill, N c u  York. 

k r n l d c ,  Signa L., and Susan M .  Chandler 
1981 Ardato/ogica! I t ~ rmlor j  in rbt Strp Ridgt Cultural S t u b  I r a r l ,  Uir:ta County, r\'ortbraiftru Utab. 

Cultural Rrsourcc Scrics I I .  Bureau of Land Managemcnt, Salt Lakc City. 

Larson, Paul 
1975 'I'rtndAno!~ris in A r r h a t o l o ~ :  A Prt lmmarjStudj  o(1nfrarirtParrtrning. Norwegian Archacologi- 

cal Rcvicw 8:75-80. 

Lemeshow, Sranlcy, and David W. Hoslncr, Jr. 
1982 A Rcvicw of Goodness-of-Fit Srarisrics for Use in the Dcveloprncnr of Logistic Kcgrcssion 

Models. Amtriran 7ournal o( Epidrmiofo~ 1 1 W2-  106. 

Limp, Frcdcrick, and Robcrr M. Laffcrty 
1981 Conclusions and Rcco~nmcndarions. I nS t r r l t acu~  Prcdictionf inSparta, by R. H .  Lafferry 111, J. 

L. Ocingcr, S. C. Scholrz, W. F. Limp, 6. Watkins, and R. D. Joncs, pp. 223-240. Arkansas 
Archaeological Survey Research Series No. 14. 

Lin, G. C., and T. C. Mintcr 
1976 Bayes Estimation on Parameters of the Single-Class Classifier. In S ~ m p r i u m  on Macbiw 

Proctuing o (Rcno~t~Stnred  Data, pp, 22-28. The  lnsriturc of Electrical and Elccrronics Engineers, 
Pilrduc University, Lafayetre, Indiana. 

Lipr, \\I. D., and R. G. hlatson 
1971 Human Sct~lement and Rcsourccs in the Cedar Mesa Area, Southeastern Utah. In 7'bc 

Dirrribufion of Prcbirtorir Population Aarega fn ,  edited by George J. Gunwrman, pp. 126-151. 
Prescotr Collcgc Anrhropological Rcports No. I .  Prrscorr, Arizona. 

Lovis, U'. A,, Jr. 
1976 Quarter Sections and Forests: An Esamplc oiProb~bili ty Sampling in the Northcastern 

Woodlands. Amtriran /lnfiqviO 41 :3@-372. 

Maynard, Paul F. 
198 1 Thr Logir C/c~r@er: 11 Gcucrd Maximum L i t c l i h d  Dimininant )r Rmotr Stnring App/rrarionr. 

Unpublishcd M.A. thcsis, Dcputlnent of Geography, Univursicy of California, Santa Barbara. 

Maynard, Paul F., and Alan H. Strahler 
1981 Logit Classifier, a General hlaximuni Likelihood Discriminanr for Remote Sensing Applica- 

tions. Prorcedingr ofthe Fl jcrnth InfrrnarionalSjmpo~iurn on Rrmotc Sensing c,(Enfironmcn~, pp. 21 3-222. 
Ann Arbor. 



!vIichaclis, 1. 
1973 Sirnulation Expcrimcnts with X,fultiplc Group Linear and Quadratic Discriminant Andysis. 

In Uircriminast,~lnul).rL and Apppplicarionr, e d i ~ e d  by T .  Cacoullos, pp. 225-238. Acadcmic Prcss, New 
York. 

Miller, R. C.  
1966 S~mulfanrour Starrifiru/ Infirmnu. McGraw-Hill, New York. 

Xlinrer, T .  C. 
1975 T h c  Singlc-Class Maximum Likelihood Clusificr. In Sjmpo~ium on Marhtnr Clarirficatron of 

Rrmolrl) Snrrrd Darrr. T h c  Institute of Electrical and Electronics Engineers, Purdue University, 
Laiayet le, Indiana. 

!dissalati, A., A. E. Prrlx,  and R. J.  1'. Lyon 
1979 Sirnultaneous L'sc ofGeologicd, Gcophy sic& and Landsat Digitd Dara in Uranium Explora- 

r ion. Rrmolr Snring qfEn~irunnrnr  8: 189-210. 

Moik, Johanncs C .  
1980 D i g ~ r a i  Procrrring of R n o f r b  Srnsrd Iniagrr. Xational Aeronautics and Space Administration. 

Government Prwting Ollicc, Washington, D.C. 

Monroe, C.  B., K .  L. Fcdcr, D. A. Poirier, and R. R. Gradic 
1980 Trrnd Surface Analysis: The Setrlc~nent Dynxnics of Colonial Connc.cticut. M a n  in rbr 

.Vorrhrast l9:105- 128. 

Morain, S. A., C .  Nelson, M. E. Whitc, and A. M. Komorck 
I981 Rcmote Dccccrion of  Prehistoric Sites in Bmdelicr National Monummt. In  R n o t r  Stnring 

d t f u / f i q r r f r a l A n a ~ ~ i r  ofCu/ruralRnoums: Chaco Camjon and Bandrlirr Nar ion~l~Clonumrn~,  cditcd by T. 
R. Lyons. Remote Sensing: A Handbook for Archeologists and Cultural Rcsourcc Managers, 
Supplement KO. 5. National Park Scrvicc, Washington, D.C. 

Morrison, Dondd I;. 
1976 ~ ~ u / t i ~ u r i a f r  Sta in~i ruf  .tirrhoJj, 2nd cd. ~McCraw-Hill, New York. 

,Morrison, Donald G. 
1969 On ~ h c  lnrerprc~alion of Discriminmt Analysis. 3ournal ofMarkning Rntarcb 6: 156-165. 

.Mostcllcr, Frederick, and john W .  Tukey 
I 9 7 7  Data  / r n a / ~ h  anrl R r p ~ w s .  Addison-Wesley, Reading, h.lassachusetts. 

Mucllcr, Jamel \\I. 

1974 TAr Urr o:Samplin~ in ~ I r r b a t o l o g i c u l S u n ~ ~ .  Society for American Archwology Memoir 28. 

~Mueller, James W., editor 
I975 Sampling in ; l rcb~rulog.  University of Arizona Press, T u c s o ~ ~ .  

Overall, J .  E.,  and G. J. Klelr 
1972 Applird b l u l f r ~ a r i a ~ r  Arrcl!ynr. McCraw-Hill, New York. 

Parker, Sandra C. 
1985 Prcdictivc M~dclin~ofSiteSettlcment Systems Using Muhivnriate Logistics. In For Conmrd- 

anrr in ArchatologiralAnol).ri~: Bridginx D a f a  Sfrurfurc, @anfirafim Trcbniyurr, a d  Tbror)., edited by 
Clirislopher C. Carr, pp. 173-207. \Vestport, Kansas City. 

Peeblrs, Thomas C., editor 
1% 1 -4 Clarr I1  C'ulrurd Rcrourrn Sxrrr). of thr E a ~ t r r n  PovJrr Rrvrr Barin, I.Vjoming. met calf-Zier 

Archaeologists, lnc. Submi[ted 1oBurcau ofLand Management. Copies available from Bureau of 
Land Mmagemcnt, Wyoming Slate Officc, Cheycnnc. 

Pindyck, Robert S., and Daniel L. Rubinfcld 
1976 Eronomrfric ACfodrh wrd Economic Fortcarfr. McGraw-Hill, New York. 



DEVELOPMENT AND TESrI'liVG OF QLJANTITAT'IVE MODELS 

Plog, Frcd T. 
1963 Arcborolo~rulSurrt).r: . . I S c s P t r r p ~ n r c .  Unpublished M.A. thesis, Dcpartment ofAnthropol- 

ogy, Lnivcrsit y of Chicago. 

197 1 Some Opcrat ion31 Considcrarions. In I'br Dirtributron ~(Prrhirroric Populotian Agprtgrtrr, cditcd 
by Gcorgc J. Gunrcroian, pp, 45-54. Prcscor t Collcge Anthropological Reporrs No. 1. Prcscot 1 ,  

Arizona. 

1WI SARC: The Computer in a Coopcrativc Effort. In Doto BonC..lpp/itrr~onrrn~Irrbamlog, cditcd 
by Sylvia W. Girincs, pp. 36-56. University of Arizona Press, Tucson. 

1983 Study Area I: Kaibab National Forcs~. In T h r o v  rnd Modrl Building: Rrjning S u m ~ S t r o t t g i r s  
{or lo car in^ Prrb~rrork Hrritogr Rrsowrcn, cditcd by Linda S. Cordcll and Dcc F. Grecn, pp. 63-66. 
Cuhural Rcsourccs D ~ c u ~ n c n t  No, 3,  USDA Forest Service. 

Plog, Fred T., :~nd James N. Hill 
1W1 Explaining Variability in thc Disrribution o i  Prehistoric Popula~ion Aggregates. In Tbr 

Dirtribution ~(Prthutar ir  Popularron A ~ r r g o t r s ,  cditcd by Gcorgc J. Gumcrrnan, pp. 7-36. Prescott 
Collcge Anthropological Kcporrs No. I .  Prcscorr, Arizona. 

Press, S. j., and S. \\'ikon 
1W9 Chmsing Bet ween Logistic and Regression Discrirnirnnr Analysis. 7ournaI o(rhr Amrrimn 

Srorrrrrco/ Arroriorian 73:699-705. 

Reed, Alan D., and Susrn M. Chandler 
1984 .4 >'dm?lr-Orirnrrd CulrurulRnourcr Inrrnrorj m Carbon, Emrry, andSon Prrr Counrirr, Uitib. Nickcns 

and Associarcs. Submit tcd to Bureau ofLand Managcrntnt. Copies available from Bureau ofLand 
Xlanagemcnl, Salt Lake City. 

Rchcr, Charles A. 
1977 Sctt Icrncn~ and Subsisrcncc along the Lover Chaco River. InSrrrlnnrnr ondSwbristcrw a long tk  

Loorr C h m  Rhrr ,  tditcd by Chsrles Rchcr, pp, 7-1 12. University o iNew Mexico Prcss, Alhu- 
querqirc. 

Robinovc, Charles J .  
1981 The Logic of hlultispcct ral Classification and Mapping of Lsnd. Rrnvlrr Srri~ing ofEnrironarrrl 

11:231-244. 

Roper, Donna C.  
1976 A Trend-Surfacc Analysis ofcentral  Plains Radiocarbon Dates. AmrrironAntiqui[g 41:18I-188. 

!379a The !victhodandTheory ofSircCarchment Analysis: A Review. In Adrancrs inArcbarolugrcaI 
M r f b d ~ n d  'Thror:;, vol. 2, editcd by Xlicharl B. Schifkr, pp. 120-140. Academic I'rcss, New York. 

1979b iIrrbrlrologicalSurrrj and Srrrlrmrnt Porrrrn .Cfodtlr I I I  Crvtral Illimtr. Scient ilk Papers 16. Illinois 
Srarc Muscum, Springfield. 

Koscnficld, Gcorgc H. 
1981 Analysis of Variance of Thematic Mapping Experirncnr Dara. Pborogrammrrnt Eng inrc r ingd  

Rrmorr Srnmg 47: 1685- 1692. 

Rorcnlicld, G. H., K. Fitzpatrick-Lins, and H. 5 .  Ling 
1982 Sanrpling for Thematic &Isp Accuracy Testhg.  Phorogrammrfric Eglnarlng artd R r w t r  S o w i g  

48:131-137. 

SAS Jnsriture 
1982 SAS L'wr'r Guidr: Srotrrtics. SAS Insrir ute, C a y ,  North Carolina. 

Schrnidr, Pecer, and Robert P. Straurs 
1975 The  Prediction of Occupation Using Multiple Logit Models. lnrrrn~rionol Economir Rrr im  

16:471-4%. 



KVAMME 

Scholrz, Sandra C ,  
1981 Location Choice Models in Sparta. In Srrrlrmnr Prrdicrionr in Sporra, by R. LafTerty lil ,  J. L. 

Otingcr, S. C Scholtz, W. F. Limp, B. Walkins, and R. 0. Jones, pp. 207422. Arkansas 
Archaeological Survcy Research Scrics No, 14. 

Schovcngerdr, Roberr A. 
1983 Trrhnyurr f i r  Im*rgc Procnring ond Clorrifiro~ion in Rmorr Snrmng. Acadcrnic Press, N c w  York. 

Schroedl, Alan R. 
1WJ Site Location Prrdicr ion m d  Modeling. In Tbr Tar Sandr Prujrc;: Culrural Rnourrr inrmroty and 

P r rd i n i~ r  AfoJrling rn Crnrral unJSouthrrn Oroh, by Betsy L. Tipps. P-Ill Associares. Submitted to  
the Bureau olLand Manqcrnent. Copies available from Bureau of Land hlanagcment, Salt Lakc 
City. 

Schuldenrcin, Joscph 
198J Pinyon Canyon Inrcrinl Management Rcpor~. Comrnonwcalth Associarcs. Submitted to 

Narional Park Scrvicc, Inreragcncy Archcologicd Scrviccs, Denver. Copics available from IAS, 
Denver. 

Smith, C. A. U. 
1947 Somc Exarnplcs of Discrimination. Annalr ofEvgnin 13972-282. 

Steel, R. G .  D., and J .  H. Torric 
1980 Yrmrrplr~ lrrrd Prorrdum ofS~a~ir~ics, 2nd rd.  McCraw-Hill, New York. 

Stophcr, P. R., and A .  H. Mcyburg 
lW9 Snrrv  Samphng unJ .Cf~dtirariotr Anrrbri~ f i r  Social S c i ~ r i ~ r i  and Enginrrrr. Lcxington Books, 

Lexington, Massachusctts. 

Swain, Phillip H .  
1978 Fundamcnrds ofl'atrcrn Rccognirion in Remote Sensing. In Rrmofr Srmreg: T h t . , ~ u o n ~ i r r ~ ~ i ~ r  

Approach, editcd by Phillip H. Swain andShirlcy M. Davis, pp. 136-187, McGraw-Hill, New York. 

Swain, Phillip H., and Shirlcy XI. Davis, editors 
1978 Rrmorr Srnrmng: Thr Quanrrar;i~r ifpproorh. LlcGraw-Hill, New York. 

Thomas, David H. 
1975 Nonsirc Sampling in Archacology: Up the Crcck Wirhou~ aSitc? in Somplingm ~Irchacolug, 

edited by Jarnrs W. Slueller, pp. 61-81. llnivcrsity of Arizona Press, Tucson. 

lW6 Figuring Anfhropology: Firrr Princrphi ofProhubilir). and Sferinics. Holt, Rinchwt and Winston, 
New York. 

1979 A r c h a c o l ~ .  Holt, Rinehart and Winsron, New York. 

Thomas, David H., and Koberr L. Bcrtinger 
1976 Prrhirtoric Phon Eroronr Sr!tlrmrn~s ujfhr [Jpptr RrrrrR wrr Yallc,~, Cr,r~rdNr;~arla. Anthropohgical 

Papcrs of the American M~scurn  of N3tunI History 53(3). Xcw York. 

Thompson, R. A. 
1978 .,I Slrarijird Ran&mSamplr ofthr Cultnrrl  Rrrourcrr in rbt Caqonlandr Srrrion ofrhr Moah Dirlrirf oflbr 

Burtau of LonJ Mlmagmrnr in Earlnn IJroh. Culrural Resources Scrics No. I .  Burcau of Land 
h,ianagenrcnt, Utah. 

Tobler, Wddo R. 
1970 A Compurer hiovic Simulating Urban Growth in the Detroit Region. Eronomir Groclgopb~ 

M:234-240. 

Tubbs, J. D., and W. A. Cobcrly 
1978 Spatial Corrclarion and Its Effcct Upon Classification in Landsat. P r ~ r r J i n ~ ~  of rbr TwrIfib 

Inrrrna~iunol Sjmporram on Rrmorr Srnsing o f E n ~ i r o n m ~ ,  pp. 775-78 1 .  Ann Arhor. 



DEVIXOPMLNT AND TESTING OF QUANTITATIVE MODELS 

Unwin, David J .  
1975 ;In ~n/rodur t ron  to  T r t n d  S y f u r r  Analj.rir. Conccprs m d   technique^ in Modern Geography No. 

5. GeoAbsrncts, University of East Anglia, Norwich. 

198 1 Introductorj Sporrai d n o b r i r .  Meth uen, London. 

Van Ness, Margaret A. 
1984 Analysis of Veget at ion Palterns ar Pirion Canyon, Colorado. A rchaeologicd Research Insr i- 

cute, L'nivcr5ity of Denver. Submitted to Narional Park Servicc, Interagency Archcologicd 
Services, Denvcr. Copies avdable from IAS, Denver. 

Vivian, R. Gvinn, L. Voglcr, A. Sullivm, m d  A. Riegcr 
lW0 AZSITE: A Cornpurcrizcd SELCEM Filc for the Arizonl Statc Mureum Sire Survey 

Records. In 7k A r r z o n a  Sratr  .\furrun Arrbarolopcul Srrt S U ~ J  S y t m ,  compiled by Lawrence E. 
Voglcr, pp. 41-102. Arclucologrcal Scries No. 128. Arizona S r m  XIuscum, Tucson. 

Wclls, I., J. Cusrer, and \I. Klcmas 
1981 Locating Prehisroric Archaeological Sites Using Landsat. P r o c r t J i q c o j f b r  F i f i t r ~ ~ b l n t t r n o l i o n o l  

Sjrnporirm on Rcmorr Snr ing  ojEnwronmrnr.  Ann Arbor. 

Western, D., and T. [?,-me 
1979 Environmcn~ . Aspects ofSctrlement Site Decisions Among Pastoral Maasai, Hrrnan E c o l o ~  

7:75-a. 

Wcthcrill, G. Barrie 
1975 S r q u r n ~ i a l M r t b o J ~  in Srclrrrtin. Chapman and Hall, London. 

Williams, L., D. H. Thomas, and R. L. Bettinger 
1973 Norions ro Numbers: Great Basin Sc~rlemcnts as Polytlwric Sets. In Rcrrsrcb and Tbror). tn 

Cnrrmt  A r r h a r o l o ~ ,  edited by C .  L. Rrdman, pp. 215-238. John Wilel;, New York. 

Wilmscn, Edwin N. 
1973 Interaction, Spacing Behavior, and the Organization ofHunting Bands. ~ournalqfAnrhropolog-  

iral Rnrurcb 2 9  1-3 1 .  

Wobrt, H. llartin 
I976 Loca~~onal Rrlationships in Paleolithic Socic~ y .  ~ o u r n u l  o j t f u m a n  E ~ o / u ~ l o n  5:49-58. 

Wood, J ,  J. 
1978 Optimal Locations in Sctrlemcnt Spacc: A Model for Describing Location Strategies. Amrr i -  

con Antiqurr). 43:258-270. 

Wormingron, H. M., and Robert H. Listcr 
1956 . d rrbaro log~rd  In~r~rrprrorrr  on rbr l intompahjyr Plrrrrau. Denvcr lrluseum of Narurd History 

Proceedings No. 2. 

Wriglcy, Scil 
1976 A n  lntrodrrctron ra rbr Urr o j L o g l r  i\frrdrlr In G t o g r s p b ~ .  Concepts and Tt-chniques in hlodern 

Geography S o .  10. GeoAbsrracts, C'nivcrsity ofEast Anglia, Sorwich. 

19773 Probability Surface Mapping: A N c u  Approach to Trcnd Surface Mapping. Transoc/ronroj 
tbr  I n r r i m r  o f S r ~ t i r b  G r o p p h r r i  2: 129-140. 

1977b Probabrlrrjl Surjarr M#pp~ng.  Conccprs and Trchn iquc~  In Modern Gtwgraphy No. 16. Gco- 
Abstracts, University of East Anglia, Sorwich. 

l a 2  Quantirarive Methods: Dcveloprnenr~ in Discrcrc Choice Modcling. Progrrrl in H u n w  
Crofraph) 6:%7-562. 

Zarky, A. 
1976 Statistical Analysis ofSitc Carchmcnrs ar Ocos, Guatemala. In T b r  Eorly Airroclrnrricun YrlLagr, 

cditcd by Kent 1'. Flanncrv, pp. 117-130. .4cadcrnic Press, New York. 



Zicr, Anne H., and T. C. Pcebles 
1982 R q o r t  or rhr Ktmnrrrr Rnowrrt A r r u  Clun ff Cuirurd Rnourrr I n a t n f o ~ ,  L#nco/r dnd Uintd Courlm, 

Wyoming. Metcalf-Zier Archaeologists, Inc. Submitted to Bureau of Land Managemmr. Copies 
available from Rureau o f  Land Management, Rock Springs District, Wyoming. 

Zubrow, E. B., and J. W. Harbaugh 
lW8 Archaeological Prospecting: Kriging and Simulation. In Sinuiafior stud it^ im Archtitolog, 

edited by Ian Hoddcr, pp. 109-122. Cambridge Press, Cambridge, England. 



Chapter 9 

REMOTE SENSING IN ARCHAEOLOGICAL 
PROJECTION AND PREDICTION 

James I. Ebert 

During the preparatory stages ofthis volume the authors and cdirors wcrc not 
certain that a chaptcr on the potcntial and usc ofrcmote scnsing in archaeological 
prcdictivc modeling would bc cntirely appropriate. T h e  purposes olthis book are to 
explore some of thc complcxiries of prcdic tive modcling, to cxaminc some of the 
biases inherent in our prcscnt mcthods and data (see particuIarly Chaprer7)) and to 
suggest directions char archaeological explanation will h a w  to rakc in order to  
achieve successful and scientifically uscful prcdicrions (Chaprcr 4). Thcre was some 
conccrn that the inclusion of a chapter on using remotc sensing to do prcdictive 
modeling might imply that technical means now exist by which prcdictions can 
easily be made, that all onc has to do is plug cxiscing archaeological and remotc- 
sensing-derivcd cnvironmenral data into a computcr and a prcdictive modcl will 
emerge. 

It is clear from the preceding chapters in this volumc that this is not the case. 
Prcdicrive modeling is an area ofgrcat interest to archaeologists and managers alike, 
and perhaps more than any other fact, this interest indicates that we are just 
beginning to understand how to prcdict and rnodcl. One of the most universal 
cultural pattcrns is that pcoplc worry about and try to prcdict things in inversc 
proportion to  how well they can rcally predict thcm. Nightly wcathcr forecasts, for 
instance, dwcll hcavily on such questions as whcther it will rain tomorrow, and the 
resultant prcdictions arc of mixcd succcss at best; therc is never any discussion 
about whechcr the sun will comc up  in the morning. When we finally do pcrfcct 
archaeological predictive modcling, therc will ptobably bc little discussion about it 
at meetings or in thc literature. As discussed in Chapter 4, however, bcfore we 
achieve success in prediction wc will have had to learn many othcr things-how 
human systcms arc organized at several Icvels; how deposition and postdepositional 
processes affcct thc preservation and visibility of archaeological materials, and how 
this varies across thc landscape; and how to makc our mcthods of data discovcry, 
collection, and analysis compatiblc with what we want to know about the past. In 
short, by the time we know how to do prcdiction we will also havc discovcred how 
to explain the archaeological rccord, and by rhc time wc know how to predict, ufc 
may not nccd to do so anymore. 



At  present, we havc not achicvcd any of thcse goals completely. T h e  preced- 
ing chapters of this volume point out that thcrc is still a great deal ofarchacological 
research to be done. There is not, in fact, agrcemcnt wirhm the profcssion even 
about what predictive modeling means or about definitions ofsuch important basic 
operational tcrms as i i i r  or ylim. This may seem unfortunate, but it nccd not be 
thought ofas being so. Lcarning how to do predictivc modcling and archaeology in 
gcncral is a great adventurc that urc have just begun. 

This chapter will cxplorc the possible rolc that remotc scnsing can play in that 
adventurc and describe attcmpts by archaeologists to use remote sensing to project, 
predict, and explain the archaeological record, thc operation of past bchavior and 
behavioral systems, and the things that separate these two domains. This chapter 
will bcgin with a rrvicw of thc basics ofremotc sensing-what it is, the methods and 
techniques by which it is carried out,  the data that i t  yields, and its capabilities and 
limit a t  ions for archaeological projection and prediction. Relevan t literat urc and 
contemporary attcmpts at incorporating remote scnsing in archaeological projec- 
tion and prediction will bc surveyed, and chc strengths and wcaknesses of these 
approaches discusscd. Finally, some suggestions will bc made about new, potcn- 
tially productive applications of predictivc remotc sensing. 

FUNDAMENTALS OF REMOTE SENSING 

Platforms, Recording Devices, Data Types, and Analyses 

Remote sensing is the science and technology ofobtaining information or  data 
abcut physical objects and the environment [hrough the process of recording, 
measuring, and interprcting photographic images and patterns ofelectrolnagnctic 
radiant cnergy (Ebert 1984:293). T h e  most familiar remote sensing methods are 
photographic, and acrial and ground-based photography has becn employed in 
archaeology since the beginnings of the discipline. T h e  term remote senring was 
coined in the late 1960s in responsc to the need for a term that could include both 
simple photographic data-collection techniques and thc usc of othcr, more exotic 
data sources, such as satellite and airborne multispectral scanners and microwave 
(radar) sensors, in a unified technical field. 

Remote scnsing can best be understood when broken down into sevcral ofits 
component parts. Remote sensing platforms (the vantage points from which data 
are collected) range from the surface of the carth to low-altitudc camera supports, 
such as bipods and tripods, to balloons, aircraft, and satellites hundreds of miles 
above the Iandscapc. The  dcviccs with which rcmotc scnsor data are collected 
include active radar transmitters and receivcrs, proton magnetometers, cameras, 
and scanning devices recording rcflected radiation. Rcmote scnsor data can be 
recorded by thcse devices photochcmically (i.c., with photographic emulsions) or  
cIectronically in cither andog or digital formats, and in one or more wide or 
restricted wavelength bands. 
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Remote sensor data can be analyzed by human interpretcrs who (a) simply 
look at visual products or ( 6 )  use magnifying and projccting dcvices to examine 
minute dctails of an image or (c) employ stereoscopes, which producc a threc- 
dimensional image from partially overlapping photographic prints. Stereoscopic 
images can also be used to  producc orthophotos (photographs in which errors of 
scale and orthographic errors havc been removed) and photogrammetric maps, the 
most familiar of which arc USGS topographic maps, virtually all of which arc madc 
from aerial photographs. 

T h c  advent of computers capable of digital image processing has made avail- 
able new and versatile forms of remote sensor data analysis based on mathematical 
manipulation of the matrix of picture elements (pixclr) that constitute a digital 
image. Each pixel making up a digital image has a numerical value, which esprcsses 
the reflcctancc of the represented portion of thc earth's surface. These values can 
be subjected to filtering, classificarion, histogram stretching (contrast enhance- 
ment), density slicing (density range simplification), power spectrum analysis, 
geometric correction, resampling, pattern recognition routincs, and virtually any 
other matrix operation. While digital data are directly derived by most scanning 
devices, photographic and other analog data can be digitized into pixels for digital 
analysis, and conversely, digital data can be converted into visual images for 
photointerpretation. 

Clearly, remote sensing encompasses a great many methods and techniques; it 
is beyond the scope of this chapter to  describe and explain each of them. T h e  
fundamentals and details of remote sensor platforms, data collection devices, data 
types, and data analysis devices and mcthods are covered exhaustively in many 
available sources to  which the rcader should rcfer for more complete information. 
One of the most comprehensive of thesc sources is the American Society of 
Photogrammetry's Manual of Remote Stnsing (Colwell 1983); one chapter in that 
volume (Ebert and Lyons 1983) focuses on archaeological, anthropological, and 
cultural resource remote sensing. Other excellent general remote sensing refer- 
ences are Avery (1977) and Lillcsand and Kiefer (1979). A more concise summary of 
gcncral archaeological applications of remote sensing can bc found in Ebcrt (1984). 

Scales and Resolution 

Regardless of data source or type, there are two basic properties shared by all 
remote sensor data: scde and rfiolution. T h e  scale of an image refers to  the relation- 
ship between the size of the image and thc actual size of the scene that the image 
represents. T h e  scale of an image is determincd by the distance between the data 
collection device and the scene being imagcd and by thc Geld of view of the data 
collection device. For aerial photographic data, for instancc, the scale cquals the 
focal length ofthe lens divided by flight height. T h e  scale is generally expressed as a 
ratio of 1:x (distance on t hc photograph:actual sccne distance; Avery 1977:43). As an 
example, in a photograph with a scale of 1:12,000, 1 cm on the photographic image 
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would represent a ground distance of 12,000 cm or 120 m. T h e  scale ofdata recorded 
by such digital deviccs as multispectral scanncrs is determined similarly by distance 
(altitude) and thc instantaneous ficld of view of the scanner (Lillesand and Kiefer 
1979:3%). 

Remote sensor data resolution is a more complex concept than scale because it 
can be of rhrec basic sorts: spatial, radiometric, and tcmporal. Spatial rcsolution 
refers to the minimum size ofactualobjccts that can be disccrned in an imagc. This 
varies with rccording mcdium parameters (photographic emulsions have the high- 
est rcsolution of any rcmotc scnsing rccording medium) but in all cases is also a 
direct function ofimagc scale. The  smaller the scale ofan image (that is, thc smallcr 
the fraction of image sizcobjcct sizc), the lowcr the resolution. Sincc largcr scalc 
images covrr a smaller area than smaller scale imagcs, therc is always an economic 
trade-off between scale and spatial resolution in rcmote scnsing. 

Radiometric resolution rcfcrs t o  the portion or portions ofthe eltctromagnetic 
spectrum rccordcd in rcmotc scnsor data. Panchromatic photographs record the 
samc portion of the electromagnctic spectrum secn by thc human cye; other 
photographic emulsions rccord ultraviolet or ncar infrarcd radiation. Microwave 
(radar) deviccs record wavelengths much longer than ultraviolet light, while 
scanners can rccord visual through far-infrared spcctra. Film/fdtcr combinations 
can rcstrict thc portions of thc spectrum that cameras measure, and multiband 
camera clustcrs have bccn uscd to produce multispcctra! photographic data. Multi- 
spectral scanners (MSS) rccord more than one wavelength band; the rxamplc of 
multispectral scanner data most familiar toand most frcquently uscd by archacolo- 
gists is Landsac, which is discussed at greater lcngth below. 

Temporal rcsolution is a mcasurc ofhow frequently a sccnc is imaged through 
rcpcatcd acrial photographic ovcrflights or satellitc scnsor passes. Comparison of 
aerial photographs from thc 1930s with those taken morc recently provides onc 
examplc of tcmporal resolution, but thc tcrm takcs on a clcarcr mcaning in 
refcrcncc t o  regularly repeated satclIite data co!lecrion. T h e  Landsat satellites, for 
instance, cover thc entire surface of the earth (cloud conditions pcrmit ting) about 
cvery 18 days. Tcmporal resolution is important bccausc thc surface and ncar 
surface of thc  earth changes on both large time scales (e.g., geological and gcomor- 
phological changc) and small time scales (c.g., seasonal variation, vcgctational 
changc, and modcrn devclopmcnt), and change at either scale may be important 
archaeologically . 

Remote Sensor Data for Projection and Prediction 

Most archaeological uscs of rcmote scnsing that can be charaetcrizcd as 
projcctivc or predictive make use of two general data sources: acrial photographs 
and airborne or satcllitc multispcctral scanner products. Archaeologists havc made 
use of both existing data and data acquircd spccilically for thcir projects. 
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Existing remote sensor data arc of course the least expensive to use, for rhe 
costs of their acquisirion have already bccn met by orhers, and copies of rhe results 
can be obrained cheaply. Aerial phorographs at a variety of scales and in several 
emulsions-black and white, color, and black-and-white or color infrared-have 
been taken ofalmost all rhc continental United States and much of rhe world. Many 
acrial phorographs arc available from govcrnmenr agencies at nominal cost (for a lisr 
of these see May 1978 or Eberr 1984). The  carliest systemaric vcrtical aerial 
photographic coveragc ofparts of rhe United Stares was initiared in rhe 1930s by rhe 
Soil Conservation Service, Deparrmcnt of Agriculrure, and beginning ar abour the - - - 
same time rhe U.S. Geological Survey bcgan blanket coverage of the counrry for 
topographic mapping purposcs. Since that time, ocher government agencies have 
been taking aerial phorographs ar an ever-increasing raw. Generally ar leasr one and 
often five or tcn different rypes of aerial photographs will be available for a given 
area of interest. For many purposcs and in many projecr areas, it is like17 that 
existing aerial photographs will mecr at leasr some ofthe archaeological or  manage- 
rial remotc scnsing nceds. It is also likely, howevcr, that no esisring acrial photo- 
graphs will satisfy all pcrceivcd needs. Most governmenr agcncy aerial mapping 
phorographs arc taken at scales smaller than 1:15,000 (1  cm on the phoro represents 
I50 m on the ground), and many arc at very small scales, up to 1:400,000. 

Sometimes it may be necessary to acquire new, projecr-specific aerial photo- 
graphs to meet certain scale and resolurion needs. It may also be the case that the 
rime ofday or year in which existing photos were taken, or rhcir cmulsions, leave 
something to be desired. Flying new photos may at first appear to be an cxpcnsivc 
solurion, and certainly it is morc expensive than buying photographic prints from 
the USGS or other agencies. Effectiveness must aIso be considered, however, and 
often this conccrn may outwcigh high acquisition costs, especially if no other 
suitable photographs arc avaiIablc (Awry and Lyons 1981:18). 

T h e  other remote sensor data source commonly employed in archaeological 
efforts coward projection and prcdiction consists ofimages derived from the digital 
multispectral scanners aboard the Landsat satellites. T h c  first Landsat (then called 
ERTS-I) was launched by the USGS in 1972; since that time four Landsar sacellires 
have be& launched and have provided millions of images of the earth's surface. 
Landsats I and 2 orbit rhc carrh 13 times a day in acircuIar orbit about 900 km above 
rhc carrh; each covers a 185 km swath with little sidc-to-side overlap ar rhc equator 
and as much as 85 pcrcenr a t  Ell0 north and south latitude. The  sarellites' orbits arc 
sun-synchronous, and images arc always collectcd at mid-morning. Landsats 1 and 2 
collect data in four bands dcsigned to provide a contrasting basis for discriminating 
b e t a w n  water and land and among different sorts ofvegetation covcr and differenr 
surficial dcposirs. Landsat dara arc resampled and corrected after being sent to  
earth, and the resulting resolution of Landsar I and 2 dara is 80 by 80 m pixels. 
Landsat 3 has thc same radiometric resolution in four bands, with the addition of a 
thermal infrared band and a somcwhat higher (55 by 55 m) resolution. Landsat 4, 
launched in 1984, has seven spccrral bands and even greater resolution. For a 
detailed discussion of the parrrmetcrs of thc Landsat satcllitc sensor systems and 
their products, scc LiIlesand and Kicfer (1979:530-583). 
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T h e  Landsar satellites are designed to provide versatile data with medium 
spatial rcsolurion, high temporal resolution, and radiometric rcsolution that would 
make their data ideal for earth resources studies and assessments. Even with a 55 by 
55 m pixel spatial resolution, it is clear that very few archaeological sites or materials 
will be visible on Landsat MSS data. Landsat data are, however, ideal for analyzing, 
measuring, and mapping what archaeologists think of as "independent variables," 
whether thesc be assumed landscape preferences of past pcople, ecosystemic 
variables affecting the placement of human systems and their components, or 
depositional and postdepositional processes that affect the preservation or  visibility 
of the archaeologicaI rccord. It is small wonder that archaeologists interested in 
predicting have madc use ofLandsat in a variety ofways, and it is likely that Landsat 
data and perhaps data from similar, soon-to-be-launched satellite sensors (the 
French SPOT, for instance) will constitute a major resource for such experirncnts. 

Remote Sensor Data Analysis Methods and Techniques 

Two  basic intetpretive or analytical methods have bccn used by archaeologists 
who have incorporated remote sensing in thcir projective and predictive cxperi- 
ments. T h e  first ofthesc is visual interpretation. As noted above, visual interpreta- 
tion is accomplished by looking at an image in one of several ways. Aerial photo- 
graphs or  visual images derived from other analog or digital remote scnsing sources, 
such as Landsat, can simply be inspected without optical aids, with images being 
viewed either singly or overlaid in mosaic form. The  interpreter, making usc of 
internalized knowledge about how certain landforms or other charactcristics of the 
environment should appear, makes judgmcn ts about areas or zones of differen rial 
occurrence of these characteristics on the basis of photographic "cues," including 
tone, color, texture, pattern, shape, and relationship of one photographically 
imaged feature to another (for a more complcte discussion of thesc image proper- 
ties, see Ray 1980:b-13). 

In stereoscopic photointerpretation, an interpreter views two partially over- 
lapping photographs, each taken from a different position along a flight line; this is 
usually accomplished with thc aid ofa  stereoscope, which allows thc viewer to see 
one photograph with each eye. This results in the perception ofa three-dimensional 
image in which the vertical dimension is exaggerated because ofthe widc spacing of 
the points from which the stereo photos were taken relative to the spacing between 
human eyes. Small topographic differences are thus easily distinguished, giving 
clues to  landform and the identity or nature of other characteristics of the sccnc 
viewed; Ray (1980: 14) cstimates that topographic differences ofas little as I ft can be 
disccrned by the average interpreter using a stcreoscopc and 1:20,000 scale aerial 
photos. 

Photointerpretation might be thought of as being subjective, and to a certain 
extent it is. Human interpreters, especially those with expcriencc in photointcrpre- 
tation, possess extensive internalized information about what different landscape 



REMOTE SESSINC IN PROJECTIOK AKD PREDICTION 

featurcs and other environmental characreriscics "shoitld" look like and mav 
scrctch thcsc interprecarions or gcncralize boundarics. On the ocher hand, this 
internal information allows an intcrpreter to  makc supported guesses-usually 
correct ones-about phenomen:~ not previously experienced. This is something 
thac even thc most sophisticatcd image-processing machines cannot do and is the 
rcascn that image analysls cannot, at least at prcscnc, be totally automatic. 

It should be noted a t  this point that all map making is a proccss of inrerpreca- 
tion. Most topographic maps in use today, including chc CSGS topographic maps 
used in many experiments in archaeological projection and prediction, arc compiled 
using aerial photographs as a primary or csclusive data source. T h e  topographic 
contours arc mcasurcd and drawn from rhc rhree-dimensional data conraincd in 
vertical-axis, stereo aerial photographs using optical-mechanical or analytical phoro- 
grammetric plotting dcviccs. Whilc [his proccss is, to a certain cxtcnt, subjective, it 
is quite accurate and precisely rcpcatable. The  indicated degree ofslopc may be less 
so, howcvcr, as contour lines too close togerhcr to be separated during printing arc 
often artificially spread apart. Almost all the rest of the data shown on topographic 
maps are ~ub~iccrivcly intcrprcred and generalized-including the intermitccncy 
and even the esistence ofwater in streams or springs, and the boundaries offorested 
vs nonforesred lands. Maps arc interpretations, and whcn using them for a specific 
purposc one must ask what chc purpose of the interpreter was. For [his reason it 
may well be best ro rely on one's own "first generacion" intcrprctation from aerial 
photographs rathcr rhan on the standardized subjectivity ofUSCS maps for mca- 
surcment of landform and environmental variables. 

T h c  second class of mcchods used bv archaeologists in analyzing remote sensor 
data for projective or predictive purposes is encompassed by digital analysis. Digital 
analysis is done by subjecting a matrix of pixel values reprcsencing an image to 
numcrical analysis, usually using a compurer. Computer-assisted image analysis 
procedures includc data preprocessing (image sampling and reconstruction, noise 
removal and reduction, and removal ofimagc blur and orhcr distorrions; Billingsky 
1983), partcrn recognition (Haralick and Fu 1983), the correction of geomctric 
distortions in imagcs (Bernstein 1983), digital filtering for edge enhancement, 
histogram rnanipulacions for contrast cnhanccmcnt, and classificacion of image 
characrcriscics through clusrering analyscs (Estcs ct al. 1983). Many of these 
operations h a w  alrcady bccn pcrformcd on Landsar MSS digital data when it is 
received from EROS. In addition, digital dara can be processed using any ocher 
numcrical or  statistical procedure chat can be performed on matris dara, and in this 
manner pixcl spectral intensity valucs can be compared with other values (for 
inst ancc, obscrved densities of archaeological discovericli or materials). The  
archaeological applications of remote sensor data to projection and prediction 
discussed later in this chapter have used either cluster-bawd classifications of piscls 
or raw piscl data and consist ofcomparisons ofthcse image data with archaeological 
dara distributions. 
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Several archaeological esperimcncs in which remotc scnsing data and mcthods 
have been applied ro projection and predicrion will be discussed below. T h e  
porential urility ofremotc sensing in such rescarch is high, bur a short disci~ssion of 
some of the limirations ofremotc scnsing in archaeology is neccssary for ar Icasr rwo 
reasons. Firsr, i t  has been suggesrcd in several places recently [hat somc archacolog- 
ical remote sensing enthusiasts may have oversold rhc porenrial of this body of 
techniques and methods (Dowman 1980, 1983; Dunnell 1980; Evans 1983a, 1983b; 
Fuller 1983; Whimsrer 19833, 1983b). Second, i r  is neccssarv ro emphasize rhat the 
limitations of any measuring rcchnology are dependent on the condirions under 
which it is cmployed, and that rhe failure of rcchniques to reach their full potential 
in onc situation docs not mean rhat thcy will always bc less rhan useful. 

Limitarions in archacological rcrnore sensing can be the rcsult of many factors. 
They may be inherent in the sensing systcms thernselvcs; rhc scale and sparial 
rcsolution of data provided by a sysrem imposr limits on what can be sccn or 
analyzed. Lcnscs, shutrcr spccds, scanning races, and thc spceds and alritudcs of the 
platforms that bear rcmore sensor dcviccs can imposc restrictions on the usefulness 
of data for specific purposcs. Spccrral resolution is anothcr important system 
limitation, and for any purpose it is important to dcrerminc just what portions of thc 
elcctromagncric spcctrum should be n~easurcd bcfore remorc sensor dara are 
collcctcd. Photographic sensors imagc only a small portion of thc  clectromagnetic 
spectrum, but they possess much higher resolution than most mulrispcctral scanner 
sysrcms. 

lnsrrumcnrs available for laboratory analysis may impose another set oflimita- 
tions on the application of remote sensor data to archaeological problems. While 
acceptable pocket stercoscopcs can be purchased for about S30, more uscfi~l srcreo- 
scopes can cost thousands of dollars and may not be available to all archaeologists. 
Digital image-processing sysrems are even more expcnsive, although it may be 
possible to rcnt rime on such systems. Several esamples of Icss-than-optimun~ 
digital imagc analysis being applicd ro "prcdicrivc modeling" in an artcmpr to save 
moncy will be summarized later in this chaprcr. In many if nor most cascs, 
archaeologists who wish to incorporate rcmore scnsing methods inro their projects 
will do  better to contact qualificd and well-quipped archacological and cultural 
rcsource rcmore scnsing consuItants, rathcr than to cntcrrain notlons of doing their 
rcmore scnsing work "in housc." 

Environmcntal factors impose another sort of limitation on archaeological 
rcmore sensing. Clouds, misr, and haze can obscurc rhc view of most scnsor 
sysrems; heavy snow or vegcrarion cover may also dcfcat some sysrems (mulrispcc- 
tral scanners and photographic sensors) but  have Iittlc cffect on others. (Radar, for 
insrancc, penetrarcs vcgeration canopics with relative case.) T h e  phenomena 
recorded by some scanncrsystcms, in particular thermal scanners, arc transient and 
ofrcn can be derected only for a few hours or even minutes whcn conditions are 
optimal; idcnrifying such optimal condirions may take years of cxpcrimenration in 
any srudy area (Perisset and Tabbagh 1981; Tabbagh 1977). 
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Individual human limitations, such as ability or inability to perceive stereo 
images, espcricncc in phocointerprc tat ion, previous familiarity with a study area, or 
knowledge about what various characteristics of the cnvironmcnt look likc, can 
affect the application ofrcmote scnsing to any problem arca. In general, in order for 
a rcsearchcr to apply remocc sensing to a problem succcssfi~ll~ rhc problcm must be 
stated explicitly; thc place ofremotc sensing in the solution ofthar problem musr be 
defined; and appropriate mcrhods for discovering, collecting, and analyzing rhc 
archaeological (dependent) data that are to be contrasted with environmental 
(indepcndcnt) variables musr bc selected. As we w~ll  scc whrn we examine the ways 
in which archaeologisrs h a w  applicd remote sensing to thc problcm ofprcdicting 
rhe locations and characreristics of archaeological materials, failure to mcw thcsc 
condirions may be one of tht- most obvious reasons for the lack of satisfying 
conclusions. It may, in fact, cxplain much ofthc prescnr lack ofsuccess In predictive 
modeling in gencral. Again i t  should be emphasized that the specialized rcchnology 
of rcmotc sensing-and thc problcms it can or cannot help thc archaeologist to  
solve-arc best assessed and implemented through a rcam approach incorporating 
not only in-house cultural rcsourcc managcment and archaeological pcmonnel, but 
a specialist in archaeological and culruraI resourccs rcmotc sensing as well. 

CONTEMPORARY APPLICATIONS OF REMOTE SENSING 
T O  ARCHAEOLOGICAL PROJECTION AND PREDICTION 

A Taxonomy of Predictive Archaeological Remote Sensing 

In a prcvious publication (Ebcrt 1984:341) I proposcd a casonomy char distin- 
guishes betwecn archaeological sampling, projection, and prcdiction. Bur tasono- 
mies are problem-specific, and thc problcm chat 1 was addressing in this previous 
publication was the application ofremoce sensing to survey archaeology as awhole. 
T h e  purpose ofthis chaptcr is somewhat different: ir  deals specifically with remote 
scnsing applications to projection and/or prcdiction. As is evident in Chapter 4 of' 
this book, I rhink it is probably most to view predrclion, here, as an 
intcgraI part of the explanatory framework of archaeology (see Figurc 4.1), as 
something chat archaeologists must do to draw rcstable cspectarions from modtlr 
char describe the  ways in which we chink the archaeological record is related to the 
organizarion of past human systems. The  term propcfiun has been used in the 
taxonomy in Chapter 4 to dcsignatc empirical gencralizations about thc occurrence 
ofarchaeological materials in unsurveyed or unsampled areas on thc basis ofknown 
distributions in surveycd areas. Because lax definitions can lcad to problems in any 
scientific endcavor (see the Chapter 4 discussion of the s i l i  conccpr, for example), 
rhc definitions ofprojcccion and prediction set forth in Chapter 4 wilI bc ust-d here, 
rather than chose I proposed earlier (in Ebcrt 1984). 
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Another theme ofchapter  4 is that we almost certainly do  not know how to do 
successlul predictive modeling, in the sense o l  bein:., able to make generally 
applicable statements about the location of archaeological materials in unsurveyed 
areas, at the present time. What is more, we do not know exactly why we cannot 
successlully predict in a general way. For this reason, it is my belielthat almost all of 
the archaeological "predictions" that have been attempted, by archaeologists in 
general and by those employing remote sensor-derived data, are probably projec- 
tions in the sense that this term is used in Chapter 4. 

The  lollowing discussion of approaches that have used remote sensing data to 
generate projections is arranged according to a tasonomy that emphasizes differen- 
ces in (a) the things that archaeologists want to predict and (b)  the remote sensing 
analysis method employed. 

The  first taxonomic category comprises approaches that gcncralize from 
estant archaeological and environmental data about areas in which archaeological 
materials are likely to be found but consider only peripherally where materials will 
not be found. Such approaches could be thought ofas prospecting, and their goal is 
to streamline the discovery ofarchaeological materials in order that those materials 
may bc studied or preserved. T h e  two basic analy tical methods that havc been used 
by archaeologists engaged in this sort of projcction are visual analysis and digital 
analysis. 

T h e  second major tasonomic category consists ofapproaches to archaeological 
projection that use remote sensing to identify areas where archaeological materials 
can be expected and areas where they are not expccted to  be found. In effect, these 
approaches lead to projections of the differential densities of archaeological ma;e- 
rials in a study area or, in some cases, densities olspecific rypes of materials. They 
can also be used to design sampling stratifications that are intended to provide this 
rypc. ofdensity information. Again, a distinction will be made between approaches 
that use visual analysis and those that use digital analysis. 

What follows is a review of the literature concerning archaeological projective 
attempts incorporating remote sensing data, organized by these taxonomic catego- 
ries. The  successes and failures of these approaches will be discussed once the 
summaries have been presented. 

First, it should be pointed out that the distinction between these two methods 
is really technological-people are involved in making decisions whether the 
processing is done by the human brain or partly by a machine. There are, however, 
some basic quantitative differences between visual interpretation olenvironmental 
variables and digital analysis. One of the most obvious of these is that people 
generalize when they interpret things from remote sensor data, such as aerial 
photographs or Landsat visual images. A large, relatively homogeneous area of (for 
instance) pine forest is identified as such by a human interpreter, and tiny inclusions 
of oak are ignored. In the course ofa  computer digital analysis, on the other hand, 
each pixel is classified, and if an oak pixel falls within a mass of pinon pixels, it is 
classified as oak forest. In many cases, there is nothing wrong with or unworkable 
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about the gcneralizations of human intcrpretcrs; thc prescnce of a few oak trees 
within the piiion forest probably constitutcs cnvironmcntal variation at a scale 
incomparable with the scalc ofhuman mobility and systcms organization. For othcr 
purposes-in compuring an environmental diversity index using a moving filter 
across space, for instance-the ungcneralized, digital classification may bc rhe only 
workable dara reprcsenrarion. 

It has been asserted (Baker and Sessions 1979) rhar digiral analysis is superior to 
human visual interpretation bccause human biases are not injected into digital 
producrs and becausc digital analyses arc replicable. This is a somcwhar optimistic 
interprcration of what digital analysis actually enrails. In human interpretation, 
subjecrive decisions are made about where boundaries fall, while in digiral analysis 
subjective, human decisions must be madc abour the limits ofclusrcr boundarics (in 
multidimensional analyses) or abour the confidence limirs one is willing to  accept as 
representing useful correlations b e r a w n  rhe occurrence of cultural and cnviron- 
mental variables. The  mcuning assigned to intcrprered or digirally derivcd variables 
is subjccrive in both cases. 

Nonetheless, a distinction will be madc below bcrween those "prcdicrive" 
artempts using visual inrerprerarion and those using digital analysis. This is done 
for the mosr part for historical reasons, as visual interpretations for archaeological 
purposes were arrcmpted earlier rhan machine-proccssing-based attempts. Digital 
processing can be cost-saving when large gcographic areas are being inspected, and 
digital-format prcdictive products arc also easier to incorporate inro geographic 
informarion systems. For these reasons, digital-format products are likely to bc the 
major rhrusr of remore-sensing-aided archaeology in the future. 

Archaeological Projection Through Visual Analysis of 
Remote Sensor Data 

Archaeologists have been using remote sensing, particularly aerial photointer- 
prerarion, for thc discovery and inspection of sircs since the early 1900s (Beazeley 
1919; Capper 1907; Lindbergh 1!Z9). Especially in Great Brirain and Europe, mosr 
archaeological uses ofaerial photographs are srili direcrcd roward actually seeing the 
manifesrations of sites and structures rhrough shadow or crop marks (Rilcy 1980, 
1982; Wilson 1982). T h c  examples of "prediction" ofarcas likely to contain posirive 
archaeological evidence discussed here, however, are somewhar morc ind'irect. In 
thcsc examples the expcrimenrers seek nor ro see acrual sircs bur rather ro corrclare 
rhe distriburion or occurtencc of known archacological materials with certain 
landform and environmental characrerisrics. These independent variables are then 
sought in areas thar have nor been archaeologically investigated, and uninvesti- 
gated areas exhibiting such properties arc postdated to have a high likelihood of 
conraining archaeological matcrials. In these srudics, remore sensing typically 
provides the basis for characterizing the environment in areas known to contain 
sires as well as for finding unsurveyed areas with rhe same characreristics. 
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One of the earliest predictive studies of this type was carried out in Iowa and 
used aerial photographs t o  dcfinc and map soil typcs that werc thought to be ideal 
for the agricultural subsisrcncc pracriccs of the mound-building pcoplc who occu- 
pied thc area shortly prior to European contact (Tandarich 1975). Soil types arcre 
photointerprcted and classified according to Department of Agriculture criteria, 
and those soil types that had becn found to be associated with mound sites in the 
past werc further interpreted in stcrco to find mounds. 

Another early predictive/prospccting study made use of Landsat (ERTS-I) 
visual multispectral scanner (MSS) data. In this study, Cook and Stringcr (1975) 
attemptcd first to see the actual manifestations of largc, known, historically aban- 
doncd village sitcs in a boreal forest around Kaltag, Alaska, but they were unable to  
determine whether thc spectral signatures they saw indicated the villages thcm- 
selves. Thcn, by characterizing the landscape and vegetation in the vicinity of the 
known villagc sites, thcy attempted to  predict thepofzniiul prcsence of additional 
viliagcs in othcr parts of thcir 450 mi' study area. They felt that thcy werc able to  
relocate 5 of thc 12 known village sitcs, and thcy also predicted a number of other 
potcntial sites, although thcse wcre not field checked. 

A similar though more rigorous method was adopted by archaeologists at the 
National Park Servicc's Remotc Scnsing Division in a study directed toward 
locating areas within Shcnandoah National Park in Virginia, which had a high 
potential for prehistoric and historical archaeological site occurrence (Ebert and 
Guticrrcz 1979a, 1979b, 1979~). One impetus behind this study was the desire ofpark 
personnel to find cscmplary archaeological sitcs that could be uscd in interpretive 
programs. Additionally, this cxpcriment was undcrtaken in an attempt to show that 
aerial remote sensing could be of value in the castcrn deciduous woodland; a 
persistent theme in critiques ofarchaeological remote sensing is that it is only useful 
in the arid Southwest, where sites can be seen because ofsparsc vegetation cover. In 
the Shcnandoah projcct it was not sites thcmselvcs that werc secn, but rather their 
settings. 

T h e  first step in this project was the selection of environmenta1 indicators 
(Ebcrt and Gutierrcz 1979b:7), which wcre chosen not becausc of any assumed 
prcfercnccs on the part ofprehistoric and historical occupants ofthe area but rather 
because these environmental characteristics could bc photointcrpreted from 
I: 12,000 scale color transparency aerial photographs oftwo arcas of the park. Values 
for thc variables ofslope typc, slopc angle, slope aspect, vegetation typc, vcgctation 
diversity, soil thickncss, typc of surface deposit, bedrock typc, and prosimity to  
contacts, faults, and shcar zoncs wcre formulated, and recognition criteria for each 
value were csplicitly identified. 

The  next stcp in the project was co mark the exact locations of previously 
located hisrorical and prehistoric sitcs on thc aerial photographs. In no casc could 
rhe site itself be seen, but topographic factors allowed map locations to be trans- 
fcrred to the photos accurately. Within an arbitrary radius of250 ft around each 
known location, the environmental indicators wcre interprcred using a Bausch and 
Lomb roll-film stercoscopc with magnification up ro 2 0 ~ .  T h c  results of this 
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interpretation were tabulated and coded, and the characteristics of places where 
sites wcre likely robe found were summarized. Some successful "indicators" ofsites 
were slope anglcs from 0 to 5", exposures of southcast to southwest, and proximity 
ro fault or shear zones; historical sites differed from prehistoric ones in that most 
known historical sites occurred on locally flat areas on sideslopes and in colluvial or 
alluvial deposits. 

Finally, thc aerial photographs were reintcrpretcd to locate areas rhat exhib- 
ited these site-Iikcly indicators but had not been survcycd for archaeological 
materials in the past. A field check at Shenandoah revealed the presence of 
previously unrecorded archaeoIogica1 rnatcrials, some of a spectacular nature 
(including a large ninetcenth-century mill site; Figure 9.1), in 45 percent of the 
projected "likely" areas. One obvious weakness ofthis study was that no unlikely 
arcas wcrc field checked to test the rejection potential of this projection. 

AG-3 Millstone ,be 

. 
A .  

Rock-Lined Sluice 

0 100 feet - 
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Figure 9.1. An cightcrnth-ccnrury mill or indusrrid sirc discovcrcd in S h c n m d o ~ h  Nariond Park, 
Virginia, rhrough rcmo~c-sensing-idcd archac.ologicnl projrc[ion, T l ~ c  cxistcncc of this complcs ws known 
Crom tax  records, b ~ t  i t s  locarion was not pinpointed until Lcld checking oi"prob~blc  sirv arcas" ddcrivcd 
rhrough rhc analysisof I :  12,000 sc3lecolor infrared acrial pliotographs ofportions oirllc park was inicixcd(sftcr 
Ebert and Guticrrcz 1981). 
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In another projective study carried out during the same year, 1:60,000 and 
1: 120,000 scalc color infrared transparency phorographs wcre inspected for indica- 
tors ofsite occurrcncc in thc National Pctrolcum Rcservc-Alaska on Alaska's North 
Slope (Gal 1979). Gal fclr that, whilc therc was little hopc ofactually secing village 
sites rhemsclves, there was morc potentiaI for "identifying arcas whcre mc to look 
for archacological sites and arcas of high archaeological potential" (1979:1), H e  
sought such indicators as rhc consistcnt appearance of whaling lancs and areas 
wherc early melting of snow and ice providcd locations desirable for springtime 
camping grounds. Areas with known archacological sitcs appeared to be lighter in 
color than surrounding areas in the color infrared acrial photographs, which were 
taken in July; Gal believed that this indicated better-draincd placcs whcre vegeta- 
tion flourished but dicd off first. Gal concluded chat such studies held great 
potential, cspccially in the Arctic wherc ground reconnaissance is espcnsivc and 
diffkult and wherc "narrowing down" of survey areas is virtually necessary. 

Two studies that f o l l ou~d  the lead of the Shenandoah projection experiment 
werc also undertaken in the Eastern forests by archaeologists from thc National 
Park Service's Southeastern Archaeological Center. Inspection of color infrared 
aerial photographs, which make it rclatively easy to recognize rhc distinction 
bctwecn water and land, provided a preliminary indication of whcre to conduct 
archaeological surveys in the Big Cypress Swamp in Florida 0. Ehrcnhard 1980). In 
such arcas, ofcourse, human occupation takes place only where there is no standing 
water, a criterion that restricts "sitc likely" arcas scverely. By noting the locations 
ofsmalI mounded areas surrounded by sawgrass and watcr, archacologists wcre able 
to narrow down their survey cfforts to a very small percentagc of the total area 
cncompassed by Big Cypress Swamp. A more complcx serics of indicators intcr- 
preted from aerial photographs, including topographic, hydrologic, and soil pro- 
ductivity variables, werc correlated with different temporal and functional charac- 
tcristics of a sample of previously known archaeological materials in the 
Chattahoochcc River Recreation Area; thc rcsultant model proved to be successful 
in locating sites from different time periods (E.  Ehrcnhard 1980). 

Digital Approaches to Archaeological Projection 

A digital approach to detecting and analyzing the "residual effects ofprehis- 
toric human settlement upon landscapes" was undertaken in the law 1970s in 
southwcstem New Mcsico in an attempt to locate Animas phasc pueblos for further 
study (Findlow and Confeld 1980:31). Landsat MSS computer compatible tapes 
(CCTs) were analyzcd at Columbia University using Map 1 software. T h e  spectral 
characteristics of "catchments" of32 by 40 pixels (about 1200 acres), 16 by 20 pixcls 
(about 300 acres), and 8 by 10 pixcls (80 acres) ccntercd on 8 largc (100-500 room) 
Animas phasc sites and 33 randomly selectcd points that had not been previously 
surveyed werc compared using analysis ofvariance statistics. Findlow and ConfeId 
concluded that soil and vegetation were darker around sitc areas than in nonsitc 
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catchments (Figurc9.2) and that these ditTercnccs were particularly obvious in rhc 8 
by 10 pixel examples. The lower teflccrancc was arrributed ro greatcr moiscurc 
retention and ro :he existence ofcultural dcbris in middens surrounding the large 
sites. 
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Figure 9.2. Digitally dsrivcd reflccrancr vslues for sires vs nonsircs in  s o ~ ~ r h u w r c r n  i i c w  

Mexico taken from Larrdsat MSS computcr comparible rapcs (after Fitidlow arid Confeld 1980). 
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Ir is dificulr ro determine whcrher rhc above example acrually consrirures a 
casc of "seeing sites," or wherhcr ir was [he conrexts of [he sites chat wcre being 
dececrcd. Anorher projecrivc study urilizing remote sensing rhar evokes rhe same 
quesrion has been pursued since rhe early 1980s by K.-Peter h d c  ar Salisbury State 
University in Maryland (Lade 198Ia, 1981b, 1982). Using Salisbury Scacc's ASTEP I1 
software for rhe analysis of Landsat MSS data, Ladc cxamincd the land cover and 
geology ofa 34,000 km2 study arca (an entirc Landsar sccne), classifying pixels on thc 
basis of "angular disrancr: relacionships observcd in vecror space of normalized 
data" (principal components analysis; Ladc 1981x13). He found thar dry, sandy 
ridges werc casily discerned rhrough dcnsiry slicing of Landsat's band 7 (Figure 
9.3)) and rhar such ridgcs were usually entirely covcred with culrural materials 
rcprescnring multiple occupations rhrough long time pcriods. Ir is not clear 
whcthcr Lade is idcnrifying chc eflccrs of such occupation or a particular landform 
type conducive to occupation (or ro finding marcrials-sand ridges rypically have 
discontinuous vcgcration cover), but his projccrions are undeniably successful ar 
finding sire-likely arras. 

A more rigorous prospecring approach, which was also carricd out in an eastern 
coastal plain and piedmont sctting, is \\'ells's (1981) study, which is explicitly based 
on discrimination oflandscapc fcarurcs. \\Tells sclecrcd "prcdiccive cnvironmenral 
variablcs" (1981:22), including disrance ro warcr, specific soil types, and spccific 
geomorphological and topographic scttings, as well as known archaeological sire 
locations, and subjccred these variables ro a logistic regression. His rcsults werc 
rested by field-inspccring borh site-likely and sirc--unlikely areas. Alchough Wells 
primarily used information derived from map-based geographic information sys- 
tems, based on photoinrcrprcration by others, he discusses ar lengrh the potcnrial 
for auromatic projccrions of chis rypc using Landsar MSS data. 

An approach similar to rhc carlirr Shenandoah esperirnents was used in 
Kcntucky by Carstens cc al. (1981). Stereo phorointerprcrarion of 1:20,000 aerial 
photographs was performed by a number of indcpendenr inrerprcrers, and the 
resulrs consisted ofcodings of the characteristics oflandforms and vegetation cover 
in a 400 by 400 m grid overlain on the phoros. T h c  same esercise was [hen 
undcrtakcn using 1:7920 scalc photographs and a 100 by I00 m grid overlay. T h c  
smaller grid overlay interpretations provcd ro be more usefuI for identifying areas in 
which archaeological sires were found (using a previously known samplc thar 
presumably had no! been inspccced by chc intcrpreters prior to their inspection of 
rhc photographs), resulting in the rccognicion of 13 of 19 known sires (68 ppcrcenr 
accuracy). A field check revealed that additionaI, previously unknown sires could 
actually be found in 78 perccnt of the projccted likely grid cclis. Another study 
following almost the same merhodology bur using phocomosaic (monoscopic) 
intcrprctation rather rhan stcreo photointcrpretarion (Haase 1981) predicted sire 
dcnsitics on Cedar Mesa, Urah, with more variable results. 

An ongoing projective expcrinlcnt using known locations of Gallo-Roman 
villas in thc Burgundy region of France (Madry 1983, 1984) is especially intrrcscing 
in that it incorporates modern digital analysis in an arca char had until his srudy 
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SAND RIDGE LOCATIONS--lR BAND 7 

Figurc 9.3. Smd ridge locarions I n  \l~ryI;lnd with high prnbabili~irs of archwologic31 sirc 
occurrcncc. L~ndsnt  klSS band 4 ( n n r  inirarcd) Llxt;~ were digitally analyzed ro arrivc at rhis map oi 
arcas in  which  aitcs arc likely to  occur-or, more precisely, arc. I~kcly ro hc found by archacologisrs 
(aficr Lxdr 19813). 
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been a stronghold of rhc "sccing sites" approach to remotc sensing; usually aerial 
photography from light aircraft scrved only as a peripheral means of documcnta- 
tion. Madry analyzed two Landsat 2 MSS scenes using the General Electric "Image 
100" system, with known villalocations serving as a training set (that is, thespectral 
charactcristics of known villa locations scrvcd as "instructions" to thc computer, 
which thcn selcctcd other arcas with similar spectral signatures). Hc  has concluded 
thus far that the resolution of the Landsat data (80 by 80 m piscls) is too gross to 
allow ncw villa sitcs to be found, although relatively intcnsc and continuous land 
use sincc thc Gallo-Roman occupations may also be a factor in his lack of success. 

All  of thc approaches summarized abovc share a number ofcommon charactcr- 
istics. Thcir primary goal is thc idcntitication of areas that are likely to contain 
archacological materials, based on charactcristics of rhc Iocations of previously 
discovered sitcs. Whilc rhcy are strictly cmpirical, these studics arc also "positivc" 
in that rhcir goal is to find sites or materials for archacological study. Thcir results 
cannot, therefore, bc casily convcrtcd into statements about arcas whcrc sitcs and 
materials miff rro, be found and thus areas char can be ignored for clearance or study 
purposes. 

T h c  more explicitly "prcdictivc" studics that will be discussed below are, for 
the most part, extensions of thcsc projcctions. Although such cxtcnsions arc useful, 
thc resultant modcls are no marc explanatory than the corrclations on which 
prospecting for site-likcly areas arc based. 

"Predictions" of Site Occurrence/Nonoccurrence or 
Site Densities Based on Remote Sensor Data 

Unlike thc prospecting approachcs to predicting likely areas in which to find 
undiscovercd archaco~ogical marcrials d~scusscd above, thc avowedly "prcdictivc" 
rcmote scnsing approachcs to thc archacological record that are summarizcd below 
arc directed toward identifying areas of difrercntial occurrence of sircs within 
regions. Such dillhrcnccs may be cxprcsscd in tcrms ofsites vs no sircs (or nonsitcs), 
dillkrcntial dcnsitics of s~tes ,  or variation in dcnsitics of more than one temporal, 
cultural, or functional sitc type berwecn zoncs within a study or managcmcnt area. 
Noncrhclcss, the discovery of thesc diflcrcnccs is approached in essentially the 
same way as was sitc "prospecting" in the section above. The  locations of known 
sircs, or of different typcs of sites, arc tabulated from previous survey data; thc 
study arca is then divided through cirher an arbitrav stratification (e.g., grid cells) 
or an informcd stratification (cnviron~nental zones ofonc sort or another). Through 
onc of a number of statistical techniques, the physical locations whcre sircs prc- 
viously havc bccn found are correlated with the physical locarions of indcpcndcnt 
environmcntal variables (sec Chapters 5-8 of chis volume). On this crnpirical basis, 
projections arc made about whcre sites will or will not be found and about the 
densities of sites in gcncral or of different types of sitcs in arcas whcrc the 
archaeological record is not known. 
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Clearly, these arc not predictions in the explanatory sense sct forth in Chapter 
4; they are inductive, empirical gcneralizations or projections. Some of the implica- 
tions of this fact for the utility of such predictions are discusscd in a subsequent 
section of this chapter, along with ways of going beyond correlations ofarchaeologi- 
cal manifcscations and cnvironmental variables. 

Archaeological Prediction and Visual Interpretation 

T o  my knowledge, the first "predictive" archaeological attempt utilizing 
remote sensing as a major cnvironmental data source was initiated in early IPn as 
part of the National Park Service Alaska Arca Office's cultural resources assessment 
of the National Petroleum Reserve in Alaska (NPRA). This experiment was origi- 
nally envisioned simply as an exercise in sample design; it has obvious implications 
for remote-sensing-based archaeological prcdiction, howevcr, and in fact the 
methods used were incorporated in almost idcntical form into an avowedly "predic- 
tive model" of site densities in thc San Juan Basin of New Mexico that was carricd 
out by thc National Park Servicc shortly after the Alaskan project was completed. 

T h c  National Park Service was askcd to conduct a reconnaissance of the 
NPRA, which covcrs about 23 million acres (92,000 kml) ofAlaska's North Slope, by 
thc Burcau of Land Management prior to thc opening of the area to virtually 
unrcstrictcd petroleum exploration. T h c  ideal would have becn to survey a rcpre- 
sentativc sample ofche whole project area, but this was nearly impossible given rhc 
short, 8-12 week summer field survcy scason; the general inaccessibility of the 
study area; the impossibility of land transportation during times when the ground 
was not snow-covcred; and the tremendous area to bc covercd. Although the North 
Slope appears almost featureless on atlas maps, it extends from the peaks of the 
Brooks Range across foothills and a sand-mantled upland region to the poorly 
drained coastal plains. The  great cnvironmental variability and logistical problems 
ofsurvcys in the Arctic meant that any sort of successful appraisal of thc nature and 
distribution ofarchaeological materials in the NPRA would require careful sampling 
and planning, and the National Park Service's Rcmote Sensing Division in Albu- 
querque was askcd to provide assistance. 

T h e  most interesting potential use ofremote sensor data for this project was as 
a basis for sample stratification and design. A sample design was created, based on 
an informed stratification of the NPRA into a relatively small number of "ecologic- 
cover typc zoncs" (Brown and Ebcrt 1978; Ebcrt 1978; Lyons and Ebcrt 1978) 
determincd on thc basis of visual intcrpretation of Landsat MSS color compositc- 
images. 

An initial ecologic/cover-type stratification was compiled through visual 
interpretation of 10 Landsat sccncs and mapped on a 1:500,000 scale base map ofthe 
NPRA (Figure 9.4). Subsequently, 1:60,000 and 1: 120,000 scale color infrared aerial 
transparencies, which present a spectral picturc ncarly idcntical to that of Landsat 
color compositc MSS visual imagcs, wcrc uscd as a preliminary chcck on the 
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Landsat-derived classification, which defined seven zones based primarily on inter- 
preted drainage and vegetation-cover diff-erences. Although the small-scale aerial 
photographs could also have been used to stratify the NPRA for sampling, this 
would have required the interpretation of literally tens of thousands of frames, a +- 

practical impossibility. T h e  second level of ground truthing consisted of an exami- 
nation of zone boundaries across the NPRA from a helicopter platform, which 
illustrates the point that ground truthing does not always have to be done on the 
ground: Additional oblique aerial photographs were taken during this helicopter 
examination, using 35 mm cameras and color infrared film for documentation 
purposes (Ebert 1980). Finally, observations of boundaries and the vcgctative 
composition of each ccologic/cover-type zone were made on the ground. 

Although it had been assumcd that this stratification would be uscd to select 
rhosc areas in which survey would be carried out by NPS field crews, conflicting 
ideas about the goals of the survey prevented this from being accomplished. By the 
time the preliminary stratification had bccn completed, rhc NPRA survey crews 
were already in the field and had already selcctcd areas to be surveyed based on 
potential site densities-that is, areas that wcre believed, on the basis of past 
experience in thc Arctic, to be likely to contain concentrations of archacological 
sites were chosen for rcconnaissancc. As pointed out previously, this is a valid 
approach if it is the highest conccntrations of spectacular sites that one is sceking, 
and in fact the major outcome of the NPRA cultural resources assessment was the 
setting aside ofa number ofNariona1 Registcr districts with high concentrations of 
archacological matcrials. 

Even though thc rcmotc sensing sample stratification was not used to select 
survey arcas, thc discriminatory power of the sample stratification was testcd using 
the data that were collected. T h e  approximate boundarics of the surveycd areas 
urcre marked by thc survey crew leaders on 1:250,000 topographic sheets, and the 
survey arcas were then carefully stratificd, using dctailed versions of thc ecologic/ 
covcr-type zones discussed above. T h e  arca of cach stratum actually survcycd was 
measured with a digital planimcter and compared with the numbcrs of thc types of 
sitcs discovered during that survcy. On rhc basis of this information, purely 
empirical "prcdictions" of site dcnsity within particular strata wcrc made. 

T h e  sccond season of survey, carried out in thc summcr of 1978, was also 
conducted without reference to  rhc ecologic/cover-typc sample stratification. Por- 
tions of four strata that werc partially covcred during the first season (summcr of 
1977) werc also surveycd during this sccond rcconnaissance. A comparison ofsitc 
dcnsities in thcse strata bctwecn the two ficld scasons is intcrcsting (Tablc 9.1). 
T h c  striking differences may be a result ofvariations from place to place within the 
NPRA in the efkctivcncss of the ccologic/covcr-type stratification. Alternatively , 
these diffcrcnccs may reflect changcs in the ways things werc sought in the ficld, in 
the experience and cxpcctations ofthe crew in succcssivc summers, and in the ways 
that sitcs arcre recordcd. Moist tundra, where the l o u ~ s t  densitics were found in 
both scasons, is typically covcrcd by dcnsc grass tussocks, and none but the most 
obtrusive archacological materials can bc found thcrc. The  "brush" stratum occurs 
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TABLE 9.1. 

Sires located by the NPR-A culmral resourccsuweys, 1977 and 1978 

Moist tundra 
Alpine tundra/mois~ tundra 
Brush/moist tundra 
Bare rock/gravct 

SUMMER 1978 

kloisr r undra 56.43 12 0.212 
Alpine rundra/moisc tundra 219.82 110 0.500 
Brush/moisr tundra 76.91 73 0.949 
Bare rock/grawl 45.42 18 0.389 

along rivers and lakcshorcs, and it is in this zone that large village sites are usually 
found, probably because of the availability of firewood. Sites do  not occur every- 
where within brush areas, howcver. T h e  brush cover must occur in conjunction 
with one or more of a number of geographic situations (caribou crossings, river 
confluences, thc windward side of lakes, etc.) if the likelihood offinding a site is t o  
be incrcased, T h e  survcy crcw may well have learned to identify thesc combina- 
tions offactors, which would account for the dramatic increase in identified "brush" 
sites during thc second season. Another possibility is that, while the "brush" strata 
in which survcy was carried out in the first and second survcy seasons were of the 
same composition, other properties of the strata, such as distanccs to  boundaries or 
sizes ofportions ofthis strarum, may havc been different (Michael Garratt, personal 
communication 1985). This might underline thc appropriateness of attempting to 
derive diversity or heterogeneity measures from remote sensor data for predictions, 
a topic that will be discusscd at lcngth later in this chapter. 

At about the same time that the NationalPetroleum Reserve in Alaska cultural 
resource projcct was winding down, the National Park Scrvice's Southwcst 
Regional Ofice became involved in studying cultural resources as part of another 
multi-agency impact assessment, the San Juan Basin Regional Uranium Study in 
northwestcrn New Mexico. T h c  Bureau oflndian Affairs, which administered the 
study, requested that the NPS Southwest Regional Ofice study the potential 
impacts of uranium mining and associated devclopmcnt on the cultural resources of 
this 100 by 100 mi arca. 

T h e  primary task undertaken by the National Park Service for this purpose 
was the consolidation, in consistent format, of all available archaeological survey 
data from somc 4000 known surveys that had takcn place in the San Juan Basin, a 
herculean task in itself. Extensive data on morc than 16,000 sites were compiled and 
recorded on computer media, and software was devised to make access to any aspect 
of these data simple and economical. Thcse data have formed the basis of a widc 
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rangc of assessments and discussions of thc archaeology of northwesccrn New 
~Mexico and the dangers threatening thcse resources today (scc especially I'log and 
Wait 1982). 

As part of this impact assessment, the National Park Service's Remote Scnsing 
Division was asked ro attempt to predict distriburions of sites-ro "make some 
statement about the distribution of archaeological sites throughout thc Basin" 
(Dragcr and Lyons 1983:2) using remote sensing data and mcthods. An approach 
virtually identical to that of the NPRA remotc sensing sampling design was adoprcd 
for the San Juan Basm project. An ccologic/covcr-type stratification was prcpared 
through the visual interpretation of Landsat MSS color composite visual imagcs, 
based on the mcthods used in the NPRA (Camilli 1984; Dragcr 1980a, 1980b; Dragcr 
ct al. 1982). Eighteen dificrent cover rypes with 22 additional subtypes werc defined 
for this area, which is cnvironmcntally far more complex than Alaska's Norrh Slope 
(Figure 9.5). In addition, these cover types were cross-correlaczd wirh cight land- 
form types (see Drager and Lyons 1983 for details). The  resultant zoncs wcrc 
mapped on a 1:250,00Oscale base map. Othcr information also cxamincd for theSan 
Juan Basin included surface geology and average annual precipitation. 

T h c  lirst step in making projections about sitc densities was to overlay 2 by 2 
km grid squarcs ro code thc previously surveyed areas onro an ecologic/cover-rvpe 
map of thc basin. Survcyed squarcs chat compriscd more than one ecologic/cover- 
type zone were eliminated. Numbcrs ofarchaeological sites found within each zone 
in thc course ofprevious surveys wcre then determined by searching the computer 
data base. For cach zone, the rota1 number ofsites found was divided by thc arca 
survcycd to calculatc a density figure. T h e  number ofsitcs in each zone was then 
prcdictcd. Previous archacological surveys had only been conducted in 21 of thc 40 
zones/subzones defined during ecoIogic/covcr-type mapping, and predictions were 
madc only for rhese zones. Still, some 51,700 sites wcre predicted to be present in 
these zones, a sizable (and perhaps unmanageable?) number. 

Several othcr projcctivc experiments in New iMexico, all based on the mctho- 
dology used in thc NPRA and San Juan Basin projects, have bcen reportcd in the 
literature (Camilli 1979a, 1979b; Camilli and Seaman 1979; McAnany and Nclson 
1982), and an additional experiment in predicting sitc densitws across ccologic/ 
covcr-type, surfacc geological, and soils zones (all based on remotc sensing) has 
since bcen carricd out by the Remotc Sensing Division (Drager and Ircland 1986) as 
well. All of rhcse approaches escmplify the ways in which an arca can be strarified 
into diffcrcnt and often empirically s~gnificant arcas or strata for sampling or for 
empirical projection from known site distributions to the distributions of sitcs in 
arcas not yct surveyed. All sufkr  thc samc deficiencies cxhib~ted by othcr empirical 
correlative "prcdictivc" schemes: they are not cxplrnatory, and their success or 
failure at prediction-even ifatested"-cannot br  accounted for. 

An additional problem of projecrivc or predictive experiments based on the 
use of archacological data from many survcys should be mentioned briefly here. 
Although many states or regions ofthis country have well-developed data managc- 
mcnt or geographic information systems from which great volumes ofsurvey data 
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Figure 9.5. S m  Juan Basic c c o l o p ~ c / c o ~ . ~ r - ~ y p  zones delineated through rhc inrrrprerarion of 
Landsat MSS visual d x a  produced in r n  ~ r r c n ~ p t  to project nrch?eologicrl sitc dcnsirics and the 
dilTercntial locatiorl~ oiarchacologicd sitc ~ y p c s  in northwcsrcrr~ Ncu. Mexico (C3milli 198J:Fig. 4). 
The inrerprcralion rncrhods follou.cd in this cKort were csscncially the sane as those uscd in the 
NPR-A inrerprcra~ion shown in Figure 9.4. 
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Figure 9.5. Con~inucd 
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can be rccovered, all archaeologists are aware that  survey data are often inconsist- 
enr.  T h e  goals of archaeology have changed in a broad sense through time, and 
many sorts of  information rccordcd today were ignored in the  pasr. Survey dara 
seldom conrain any uscful indicarion of survcy intensity, a factor that  is all- 
imporrant for judging rhe completcncss of recovery and rcprescncativencss of  dara 
collection (see discussion in Chaprcr4).  As discussed earlier, geomorphological and 
climatic conditions may be as important  in determining what is found during 
surface surveys as what is actually there; most survey dara d o  not provide informa- 
tion on t h e w  factors, cithcr. In predictive cxperimcnrs char utilize data from many 
diKercnr surveys, it may primarily bc variations in survcy quality, rarher than rhe 
characteristics of t h e  actual archaeological record, char are being measured. Some 
ideas about how archaeologists mighr deal with this problem are prcscnted in 
Chapccr 7. 

Archaeological Prediction Through Digital Analysis 

A final class of "predictive" experimcnts urilizing remote sensor data makcs 
use o f the  cornpurer analysis of digital remote sensor data-either digitally recorded 
Landsat or  o ther  sarellite data or, in a few cases, analog (photographic) images 
converted ro digiral form. Digital analyses can rake a number of forms, distin- 
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guishedon the basisof rhc dcgrcc ofcxplanatory mcaning imparted to the results of 
thc analysis. Some of the digical analyses presented here purposely avoid making 
staremencs about why archacological sitcs or marerlals are found in specific areas or  
in conjunction wich ccrtain spectral value rangcs, citing instead the "objectivity" of 
aucomacic digital proccssing. As discussed above, rhis assessment is not completely 
realistic, for in any kind of computer processing of imagc data, decisions about 
cutoff poincs for clustering or correlacivc analyscs must be made subjectively. 

In ordcr to  make chis poinc clear, a typical digital image analysis proccdure- 
clustering analysis-will be summarized briefly here. The  goal of digital clustering 
analysis is recognition of rccmrcnr spectral pactcrns across multiple bands of a 
multispeccral image (such 3s a Landsat JMSS scene or subsccnc). Ditrerent sorts of 
phenomcna on the earth's surface-plants, water, bare soil, or rocks, for instance- 
reflect clectromagnetic radiation differentially across multiple spectral bands. For 
example, water absorbs almost all infrarcd radiation and appears black in Idandsac 
infrarcd bands and lighter in thc rcd and grecn bands; barc soil reflects highly in all 
four bands; and growing vcgeration rcflects infrared radiation buc absorbs light in 
the red band. Digital clustering analyses csaminc thc differencia1 valucs of each 
pixcl in more than one band and group them into clusters on the basis of subjcc- 
tivcly determined cutoIT valucs. 

A digital analysis c3n be either supcrvised or unsuperviscd. In a supcrvised 
classification, a human opcrator directs the computer analysis by speciking a 
"training set" of areas rhat rcprescnr cach desircd cover typc class to bc discrimi- 
natcd. T h c  compurcr then arrcmprs to fir rhc spectral variability within rhc daca 
into chcse clusccrs (nor always succcssfully). In an unsupervised classification, rhc 
compurcr discriminates clusrcrs only on the basis of arbitrary cutoff valucs that 
draw boundaries between clusters of values in n-dimensional space (where n is the 
number of spectral bands used in the analysis). There are scveral kinds of cluscer 
cutoffboundaries rhat can be used, including minimum discancc co means classificrs - 
(which measures between-cluster centroids), parallelcpipcd classifiers (which con- 
sider the range of variance in a training sct), and maximum likclihood classifiers 
(which cvaluatc both thc variance within classes and the correlation between thcm; 
Lillesand and Kiefcr 1979:457-487). The  machine then tclls chc opcrator how many 
classes it has bounded, and thc opcrator must decide what is actually being 
reprcsentcd by cach class. Following unsupervised classification, classes are usually 
collapsed into fewcr classes by the opcrator, and thcsc aggregate classes arc named 
according to what the operator thinks they rcprescnc. Subjective decisions 
obviously entcrinro each rypc ofclusccr analysis, and the interprcracion ofwhat chc 
results ofsuch an analysis mcan is always subjective as wcll. T h e  actual composition 
of each area can be ground-checked and can also be compared with values of 
dcpendcnr variables (archacological sicc densitics, in most of chc cxarnples surnma- 
rized in rhis chapter), but thc reasons for the corrclacion between environmcnral 
and cultural variables arc not obvious. 

A n  examplc of a remote-sensing-assisted predicrivc approach bascd on cluscer 
analysis is a study of thc  archaeology of rhe Bisti-Star Lake rcgion in norrhwcsccrn 
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New Mexico, which was done in anticipation of large-scale coal mining (Kemrer 
1982). The  goal of this project was "to assess archaeological variability on lands 
(designated] for potential competitive lease coal development" (Kemrer 1982:2). 
This assessment was based on a sample ofthe total area and involved the implicit 
construction ofa "predictive model" (Kemrer 1982:Z). Archaeological distribution 
data were derived from six previous surveys that had been undertaken in the 
immediate project area. 

Remote sensing was used to generate independent environmental data against 
which to compare the Bisti-Star Lake archaeological sample. Two basic assump- 
tions ofthis project were that "site locational patterning is strongly related to the 
location of critical environmental resources [and that) it is likely that site frequen- 
cies and environmental resources are directly related" (Baker and Sessions 1982:63). 
T h e  critical environmental variables that Baker and Sessions decided to measure 
were soil associations and the presence of washes, which they concluded had not 
changed appreciably since prehistoric times and which directly affect many other 
variables that might have changed, such as vegetation and the distribution of 
animal resources. Landsat MSS data and digital analysis methods were chosen 
because of the size of the study area, the replicability of digital numerical methods 
as compared to visual interpretations, and the ease of statistical comparison of 
numerical output values with archaeological site densities. An October 1 9 n  Landsat 
MSS scene was chosen, and Soil Conservation Service soil mapping units, super- 
imposed on aerial photographs, were used as training samples in a discriminant 
function analysis performed at the University of New Mexico's Technology Appli- 
cations Center. 

T h e  discriminant analysis, using a maximum likelihood classifier, distin- 
guished eight soil classes, which "was considered adequate for predictive modeling 
purposes" (Baker and Sessions 1982:66). Based on methods developed during a 
previous predictive study in New Mexico(Baker and Sessions 1979), a 2  by 2 km grid 
was imposed on the study area, and archaeological and independent environmental 
variablcs were compared within the cells ofthis grid. Archaeological site density was 
correlated with four different, and perhaps overly complex, sets of remote-sensing- 
derived variables, which they describe as follows: 

1. The cight variables (scven soils associations, plus the category "u.ashts") output by 
the digital inlagc analysis; 

2. A second set of cighr variables based on the proportion of pixels per grid unit 
classified into each class; 

3. A sct of 28 variables that represcnt all uniquc two-way interactions bc~wcen thc 
rnvironmrnral classcs (classcs I 2  through 78) with values derived by multiplying the 
numbcrofpixels classified into each mcrnbcrofeach two-class set within each grid unit; 
and 

4. A fourth srr also containing 28 variables rcprescnting all unique two-way inter- 
actions betwen rhc cighr tnvironmental dasses, where the proportional number of 
pixels classilied into each mcmber o f  cach two-class set within cach grid unit was 
multiplied to derive values IBakrr and Sessions 1982:M-69). 



T h e  stated rationale for developing thcsc four rather complex sets ofenvironmental 
variables was that it was not known whether culcural variablcs (i.e., site densities) 
would vary with absolute or proportional classified pixel frequencies, and that most 
squares contained more than one cnvironmental class. 

T h e  formula used for modeling site-component densities was a linear equation 
in which observcd site densities were takcn t o  be the direct result ofsumming a set 
of weighted independent environmental variablcs (Baker and Sessions 1982:84). 
Weights and constants were determined through a serics of backward stcpwise 
regressions; separate environmental variables were choscn from the 72 variables 
that best correlated with the occurrence ofeight tcmporal/cultural classes ofsitcs. 
Regressions were done using squares that contained more than 20 percent total 
survey coverage, those with more than 40 perccnt coverage, and those with more 
than 60 percent coverage. T h e  regression with the squares containing more than 60 
perccnt coverage exhibited the Ieast error, with R 2  values ("explained variance"; 
Baker and Sessions 1982537) ranging from 52 to 86 pcrcent for each best-fit variable. 
This preliminary model, which Baker and Sessions term Modd I, was used as thc 
basis for making predictions about site-type densities for 813 2 by 2 km grid units, 
and 15 of these units were then surveyed as a test of the prediction. 

Based on these results, another regression model was then generated in an 
effort to  project site densities morc accurately. This model showed smaller average 
error than did Model 1, with R'values between 52 and 68 percent, Kemrer (l982:98) 
notes that therc are high "correspondences in variables selected betwcen Models I 
and 11," meaning that in gencral those variables that correlate positively with the 
occurrence of archaeological sites in one model do so in the other as well, a pattern 
that holds for a large number of the 72 variablcs inspected. "Therefore," he 
concludes, "It is highly likely that the environmental variablcs arc sensitive indicrt- 
tors of site frequency variations." 

I would suggest that this correspondence might, instead, be the rcsult of the 
variablcs all having been artificially constructed from thc original eight remotc- 
scnsing-derived soil and wash classcs. Such variables cannot be independent, and if 
patterning exists in the original eight variables then it will also bc found in a large 
number of the 72 derived variables. 

Another remote sensing experiment based on the assumption that environ- 
mental factors are significant predictors ofsitc locations was conductcd in southern 
Colorado by the University of Utah's Archeological Ccntcr in order to assess the 
prehistoric and historical archaeological materials along a proposed railroad routr 
(Holrner 1982). In this study, "raw" pixel data digitized from a visual Landsat irnagc 
were correlated with the presence or abscnce ofpreviously discovcred archacologi- 
cal sites in parts of the study area that had bcen surveyed, and predictions were 
then made about [he probability ofoccurrencc ofsites in thosc areas not prcviously 
surveyed. First, each 128 by 128 pixel portion ofa Landsat visual Image was digitized 
or resampled into 500 by 500 m pixels, 22,400 of which were required to cover the 
entire study area. Thcse pixels were not subjected to a cluster anaIysis, but rathcr 
their spectral characteristics were cornparcd directly with site presence vs absence 
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through a discriminant analysis. The  desircd result was not dctcrmination ofgroup 
membership pcr sc, but rather determination of thc probability ofgroup membcr- 
ship within the group rhat contained sires; in this way "scnsitivity zones [were] 
defined by ranges ofprobability ofsire prescncc" (Holmcr 1982:37-38). A very small 
number of "sirc prescnt" pixels-nine with historical sires and 119~4 th  prehistoric 
sites-were used to dcfine thc dcpcndent cultural variable; eventually the histori- 
cal sire-present cells were dropped, and only the prchistoric cells wcrc used in 
discriminant analysis. These cclls constituted only 0.53 pcrcent of the study area. 

Discriminant analysis cornparcd site-prcsence with three spcctral bands and 
with the ratios bctwccn the red and blue Landsar bands. It was found rhat site 
prrscnce vs site absence could be best distinguished on the basis of data from rhc 
red filter band (Holmer 1982:42). The  same data wcrc then comparcd using logistic 
regression analysis, and undcr this procedure the no-filter data (i.e., simple black- 
and-white density values within cach grid ccil) were the "bcst predictor" (Holmer 
1982:44). Bascd on the results of the logistic regression, the total srudy arca was 
divided into thrcc groups of pixcls: rhose with a greater than 0.275 probability of 
having sites, those with a probability falling bctwcen 0.275 andO.lOO, and rhose with 
a site probability below 0.100. Thesc three zones were mappcd, and the lowest 
probability zone was classificd as thc most preferable area for dcvelopment (Figure 
9.6). 

Holmc-r advanccs a number of conclusions based on this experiment. He 
suggcsts that the pixel size used in this study, 500 m by 500 m, was excessivc and 
that more accurarc rcsdcs woldd bc gained by using considcrably smaller pixels. 
Use of' already digitized Landsat MSS data, he notes, would h a w  been p,efcrable 
bur corrld nor be done given the economic constraints of this project. Hc  conc1udc.s 
that logistic analysis is an ideal analytical tool for studies of this sort becausc it 
pe r~~ i i t s  thc rescarchcr to incorporatc variables of different lcvels (categorical and 
continuous) into thc analysis. Finally, he points our rhat, although a nonptobabilis- 
tic archaeological sample of prior surveys was the basis of this experiment, a 
probabilistic sample would be morc appropriate fbr future studies. 

Another rc-mote-sensing-aidcd prcdictive srudy in the ufesrcrn United States 
camparcd archaeological survey data from a 2.1 percent transect survcy within the 
Naval Weapons Center at China Lakc, California, with variables dcrived from 
resampled, 100 by 100 m pisel Landsat MSS data through a principal componcnts 
clustering analysis of'four-band data (Elston ct al. 1983). The  "major objective was 
to dcvclop and characterize signatures for each transect irrespective of site con- 
tent," and thus to  arrive at an "indcpcndent typology oftransects against which wc 
can ~nvestigatr the relationship between transcct type and sitc occurrcnce" (Elston 
c t  al. 1983:63). The  derivcd rranscct typology was displayed as a dendrogram, and 
the number of sites per surveyed transect were "superimposed on thc distal nodes 
of'rhr dcndrogram" (Elston et al. 1983:64). The  success ofthis projection was tcsred 
by arbitrarily selecting 45 morc rransects, classifying them according to their place 
on the dendrogram through additional Landsat-based cluster analysis, and survey- 
ing thcm ro dctcrminc how faithfully thc projection was bornc out, 
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Figure9.6. A site-occurrence probability map ofa Colorado study area compilcd for managc- 
ment purposes through digital analysis of Landsat M S S  d a ~ a  (afrer Holmcr t982:Fig. 4.5.1). Darkcr 
shading indicates areas with high probability ofsite occurrencr; lightcr shading, arcas with mcdiurn 
probability; no shading, areas wirh low probability. 

Elston et al. found that their success rate for correctly characterizing the 
probability of site occurrence for transects was 86 percent. They suggest that the 
lower success rates of 58-70 percent achieved by Holmer (1982) and Baker and 
Sessions (1982) were a result of using a two-group-site-present vs site-absent- 
solution, when in reality not all "likely" areas would have been used in the past in 
sparsely occupied regions. Sites would also, according to Elston e t  al., be likely to  
occur or to not occur in more than one type of environmental setting. They 
characterize their approach as "natural" (Elston e t  al. 1983:66), not a "cookbook 
application of discriminant functions" Like previous projects. The  final results of 
their analyses were mapped in three transect classes: those with probabilities for 
site occurrence ofless than 0.22, those with probabilities from 0.22 to  0.62, and those 
with probabilities from 0.62 to  0.67(Figure 9.7), the last ofwhich they term ~ i t c  likeb. 
The  narrow probability range represented by the group of site-likely transects is 
interesting and seems to indicate that there were a significant number of transects 
within this taxon. 
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- Survey Transects 
Area of High Site Probability 

Figure 9.7. A site-occurrcnce prob~bil i ty map derived rhrough digiral analysis o f k n d s a t  hlSS 
da ta  at rhc S a v d  \\'capons Center ,  China L.akc, California (afier Elsron cr 11. 1981). 

Anothcr group of predicrive archaeological experiments that madc usc of 
remotc sensing for the mcasurcmenr of cnvironmcnral variables took place not in 
thc arid West, but instead in hcavily vcgctated Delaware. Bascd on Wells's (1981) 
proposed modcl of the correlation between site locations and certain landform 
features (especially sand ridgcs), these predictive attempts have encompassed at 
least three separate archacological studics (Wells e t  al. 1981; Custer et al. 1983; 
Custer e t  al. 1984). In  each study, cnvironmcntal variables includcd distance to 
water, geomorphological/landform setting, soil type, gradient, and convexity of the 
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landscape (the two lattcr variablcs prcsumably bascd on topographic and not 
Landsat data). Thcsc variablcs wcrc mcasurcd within a 3500 m radius of cach ccll 
(Wells ct al. I981), and a training sct ofsuch mcasurcments was used as input to a 
logistic rcgrcssion comparing site occurrcncc with each variable. T he study 
rcported in WcIls ct al. (1981) rcsultcd in the compilation of a gcncral site occur- 
rcncc probability map, which was thcn tested by further survey. This research 
indicated that thc relarivc contribution of each variablc to  esplaining site occur- 
rence was as follows: 

1. distance to minor stream, 50 pcrcent; 

2. distance to major struam, 42 pcrcent; 

3. distancc to opcnland soils, 5 1 pcrccnr; 

4. gradient, 51 perccnr; 

5. convexity, 67 pcrcent; and 

6. distancc to present marsh, 12 pcrccnr. 

T h e  low contribution of rhc last variablc was csplaincd by noting that most present 
marshes have bccn drained historically. 

A second scudy (Custcr c t  al. 1983) compared archaeological surwy findings in 
the St. Johns and Murdcrkill drainages in Kent County, Delaware (Cusrcr and 
Galasso 1983), on a period-by-period basis with Landsat-generated cnvironmcntal 
variablcs, again using a logistic regression model and thc samc variablcs used in the 
previous study. Contour maps showing arcas with less than 0.5, 0.5-0.75, and 
greater than 0.75 probabilities of containing sites were generated (Figure 9.8). 
During a second-stage test survey, 37 perccnt o f t  he inspected areas that had been 
predicted to have probabilities in the 0.5-0.75 range contained sires, as did 49 
pcrcent ofthe surveyed areas with predicted probabilities of0.75 or greater. It is not 
clear whether areas predicted to have less than a probability of 0.5 were ccsted. 

Anocher, more comprehensive test of thc Delaware models has only rcccnrly 
been reported. This study took placc in New Castle and Kent counties as part of 
planning for a proposed highway corridor (Custer et al. 1984). Detailed cxpianaro~  

site location models-i.e., rheorctical formulations describing assumed past sub- 
sistence and mobility organization-were set forth for each temporaI period prior to 
opcracionalizarion of chc cultural and environmental variables. Environmcntal 
variables were then dcviscd and measurcd using the University of Delaware's 
ERDAS 400 digital image analysis system. The  authors then used their settlement 
pattern model to predict the distance to cach ofrhese landscape feacures from each 
site type. Using Wells's (1981) logistic regression rncthod, Custer er al. produccd 
contoured probability maps that again showed three probability zoncs ofless than 
0.5,0.5-0.75, and greater than0.75. These maps wcre compiled a t  1:24,000 scale on 10 
USGS topographic quads, and they are currently being used by the Delaware 
Deparcment of Transporcarion as planning aids. 

Although Eandsat digital MSS data are the most likely source for the rcmotc- 
sensing-aided classification and measurcmenr of environmcntaI variables, therc 
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may bc other choices in the near futurc. A rcccnr cxpcrimcnt in assessing cultural 
rcsourccs in Bandelicr National Monument in central New Mexico (Figure 9.9) 
made use ofsimulatcd SPOT digital dara(Inglis ct  al. 1984). SPOT is a sateIIire that 
is soon to be launched by the Ccntrc National d'Erudes Spatiales (CNES)in France; 
an airborne mulrispccrral scanning device was flown by thc CNES over selccted 
targets in the United States so char scientists could experiment with rhc thrcc-band 
SPOT data prior to launch. 'The Bandelier data were acquired on June 19, 1983, at a 
resolurion of20 m, more than twicc the  resolution ofLandsat MSS data, and were 
analyzed using NASA ELAS software on a VAX 11/750 system at the  University of 
New Mcxico's Technology Applications Center. 

Figure 9.9, 'I'hc loarion o ian  cspcrimcnt in projecting srchacologicsl slre occurrcncc using 
sirnularcd SPOT d;rt.a in Bandclicr Sarional Monumenr, norrh-ccntral N e w  Xtcsico (aticr Inglis cr a1. 
1985:Fig. 2; scalc. 1:24,000, known site lo car ion^ sh0a.n asopcrl squares). Dar3 from [ hc French SIyOT 
s~rcf l i rc  will dcrivc h m  a mulrispccrr:tl scnnncr considerably highrr rc~solurion rhrn that 
provided by Landsar. .+Ithaugh the dsra \vill be nlorc cxpcr~.;ivc. ro acquire, they may bc more 
cost-cfiec[ivc ~ h a n  L:lndur dars for cultar:d rcsourcc rnanagcmcnt. 
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T h e  data wcrc first gcomctrically corrected, thcn classified into 27 dara classes 
by means of an unsupervised principal components analysis. The  classification was 
output at a scale of 1:12,000 and superimposed on a map showing the locations of 
known archaeological sites in chc study area. Two  of the spectral classes, which 
togcthcr constituted 25 percent of the total study area, contained 45 pcrccnt ofrhe 
known archaeological sites (Table 9,2); t hese classes do not correspond exactly with 
any previously mapped soil or vegetation classes in the monumcnt, and the 
SPOT-generated projection is a more powcrful indicator of archaeological site 
occurrence than any previous map. This suggests that SPOT or other high- 
resolution digital satellite dara may have considerable potential for projecting the 
occurrcncc of archacologicai matcrials in an empirical manner-or for predicting 
diffcrential~isibiliv ofarchacological matcrials, as will bc discussed at length below. 

Remote-Sens ing-Aided  Archaeoiogical Predict ions:  

Some C o m p a r i s o n s  a n d  Comments 

There are, ofcourse, differcnccs among the numerous studies in archaeological 
predict ion surnmarizcd abovc. Some employed visual interpretat ion, whilc or hcrs 
wcrc based upon computer analysis of digital data; somc were approached as ways of 
designing samples using informed cnvironmcntal stratification, whilc others were 
explicitly directed toward the "prediction" of archaeological site locations, occur- 
rence vs nonoccurrencc, or densities. T h c  mathematical models uscd to compare 
dependent (cultural) variables with independent (environmental) variables vary as 
much in these remote-sensing-based approachcs as they do in other types of 
"predictive modeling'' that are not based on remote sensing. 

These studies arc basically thc same in onc sense, however. None of thcse 
at ccmpts at prediction really constitutcs prediction in the explanatory sense of the 
tcrm advanced in Chapter 4. Each projccts empirically from the known occurrcncc 
ofarchacological sites to the probable occurrencc ofsirnilar placcs in arcas that h a w  
not yct bccn surveyed. This is a rcflexivc cxcrcisc, and it is sorncwhat unsatisbing 
in that there is no assurance that any such projection will be successful until it is 
tested, or that the next projection from the same data will be similarly successful or 
unsuccessful when tested. This is because, regardless ofwhether they incorporate a 
modern and useful tcchnology like remote scnsing, such noncxplanatory exercises 
do not focus on the systemic level of thc csplanation of past human organization. 
T h e  next section ofthis chapter will set the stage for adiscussion ofsome ofthc ways 
in which rcmote sensing might bc uscd to  producc more productivc, explanatory 
models. 

In concluding this section I would reiterate my caution that the usc ofLandsat 
and other rcmote scnsor data shouId bc carcfully considcrcd wirh rcgard to the 
limitations ofthis tcchnology. Remote scnsor dara cxisr in rhe present and are no 
motc "rcflections of the past" than arc contemporary archaeological data. Such 
landscape characteristics as the location of water and other factors change through 



TABLE 9.2. 

A 25 by 25 pixcl (picture clement) matrix of simulated SPOT data over part of the Bandelkr National Monument 
study area. Known archaeological sires arc shown as three-digit numbers in boldface. Known site locations were 
corrulated with zones classit?ed using cluster analysis of SPOTaimulated data (the single-digit numbers), and it was 
found that a majority of sites occurred in only o few zones. 
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time, and rhcre is no assurancc chat the reasons why activiries urcre located where 
they were in the past will havc any sort of transparcnt relationship to what wc see on 
acrial photos or space imagcs. In the final portions of this chapter some possibly 
morc realistic ways in which contemporary remotc sensing data and contemporary 
archaeological data can be brought to  bear upon one another will bc explored. 

POTENTIAL APPLICATIONS OF REMOTE SENSING WITHIN 
THE EXPLANATORY FRAMEWORK OF ARCHAEOLOGICAL 
MODELING AND PREDICTION 

So far in this chapter I have discussed remotc sensing and what it is, what some 
of its general limitations in archaeology might be, and some of the ways in which 
archacologists havc applied remotc scnsing methods and data to experiments in 
predicting ccrtain aspects of thc archaeological tecord. Although rcmotc scnsing 
has bccn uscd in a numbcr of diffcrcnt ways in thesc archacological expcrimenrs, 
their general method is uniformly one of empirical, inductive "prcdiction" as 
diagramrncd in Figure 4.1 of Chapter 4. This csercisc gcncralizes from known 
distributions of archacological sitcs or materials-known on rhc basis of prior 
surveys or the compilation of estant sire forms-to a "prediction" of what addi- 
tional sitcs or  marcrials will bc discovered in the future in areas not yet survcyed. 
This is accomplishcd through the tabulation or correlation of thc diffcrcntial 
occurrence ofarchacological sires with rcspect to diffcrcntial distributions ofcnvi- 
ronmenral characretistics that arc assumcd to have bccn important to  decisions 
about where sires would bc placed. As discussed in Chapter 4, this is thc method 
uscd in most of the "prcdictivc modeling" cfforts described in the archacological 
literature or in management reports today; the limitations ofand problems with this 
mcthod are also cnplorcd at length in that chapter. 

Chaptcr 4 also dcscribes another way of thinking about modeling and 
prediction-as inrcgral aspecrs of the process of archaeological explanation. Refer- 
ring again to Figurc 4.1, the interprcrarions we makc concerning the archaeological 
record (that is, the mcaning wc assign to the rcmains that wc encountcr) are 
separated from the actual physical nature of the archacological record by many 
levels of phenomena. 

It is the physical archacologica1 rccord and its distribution that managers are 
inrercsted in, for this is what thcy must rnanagc. hllcaning is givcn to thc archaco- 
logical rccord, howcvcr, only through explanation, and meaning is esscntial to 
predictive or projective sratcmcnts about thc physical archaeological record for two 
primary reasons. The  first is char in order to prcdicr the locations of archaeological 
sites successfully wc must know not only what "noncultural variablcs" they arc 
corrclaced with, but also wbj.. T h e  answcrs to  the questions "why?" must bc posed 
in rcrms of systcmic human organization, bccause systemic organization is the way 
that people differencialiy locare rhcmsclrcs and their activities on a landscape, lfwe 
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do not understand the ytemir mtcharrirms of site placcmcnt, then thcrc is no 
assurance that any prcdiction can be esrendcd from a known arca to unknown areas, 
evcn if these areas arc immediately adjacent to onc another. Such mechanisms can 
be known only through explanaton modcling, and through usc of predictions to 
test thcsc modcls. 

In Chapccr 4 Kohler and 1 have suggested that the best indcpcndent variables 
for site location models are ccorytrmic variabIcs. Bcforc models that incorporate 
ccosysrcmic variablcs can bc formulatcd, howevcr, the things that intervene in the 
real world betwcen the physical arclraeoIogica1 record and pasr human organization 
must be addresscd or "filtercd out." These are rhc factors listed in rhc "processes" 
column of Figurc 4.1: discard behavior, dcpositional and postdepositional proc- 
csses, and the methods that archaeologists usc to  discover, measure, and analyze 
the portions of thc archaeological record chat we find. 

T h c  other reason that the meaning givcn ro the archaeological record- 
csplanation-is alI-important in managing this record is easier to state but ulti- 
mately morc difficult ro definc. As the volume cditors havc pointed out in Chaptcr 
I ,  thc lcgal and, I Iikc co think, moral rcasons for cven worrying abour managing 
cultural resourccs are based on thc significance of thosc rcsourccs in rcrms of 
research porcncial. Cultural resources arc important becausc, by using them, 
archacologisrs may be able to say somcching worthwhile abour the oprrarion and 
organization of human systcms and their components, pasr a d  presenr. The  
management ofrignijkant archaeological rcsources has been mandated, and signifi- 
cancc is based on mcaning givcn to cultural resources rhrough the explanatory 
framework of archaeological science. 

I can suggest two ways in which rcmore sensing has the potential for moving 
archaeological prcdiction away from simple empirical generalization and toward 
more esplanarory goals. I t  should be understood that remore sensing, while it can 
play a part in chis reoricnracion of "prcdicrivc modeling," is not the solution in 
itself. T h e  rcal solution lies in the ability of archaeologists to change chc ways in 
which they think about doing archaeology-parricularly we must discard the idea 
rhar archaeological explanation is or can cvcr b e e q .  Rcmote sensing can only play a 
part in shifting archaeological thinking, but chis part may be indispensable because 
of rhe unique and inclusive sorts ofdata that rcmocc scnsing can provide. Remote 
sensing can providc rwo specific and immcdiace classcs of dara rhar archaeologists 
necd: data perrinenc to depositional and posrdeposicional processes, and data 
rhrough which ecosystcmic, rather chan simply environmcnral, variabies might bc 
measured. A few expcrimencs in measuring and using such dara are reported below, 
along with suggestions concerning possible future directions. 

Another area in which remote sensing can aid in rhe invescigacion andexplana- 
tion of the organization of pasr human systems is rhrough applications to rchnog- 
raphy and crhnoarchaeology. As ernphasizcd previously in chis chapter, rcmorc 
sensor data are contcmporary, and as such rhey might besc be applied ro under- 
standing che rrlationships bctwecn ongoing hunter-gathcrcr and primitive agricul- 
tural sysccms. Thesc relacionships are onc of the most exciting daca sources for 
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archacologiscs acccmpting to understand the opcration ofpast systems because thcy 
have the pocencial for suggesting some of chc alccrnativc ways that people adapc [O 

d i k i n g  conditions through time and across space. Somc of thc ways that such 
information can be brought to bcar on the question of prcdictivc modeling are 
suggested by Ebcrc and Lyons (1983), Kruckman (1972), Parrington (1983), and Vogt 
(1974). 

Remote Sensing and the Measurement of Depositional 
and Pos tdepositional Processes 

T h c  materials chat people use lcave chc culcural contexc and enter chc 
archacological contexc when [hey are discarded; at some point afccr chcy arc 
dropped on or inccntionally buried undcr the surface of [he earth, they come under 
[he influence of deposicional proccsscs and are incorporaccd in sedimcncs and soils. 
Deposition most oftcn occurs in thc contest of aggradational processes that bury 
cultural materials, although [here are situations in which cultural materials remain 
on thc surface of thc ground. Somc dcpositional proccsscs are culcural, consisting of 
burial by human activity, bur these arc less common than natural depositional 
events. 

Materials buried in a definable laycr or "level" arc ofccn assumed to bc [he 
results of a single occupational cpisode (Conkey 1980), but this is not necessarily 
always the case. T h e  naturc of thc deposited archaeological rccord is controlled by 
the periodicity of occupation or use of a place and the relationship bctwccn this 
pcriodicity and thc periodicity of dcpositional proccsscs acting on cultural mate- 
rials. Artifacts that are dropped only sporadically might be covered by sediments 
left by dcpositional proccsses that occur morc oftcn than cpisodcs of dropping, 
whilc artifacts that are lost or  abandoncd rclativcly continuously will oftcn be 
subjected to  dcpositional proccsses only aftcr sevcral cpisodcs of site occupation 
have caken place. In the lac tcr case, the apparcnt "lcvels" will be the rcsult of morc 
than one episode of site use. For instancc, if a site is occupied or is rhc locus of 
activity several cimcs between successive rainy scasons, more than one cpisode of 
activity may be reprcscnted in each depositional level. This poses problems for the 
archacoiogist who is attempting to sort ouc the rcsults of pcriodic human bchavior 
in that "demonstrably associaccd things may ncvcr have occurred cogether as an 
organizcd body of nlateriai during any given occupation" (Binford 1982: 17-18). 

Oncc cultural matcrials are deposiccd and become pArr of the archaeological 
rccord, they arc acted upon by another set of processes that can be thought of as 
posrdepositional. Most proccsses that disturb or act upon thc surfacc or subsurface 
of the carrh also affcct archacological deposits. Such biological proccsscs as faunal- 
turbation and floralrurbation (\irood and Johnson 1978) modify deposited matcrials, 
as do  a host of ocher mechanical and chcrnical events. Folcy (1981) prcscnts a 
taxonomy of natural proccsscs responsible for the burial, movement, destruction, 
and modification of archaeological deposits (reproduced here as Figure 9.10). Dis- 
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Figure 9.10. Culrur.d 2nd noncul~i~ral posrc[cpo~ir~onal proccsscs arc prob~hly rr.sponbiblc Sor much ol'rrh;~t wr, as 
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inro account bdorc we can arrirv at true csplanatory predictions using rcmore scnsing or orhrr data collccrion mrrhoda. 



cardcd materials cnter the archaeological record through burial by cultural or 
natural agcncics; oncc asscmblagcs are burled thcy may rcmain in place, or rhey 
may bc moved through stream action, scdiment movement, faulting, or mass 
wasting. A t  th r  same timc, certain ~natcrials may or may nor be altcrcd by physical 
and chemical agencies urhile in or on [he ground* Folcy (1981) also identifies what he 
calls small-scale oscillation proccsscs that act on the discarded archacological record, 
including water or wind action, animal burrowing, root action, and human 
disc urbances. 

Natural posrdcpositional processes can alter or dcstroy archaeological mate- 
rials, but they also play a role that is vitally important to the archacologist: thcy 
cxposc these matcrials, making then1 visible and thus available for study. Most 
archacology carried out in rhc United States today is undertaken in the contcxr of 
cultural resource management assebsments, which entail systematic survcy of the 
surface of the earth in arcas that arc. to be disturbed by reservoir construction, strip 
mining, or other cnginccring and resource-extraction activiries. Buried archaeolog- 
ical materials arc not found during such surveys; only those cultural materials that 
are exposed but not totally dcsrroy cd arc found and scrve as the basis ofarchaeolog- 
icalsrudy and interpretation. When subsurface testing is incorporarcd intosurvcys, 
it can expose but a tiny parr of buried remains. It is only during thr  short and 
rc1arivcly uncommon period bcrwccn the exposure ofdcposircd materials and thcir 
dispersal or dcstrucrion that thcsc matcrials arc available to archaeologists for 
study. For rhis reason, it is critical that archaeologists cardully consider the nature 
and actions of thc processes that make thcir basic data available to [hem. 

Thcrc is no casy way for the archacologist ro obscrvc, charactcrizc, measure, 
and prcdicr dcpositional and postdcposirional processcs. Both deposition and most 
postdeposirional alteration took place in thc past, so these processes cannot bc 
obscrved directly. In addition, the distribution of thesc proct3sscs probably varies 
across t h r  landscape. Analogs might be found in contemporary surface proccsscs, 
however, which means that the forces that have acted on archacological materials 
(and possibly also rheir ratcs or thc magnlrudc ofthcir efkcrs on thc archacological 
rccord) are potentially prcdictablc. Ifsuch processes can be prcdictcd, thcn at  least 
somc aspects of the depositional and postdeposirional "formation proccsscs" 
(Schiti>r 1983:675) intcrvcning bctwccn the matcrials discarded by past peoplcs and 
the archacological rccord that we actually see today can be taken into arcounr. And 
such factors must be accounted for beforc we can attempt to prcdicr rhe locations in 
which archaeoIogical materials can bc cxpcctcd. 

T o  most archaeologists i t  sccms reasonable to turn to gcologisrs and gcomor- 
phologists for the details of such natural processcs and of their differential occur- 
rcncc and rates, but usually these disciplines cannot provide rhr necessary level of 
detail. In facr, whcn an archaeologist and rt gcomorphologisr are introduced, thc 
latter will almost always initiatc probing questions about whcthcr archacology can 
supply concrcrc dates for recent natural surface cvenrs. This intcrest on the part of 
geomorphologists has probably been the major impctus behind the development of 
the subfield oT geoarchaeology (Butzer 1977; Gladfelter 1981), but i t  is Just the 
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reverse of what we want to hear. Most gcomorphological studics arc conducted in 
circumscribed places under specific conditions and arc even morc inductively based 
than archaeology. Archaeologists need to be abIc to arrive at generalizations about 
the places in which different surface processes act to deposit and disarrange or 
preservc archaeological materials across relatively large study areas. Fortunately, 
rcmotc sensor data, with their wide areal coverage, may help to supply this 
information. 

One such remote sensing study was undertaken in an attempt to definc the 
extent of different surface dcposits and their archaeological correlates in Chaco 
Canyon in northu.estern Ncw Mexico (Ebcrt and Cutierrez 1981). Chaco Culture 
National HistoricalPark has bcen extensively surveyed for at lcast 50 years owing to 
the spectacular and concentrated nature ofits archaeology, and a data basc of more 
than 1200 archaeological sites was available at theNationa1 Park Scrvicc's Division of 
Cultural Research for comparison with remote-sensing-aided mapping of surface 
deposits thcre. Previous geological and geomorphological studics had examined 
alluvial deposits and hillslope processes and thcir rates, and these data provided a 
basis for photointerpretation and mapping of geomorphic surface units. 

Geomorphic units were interpreted by Ebert and Cutierrez (198 1) using i:6000 
scale aerial color transparency photos viewed with a Bausch and Lomb variable- 
power stercoscopc; these units werc transferred to 1:12,000 black-and-white ortho- 
photoquads and from those to a 1:I2,000 scalc base map, which also bore the 
locations of archaeological sites in [he data base. Two descriptions-landform and 
photointerpretive-were generated for each geomorphic unit defined, based on 
tone, color, texture, vegetation associations, and landform associations (Figure 9.1 1 
and Table 9.3). 

Correlations between site locations and geomorphic surface units (summarized 
in Table 9.4) were of interest relative to interpretations of the differences between 
locations where diirerent types of sites were found by survey archaeo1ogiscs. Archaic 
sites, usually consisting of small scatters of stone flakes, were found on the oldest 
visible surfaces in Chaco Canyon. Similarly, Baskctmakcr sites were found primarily 
on stable and inactive surfaccs, as werc the Pueblo I, 11, and 111 sites. Latcr Pueblo 
sites were found relatively more often on less stable surfaccs, and the even more 
recent Navajo sites occur in high proportions on very active surfaces where older 
materials would either be obscured or destroyed. The  smallest sites (as recorded in 
the NPS data base) are found in units with little or no alluvial or aeolian surface 
veneer, while larger sites predominate in line-grained, inactive Quaternary units 
where sheetwash, uniform scdimcntation, and relatively even aeolian deposition 
would cover smaller occurrences but allow larger materials (masonry walls, for - 
instance) to project above the surface. 

Another remote-sensing-based study, which built upon the Eberc and Gutier- 
rez (1981) Chaco Canyon experiment, was carried out in the Grecn River Basin of 
southwestern Wyoming (Wandsnider and Ebert 1983). Fluvial, aeolian, and gravita- 
tional processes have altered the landscape there in post-Pleistoccnc times, giving 
rise to what appcars to be a varied and diverse region when it is considered on a 
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Figure 9.11. An rspcrirncnr carried out by rlic Sariorla1 Park Srrvicc's Urancli of Rcrnorc 
Sensing involved thc niappingofgcornorpliological surracc units ar ChacoCulturc Xxtion;ll Hi.itorica1 
Park to crplorc rhc role ofposrdcposirionnl procrsw affccring rhc viqibility, inrcgriry, and diwovcry 
of thc srchacological record. This is a portiorr of thc m.lp ofsurfacc uriirs rhar wcrc dcrivcd using 
phoroinrcrpretation of 1:12,000 scalc color acrid photographs at C:haco Cmyon in nor~hwcrrcrn Sew 
klcxico ( a i m  Ebcrr and Gulicrrcz 1981:Fig. I ) .  Descriptions oirhc varlous unirs appear in 'Tablc9.3. 



TABLE 9.3. 

Surface gcomorphologiial units, their drsignations, their phorointerprctivc recognition patterns, and lhc i r  descriprions and summary surfacc 
dynamics as mapped using photointcrprr t ivc rcihniqurs i n  rhc  study o f  postdrpoaitional processes o n  the arihacological rccord at Chaco Culture 
N a ~ i o n a l  Historical Park i n  nonhwesrcrn h'cw M r x i i o  

- - - - - - - - 
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dams or diversions. 

Arcu:~rc drprcssions or collapsed R O ~  pipes on 
rcrr:lcc rdgcs. 

Topo~nph ica l l y  raiscd, irregular-sl1apc.d 
dcpozirs; vcgctation dcn5ity sliglirly highcr 
than Qab or (ZrI. 

Conical (an-bhaped till ;~\soii;~tcd with major 
side canyon*; l i gh t -n~cd~um ronc. 

- -  

Stable alluvial. colluvial, and aroli:tn dvpo\irs 
rcsting unconiorni ;~bl~ 011 crodrd l ' r r t ~ a r y  
2nd Crct:tccous drpos~r?;. I.irtlc runoffor 
scdirncnr produccd on rhcsc highly 
pcrn1c;rblc dcposirs. 

I ' rod~~ccs b i ~ n i i i m n t  runotf and h i ~ h  sctli~ncnr 
yiclds; occupics ;.*]no bcru-ccn Q1' mcaas 
:id unvcgurarcd badlands. 

I'(.) 

Flar surhcc u- i th l i t r t r  or no cover; shcctu.nsh 
and aeolian rrosion. 

IJnstablc-, rapidly croding. 

Rapidly aggrading, anasromosing channcls; 
date from 1930s, 

Soil piping, mass movrmcnt, highly unstnblc, 
eroding rapidly. 

Xlay or may not contain active, inciard 
channcls. 

Kclntivcly s~ablc surlier, somr gradvd to 

QT, surI:tcc. Xlay contain buricd soil5 oi 
humus-rich laycrs. 
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TABLE 9.4. 

Occurrcncc of known archaeological sites and materials at Chaco CulCUre National Hisrorical Park (grouped by cultural affiliation and site sizc) 
within geomorphic surface units mapped with pho[ointerprctive techniques 

Gromorphic Unir 

Archaic 
Raskc~m:~kcr ll 
Bl~kctmakcr Ill 
I'ncblo 1 
Puchlo I1 
I'ncblo 111 
I'llcblo IV 
Navajo 
C!nLnou,n 

SITE SIZE 
Vcry sn1:rll .25 1.00 .47 .50 .36 .33 .25 .43 .OY .26 .I5 .I9 .25 -- .35 .33 .50 
Small 0 0 -21 .26 .43 .24 .50 -18 .23 .34 .50 .38 .26 - .dl .67 .21 
h lcd ium .50 0 .25 .22 .31 .35 0 .32 .54 -28 -30 .31 .39 - .I2 0 .29 
Largr 0 0 .CM .09 0 .CM 0 .07 .08 .07 .I5 .M .05 - 0 0 .05 
Vcry largc .25 0 .02 -03 0 .01 .25 0 .08 .05 0 .M .05 - 0 0 .05 
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small scale. T h c  Green Rivcr Basin is quite arid today and probably has becn for 
some timc; in most places rainfall is less than 400-500 mm annually. Even on high 
platcaus and slopcs, vegetation is sparse, usually covering not more than 20 percent 
of the ground surfacc, which makes a remote sensing approach to surfacc dcposi- 
tional, crosional, and aggradational proccsses fairly straightforward. 

The  Grcen River Basin sccms to have bccn inhabited at relatively low popula- 
tion levels sincc the beginnings of North American settlement. Paleoindian, 
Archaic, Frcmont, and Plains Indian groups have left thcir remains there for at least 
10,000 ycars: it appcars that thcre map actually have been little difference in the 
lifcways of chcse people ovcr a long time span, although thc Frcmont wcre at least 
partially agricultural whilc the others followcd a hunting and gathering way of life. 
T h c  majority of archacological sites found in thc Grccn Rivcr Basin are Archaic, a 
broad typological category encompassing virtually all matcrials dating from about 
9000 BC to historical times, with assemblagcs consisting of stone tools and debris 
and conraining little or no pottery. Many "sites" found in the Grccn River Basin are 
hundrcds of meters lone, and widc, contain tens to  hundreds ofhearths, and havc 
relatively sparse but e&n distributions of lithic artifacts. These asscmblagcs and 
fcaturcs are very likely thc result of the rcoccupation of these places ovcr many 
thousands of ycars, coupled with depositional and crosional processcs encouraging 
thc formation of supcrimposcd asscmblagcs or palimpscsts. 

The  Grecn Rivcr Basin experiment coupled the mapping of natural surface 
proccsses with an on-thc-ground archacological survey carricd out by the National 
Park Scrvice Branch of Remote Sensing in 1983-1984. This experiment was directed 
toward cvaluation of the cultural resources on lands surrounding thc Seedskadce 
National Wildlife Refugc along the Green River that are under the jurisdiction of 
the Burcau ofRcclamation. T h e  csplicit goal was to  incorporate remote sensor data 
into a predictive model of archacological sitc locations and rhcir characteristics. 

Before the zones of diffcrcntial geomorphic surfacc proccsscs affecting the 
archacological rccord in a 559,000 ha (1,380,700 acre) study arca could bc mapped, a 
data source was needed that would provide a rcgiona1 pcrspcctive whilc permitting 
discrimination of differcnt sorts of arcas with resolution at culturally and archaeo- 
logically rclevant scales. Remote sensor data, particularly those derived from 
satellite-bornc sensorb, arc ideal for this application, particularly where little on- 
the-ground geomorphologica1 mapping has takcn place. T h e  basic data source uscd 
in geomorphoIogical mapping of the project arca was a 1 : 100,000 scale Landsat 3 color 
cornpositc visual product. Composed ofan overlay ofbands 4,s and 7 data from the 
Landsat multispcctral scanner, this image has a ground rcsolutiori ofabouc 80 by 80 
m and approximatcs a color infrarcd vicw of thc imaged sccne. Color infrared 
accentuates vigorous vcget at ion, permitting discriminat ion between areas ofgrow- 
ing plant cover and bare earth; this capability is particularly useful in defining 
differential surface processes. 

Mapping was initiated by overlaying a shcct of frosted mylar on the 1:100,000 
scale Landsat sccne of the study area and placing these two rcgistered sheets on a 
light table. Black-and-whire photo prints a t  a scale of 1:80,000 and arranged in a 
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mosaic fashion were checked against thc Landsat image to define the boundaries of 
toncs of different geomorphic processes on the mylar overlay. Geology maps 
prepared by the State of Wyoming and Soil Conservation Service provisional 
county sods maps for Sweetwatcr, Lincoln, and Uinta counties wcrc. also conaultcd 
during the intcrprcrarion process. 

Although the information available from the Landsat imagc, the aerial photo- 
graphs, and the maps u a h  din'erenr, the rhrcc sources were found to be complemen- 
car).. The  resolution of aerial photographs is many times greater than Landsat 
resolution, ofcourse, and permits identification ofsmall-scale topographic pattcrn- 
ing. For instance, ~ndividual sand duncs and interdunal flats could be easily 
distinguished on thc acrlal photographs. Once areas characterized by duncs were 
located on thc acrial photographs, the same arcas were chcckcd on the Landsat 
imagc, and the tonal and textural qualities of those arcas were noted. By using the 
patterns identified in this way, we were able to decect additional dune areas directly 
from thc Landsat image, subjcct to verification using thc acrial photographs aftcr 
such an intcrprctation was madc. In some caws the geological and soils maps were 
useful in checking and placement of boundaries, although these maps ucrc lir  more 
gcneralizcd than [he gcomorphological mapping donc from thc Landsat data. 
Phocointcrpretat~on could h a w  been pcrlormed using only the acrial phocographs, 
but this would have required thc construction of a control necwork (see Ebcrt 1984) 
for about 100 prints, a very dificult cask. Landsac data arc gc*ooietrically corrcctcd; 
chus, thcsc data are ideal for environmental mapping such as that undertaken in che 
Secdskadec project area. 

Fiftecn of the largcr geomorphological zones (Figure 9.12) were grouped, for 
purposes of discussion, under six general hcadings wich assumed depositional and 
postdeposicional significance: 

1. Terraces formed largely by fluvial procrssrs. 'This class includrs both 
presencly activr tcrraces and chose formed in thc nmrc or less recent past- 
possibly as early as t h r  Plcistocenc. In the most rcccncly active of these areas, 
channel and overbank deposition dominare thc deposirional processes, while 
on earlier terrace surfaces slopewash, sheer~vash, and aeollan processes are 
common. 

2. Playas and Flats consisting of relacivcly flat arms esperiencing slow 
deposition of finr-grained sediments. Deposition in chew areas is facilitacrd by 
cithcr inrcrnal or esternal drainages. When dry, these areas are subject co 
acolian de flacion. 

3. Dunes, which in the srudy arca occur nor in extcnsivc fic.lds buc rather 
inccrspcrsed chroughour badlands, flats, or along rhe edges of inccrmicccnt 
watcrcourses where sand is plcntiful. Somc duncs also occur whew mcsatop 
scarps cause the wind to drop its sedimc-nr load. Prcscntly accive dune nrcas, 
which form the majority of che arcas included in this catcgon, arc charactcr- 
ized by connected crrscencic or barchan dunes; ar least two arcas ofcarlier, 
relatively well s t ab i l~xd  parabolic dunes arc also found in che stud), area. 
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figure 9.12. ~~comorphological  su r f cc  unlrs inrcrprcrcd v~sually i rom a I.andsat color 
compos~rc print and I :80,OMscalr aerial phorographs in and around rhc Sccdskadcr Sar iond \i'ildlili. 
Kciugc on rhc G r r r n  Rivcr, ,outhux-arcrr~ Wyom~ng.  '1-h~s map was compilcd as part ol'a distributional 
;rrchacologic.3l surwy oCrhz ~ rc *~ ( \ i ' and rn idc rnnd  Ebcrt 1083). Rcsulrc ind~carc rhar r n ~ ~ c h o i u h a r  wc 

sCc and bound as "sires" mry bc rhc rcsulr o i r c l s r i d y  local dl lL~c.nccs in po>rdcposirional proccsscs 
snd dso i s  probably hcsvil!. ini lucncrd by the s u r v q  and recording rncrhods c~nploptd.  T h e  "sitc" i s  

not .acuncrcte)y dciincd rnr  iry and m a y  bc. an i n ~ p p r o p r i ~ r c  u n ~ r  oirt-cordin: and .mnlysis for purposcs 
of  explanxory archaeology. 
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4. Badlands consisting of highly croded shales with a dense and reticulate 
drainagc. In most cascs this gco~norphological class is interspersed with flats, 
dunes, and small rcrnnants of carlicr surfacc or "mesa" arcas. 

5. Mesatop areas, which are the more or less dissectcd rcrnnants of earlier 
Tertiary gravcl/sand bedrock surfaces. Four mesatop areas arcre distin- 
guishcd on chc basis of their landform and by the fact that at least some 
vegetation cover (dominated by Basin big sagebrush [Arremiria hidenrara 
tridmiairr] and grasscs) was distinguishable on the Landsat image of thesc 
areas. 

6. Agricultural Areas irrigated with watcr from the Fontcnelle Reservoir or 
the Grccn and Black's Ford rivers, which arc estcnsivcly modified and 
probably nced not be further considered by archacologists, at least by 
archacologists searching for surfacc remains. 

Archaeological data wcre collected in this study area through a nonsitc or  
distributional archacologicaI survcy strategy (dcscribcd at Icngth in Chaptcr 4) to 
test these formulations and arc still being analyzed. Onc pertinent observation 
made during the collection of thc archaeological dara was that the scale of surface 
processes with apparcnt relevance to artifact distributions may be far smaller than 
the scale of surfacc proccsses that can be disccrncd on Landsat IMSS or small-scalc 
acrial photographs.  more rcccntly, surfacc gcomorphologica~ processcs have been 
reincerprcted using stercoscopic photointcrpretation of 1:12,000 black-and-whirc 
aerial photographs of the 500 by 500 m sample units within which field archaeological 
rccording took placc. Whilc thc initial, small-scalc phorointerprctation was 
dirccted toward understanding grnzrul postdeposirional characteristics across the 
study area, this second analysis will be applicd directly to  the task of filtering out 
postdepositional processcs affccting specific archaeological materials found during 
survcy. In order for this to bc accomplished, it is clear that artifacts rather than sircs 
must be the unir of discovery and recording. See Chaptcr 4 for a discussion of the 
advantages (and, I would suggest, thc neccssi t~)  of a distributional archaeological 
approach. 

Remore Sensing and the Measurement and Meaning of Ecosystemic 
Variables for Archaeological Modeling and Prediction 

In Chaptcr 4 of this volume, Kohlcr and I havc suggcsted that one avenue by 
which archaeologists might move beyond the empirical, inductive generalizations 
that we currently refix ro as "predictivc modeling" is by actcmpting to use 
ccosystcmic rarher than simply cnvironmental or landscape characteristics as indc- 
pendcnt variablcs. It is the organization ofhuman.yrrmr that wc musr understand if 
we arc to explain the mechanisms bchind mobility, the placement of activities in 
space, and thc locations of discardcd archaeological evidence. It was pointed out 
[hat at the systems levcl human organization responds not to  the uniquc placement 
ofspecific resources a t  a singlc timc and placc, but rathcr t o  rhc regional spatial and 
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remporal patterning of all resources-char is, ro rhe organization of chc. ecosysrem 
as a whole. 

There arc abundanr means for rncasuring simple environmental variables- 
slope angle and aspect, disrance to water sources, clevarion, and rhe like-and this 
is probably the major reason why rhesc quantities are uscd as variables in mosr 
contemporary predictive models. Mcasuring or cven identifying ecosystem varia- 
blcs is morc diflicult, and thc firsr stcp in using such variables in modcling, 
prediction, and esplanation will consist of research inro new rncasuremenr tech- 
niques. Remote scnsing is one sourcc of such rcchniqucs that is increasingly 
available to the archaeologist. An esample of a remorc-scnsing-based approach ro 
the mcasurcment of one possiblc ccosystcm variable-environmental divcrsity- 
will sentc  as an illustration of possiblc research dirccrions. 

Environmmtaldrrerrit~, as thc term is used here, is a measure ofsparial hereroge- 
neity in resourccs; w e n  in a very general scnse it is obvious that this variable should 
havc consequences for thc organization of human subsistcncc behavior. In an 
cnvironmenr where many different rcsource species are distributed evenIy, a 
human group dependent on these resources should minimizc cncrgy cxpcnditure 
by being sedentary and rerritorial; if rcsources are clumped rather than evenly 
distributed, then high mobiliry will be necessary in order to exploir rhc full range of 
resourccs. 

In order to csamine the potential of this variable for explaining differences in 
human mobility and resource procurement, Harpcnding and Davis (1977:276) havc 
suggesred a "model" consisring ofa one-dimensional environmenr along which the 
occurrence of a variery of natural resources is mcasured and for which the abun- 
dance ofeach resource is graphed as a continuous funcrion. T h e  complex conrinu- 
ous function representcd by each resource can bc viewed as the sum of Fourier 
components-a series of sine waves of different frequencics added rogerher-and 
rhe resulting power spcctrum can be analyzcd. 

Harpending and Davis initiate their model from rhe stance rhat hunter- 
gatherer groups seek or  desire maximum variery in their diet, an assumption that is 
far from proven but one rhat is common in the Bushman lirerarure and in facr in 
mosr literature dealing with generalist hunter-garherers. If this assumption is 
correct, however, it is clear that people pursuing such an adaptation would seek 
areas in which to live and garher foods that had the maximum possible varieyy of 
food. 

Harpending and Davis also hyporhesize that the benefit that huntcr-gatherers 
derive from increasing the size of their range is greatest when resources are out of 
phase-that is, they do  nor co-occur perfecrly-with a cycle of redundancy of I km 
ro 100 km. When a11 resources occur rogcther a t  discrere locations, the bcncfir from 
increasing range size should bc less. Maximum range size would be especred ulhcrc 
there are few rcsources and where those resources arc maximally our ofphase wirh 
one another ovcr disrances of 1-100 km; minimum range size should occur where 
resources show lirtlc sparial variation or where many resourccs co-occur. Harpend- 
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ing and Davis also suggest some implications for group sizes: groups with maxi- 
mum range sizes and cstremely high mobility in low-abundance, out-of-phase 
resource environments should be relacivcly small wich poorly defined local bormd- 
arks (for instance, in the Kalahari Dcsert). In the minimum range-size category, 
small groups would be expected wich little spacial resourec variation (e.g., in 
tropical rainforests), while larger groups would occur when resource variances arc in 
phase (for example, on the northwest coast of North America). 

A test of anthropological and archaeological implications of such expectations 
would depend on the measurement of spatial variation in resource patterning over 
large areas, something that is estremely dificult to do. Ecologists measure such 
variation by counting and weighing types and numbers ofplants, an cxpcnsivc and 
time-consuming process even in small test plots. In addition, thcre is the very real 
danger in on-the-ground efforts oC becoming "too close" to  the data, of placing 
emphasis on taxonomy and the specific properties of individual taxa as "detcrmi- 
nants," to the detriment of a widcr perspective. For both cconomy of effort and 
maintenance ofa regional perspective, remote sensing methods may be superior to 
on-the-ground ecological measurements of environmental diversity. 

Remote sensor imagerv, particularly photographic or multispcctral reprcsen- 
cations of ground scenes, contains information on the reflectivity of different parts 
o f a  scene covering a portion of the earth's surface. Reflcccivity is determined by 
ground cover, soil type, topography, and an amalgam ofothcr natural factors-all of 
which would correspond to a greater or lesser extent with thc distribution of 
vegetation. Since animal life is dependent upon the patterning of primary produc- 
ers, remote sensor data should convey information about faunal resource distribu- 
tions as well. 

T h e  limits of 10-100 km suggested by Harpcnding and Davis (19n) as a 
relevant distance for the discussion of resource periodicities among human groups 
cover a significantly larger span than do most aircraft platform images. For this 
reason, Landsat or other satellite scanner data may be the idea1 media for espcri- 
ments in the measurement of archaeologically relevant environmental divcrsity. 
One objection often raised concerning Landsat MSS data is its low resolution, so a 
consideration of the sufliciency of these data for spcctral analysis of the sort 
discussed above is perhaps in ordcr. 

As will be discussed later in this chapter, the periodicitics of occurrence of 
resources or of the landform characteristics that determine the distribution of 
resources constitute one property of the environment that can be measured to 
arrive at data that qualify as ecosystemic. For instance, the ccosystemic propertics 
of an area may be very different if there are five applc trees and five orange trees 
than if there are 500 orange trces and 500 apple trces. A ruic of thumb for the 
measurement of periodicities from serial data, the Nyquist criterion (Gillespie 
1980:149), holds that at least two samples per cycle of the highest spatial frequency 
information to be obtained from an image arc required. A Landsat MSS imagc 
provides a ground coverage of approximately 185 by 185 km; to detect a 10 km 
spatial period, then, (2 x 18)' or 1369 sanlples would h a w  to bc derived from the 
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frame. Landsat MSS imagery contains somc 1.6 x lo7 pixcls per frame, nearly 8000 
times as many potential samples as would be rcquired for such sampling. Data 
dcrived through acrial photography are evcn more detailed. Conventional aerial 
photos contain about 4 x IOB piscls per frame, and high-rcsolution images have 
sevcral times that many pixcls (Reeves 1975: 1104). 

An early rcmotc sensing cxpcriment carricd out to asscss the possibility of 
measuring archaeologically rclcvant environmental divcrsity using aerial photo- 
graphs focused on the lowcr Chaco Rivcr drainage and surrounding badlands and 
mesatop areas in norrhwcstern New Mexico during a cultural rcsources survey of 
coal mining lands (Reher l w ) .  An initial hypochcsis advanced as part of the 
explanation ofArchaic sire densities in the study area was that Archaic site densities 
should increase as a function ofincreasing diversity in vegetation (Rehcr and Witter 
1977:114). This hypothesis was based on the assumption that Archaic peoples 
pursued a generalist subsistence scratcgy, relying on a wide variety of vegetal 
resources throughout tlw year. This assumption may not bc totally valid or 
realistic, based on subsequent research (Hogan and Winter 1983; Moore and Winter 
1980), but a discussion oft he way in which diversity measurcs were obtained should 
help to point the way for future efforts in this direction. 

T w o  separate data sources were used to measure vegetation diversity: on- 
the-ground botanical survey and thc analysis of aerial photographs. The  aerial 
photographic measurements employed 1:6000 and 1:12,000 black-and-white and 
color transparency acrial photos of the study area, which were analyzed using an 
International Imaging Systcrns analog image analysis system. One of the capabilities 
of this bysrcm is a graphic readout of density changes in the emulsion of a 
photograph placed on a light table and viewed wirh a high-resolution videocamera. 
Such a graphic readout of densities of course corresponds to differences in vegeta- 
tion, topography (shadow), soils, and other proxies of environmental diversity. 
Each photograph horn the areal coverage of the study area was placed on the light 
table in rurn, and the density graph of a north-south line across its center was 
examined. Peaks in this graph wirh an amplicudc greater than an arbitrary cutoff 
value werc counted, thus providing a simple, efficiently derived measure of the 
amount of variation in density across each photographic frame. The  number of such 
graph peaks counccd was assigned as a "diversity index" to rhe area covered by 
each photo frame (Ebert and Hitchcock 1977:212). 

A vegccative diversity indcx was independently derived from analysis ofplant 
communities and associations measured on the ground; this indcx was found to 
correspond closely with thc remote-sensing-dcrived index. Correlation of both 
indices with Archaic site location data derived through transect survcy indicated 
that Archaic site density was highcsc in areas lying immediately adjacent to high 
vegetation or environmental divrrsity areas, but that the sites were not necessarily 
within these areas thcmselvcs. A possible cxplanarion is that high-diversity areas 
are extremely variable topographically and have active erosional and aggradational 
regimcs. Thus, such areas may be inappropriarc places to locate residential sites, or 
the archaeological rccord in such arcas may be obliteratcd or hidden (Reher and 
Wirter 1977). 
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In 1979, a cooperative study to f i~r t r~er  investigate the use of rcmotc sensor 
data, this time from Landsat MSS, for measuring environmcnr:d divcrsicy for 
archaeological purposes was initiated by the National Park Scrvicc's Branch of 
Remotc Sensing and thc U.S. Geological Survcy's EROS Program. It wah proposed 
that this study would incorporate analysis of h c  500 by 500 pixel (approsiniacely 
27.5 by 27.5 km) Landsac 3 blSS subsccncs in the San Juan Uaun near the 19 i7  Chaco 
River study area described abovc. T h e  derivation ofa divcrsity measure from these 
subscenes was to be digital, and the divcrsity mcasurc so derived uvas to be 
compared with an extcnsivc archaeological computer data basc that had recently 
been made available by the Park Service's Southwcstcrn Regional Offrcc in Santa 
Fe. 

Digital analysis was undertaken at the EROS Data Ccnter, a I?.S. Geological 
Survey facility in Sioux Falls, South Dakota, using two digital image analysis 
systems, the General Eleccric Image 100 systcm and the ESL IDIMS (Interactive 
Digital Image Manipulation Systcm). Subsccnes were extracted from a Landsat 3 
MSS rape (data collcctcd Augusr 3, 1979) and rerecorded onto digital cape. Thcse 
data were then analyzed using a masimum likclihood clusccr classifier on the IDlMS 
system. A 50 by 80 p~xcl  area from each subsccnc that was judgcd to be reprcscnta- 
rive of the variation within that subscene was first selected by the operators based 
on the ecologic/cover-type classification of the San Juan Basin discussed above 
(Camilli 1984). This small area was then randomly sampled to derive a training set of 
5 percent, or 20 by 4 pixels. A total of 1M such samples wcre dcrived from the four 
subsccnes. Using these samples as training scrs, an unsupervised classification was 
performed, and 13 classes resulted. These classcs were interpreted and collapbed by 
the operators, again on the basis ofthe previous cover-type inrerprctation as well as 
internalized knowlcdgc of the area, into scvcn ncu  cover types, which were then 
mapped as zones (Figurc 9.13). 

Once thcse steps had been completed, the EROS Data Ccntcr's Burroughs 
7600 computcr was used to pass a 3 by 3 pixel filter through thc seven-zone classified 
image. For each nine-pixel area, thc ccncral piscl was rcplaced with a value ofO-6, 
indicating the number ofclasses other than chc class rcprcscnted by the ccnrral 
pixel that were found within thc Liter. This resulted in the generation ofa diversity 
index (Figure 9-14), but unfortunately, cdge efkcts relating to the direction that 
the pixel passed through the data set were introduced into the rcsults. Attempts 
were made to corrcct for this, but the configuration ofthc computer system at that 
rime was such that it could not be adapted to solve the problems. For this rcason thc 
proposed correlations betwecn site occurrence and the diversity measure were 
never completed, although the method itself shows considcrablc promise. 

A number of things can be said about and learned from this last actcmpt at 
measuring environmental diversity as an ecosystcmic variable with archarological 
rclevance. The  first is that problems of coordination and equipment compatibility 
sometimcs make it simpler and more cost-eflixtive for a manager to contract with 
an accountable scientist from the private sector for remote sensing research than to 
rely on coopcrarive, interagency agreements. 
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T h c  sccond obscrvation that might be madc is that the tcchnology of digital 
analysis ofrcmotc scnsor data is changing so rapidly as to  makc analyses that werc 
not practical using million-dollar systcms only a fcw years ago possible today on 
small, stand-alonc imagc processors. T h c  RIPS (Remote Imagc Proccssing System) 
that Charles Robinovc (1986) uscd to  dcrivc his Landsac-bascd divcrsiry index in 
1984 is now available to the general public as a $5000 add-on to most pcrsonal 
computers. This divcrsity mcasurcmcnt attempt also illustrates at least one appli- 
cation of remote sensing in which digital, pisel-by-pixel classification of data is far 
more uscful than visual incerprctarion of an imagc into zoncs or areas of assumed 
signifirancc, for it would be impossible to pass a filter through an image ifit wcre not 
composed of piscls. 

Finally, this esample emphasizes the fact that remote-scnsing-based 
approaches to the measurement ofecosystem variables for prediction and mbdeling 
have not bcen pcrfccted, and that i t  may nor be easy to perfect thcm. Remote 
sensing approaches, like predictive nlodeling in gcneral, can only be rcfincd 
through cooperative research and development on the part of managers and 
archaeologists. 

T h e  last point is one in which remote sensing can, I feel, play an especially 
important role in uniting rhc eflbrts ofmanagcrs and archacologisrs. Rcmore sensor 
dara forms 3n integral and all-important part of most geographic information 
systems (as discussed in Chapter 10). Such systems have been undergoing intensive 
development, particularly by natural resource managcrs and scientists, for a t  lcast a 
decade. I see focus on remore sensing as a primary dara source for prcdicrive 
experiments in archaeology as one way of developing a common ground, an 
independent data base, and ultimately an analytical tool that can be shared by 
archaeologists, natural resource scientists, and managers. Such a common inrcrest 
could do much toward uniting cultural and natural resource management. 
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Chapter 10 

GEOGRAPHIC INFORMATION SYSTEMS: TECHNICAL AIDS 
FOR DATA COLLECTION, ANALYSIS, AND DISPLAY 

Kenne th  L. Kvamme a n d  T i m o t h y  A. Kohler  

INTRODUCTION 

TimotLy A. Kohler 

By this time we have seen rhar predictive modeling ofarchaeological resourcrs 
may involvc consideration ofthe characrcristics ofcatchmcnts around potential site 
locacions, of distances to  various resource types from potential locations, and of 
various characteristics of the potential site location irselt Maps ofseveral difrcrcnt 
resourcc typcs and landscape characrcristics may each nccd to be analyzed in terms 
ofcatchment, distance, and point characteristics. Locations satisfying certain crite- 
ria on all these maps may need to bc idcntificd and locatcd. Geographic information 
systems arc a computcrizcd aid for the collection, management, analysis, and 
display of the large sets ofspatially referenced data required for such projects. This 
chapter begins with an overview orwhat thew systems can do and then explains 
their various capabilities in more detail. 

Beyond its obvious role in helping to organize, overlay, and display data, a 
geographic information system (GIs) also may hclp agencics to makc cultural 
resource managemcnt survcy and prcdictivc modcling efforts both more compara- 
ble from project to project and more cumulative in thcir results. A t  present, the 
physical rnodcls-maps-produccd by various archacological consultants arc 
drawn to differcnt scalcs, using dift'crcnt standards. Ifinstcad modcls wcre based on 
a single GIs, or on compatible systcn~s at identical resolutions, thcn they could bc 
readily compared, and the predictions made b ~ .  one group of modelcrs could be 
tested by later survcys more accurately and convcnicntly. Moreover, models could 
bc casily rcfincd and remapped, and the results of these rcfincmcnrs (and the 
diffcrences between versions) would be readily apparent. A good case could be 
made that eirhcr agencics should maintain thcir own CIS and require all contracrors 
ro work on i t ,  or they shouId maincain long-ccrm arrangements with contractors tbr 
the construction ofdaca bases containing environmenral data, sicc location informa- 
tion, and predictive models so that the cycle of model consrruccion, testing, 
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revision, and verification could be carried forward cumulatively. This chaptcr, 
howcver, considers only the technical role, not the implications for policy, that 
geographic information systems may have in the predictive modeling process. 

Maps can be defined as scaics for measuring the property oflacarion for some 
attribute (Lewis 1977:3-10). Map data direr  from other data in thar the location of 
each feature relative to  all others is maintained, making properties oflocation (sueh 
as distance) readily available for study. Most of the large compurerized software 
systems that archaeologists usc regularly (such as SPSS and SAS) ordinarily maintain 
information in a sequenrially organized data base. Location can be entered in such a 
data base by introducing variables for northing and easting, for example, but the 
internal organization of the data base usually remains random with respect to  these 
variables, and analysis of locational properties is cumbersome. 

In a GIS, on the other hand, the internal organization of the data either mimics 
that of the map from which it is distilled or is based on other conventions that allow 
the spatial structure of the mapped attribute to be easily reconstructed. This 
facilitates various spacial studies, such as those requiring distance measures (includ- 
ing catchment studies), and pcrrnits overlaying ofvarious maps on top ofeach other 
so thar the spatial interaction of th r  mapped attributes can be studied. 

A working GIs consists of softwarc (computer programs), the hardware on 
which that software operates, and a spatiaI data base, but the termGIs is often used 
to rcfer only to  the softwarc used for data entry, managcmenr, manipulation, 
analysis, and display. X4any geographic information systcms h a w  separate systems, 
or subprograms, for thesc various major functional categorics. Therc arc probably 
u ~ l l  morc than 100 geographic information systcms in use around the world, in 
many times that number of installations; access to a GIs by researchers and 
managers in university and agency contexts will soon be cornmonplacc. 

Comparative rcvicws ofthe most common systems are now available: Hansen 
(1983) compares h?OSS/h4APS with IDIMS; several systems that were originally 
designed to process rcmote sensing data, including VICAR and IDIMS, arc com- 
pared by Bracken et al. (1983); and Erikson ct al. (1983) discuss three 
microcomputcr-based geographic information systems. klunro (1983) draws on the 
expericncc ofa large corporation in suggesting how a suitable GIs can be objectively 
selected from those available. Systems used by the Dominion ofCanada and by the 
statcs ofNew York and Minnesota are dcscribcd by Tomlinson e t  al. (1976). Finally, 
the Amcrican Farmland Trust (1985) tabulated costs, operating environmcnts, and 
data entry, editing, updating, retrieval, analysis, output, and display functions for 
65 geographic information systcms, include 16 operating on microcomputers. Even 
such a recent publication is already somewhat out-of-date, howcvcr, as both 
hardware and software dcwlopmenrs in t h s  Gcld are occurring very rapidly. 

Training in thc structure and usc of gcographic information systcms is availa- 
ble from several sources (Tablc 10.1). Articles relevant to geographic information 
systems appear regularly in thcjournals and confercnct. proceedings listed in Table 
10.2, and Estcs et  al. (1984) and Marble et al. (1984) prcscnt uscful collections of 
GIs-rclated articles. 
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AREAS 

TABLE 10.1. 

Sclcctcd training opponunitics in gcographic information systcms 

Orgdnizrrtion S p m  {if dny) 
-- 

Training snd Assihtancc Officr IDlMS 
U.S. Ccological Survcy 
EROS Data Ccntcr 
Sioux Falls SD 57198 
(605) 594-61 14 

Rcmorr Sensing lnstiture 
South Dakora State Univi-rsity 
P.O. Box 507 
Brookings SD 57007 
(605) 688-48 14 

Yalr Lnivcrsiry School oiForsscry and Environrncntal Studies 
205 Prospcc t ST. 
New Havcn C T  0651 1 
(203) 436aUO 

1,nbnrarory for Application of Remote Sensing Darn 
Purduc University 
1291 Cumberland .+ve. 
Wcst Labyetti- IS 47% 
(3 17) 494-6305 

Continuing Englncering Education Program 
Ceorgr N'ashington University 
Washington, D.C. 20052 
(202) 676-61M 

Graphics m d  lmagc r\nalysir Group 
Computing Scrvice Ccntcr 
W3shingron Srarc Clnivcrsity 
I'ullman U'A 9911%- 1220 
(505) 335-041 1 

U.S. Fish and Wildlifi. Scrvicc 
Division o i  BioIogical Scr~icer  
Western Energy and Land Use Team 
D r d x  Crccksidc Onc, 2627 Kedwing Rd. 
Ft. C o l h  CO 80526-2899 

Geographic Information Systcrns I.aboraror). GRASS 
Central Washington Lnivcrsiry 
Ellensburg, WI\ 98n6 
(509) M3-1914 

MAP 

LARSYS 
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TABLE 10.2 

Selected journals and conference proceedings con~aining more advanced discussions of geographic 
information svslems 

Arta 
Conadiun Crrrtoppbtr 
Compurrr Yiiion Gropbicr and lmagr Prorrwing 
Cnlnpnrrrr and Grorcttncrs 
Compnrrrr, Enm'ronmtnt, ond Urhon Sjrrtmr 
En~ironmtnf 
En~ironntnrrrl ~\frmagtmmt 
Gto 
Gtogruphiio/ Anabrlr 
Gco-Protcrring 
IEEE Tranrucfions on Gtorritncc and Rtmort Scniing 
lEEE Traniocfionr on Partcrn /Inobrrr rrnd Mocbint lnfclligmrr 
ln~trnationul Cfournal o j  Rtmott Sming  
Pbotogrummr~ric Enginrtring and Rmorc Stnring 
Rtmort Sming  ojEn~tronmtnr 
Soil Suryy r m f  Lond Eraluofion 

PAPERS AND PROCEEDINGS 

International Symposium on Computer-Assisrcd Carlogr3phy 
International Symposium on Cartography and Compuring . ronmcnr International Symposium on Rcmore Sensing of the Enbi 
llitrrnational Symposium on Spatial Data Handling 
Alinual Meeting of the American Society of Phorograrnmetry 
Proceedings of rlie Pecora Symposium 

ABSTRACTS 

Gta Abrrrocrr, G: Rtrnaft Smrmng, Pbnrogramrntrry, und Cnrrop?hj 

T H E  POTENTIAL O F  GEOGRAPHIC INFORMATION SYSTEMS 
FOR RESEARCH, DEVELOPMENT, AND APPLICATION O F  
ARCHAEOLOGICAL SITE LOCATION MODELS 

Kenneth L. K ~ a m m r  

The Need for Geographic Information System Techniques 

In the previous chapters, scvcral methods and models for classifying a Iocation 
or region as sitc-likely (or sicc-type-likely) were introduced. All ofthese procedures 
arc based, at Icasr during somc srage of the modeling proccss, on measured data 
(where mcasuremcnrs can also refer to nominal-levcl class catcgorics), and many 



tcquirc large numbcrs olcalculations. The  various quantitative approaches rcquirc 
measurcmcnrs ar each sitc locarion (e.g., of various environmcnral phcnomena) and 
also at locations o l  background environment where sitcs are not present, termed 
nonsita, it" a control-group approach is used during inirial model dcvelopmcnt (see 
Chapter 8). Similarly, mcasured data are rcquircd lor all sitcs (and nonsites) in 
modcl rcsting phascs. Finally, to apply most archacological locational niodcls across 
a region ofstudy requires tremendous numbers ofmeasurcments. For example, ifa 
modcl bascd on several environmental variables is to be applied across somc rcgion, 
measurements ofcach variable might be required every 50 m across the rcgion for 
sutEcienr rc:solution in application. The  problems of making vasr numbers of 
measurcmcnts and performing an cvcn larger number of statistical calculations 
constitute the greatest dificulties in the development, tcsring, and practical 
application ofmany archaeological modeling strategies in rcgionaI culrura! resourcc 
management contexts. 

For the simplest application of environmentally based models, such variables 
as slopc, aspect, and distance to water can bc measurcd by hand ar a specific locus on 
a topographic map. A sire location model could then be applied to the measure- 
ments (usually requiring a few calcularions) in order to asscss the "site likclihood" 
or "site lavorablcncss" ofthc location. This approach can be quitc useful ro cultural 
resource managers in assessing archaeological scnsitiviry at, for csample, proposed 
wcIl pad locations. 

As the sizc of the area to be assessed increases, however (as rhc number ofwell 
pads increases and as access roads to the pads arc included in rhe projecr, for 
example), the labor-intensive hand mcasurcmenr and calculation requirements 
rapidly become impractical. Many projects on federal lands encompass large areas; 
in such cases, rhe logical approach would be to replicate chc above procedure 
systematically across the area undcr consideration, perforn~ing rhc mcasurcmcnts 
(and calcularions) cvery 50 m cast-wesr and north-south, for example. The  outcome 
would be a wide-area "sitc scnsirivicy surface" depicting favorable or likely loca- 
tions for cultural resources bascd on model spccificaticlns. Ncedlcss to say, pcrform- 
ing measurcmenrs of multiplc variables ar some point on a map is quitc rcdious; 
rcplicacing this process cvcry 50 m or so, cvcn ovcr a srnall area, is incrcdibly 
time-consuming and therefore cosrly. In addition, once rhcse data have been 
collected, the time and expense for all of the calculations requircd to apply most 
models must be considered as u7ell. 

As an illustration o l thc  magnitude ofthis problem, the effort that was requircd 
to  produce a "probability surface map" ofsite presence for a singlc quarter section 
utilizing manual tcchniques can be cxanrined (Kvanimc 1983a; this map is illustrated 
in Figure 8.1). T o  produce this map, six environmental predictors (slopc, aspect, 
view anglc, shelter rank, vantage disrance, and distance to water) nrcre nieasurcd 
by hand at 256 points evenly spaccd at 50 m intervals across the quarter section for a 
total of1536 nieasurcmcnts. Nest,  the probability ofcach location's mcmbcrship in 
a site-prescnt cIass, conditional on the measured data, was estimated by a precstab- 
lished discriminanr function. The marhematical operations needed to assess one 
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location required roughly eight additions, [hrcc subcractions, nine multiplications, 
one division, and three csponentiations; for all 256 locations approximately 6144 
calculations wcrc Finally, it was necessary to produce a graphic of the 
rcsult for cach locarion, which constiruted a mapping of the modcl; this required 
further eflort. It is clear that application of this kind of model utilizing manual 
rechniques is impractical for any but the smallest of regions. 

Manual techniques pose a number ofproblems in the modcl dcvclopmcnt and 
testing stages as well. Perhaps most apparent is rhe effective limitation ofsample 
sizes owing to thc cxccssive labor requircmcnts of measurement. For example, a 
region might contain several hundred known sites, bur ir  might not be possiblc ro 
usc all of them [or modcl development or testing bccausc of the difficulties of 
measurement. This is cven more likely to  be the case for nonsites if the conrrol- 
group approach is used, since potenrial sample sizcs ofmany thousands ofnonsites 
can in principle be obtained from thc background environment. 

Perhaps a more scrious eKect of hand-measurement ofvariables is that a large 
amount of variation can be introduced into an analysis simply through measurc- 
ment crror. Significant differences can bc observed between measurements taken 
by different people or in measurements made by the same person at different times, 
even for variables as easy to measurc as distance to nearest stream or slope as 
pcrccnr grade. This factor can introduce major variation into the outcome of a 
modcl and can also aflcct the application of a model. 

A major disadvantage ofmanual mcasurcment has bccomc apparent only with 
thc implementation ofcomputer-bawd CIS technology in archaeological locational 
studies. Human measurcmcnt, primarily becausc it is slow and time-consuming, 
actually limits rhe kinds ofphenorncna that might potentially bc examined, or cven 
conceived, in sitc location research. For csamplc, for a givcn locus on a map (such as 
a sitc location), or cvcn for scvcral loci, i t  might bc possibk to cstimatc a Icast-cffort 
travel distancc (as opposed t o  a linear distancc) to a ncarest watcr sourcc (discussed 
below), or it  [night bc possible to calculate, as a rclativc measure ofvicw quality, the 
pcrcentagc oftcrrain that is visible within a given area. It is not possible to do thesc 
kinds of calculations manually for many hundrcds or thousands of locarions (or, for 
cxample, cvcr): 50 m across a map area). In fact, since arc inhcrenrly think in a 
"manual mode," such variables are rarely even considered. This poscs a serious 
constraint on archauological locational rcscarch. 

Archacologisrs are great gatherers of information. Wc collcct data pertaining 
to where sites arc found or cvcn where individual artifacts arc located. We gather 
information describing regions surveyed, the intensity of the survey, whcn the 
region was surveyed, and who survcycd i t .  Wc collcct data about site conrent, thc 
locations of features and artifacts within a site, cultural afiliation, various site 
components, and the amount and kinds of work performed. Various ccological data, 
such as environmental associations, might be recorded, as well as modcrn features, 
such as existing roads, trails, dwellings, and towns. It is important to rccognizc that 
much, pcrhaps most, ofour data arc geographically distributed; that is, they have a 
mappable component. A major problcm is that it is ofien difficult to manage largc 
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bodies of regional information and to rctrieve particular information because part of 
the data might exist on maps while other information might be located in site forms, 
in project reports, in published articles, or w e n  in museum collections. The  
usefulness of our great collecting cKorts is thus scverely compromised. 

Finally, archaeologists have been working with unmanagcably large, geograph- 
ically distributed computer data bascs, such as digital representations of remotely 
senscd images or digital terrain models, for a number of years (e.g., Green and 
Stewart 1983; Lyons and Hitchcock 1977). These unwicldy sources of information 
are often dificilt to  analyze, explorc, and manipulate, andit  is not easy to arrive at 
conclusions about them (McLeod and Jafek 1984). Various sources of data might 
occur at different scales, in several map projections, or might even be geometrically 
distorted owing to the tilted angle of a remote sensor platform, making it difticult 
not only to rcgisrcr one source ofdata to another (such that a particular point in space 
lines up with the same point in a11 the other data sources over the entire region of 
study) but to locate even a single point in spacc in all data sources. These problems 
are major limiting factors in the practical use of thcse data bascs in regional 
archaeological investigations. 

CIS technology can virtually eliminate these problem areas and limitations. 
First, computers can perform many thousands of mcasurcmcnts of potcntially all 
variables examined in site location studies in a matter ofseconds and pcrmancntly 
store those measurements for later use. This virtually eliminates sample-size 
problcms for known site locations and also permits us to obtain extremely largc 
samples of the background environment (or nonsites) for cornparativc scudics as 
wcll. Second, such complcs calculations as probability estimates can be performed 
quickly and in largc numbers. Third, cartographic capabilities inhcrent in a GIs can 
provide maps of virtually any resulr quickly and a t  low cost. Fourth, variation in 
measurement is cntircly eliminated: the computer produces the same rcsulr every 
timc. Fifth, depending on the ingenuity of the user, the available software, and the 
software dcvclopcr, thc porrntial for creating and exploring new types of informa- 
tion of relevance to  archaeological rcscarch and problem solving in site location 
studies is limitless. Last, geographic information systems provide a comprchensivc 
system for the managcment of largc, divcrse, and unwieldy geographic data sets 
obtained from virtually any source, such as site files, acrial photographs, remotcly 
scnsed imagery, or convcntional maps. All types of information, despite their 
original disparity, arc referenced to a common geographic coordinate base (such as 
longitude and latitudc or the Universal Transverse Mcrcator grid), providing a 
logical mcans for data storage, manipulation, rctricval, and interpretation. Thus, 
only through GIs capabilitics does it become possible to utilize many ofthe data and 
approaches coward understanding and modcling prehistoric site distributions that 
have been outlincd in this volumc. 

T h e  following scctions describe in greater detail the mechanics behind gco- 
graphic information systems and their capabilitics for archaeological locational 
rcscarch. T h e  material in thcse sections is not necessarily limited to a discussion of 
what e k i n g  geographic information systems are able to do. Rather, the god  is to 
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present what a CIS can potmtiall). o f i r  to archaeology without the restriction of 
working with existing systems, since few h a w  been designed with the archaeologist 
in mind. Thus, the use ofa GIs to provide measuremenrs ofsuch conceprs as terrain 
variability, view qualiry, vegetation diversity, or point-ro-point visibility, for 
example, will be discussed. The  ability ro compute such data, of course, may not 
available in mosr con~mercially produced geographic information systems, ycr it is 
these kinds of data char are vital if geographic information systems arc to bc useful 
tools, rather than restrictive tools, for archaeological research. Archaeologists 
should certainly have the ability, monetary or othcrwisc, to influencc software 
developers to provide necessary computer programs, and many archacologists arc 
rapidly gaining espcrtise as computer progralnnlers tht:n~scIvcs. Moreover, many 
governmental agencies employ programmers to meet the various information nepds 
oithcir personnel. Hence, there is litrle reason why archaeologists should not have 
access to a CIS with capabilities tailor-made ro mecr their analysis needs. 

The  Fundamenrals of Geographic Information Systems 

Geographic dormat ion  systems arc computer-bascd mcans for assembling, 
analyzing, and storing varied forms of data corresponding to spccific geographical 
arcas, with thc spatial locations of thew areas forming thc basis of the system 
(Tomlinson ct al. 1976). The  tcrm CIS, as used here, is rcstrictcd to computer 
systems that are able to intcrrclate sets of data reprcscnting dificrent geographical 
variables, as opposcd to systcms that mercly manipulate or map individual filcs of 
geographical data (Rhind 1981). As Bryant and Zobrist put it, geographic informa- 
tion systems "scck to capitalize on the synergism inhcrent in being able to 
automatically comparc a variety ofsociacconomic, cnvironmcntal, and land usc data 
sets for thc samc point on thc ground" (lW:120). 

Virtually any type of geographically distributcd information from any source 
can potentially be encodcd in coinputcr-compatible form. By using a GIs it is 
possible ro extract information from digital geographic data bascs, manipulate the 
data, dcrivc ncur data, and analyze this infor~natlon to proposc solutions to prob- 
Icms. 'Thus, geographic information systems are able to transccrid thc roleofmcrely 
processing m d  displaying information; t h y  also can be incorporated into the 
analysis, interpretation, and problcm-solving aspccrs of research in geographically 
distributed phenomena and processes (Hasenstab 1983a). 

Many typcs of geographically distributed data can scrvc as thc primary 
information portion ofa CIS: elevation data; river and strcaln locations, vegetation 
patterns and soil typcs (which might bc derived from satellite rcmote sensing), 
known archacological sitc locations, and regions of planned construction or devel- 
opment arc examplcs. At its simplest, a GIs can bc used to retrieve spatially 
distributed information that is encoded in data bases for a specified coordinate 
point, such as thc locus of a small archacological site. 
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Such a proccdurc, however7 docs nor fully utilizc a central capability of 
geographic information systcms-the ability to derive new information beyond 
that originally encoded in thc data base(Col1ins and Moon 1981). Forcxamplc, from 
interrelationships betwccn known points of clcvation in rhc. data base it is possible 
to estimate, at any locus, valurs of slope, aspect, and a variety of local relief and 
terrain variability measures, or major drainagc basins can be dcfined using che same 
data (Monmonier 198276-79). Points ofvancage, such as hilltops and ridges, can also 
be dctermincd (Kvamme I983a). From a digical hydrology net, distanccs co nearest 
seasonal or permanent streams can be computed, and from digicizcd vegctation 
daca, discanccs to a specified plant community (Lce ec al. 1984), complex indices of 
vegctation diversity, or even local caIoric potential can be measured. Liscings of 
nearest neighbor sitcs and distances can be obtained, as well as che discance to  a 
centraI pIace village from a data "layer" containing known archaeological site 
locat ions. 

An important benefit of the data-gcneracing capabilities of geographic infor- 
mation systems is that miormation that was prcviously impossible to obtain owing 
co the sheer number of required cakulations can be dcrivcd. Maximum view 
distances, measures suggesting shelter or view quality, and least-effort travel 
distances arc all potential information classes char iiluscrace this property. T h e  ncxt 
section discusses in grcatcr detail the nature of thcsc various rrr~u!~r i ra l~ur~ucc~ .  

GIs Analytical Surfaces 

A central GIs concept is thac ofu~rrr~tirnlrrr~fizrcr,  which rcfers to the individual 
t~ layers" or data plancs ofinformation in a geographic data base (National Rcscarch 

Council 1983:41-43). Primary sources of informat ion neccssav for the construction 
ofa GIS must be encoded in computer-compaciblr form. For regional archacological 
research, primary information might include cnvironmencal daca, such as clcvacion 
contours, river and stream locations, and vegetation and soils rypcs, as well as 
cultural data, such as known archaeological site locations, archaeologically field- 
inspccccd regions, access roads, and arcas of planned development or impact. 

It is possible to obtain through the U.S. Geological Survey or private compan- 
ics many types of geographical daca, particularly regional elevation daca, alrcady in 
digital form and on computer tapc. For esample, digital terrain tapes, which were 
originally produced by the Army h4ap Service(now the Defense Mapping Agency), 
arc available at low cost from thc U.S. Geological Survey (National Cartographic 
Informacion Ccntcr 1980). T h e  digicaI terrain tapes were produced by digitizing the 
elevation con tours on 1:250,000 scale topographic scrics maps, and they arc available 
for the entire United States (Doylc 1978: 1484). As mighr be espccccd, thesc data are 
somewhat crude owing co the scale of chc original map sources, and reccnc scudics 
(Scow and Estes 1981) point to inaccuracies in the resulting elcvarion surfaces (e.g., 
small ridges, drainages, and canyons are undcrrepresrnted). 
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As an altcrnativc, the USGS is currently producing highly accurate digital 
elevation modcls (DEiMs) that arc obtained through digitization of 1:24,000 scale 
ropographic maps (Doyle 1978:1484). Not only tho rlevation dara but also othcr 
classes of planimetric information, including hydrologic and cultural data, such as 
road networks, are available for these maps. A limitation of this data source is that 
only a small pcrccntagc. of the quadrangles across the country have been digitized to 
date, although the USGS ultimately plans to digitize all the 1:24,000 scale maps. For 
a particular study region, high-quality elevation and hydrologic data, two of the 
most important sources of information for archaeological locational studies, may - 
already be available in digital form. It is unlikely, however, that other sources of 
information, such as vegetation and soil data, will be available in digital form, and 
archaeological data certainly will not be available. As a result, it is often necessary to  
digitize these data clectronically. 

A common digitizing procedure utilizes a digitizing tablet and cursor (~Mon- 
monier 1982:7; Rogers and Dawson 1W9). With these devices, such pictorial infor- 
mation as elevation contour lines or stream courses are manuaIly traced and 
cncodcd in computer-compatible form (Figure 10.1). T h e  tablct may contain as 
many as a million x, j  coordinates per squarc inch (Calcomp 1983); as the Iincs are 
being traced they are electronically converted to corrcspondingxy coordinates that 
the computer is able to utilizc. This procedure is, of course, somcwhat labor 

Figure 10.1. X.1 anual digir wing of contour lines rhrough use oS;1 cursor m d  digitizing rnblcr. Pictorial map 
information, afiixud ro thc tablet, is  convcncd cox,;. coordinates by manually positior~ing rtic cross hairs oirtic cursor 
over the inrended point and prussing a burton. Thc kcys on thc cursor control dinkrent firnction?; or allow cnrry or 
category codcs. 



intensivc. For example, digitizing chc elevation contours on a typical USGS 7.5- 
minute quadrangle can cake anywhere Srom onc to six (or more) prrson days, 
depending on the complexity oSthc rcrrain. State-of-the-art digitizing technology 
utilizes optical scanners to digitize complcs pictorial infor~nation in seconds (Leberl 
and Olson 1982), but this eq~iipment can be wry  cspensive. 

T h e  primary data are usually derived from traditional maps, but other sources, 
such as preclassiticd or interprctcd remotcly scnsed digital satellite images, can be 
used (Shclton and Estes 1981; see bclow). However they are acquired, the scveral 
primary surSaces ofdigital information that thc CIS nceds are encoded and stored in 
the initial data base (Figi~re 10.2). Computcr programs then arc able to utilizc thesc 
primary data [o derivc secondary information that often is rnore useful than the 
primary data (Collins and Moon 1981). For esamplc, slopc estimates, aspect csti- 
mates, or distances to nearest drainages might be dcrivod (horn clcvation and 
hydrology surfaces, respectively) and stored as new and distinct analytical surfaces 
(Figure 10.2). 

O R I G I N A L  GROUND 
S U R F A C E  AND P R I M A R Y  SECONDARY 

T H E M A T I C  M A P S  SURFACES SURFACES 

Figure 10.2. Construction o i l  CIS. From thc original land surhcr (b), various rhc.m.3ric map5 arc prodilccd, such ss 
rlcvation contours (c), hydrology (d), and lbrcstcd arras (c). 'l'hcsc rn;lps arc dlgirizcd and corwrrrcd to primary lnycrs in 3 GIS 
reprcscriring nn r l cv~ t ion  surL~cc (I) ,  a hydrology suriacc (g), m d  a kurcst location surhce (h), which 3rr all rckrcncad ro a 

refcrcnce grid, buch as the L'Th.1 grid (a). I;rovi rhc elcv.~tion such sccondan surf:~ccs as slopc. (i), aspect Q), and 1oc;il 
rclicf(k) might bc obtcli~wd. Thc  hydrology surhcc mighr provide 3 wconday surfacc showing disraticc. to nearesr drainage 
(I), and rhc forcsr location surhcc might yidd a suriacc. showing disranct to Ircmst forw (m). 
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A basic principlc of gcographic information sysrems is chat the uscrs provide 
thc system (through digitizarion or other mcansj with the minima1 information rhar 
it nceds (primary laycrs). The  GIs irself subscqucnrly derives secondary sources of 
data by means of various sofrware rcchniqucs. Both primary and si-condary surfaccs 
can then be uscd for analyrical or display purposes. T h c  specific ways in which these 
data are utilized, however, depend on rhc narurc of thc particular GIS. 

GIs Types 

There arc cwo fiindamenral GIs dcsigns. A vector-based GIS, such as the 
Dcpartmcnr of rhc Intrrior's h4OSS (Lcc er al. 1984), stores data as a series ofpoinrs, 
lines, or polygons rhar arc used to i d e n r i ~  discrere fcaturcs thar rypically occur on 
rraditional maps (wc~or  is another word for a line berwccn ru70 poinrs). A cell-based 
(somrcimcs called raster-bascd) GIs, such as rhe Dcpartmcnr of the Intcrior's 
M A P S  (a subsystem of hlOSS), supcrimposrs a rcgi~lar grid conraining rows and 
columns of cells over rhc region and assigns a numeric value ro each cell (Figurr 
10.3). Each dcsign has certain advantages and disadvantages in rcrms ofarchaeologi- 
cal locational analysis and modeling. 

Yrcror-Basrd Grogruphic Infomarion S j w m r  

Vector-bascd geographic information systems accomnlodare informarion dig- 
itized as points, lines, or polygons (i.e., mappable dara; Figurc 10.3). Compurer 
storage requirements for this information are minimal since only the coordinates of 
digitized points (points along Iinc or polygon boundaries) arc stored. A vector- 
based system is suirablc for cultural rcsourcc itrl;,rma~iotr aanugmrrrr since various 
mappable enriries-archaeological sires, site boundaries, surveyed rcgions, and 
archaeoIogically sensirive zones-arc easily rerrievcd and dispIaycd, as are other 
rypcs of discrere map information (e.g., specific soil typc locarions). A vector-bascd 
GIs can also be used for the display ofvery simple sire locarion models rhar arc based 
on a one-to-one corrrspondrncc beturcen the locationsofsites and discretc carego- 
ries of information, such as planr comrnuniry or soil type locations (Thompson 1978; 
scc also Cordell and Green 1983). For esample, ifa site location model suggesrs high 
sire dcnsiry in piiion-juniper setrings, a vccror-based sysrtm can easily prescnr a 
series of polygons showing thc locarions of high-site-density pinon-juniper zones. 

Although vector-based gcographic information sysrems can be used to manage 
and display discrctc classes of map dara, these systems arc unsuitable for many of 
the analysis and modcling techniques described in carlicr chaprcrs. In analysis and 
modcling contexrs, systrmaric lncasuremcnrs or observations of cnvironmcnra1 or 
orhcr fearurcs are required (c.g., evcry 50 or 100 m across :r rcgion ofscudy). In other 
words, spatially conriguous valucs of the dara arc neccssary. In vccror systems such 
information is not available; data vaIues are prcscnr only ar point, line, or polygon 
boundaries, which conscirute only a very small portion of any rcgion. This short- 
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BASE M A P  

V E C T O R  C E L L  

Figure 10.3. Ch,~r.ac~srisrics of r n ~ p  inrorm.irion in vcr ror -hsud  m d  ccll-hx>ctl g c o p p k i c  information 
systcms {afccr Lcc cr d. 1984). 

coming is further illusrratcd by rhc fact that even if conrinuously varying map 
information is available in digital form, such as elcvation or slopt- values, such dara 
musr be transformcd ro line dara by conrouring or by caccgorizing rhc conrinuous 
measurements into discrcrc classes (c=.g., levcl vs steep slopes) ro be handled by a 
veccor GIs. 

Cell- BasrJ Gi.ographic Infirmarion S~srrms 

Wich a cell-based or  raster GIs, boch categorical and continuous map inforrna- 
tion can be incorporated. Since a grid is superimposed over the enrire region, each 
analytical surfacc is cornpostrd of' rows and columns of grid cells, each cell corrc- 
sponding to a fixcd area in real space and each conraining a value for thac area 
(Figurc 10.3). For esamplc, an elevation surfacc would contain an clcvation in cach 
cell rcprcscnting [he height of che ground; a slope surfacc u,ould contain a slope 
measurement in each cell; and a nominal-lcvcl surface, such as a reprcsentation of 
plant community locations, would concain a uniquc valuc in cach cell, with cach 
value corresponding to a specific plant communicy class. Since a value musc bc 
scored for each cell for each analytical surface, cell-bascd geographic information 
sysccms typically rcquirc large amounts ofcompurcrstorage. Owing co rhe gridding 
or rasrerizartot~ of features, the quality of display olinlormation can sufyer to some 



extenc (Figure 10.3), although this depends on the resolution (sixc) of the cclls and 
of the display dcvicc (see below). These difficulties arc decreasing, however, 
because mass storagc and high-resolurion display devices are rapidly becoming 
available at low cost. 

Smcc ccll-based gcographic infbrmation systems can accommodate continu- 
ously varying and categorical information, treating each as a surface of contiguous 
values, and sincc they can easily derive and score many types of new data of 
rclevanct. to archaeological inquiry over cntirc srudy regions, this type ofClS is wcll 
su~red  for archaeological locarional analysis and modeling research. Additionally, 
with a ccll-based GIs each analytical surfacc, regardless oftypc, can bc treated as an 
h 6  image" ' (refcrrcd to  as a p r ~ r r d o - h a p  in image analysis). This means char the 
rcsearchcr can make use o i the  largc numbcr of available image analysis, manipula- 
tion, and classificarion tcchn~qucs (scc Chapter 9 for an overview ofsotne of thew), 
as wcll as a host ofimagc-processing software packages (see Kohler's briefoverview 
later in this chapter). T h c  following sections focus on cell-based geographic infor- 
marion systems sincc rhcy arc better suited for rhc archacological analysis and 
modeling approaches discussed in rhis volume. 

GIS Issues 

Several issucs in GIs research are of importance to archacological modeling 
applications. One issue is [hat ofcell size in a cell-based GIs (Wehdc. 1982). T h e  site 
or rcsolurion of the cclls is estren~cly important bccausc it dctcrmines the nature 
and quality (accuracy) of the features that can be analyzcd. For nominal-level 
fearures, such as vegetation community locations, a largc grid may scverely mis- 
represent the true shapes and sizes of chc categories, which may rcsirlt in inaccurate 
bordcr and area estimates (Figure 10.4a). For continuous data, such as an elevation 
surface, largc cells tend to smooth fcaturcs of the terrain; small ridges, canyons, or 
drainages might be underrepresented, lcss pronounced, or cvcn invisible on the 
griddcd surface (Figure 10.4b). An addiciona1 result is that any surface derived from 
such an elevation layer (e.g., slope, aspect, rclicf, and ridge idcntification; see 
bclow) will also be smoothcd. 

Although small cell sizes may portray various fcaturcs more accuraccly, an 
important consideration is [hat computer storage requirements increase gcometri- 
cally with decreased ccll s i x .  For example, to store the information from a typical 
7.5-minute USGS map gridded in cclls 100 m on a side(about one-sisth ofan inch on 
the map) would requirc about 15,000 cclls per layer of data; cells 50 m on a side 
( a b o ~ ~ t  one-twelfth ofan inch on the map) would require about 60,000 cells per layer. 
Thus, some balance must be struck bctween ccll resolution and storage require- 
mcnts. It should bc cmphasizcd, however, that small cell sizc docs not necessarily 
guarantee accuracy. I t  is rcchnically possible, for instance, to increase the resolution 
in any data plane (say from 200 m to 30 m on a side), but if the data were initially 
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Figure 10.4. Efkcts of cell s i rc  in ccll-bxcd grographic information sysrcrns, (A)  Sizcn and shapcs of 
discrerc classcs can bccomc srvcrcly discnrrcd. (B) For conrinuour d:irn, such as a n  elevation wrfacc, rhc ccll sizc 
may be adcquarc to disphy terrain katurcrs (righr)or it  may bc inadcquarc, rcsulring in a srrmorhcd surfacc (lcir). 

encoded at thc grosser Icvel of resolution thc final result would oficr no increase in 
accuracy. 

Another important concern in a n~ultilayered GIs pertains to registration of 
thc individual laycrs (National Rcsearch Council 1983:42). One must be absolutely 
certain that a coordinate point in onc Iayer lines up in rcal space with the same 
coordinate point in other laycrs. For a cell-bawd GIs this means that the borders of 
cach cell in each Iaycr must coincide (within acceptable limits) with the borders of 
cach cell in the othcr layers. This i s  a particular problem when combining data from 
such diverse sources as aerial photographs, remotcIy sensed images, and a variety of 
map projections and scales. A wide varicty ofprocedures for rcgistration of multiple 
data sources can be found in a number of standard image-processing sources (in 
particular, Moik 1980: 187-198; Schowengerdt l983:99- 116). 
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T h e  computacional algorithms thar a particular GIs employs should not be 
takcn for grantcd. Many commcrcially available geographic information systems 
make use ofproccdurcs rhat arc crude and unsuirablc for archaeological locational 
rcscarch dealing with relativcly snidl study areas or site-specific rnicrocnvironmen- 
ral characteristics. This stems, in part, from the fact that many geographic informa- 
tion systems are designed primarily for low-resolution uses, such as counts or 
statewide administrative planning and rnapping needs. Technical manuals rhat 
accompany most GIs packages usually provide some information about the compu- 
tational approaches that the system uses. 

GIS Algorithms 

Primary Sur{acrr 

One ofthc mosr important primary surfaces in a geographic data basc, at least 
for archacological analysis and modcling purposes, is rhc clrvativrr surfkt because this 
surfacc represents the form of the terrain in a region. A widc variety of terrain 
features, such as slope, aspect, local relicf, terrain variability measures, hilltop or 
ridge "vantage" locations, vicw quality, and shelter quality mcasurcs, can potcn- 
tially be derived from this surfacc. This surfacc is also one of the mosr difficult to 
construct unless it can be obtained precstablishcd from somc outsidc sources (as 
noted earlier). In ordcr to portray more clearly some of thc software mechanics 
behind a geographic data basc, one way (out of many possible ways) to consrruct 
such a surfacc will bc described. 

An elevation contour can be rcprescnted as a series of lines between digitizcd 
points, as in Figurc 10.5a. In constructing a cell-bascd clevation surhcc where an 
elevation valuc is available for ever). locus (cell) in the GIs region, the first step 
might be to placc these digitized points in appropriate cells (Figure 10.5b) and 
connect the cclls between the points (Figure 10.5~) to yield a griddcd or rnsttrizrd 
image of an input contour map (Figurc 10.5d). In this laycr (in computer terms, a 
two-dimensional array) cclls (array elements) that contain a contour possess thc 
elevation value of rhat contour, while other cclls contain a zero. This array of 
elevation contours must be transformed to an E / L I V ~ C ~ O N  mt$act. in which every cell 
contains an clevation valuc. 

Interpolation routines arc used t o  provide an initial cstimate of thc clcvation at 
cvery poinr (cell) where rhe clevation is unknown (the zero cclls). 'Thcre are 
literally hundreds ot.intcrpolation algorithms (c.g., Dcllincr and Ddhommc 1975; 
Rhind 1975; Yocli 1975:360-366); some provide more accuratc estimates ofunknown 
elevations but use larger amounts ofcomputer time, others providc less satisfactory 
estimate3 but require Icss computation. T h e  amount of time used by a particular 
algorithm can bc an important consideration given the large number of estimates 
typically required for cvcn moderate-sizcd rcgions. Two common interpolation 
algorithms are illustrated in Figure 10.6. T h e  Grst, a column (or row) scan, which 
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Figure 10.5. S r q x  [hat might bc I'O~IOH.CCI in rhc co~rs~rucrion o f ~ n  clcv-~rion surlicc. (.I) Digirizcd 
points arcirrdicatcd on a contour linc, (B) l -hc  dlgirizcd painr\ xr. placcd in appropriate griclccllr. ( C ) T h c  
cclls beru.r.cn rhc dgirizcd cclls arc Gllcd ~ r i .  (L)) In .I griddrd or mstcrizcd r~ r s ion  o l rhc  original contour 
map, contour linc ccllsconr:~in thc clc.varian vduc ol'rhcconraur; crnpl). ccllscont3in .>zero. (E) Thcinirinl 
surfacr of interpolared r l rvar ions  is  "noisy." (F) The find clcvarion surhcc is srnoothcd. 
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Figure 10.6. Elrvarion inrcrpol?tion ,dgoritlims. (:I) A column (or row) sc;rn rcchniquc cnrchrs  
along columns (or row)only and Iincarly intzrprcrs unknown rIcv~rions(0) bcrwcrn points ofknown 
elevation (2,6). (B) I n  rhcsccond tcchniquc an algorithm scarchcs in right dirccrions ( 1  -6) from a locus 
(0) ofunknown elcvaiion, linds thc lint oistccpert ch.mgc(I, 5), and linearly inrcrpol;~rcs .tnclevation 
ar rhc loc~~s.  Xotc rhnt [his procrduru lbllows inanual inrcrpolarion ~cchniqucs morr closc:iy rhm the 
scan proccdarc. 

searches for known clevacions only along a given column (or row), requires little 
effort to compute but may noc offer a good esrimatc of the unknown eIevation in 
some situations. T h e  other, which searchcs in eight dircctions for known elevations 
and uses the line ofsteepest increase as a basis for interpolation, usually produces 
more accurate results (in fact, closely mimicking manual interpolation techniqucs) 
but takes greater computational effort and therefore more computer time. (This 
comparison illustrates the poinc made above about the importance of csamining 
computational procedures.) 

T h e  outcome of [he interpolation routine is an initial elevation surface (Figurc 
10.5e), which can be extremely "noisy," containing many small, artificial pcaks and 
valleys. Because each eIcvation in this surface is interpolated independently, each 
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elevation might be estimated from known values that arc quicc dif i rcnr  from thc 
values used to  estimate adjaccnt elevations, resulting in somc disparity between 
adjacent clevarion estimates. The  final step in creating an elcvation surface, called 
rmourhin~, at tcmpts to rcmove this noise by providing a better clcvation cstimate at 
cach location (Allan 1978:1518; Monmonicr 1982:65-66). This smoothing proccss 
(which is distinct from the detrimental smoorhing caused by large cell sizes) 
recognizes that elevation estimates in adjaccnt cclls, bccausc of their proximity or 
spatial autocorrelation, shoi~ld also bc good cstimatcs ofeach cell's elevation. A final 
estimate in cach cell is therefore typically accomplished by taking a useighted 
avcragc of cach cell's clevacion 2nd the clcvations in the adjacent cells (with most 
weight being given to thc current cell). The  more familiar smoothing in one 
dimension is illustrated in Figure 10.21, while two-dimensional smoothing is shown 
in Figure 10.7b. T h c  rc.sulring surface, without thc artificial peaks and vallcys, is 
illustrated in Figure 10.5f. 

Orher primary surijces arc somcn~hat casicr to obtain (if not already available 
commercially). For a hydrology net, the stream locations are digitized in much the 
same way as elevation contours ( F ~ g i ~ r e  10.8a). The  digitized strcams are then 
placed in grid cclls to form a rastcrizcd image of thc  hydrology nct (much like the 
rastcrizcd elevation contours in Figure 10.5d). Thc  strcams, however, might bc 
coded to rcflcct permanent or scasonal warrr (Figure 10.8b) or Strahlcr order ranks 
(Figure 10.8~; scc Chaptrr 8 for a description of the Strahlcr order ranking system). 

Rasterization of polygonal areas, lines, and points, which are used to describe 
discrete classes ofinformation, such as vigetation cotnmunities, soil types, archaeo- 
logical site locations, and archacologically field-inspt!cted regions, is fairly straight- 
forward. Digitized polygons arc merely transformed to a griddcd version of thc 
polygons (Figures 10.3 and I0.4a) using various polygon-fill routines (MacDougaIl 
1971: 117- 126; Monmonier 1982:68-73). Polygon cells that represent a particular class 
arc assigned a uniqut. identification numbcr. 

An infinite number ofsccondary analyrical surfaccs ofpotential importance to 
regional arch3eological research can be derived from thc primary surfaces in a CIS 
framework. Two common types are slope and aspcct. Based on interrelationships 
bccwccn the elcvation of a grid cell and those of its nearest neighbors in thc 
elevation surface, somc algorithms (c.g., Woodcock ct al. 1980) fit a least-squares 
planc. ro rhcsc elevations and find the masimum slope and thc direction ofmaximum 
slope (aspect) on this planc (Figure 10.9a). Othcr algorithms might find a masimum, 
minimum, or average slope (e.g., X4OSS; Lee ct a]. 1984). 

A variety of rcrrain variability measures are easy to obtain from the elevation 
surface (see Chapter 8 for more detailcd discussion of thesc variables). For example, 
local relief (masimum minus minimum clcvation) can bc obtaincd within any 
defined radius of a givcn cell (Figurc 10.9b). Anothcr tcrrain roughness measurc is 
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Figurc 10.7. lllurrrarlon ol'smuorhing (nfrcr kionmonirr 1983). ( A )  Smoorhi~ig in onc dinicnsion: thc original 
noisy trcnd (Icfr) is comparcd to the .ianic trcnd aitcr imoorhir~g (righr), ( U )  Smoothing in rwo dimensions: a 
smuothcd surhcc (right) is obtained by calcularing 3 wrighccd Jreragr ol'rhc initid grid (left). 
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Figuru 10.8. Encoding ofhydrologic dara. (A )  Digitized points arc indicated on  a hydrology nct. (B) T h e  
strcam locarions are placed in cells. Scasorul warcr mighr bc codrd as " I "  and pcrmancrlt water as "2." (C) 
Srrcarns mighr 3lso bc codcd according ro Srr:ihlcr ordcr ranks. 

tcrmed a texture measure in image processing (Moik 1980:232). This measure finds 
the variance ofelevations within a defined radius or "window" of a given Iocation 
(Figure 10.9b): high valaes suggcst variable or rough tcrrain while low values 
suggest levcl or smooth tcrrain. Fragmentation indices (Monmonicr 1974) provide 
other analytical altzrnativcs. 

Hilltop, mcsa cdge, and ridgc crest vantage locations might be defined using a 
varicty of tcchniqucs (e.g., Kvamme 1983b). For examplc, the previously derived 
slope data pIanc might be uscd to define all level locations (e.g., thosc with gradcs 
less than or cqual to 15 perccnt) adjacent to or  within a ccrtain disrancc of stccp 
locations (those with grades grcarer than 15 perccnt). T h c  elevation surfacc is thcn 
uscd to delimit rhosc locations (cells) above the adjacent strep locations. 

An anglc ofsurrounding view, one possiblc measure rcflccting quality ofview, 
can be obtaincd from the elevation surfacc simply by calcuIating for each ccll the 
angle thar encompasses all clcvations in thc surrounding eight cells thar are lcss 
than thc current cell's elcvarion (Figure 10.9~). A "view catchmcnt," another 
possiblc measure ofview quality, might be calculatcd by fixing a I mi radius around 
each cell and calculating the percentage ofcclls within that radius that are visible 
from thc currcnt cell (Figure 10.9d; Lce ct al. 1984). 

~Morc traditional carchmcnts might be calculated using a nominal-lcvcl vegc- 
ration layer. Given a fixcd catchment radius around cach ccll (Figurc 10.9d), the 
proportion of various plant communities within that radius can bc obtaincd and 
srorcd in scparatc derived laycrs. Alternatively, some index of vcgctation diversity 
or  complcsiry or some estimatc of caloric potcntial might be calculatcd. 

Scarch and distance-measuring routines can bc used to derive a variety of 
analytical surfaces; the MOSS-MAPS systcrn, for examplc, has several (Lee er 31. 

1984). The  nearest specified warer type (e.g., seasonal, permanent, or a stream of 
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Figure 10.9. Esalnplcs olvarinrlb compur;trional.~lgorit hrns. (,\)A Icast-squnrc* plane mighr bc 
fitted to arr clevarion (thc ccr~rral sphcrc ,and shadcd ccll) and its right ncnrcsr neiphbor clcvarions. 
T h e  masirtiurn s l o p  on this plane rnighr hc calculntcd, ;alor~g with rlw tlirccrion oimxirnurn slope 
(zspect). (B) I.ocal rclieinlight bc calculsted as rhc rmgc in clev3rions in a rhrcc-by-rhrec window' 
around 3 currcn[ elevation. .4Itc.rrurivcly, I hc wrimcc ofrhc c l c v ~ t  ~ons  mighr bc cdcu1:ircd KO dcrivc a 
tcxrurc rncnsurc. (C) An ar~glc oCvicw could be c.~lcularcd in :In clcvation suri-dcc.. (D) A catchment 
radius can be fitted around a ccll. Arca, or pcrccntagcs oTrllc icarurc of'inrcrcsr can be calculatcd 
within the radius. 
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specified Srrahler ordcr rank) mighr be located from a primary hydrologic net, for 
insrance, and the horizontal Euclidean disrancc could be calculatcd for each ccll 
(Figurc 10.10a). In conjunction with the elevation surface, thc vertical distance to 
the same drainage type might also bc obtaincd. Ifhilltop, mesa edge, or ridgc crcst 
vantage points arc already defined, search procedurcs can be used to obtain a 
distancc to nearest vantage within cach cell or, using a vegetation community 
surfacc, the distancc to a spccilicd plant community. Lincar distances, however, 
might not be thc bcst measure to usc in site location studics (Ericson and Goldstein 
1981); because thew oftcn are obstacles to cross, peoplc do not normally fo l lo~+ 
straight paths. Ifappropriatc software is available, and definitions oC"cifort" can be 
made (sce Turner i978), lcast-efiort travel distances might be cstimatcd instcad 
(Figurc 10.IOb). 

Gcographic information systems can accomplish many ofthc samc tasks using 
"cultural" variables as they do for cnvironmcntal ones. For cxamplc, ifccnrral place 
sitcs are defincd in the data base, thcn distancc from each ccll to  the nearest central 
place can easily be gencratcd. Similarly, based on the locations of known archaeolog- 
ical sites, various ordcrs of nearest neighbor sire distances can be calculated. 

Thew examples illustrate the kinds of phenomena one might potentially 
investigate in site location studies through the usc oWlS techniques. Such investi- 
gations arc limited only by our abiliry to  innovate and bc creative (and by CPU and 
storage requircmcnts)! 

Figure 10.10. Illusrr3rion oitlist:rncc calcul~rion tcchniqurs. (A)  To obtain lincar t l i sra~xs  rhc computer .;cans 
fro111 a currrnr ccll lvith search radii oiincrc~sing Irng[h until rbc i w u r c  oiir~tcrcs~ is cncountcrrd. (B) >lc~surc.rncnr of 
Icasr -dht  t rwcl distancc miglit ctin.;itlcr p t h s  that avoid liills, 
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Geographic Information Systems and Remote Sensing 

As discussed in Chapter 9, the potential of remotcly sensed data for a number 
of applications in archaeology and elsewhere is beyond question. Recently, a 
number of remote sensing specialists have noted that geographic information 
systems "have significant potcntial to facilitate use of remotely sensed data" 
(Shelton and Estes 1981:395). A key problem in rcmote sensing, for example, is that 
remote sensor image? is usually geometrically distorted; for these data to be usefd 
in applied contcxts the interpreted intbrmation must be cransferrcd to a standard 
geometrical base or georcfcrence (Steiner and Salerno 1975:622). Tilted or oblique 
satellitc images must be rectified to a horizontal reference plane. T h e  rectified 
image then must be gcomctrically corrected into a particular map projection, such 
as longitude and latitude or the UTbl  systcm. The  importance of these tasks is 
recognized by the jet Propulsion Laboratory UPL), a center of state-of-the-art 
remocc sensing and image processing. McLcod and Jafck (1984:75-76) note that 

Perhaps the mohr prodigious rechnology inrroducecl by the lab is that of the geographic 
information sysrem, which co-registcr.i dnd analyzes a virruslly limi[lcss supply oisensor 
dara types, and then relates them ro kcy geographical qucsrions w~rhin 3 given region. 
A t  one polc of ~ r u c  st;trc-of-the-art mage procclsing, GIs is rhe reverse o l rhc  imaging 
rcchniquc that solely cnhnnccs immcdiarc visual recognition within 3 parricrilarscmc or 
image data set. Rarhcr! CIS is JPL's ansuvr ro rhc nccd for analysis of unrnanagc~bly 
large data bases :md rhc need to rnakc responsiblc decisions s h u t  rhcm. 

. . . Each irnagc is first cntcrcd into thc dat3 base and geomerricdlp corrcctcd bcforr 
being registercd ro the "planirnct ric base" or sysrem ordata planes. Each image p l a ~ ~ c  is 
again refercnccd roonc or more georefcrcncc. plmcs. T'hc user is rhus ablc ro rnsnipulate 
dara from scveral source, which, despite their original disparit)., zrc rcfcrcnccd to a 
common bare. 

Since geographic information systems interrelate multiple gcographic data sets that 
are tied to  specific locations, it is clear that the JIJL system, aIthough it primarily 
uses remotcly scnscd data, meets this definition. 

There are other reasons why geographic information systems and remote 
sensing should logically be linked. In recent years various forms of ancillary data, 
such as digital terrain mod& (see abovc), h a w  bcen incorporated into remote 
sensing applications. During a project that devclopcd classification models for forest 
cover type based on remotely sensed spectral data, for example, it was discovered 
that incorporation of ancillary terrain data, such as elevation, slope, and aspect, 
significantly improvcd the classification accuracy of the predictive models ( H o G r  
et al. 1975; Strahler ct al. 1978; Woodcock ct al. 1980). Although spectral signatures 
could distinguish plant cover typcs to a fair extent by themselves, it  was found that 
the distributions of many plant groups were also related to such factors as ground 
steepness, aspect, and elevation (Hoffer et al. 1975; Strahler e t  al. 1978:930), varia- 
bles that were not rcadily obtainable from the remotcly sensed imagery. By 
merging digital terrain models and the remotcly scnscd spectral data into a single 
analytical data set, not only could the clevation data be obtained, but through 
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various softwarc tcchniqucs, cstimarcs of slope and aspect could be derived, 
allowing morc powerful predictive models to be developed. T h e  success of rhcse 
approachcs has led to applications using more varied forms of ancillary data com- 
bined with rcmotrly srnsed imagery. Xlissallati et al. (1979) combincd detailed 
geologic map data, acromagnetic data, and radiometric data (all digitally cncoded) 
with L.andsat sprctral information ro devclop predictive models for uranium explo- 
ration. Lovcland and Johnson (1983) co~nbined remotely sensed data with digital 
terrain data and digital soil survey, land ownership, and pumping plant location 
data to develop predictive models to cvaluare irrigation agriculture. This project 
showed, as Loveland and Johnson put it, "the flcxibilicy of remotcly scnscd and 
other spatial data as input for predictive models" (1983:I 183). 

Geographic information systems arc potentially useful for manipulation of 
geographic data rcgardlcss ofthcir sourcc. Rcccntly, this k t  has generated consid- 
crabte interest in remote scnsing circles (see Shclton and Estes 1981 for an ovcr- 
view). A new pcrspective has arisen that suggests that the focub ol'rescarch should 
bc on [he rigion under investigation (rarhcr than on particular sources ofdata) and 
that all rclcvant sources of information, regardless of type or derivation, should be 
sought for input into the rcgional CIS. Potential data sourccs includc traditional 
thematic maps and a variety of rcmore scnsor inputs. In this contcxt, thc CIS treats 
caeh analytical surface, rcgardlcss of sourcc, as simply mothcr data pIanr. The  CIS 
is able to facilitate manipulation, analysis, and modeling of these varied data types, 
treating inlbrmation sources indi~vidually or in combination. 

T h e  importance of incorporating remotely sensed data into comprehcnsive 
geographic information systrms is summarized by Shelron and Esrcs (1981:417): 

rhc full potential oKrcrtiorc srwsi~rg cannot 2nd will not bt! achicvvd without cnnrinucd 
and cxp~ndcd riiorrs to adapt the technology ro rhc evolvmg nccds niusers around thc 
world. 'To thc cxrcnt t h . ~  grogmphic inforn~:ttim ryrrcrn dcaigni rctlecr thorc nccds, 
GIS dcsign o ~ ~ g h t  to be a rrlcvant concern in rhc dcvcloprtrcnr d n c w  s:rtcllitc systen1.i 
and in esrablishmcnt of instiiurional .mangcnlcnrs for proccrsing, formatting, and 
d~sserninwing thr produc~s o i  rvrnotc scnsing. 

As a final caveat, however, the); note that geographic information systems represcnr 
an evolving technology. Since remote sensing can contribute to thc dcvelopmcnt of 
a CIS, e.g., by providing varied forms of data input, thcy concludc that fidl 
acceptance of bocb of' thesc technologies "is dependent on realization that the 
potential of each technology will not be achieved until they arc integrated." 

T h e  Potential oTGeographic Information Systems Tor 
Regional Archaeological Research 

CIS tcchniqucs may potentially contribute in a number of ways to rcgional 
archaeological sitc locarion research and modeling, and thcsc rcchniques may h a w  
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numerous applications to cultural resourcc data base management as well. Somc of 
these potential applications were suggested in a foregoing section on fundamental 
concepts; the following sections will elaborate on these suggestions and add several 
additional ones. 

Sparial Dara Mnnngemeni 

A GIS can consolidate and merge many and diverse forms of geographically 
distributed information into 3 single data base. This is perhaps the most obvious 
application ofGIS technology to rcgional archaeological research. Since archaeolog- 
ical data inherently arc geographically distribuccd, chcy arc well suited to a GIS 
contest. Varied forms of archaeological data, such as archaeological site locations, 
site types, regions that have been ficld inspected, and cultural rcsource sensitive 
locations, can be mergcd into a single data base, togethcr with varied sources of 
environmental and other geographically distributed dara. Sources of information 
can be as diverse as traditional topographic maps, thematic maps (soils, vegetation, 
geology), aerial photographs, and remotely sensed spectral data (Kvamme 1986; 
Parkcr 1986). 

In a regional geographic data base established for the explicit purpose of 
developing, testing, and applying predictive archaeological locational models in 
southern Arkansas, Scholtz (1981; see also Parker 1985) utilized a ccll-based format 
containing 3479 cells, each representing an area of4 ha (200 m sq). Fifteen biophysi- 
cal variables, including soil type, elevation, slopc, and distanccs to scrcams of 
various orders, were rncasured in each cell. Oncc rhc data werc measured and 
formatted within a singlc camputcr dara base, an exceedingly powerful tool was 
established for investigating environmental patterning eshibited by the locations of 
known sites and for formulating and mapping the results of archaeological prehis- 
toric and historical locational modcls. 

Hasenstab (1983b) developed a GIs for archaeological predictive modeling in 
the Passaic River Basin of Ncw Jersey. This data base was established by elecrroni- 
cally digitizing a wide variety of conventional maps and aerial photographs. Envir- 
onmental data included soil type, landform, slope, drainage, agricultural potcntial, 
current land use, degree of disturbance, type of modern development, and distan- 
ces to the nearest major river course, to confluences ofmajor rivers, to tributaries, to 
confluences of tributaries with major rivers, and to major wetland zones. Manage- 
ment data included the location ofknown prehistoric and historical archaeological 
sites, a gross river basin division, USGS quadrangle reference, and locational 
coordinate information. Most of thcse data' were gencrated from other digitized 
sources; the information was stored in 4306 gcorcfcrenced cclls, each representing 
an area of approximately 1.15 acrcs, 

Digital terrain tapes were used as the basic data source in a western Colorado 
study that attempted to model prehistoric archaeological site locations (Kvamme 
1983b). Six secondary surfaces, rcprcsenting slope, aspect, angle ofview, local relief, 
vantage locations, and distances to nearest point ofvantagc, were generated from 
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the initial elevation surface for cach of 5000 cells, which measurcd 100 m on a side. 
Stream courses wcre manually digitized, and thc stream locations, togcrhcr with 
horizontal and vertical distances to nearest screams, werc includrd in the daca basc, 
as were thc locations ofknown archaeological sires. Other secondary surfaces, in the 
form of various probability surfaces ofarchaeological sire presence (bascd on various 
combinations of variables), wcre also gencrared from these data. 

T h e  Granite ReefArchaeological Project (Brown and Scone 1982) made extcn- 
sivc usc of a GIs for management of thc project's daca and for purposcs of spat ial 
analysis and archacological modcling. The  Granite Rccf project encompassed a 
huge arca ofwesr-central Arizona, morc than 12,000 mi?. A variety ofbasic environ- 
mental data was encoded for cells measuring 1.16 mi on a side, including clevation, 
slope, basin divides, aspect, major ulatersheds, geologic classes, soil classes, vegcra- 
tion classes, seasonal prccipication, and elevation-adjusted temperature extremes. 
Encoded archaeological data included the locarions ofregions surveyed by archaco- 
logical ficld teams and a variety of sirc types, ranging from habitation sites ro lithic 
scatters, sherd scatters, rock rings, rocksheltcrs, rock art, and prchistoric trails. 
Based on various argumcnrs and notions about thc rclacive importance of each o r  - 
the environmental facrors to  the prchistoric occupation of chc region, the GIs was 
used to  develop a number of prehistoric land-use models that u7crc weighrcd 
composites of the basic environmcncal daca. 

Rcgional GIs data bases for a sourhern Fcdcral Republic of Germany study 
arca and a southern Colorado study area arc described by Kvamnw (1986; also scc 
Chapters 7 and 8). Thcsc gcographic information systems have similar charactcris- 
tics in the narurc of rhc data plancs that wcre cstablishcd and in thcir purposcs: 
archacological locational modeling. Both systems includc such daca as clevation, 
slope, aspect, and mcasurcs of local relief, view quality, vantage Iocations and 
distances to nearcsr vanragc, and shelter quality, along with the complctc hydrol- 
ogy network, horizontal and vertical distances to  streams of various Scrahler order 
ranks, and thc locations and types of archaeological sites (approximately 200 sires in 
the German daca base and 1200 sires in the Colorado data base). T h c  German GIs 
contained ncarly 80,000 cells, each encompassing I ha, and the Colorado GIs 
contained approximately 230,000 quarter-hectare cells. Both sysrcms wcrc used to 
establish archaeological locational models based on logistic regression probability 
functions; these models were scored as separare GIs surfaces. 

In the abovc geographic information sysrcms various sources and combina- 
tions of management and environmental dara, such as archaeological information 
about a particular sitc and its environmental propcrrics or scaled maps of any surface 
or  combination ofsurfaccs, can be retricved. Onc ofthe chief uscs ofrhc gcographic 
daca bases in all of rhe abovc studies is to examine and rest environmental hypo- . - 
theses about archaeological site locations and to dcveIop various settlcmcnt pattern 
modcls, including those used for the explicit purpose of prediction. 
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Generation of New Data 

The  use of a GIs makes i c  possible co derive new data and to explore new 
variables and measurement concepts. The  ability to derive new data from primary 
information initially encoded in a gcographic data base was discussed at length in an 
carlier section. T h e  speed and accuracy ofcomputers noc only allow vasc quantities 
of information to be gcncrated but also permic extremely complicated and timc- 
consuming measuremencs to bc performed. T h e  large numbers ofmeasuremcnts of 
clevacion, slope, aspect, discance co waccr, etc., that can bc produccd dcmonstratc 
in part [he cremendous workload capabilities of computers. Another example 
involving the computation ofpoint-to-point visibility through the use of an eleva- 
tion surface illustrates the complexity ofcalculations that can bc performed. From a 
given location (grid cell) of known elevation, one algorithm first approximates the 
straight-line path through thc reference grid ofcells to the dcsired poinc or grid cell, 
which is also of known elevation. If cells in the straight-linc path contain an 
clevacion higher than [he highest of the two end-poinr cells, a determination ofno 
viribility is immediately made; ifthe intervening cell elevations are all lower than the 
lowest of the two end-point cells, a determination of~iribilitg is immediately made; 
ocherwisc thc standard point-slope formula is invoked to detcrrnine the equation of 
the line-of-sight between thcelevations ofthc end-point cclls. In this chird case, the 
accual elevation for each intervening cell is compared with the computed linc-of- 
sight elevation at that cell locus to detcrmine ifvisibility is blocked (Creamer 1985). 
Performing this procedure by hand bctwcen only two Iocations would be incredibly 
time consuming. Performing such a procedure between many hundreds of hilltops 
is impossible without the use of a computer. 

Computer Carrugrap& 

Within a CIS it is easy to display information using computer graphidcarto- 
graphic techniques. Advances in computer graphics and cartography (e.g., Edwards 
and Batson 1980) allow maps to be produccd rapidly and accurately, incorporating 
uses ofcolor, shading, and three-dimensional perspective that are unavailable in 
traditional cartography. T h c  flexibility of computer graphic and cartographic 
techniques can increasc the importance of thew methods as research tools in site 
location studies. Simply by producing maps of individual analytical surfaces, a 
researcher might gain insights that could be useful in formulating analysis plans or 
in interpreting analysis results. In addition to traditional maps displayingclevation 
contours and a hydrology network, maps ofnew concepts, such as distance to water, 
aspect, terrain variability, or vegctacion diversity, can be produccd. Rather than 
simply producing a map ofsitc locations, the researcher might create a map of an 
extrapolated sitc location pattern, which could lead to better insight into thc nature 
of prehistoric land-use patterns. Animation techniques (Moellering 1980) might be 
used to portray such dynamic processes as Iandform erosion, air-flow patterns 
(Tcsche and Bcrgstrom 19781, or changing patterns of settlement through time. 
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Certain analytical surfaces from a CIS developed for investigating prehistoric 
pattcrns of scttlemcnt in southcastern Colorado (Kvamme 1984) can bc uscd to 
illustrate these ideas. Five analytical surfaces from a 230 mil portion of the study 
arca, containing approximately 230,000 cells, each 50 m on a side, arc portrayed in 
Figures 10.1 1-10.13a. Figure 10.1 la is a slopc surface. Steep locations (cells) arc dark 
and lcvel locations arc Iight. The  surface depicting aspcct or principal orientation of 
the ground surhce is shown in Figure 10.1 lb. In this figure, light shading rcpresents 
south-facing rerrain while dark shading represents north-facing tcrrain. Note that 
this surface tends to portray features of the topography related to the drainage 
systems. T h e  completc hydrologic network is portrayed as the white lines in Figure 
10.12a. Also portrayed in this figure are distances ro the nearest of these drainages. 
This information was computed for each of the nondrainage cells, but hcre, to 
facilitate display, these data are represented by shading that indicates five catcgo- 
rim of distance. A similar map is given in Figure 10.12b, bur only a subset of the 
streams (second Strahler order or greater) is portraycd. Finally, a local rcliefsurface 
is drpicted in Figure 10.13a, which portrays relative terrain roughness and offers 
contrast between locations of greatrr and lcsser relief. In each cell the range in 
elevation within a 300 n~ radius has been dctermincd; high relief values are dark and 
tend to portray high plateau rim, hilltop, and canyon regions, while low reliefvalues 
arc. light and portray plainslike areas. All of these maps portray the same region, bur 
each offers a different way of looking st the landscape. 

Perhaps by noting how the distribution ofknown sites corrcsponds with these 
and other surfaces an investigator might better be able to select variables to 
examine or on which to  concentratc in larcr analyses. Alternatively, an analysis 
might suggest that certain variables bear a strong relationship with known locations 
of a particular type of site. In any case, viewing a picturc of the mapped variables 
(Figures 10.1 1-13a) can give the researcher added insight about his or her findings. 

E~aluation of Spatial Statistic1 

Geographic information systems can be used to examine and evaluate sam- 
pling designs and various statistical models. An established regional CIS with 
known population parameters can be used to investigate (through simulation) the 
effects of different sampling designs within the region. I t  might be possible, for 
example, to investigate a variery ofhy pothetical sampling designs prior to fieldwork 
in an effort to finc-tune a particular design to  the characteristics ofthe region under 
study. 

In a similar vein, it is possible to invcstigate a variery of spatial statistical 
models and issues. For example, most statistical procedures assume independent 
observations, but it is usually not possible to meet this assumption when sampling 
from spatial contcxts owing to the presence ofpositive spatial autocorrelation (Cliff 
and Ord 1973; also see Chapter 8). Positive spatial autocorrelation has the effect of 
altering the performance of various statistical models; e.g., levels of significance 
tend to be overstated (Haggett et a\. 1W:329-377). It might be possible to use GIS 
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dara bases as a means of empirically investigaring the performance of various 
statistical modcls in spatial contcsts under concrollcd conditions, with known 
autocorrclation structures, pcrhaps allowing various model corrections to be made 
(for example, Cliff and Ord 1973). 

In a simulation scudy that uscd a GIs to  invcstigacc lcvcls ofspatial autocorre- 
lacion undcr various geographic sampling designs, the cffects of this problcm with 
regard to variablcs commonly used in regional archaeological rcsearch wcrc cxam- 
ined (Kvammc 1985). T h c  GIs-based simulation used a 10 by 10 km region as rhe 
sampling universe, and for cach of fivc runs of thc simulation a differcnr simple 
random sample and a different regular sysrematic sample of 100 locations ( 1  ha grid 
cclls) urcre selccccd. Spatial autocorrciation sratistics were calculated for each 
variable for each run. T h e  rcsults indicated excrcmcly high levcls ofposirivc spacial 
autocorrclarion rcgardlcss ofsampling dcsign (some of these rcsulcs are prcsented in 
Chaprer 8). 

Testing Locatiotlol H;?potheses 

GIs data bases can be used ro rest archaeological locational cheorics and to 
address other research questions. Whcn a variety of primary and secondarily 
dcrived cnvironrnental and culrural variables have been previously calcularcd for a 
scudy region in a cell-bascd GIs, the nced for additional measurcmcnr can bc 
eliminated. T h e  locations ofall known archaeological siccs in rhc region can be easily 
and rapidly correlated with environmental and ocher fcatures in [he dara base. 
Alternatively, the relacionships bctwcen GIs dara basc features and various sub- 
samples of known sites, sircs of specific functional typcs, or sires belonging to a 
particular pcriod of time can be investigated. For investigators using a conrrol- 
group approach as a plan for rescarch (see Chapter 8), w r y  large nonsitc samples of' 
background cnvironrnental or cultural data can be obtained both for model devel- 
opment and for model testing. 

Cell-based geographic information systems are ideally suiccd for an analyrical 
approach to site locarion rcsearch rhac treats the individual cell(u7hich corresponds 
ro a parcel of land) as the unit of analysis, especially when the cell sizc is fairly 
small-e.g., the sizc ofa typical prchiscoric sire or smaller. Cells that are found ro 
concain artifacts or othcr cultural remains are simply "flagged" by the computer, 
thus eliminating site definition problems since the sire is no longer the unit of 
analysis. Relationships between the flagged cells and environmental and other 
features included in the data base are then examined during model dcvelopmenc. 
Analysis might comparc characteristics of cclls containing no prehistoric evidence 
with those ofcells that contain prehistoric evidence, for example. Once crireria have 
been defined for identifying functional site types, site type analyscs could be 
conducted by noting which cclls exhibit the rcquircd criteria and by flagging cells 
with a specific site cypc code. Alternatively, since function is often dificult to 
determine i c  might bc possible to rank (or continuously mcasure)cells rhac contain 
cultural evidcncc according to artifact diversicy or to amounts of infcrred prehis- 
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toric activity, using various threshold levels of amounrs of prehistoric evidence. 
Various location models might then be developed in which rhc dependent variable 
is an index of artifact counts, diversity, or levels of prehistoric use. 

CIS data bases are well suited for testing ccrtain types of site locational 
theories. I t  might be postulated, for example, that certain h n d s  of archaeological 
sitcs in a study region should be located close to sources of water. A CIS data base 
could be used to determine empirical distances to water at known sites of the  type 
under investigation in order to test this hypothesis. It should be recognized, 
however, that all parts ofthe study rcgion might generally lie close to water sources. 
Hencc, even if the sites tend to be located close to water sources, this tendency 
could bc a result of the nature of the background environment rather than of 
prehistoric selectivity, for example. Measurements from the background cnviron- 
men[ might yield a distribution of distances to warer identical to rhat for sites, 
which would suggest no selccriviry, or the distributions might be radically differ- 
ent, suggesting sclcctiviry. CIS techniques are ideal for investigating such an issue 
because they can provide many thousands of background measurements of envir- 
onment against which known sire distributions can be compared. 

T o  illustracc the power of geographic information systems for analysis pur- 
poses, asimple histogram is prescnted in F~gurc  10.14a rhat illustrates the Euclidean 
distance to the nearest drainage ofStrahler order rank two or greater as measured 
by a CIS in 230,000 contiguous cells (50 m on a side) in central Colorado (Kvamme 
1984). This figure clearly illustrates the nature of the background environment in 
this region with rcspcct ro this variable. The  histogram of the same varlable 
measurcd only at the locations (cells) ofnearly 600 known open-air lithic scatters in 
the area portrays a distinct tendency for the sitcs to be located in relatively greater 
proximity to  second-order streams (Figure 10.14b). For example, 50 percent of the 
sites occur within 150 m ofsecond-order or greater drainages, while only 17 percent 
of the study rcgion as a whole exhibits a similar proximity to these drainages; 90 
percent of the sites lics within 950 m of thc drainages, while only 69 percent of the 
study region lics within this distance. Since the sample of open-air sites was 
obtained through a random sampling design, the patterning apparent in Figure 
10.14 is difficult to refute and points to the tremendous potential of geographic 
information systems for archaeological locational investigations. 

Lorational Modeling 

CIS techniques are well suited for the development, testing, and application of 
archaeological locational models ofany type (see, for example, Chapter 8). The only 
limitations are that appropriate forms of geographically distributed information 
(including remotely sensed data and specialized map or aerial photograph daca) 
must bc merged into the daca base and that the cell rcsolution or size must be 
appropriate for the modeling problem. 

In developing quantitative models based on probability or mathematical 
functions of multiple geographic variables, geographic information systems can be 
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used to obtain cnvironmenral and othcr variables at the locarions ofknoum sircs (or 
sitc typcs) ro provide the basic analysis data. During modcl tesring, geographical 
data merged with a second sample of sites can be retrieved and used as a basis for a 
varicty of accuracy tests (sec Chapter 8). Finally, geographic information systems 
can be employed to specify rhe resulrs of a modcl across a region of study by 
applying the modcl (i.e., the probability or rnathcmatical function) ro the data 
stored in each celI and producing a map of the results. 

Figure i0.13b ilIustrares a prehisroric "sitc probability surface" derived 
through a logistic regression rechnique (see Chapter 8) for the sitc class of 
"open-air lithic scatters" in rhe central Colorado project described earlier. This 
model is based on a sample ofnearly 300 known open-air sites and a control group of 
approximately 1200 locations representing the background environment (nonsites). 
In each of the 230,000 cells in this figure an estimared probability of site-class 
membership was derived, conditional on seven environmental variables within the 
CIS daca base (including those illustrated in Figures 10.1 1-10.13a). Computer 
cartographic techniques were used in Figure 10.l3b to  shadc cells havingp-values 
nearest to I with dark rones, to shade cells wirhp-values ncar 0 in light toncs (or 
unshaded), and to shadc cells with inrcrmediatep-values in intermediate tones. The  
result is a visual representarion of thc extrapolated partcrn of open-air site place- 
ment, based on the sample data. 

This model was also tested using a CIS. Tcst results from an independent 
validation sample of an additional 300 open-air sites and 1200 background locations 
suggest rhat about 95 percenr of the sites (92-97 perccnt ar an approximate 95 
percent Icwl of confidence) should occur in all the shadcd zones of the map, 
although these shaded areas constitute only 62 percent of the total land arca. T h c  
results also indicate chat approximately 20 percent of the sites (16-25 percenr at ca. 
95 perccnt confidence levels) should occur in thc highest sensitivity zone (the 
darkesr shading Icvel), which covcrs less than 4 perccnt of rhc rota1 land arca 
(Figure 10.13b). 

For dcducrivcly derivcd modeling approaches, modcl development cannot be 
carried out within a CIS framework sincc these approaches do not begin by seeking 
pattcrns in empirical data. Such modcls arc based on thcorerical principles concern- 
ing human choicc and setrlemcnt bchavior and consist of deductions about the 
locations at which human occupation should occur. Oncc thcsc models have been 
established, however, geographic information systems can be used for model 
testing and broad-area applications. 

Onc problem in applying many deductively based models lics in daca require- 
ments. For example, to apply central-place modeling techniques Uohnson l m ) ,  
which assert the importancc of ccnrral places to a regional patrcrn of settlement, 
one musr know thc locations of conremporary central places. Gravity models 
(Hoddcr and Orton 1976:187), which emphasize the importance of specific narural 
resources (e.g., food resources or lithic quarries) or cultural entities (e .g . ,  road 
nctworks or central placcs), rrquirc locational data for each of thcsc. phenomena. 
Models based on caloric cost-bcnefit or cncrgy calculations (c.g., Castcel 1W2; 
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Zubrow 1971) require detailed environrncntal information. In one modcling 
approach based primarily on environmental data,Jochirn (lW6) was able to arrive at 
scveral drducrions concerning hunrcr-garhcrer scttlcmcnr by synrhesizing a wide 
range of ethnographic and orhcr information. Unfortunately, thc rcquired data for 
application of the model, n7h1ch included detailed informacion about such items as 
rhe food potcnrial of several prehistoric plant and animal species, their rclarive 
proportions, and thcir seasonal abundance, were so difficult to obtain in a reliable 
form in [he time period and region ro which the modcl was applied (the Mesolirhic 
ofsouthern Germany) that it was diffic~~lt ro realize the full potential of thc modcl. 

GIs techniques may offer a solution to some of rhesc problems, provided that 
the relevant data can be gathercd and incorporated within a GIs framework. A 
varicry of map sources or evcn zoological models rn~ght  be used, for example, ro 
describe the distributions of certain spccics of interest, and rcmotc sensing rech- 
niques might be used to idcnt i5 prchisroric central places, road networks, major 
plant groups, favorable planr diversity, or othcr features. Once the archaeological 
locational model is formulated and made operational in computer rcrms, cotnputer 
mapping techniques in conjunction u*ith GIs fcarures provide an easy means of 
applying thc modcl across the region of inrerest. Testing of any modcl demands 
similar procedures regardless of how rhc model is devclopcd (testing proccdures are 
described in dctail in Chapter 8), and as described above, gcographic information 
systems arc well suited for modcl tesring purposes. 

T h e  test study region of 19,000 grid cclls char was used to illustrate the 
quanritarive models in Chapter 8 can be used to indicate the ofgeogrnphi- 
cal information systcms in an a priori model specification perspective. Whethcr an 
archacological locarional model is derived simply through a scrics of "shotgun" 
questions put to a GIs or through a series of deductions concerning the interrela- 
tionships betwcen certain environmental featurcs and thc positioning of human 
settlements in space, a GIs can be used to map thc rcsul ts of the modeling process. 
As a simple example, a base model rnighr specify that scttlemcnts should occur on 
ground surfaces with slopes less than or equal to a 12 pcrccnt grade(Figure 10.15a). 
T h e  next refinement of rhis tnodel might then suggest that settlements should be 
foiind within 3 fixed distance, say 1000 m, of relatively secure watcr, such as second 
Strahler order or grcatcr streams (Figure 10.15b). Finally, thc modc.1 might be 
arncnded to include the requirement that particular settlcment locations (e.g., 
those ofwinter villages) will have a sourh-facing orientation (Figure 10.15~). At cach 
stage in thc development of this modcl, accuracy, in terms of thc percentage of 
known sites correctly classified and the pcrcenruge of the region classified by the 
rnodel as "site-present," could be assesscd by the GIs, providing ongoing and 
interactive rnodcl performance indications. 
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BRIEF OVERVIEW O F  THREE COMlMON GEOGRAPHIC 
INFORMATIOhT SYSTEMS 

MOSS (Map Overlay and Statistical System) is a CIS originally developed by 
the Western Energy and Land Cse Team, U.S. Fish and WiIdlife Scrvicc (Table 
10.1, abovc). I t  has been in continual developmcnr: over thc past few years with 
cooperation from the Burcau ofIndian Anairs, the Burcau ofLand Managcmcnt, thc 
Forcsr Scrvicc, the Ccological Survey, and chc Soil Conservation Scrvicc (Lcc ct al. 
1984). Thus, unlike most geographic systcms it is in the public domain, although a 
superset ofMOSS is marketcd by Aurometric ofFort Collins, Colorado, a firm that 
is also dcvcloping a morc advanced CIS, bascd on MOSS, called DELTAMAP (Reed 
1986). Most sroragc and processing in MOSS is in a vector or polygon format, 
although some rastcr capabilities arc available. 

Additional rastcr capabilities, dcsigncd in part to allow thc incorporation of 
data derived from digirizcd imagcs, are availabIe through rhe Map Analysis and 
Processing System (MAPS) subsysrcm, an cstensivcly cnhanced version of MAP, 
originally developed at Yale University, 'To somc cxtent, MAIJS and h4OSS can pass 
filcs back and forth. Input to MOSS is through MAPS; AMS, rhc Analytical 
Mapping System; or ADS, the Automated Digitizing Sysrcm. Enhanccd carto- 
graphic plotting, beyond the normal capabilities ofMOSS or  MAPS, is provided by 
the Cartographic Output Systcm (COS). 

Bcyond thc genera1 capabilities of geographic information systems as dc- 
scribed earlicr in this chapter, MOSS and b1APS have special capabilities that arc of 
interest for predictive locational modeling of archaeological sitcs. Thesc includc 
routines that 

- collt.ct a random sample of points, lines, or polygons for furrhcr analysis 
or for input to statistical procedures 

- mcasure rhc distance betwecn any two points along a path (which necd 
not be straight) or along a straight line 

- determine thc length ofall lines ofeach subjcct (e.g., first-order strcams) 
in a linc map or the total distancc around each subject in a polygon map 

- identify locations within a specifiable disrancc ofa point, linc, or polygon 
subjcct type 

- produce a threc-dimensional display of any integer-valued continuous 

- crcate a map of azimuthal aspect or a slope map from a continuous 
elevation map 



KVAMME AND KOHLER 

- create a map showing the visibility of locations from a specifiable obser- 
vation point or points 

- create a cross-scctional image berwecn any two points (usually this 
routinc is used for elevation data, but it is suitable for any continuous map) 

- crcace a map showing the minimum effort path to a targer ccll; thc 
analyst can assign weights ro various featurcs acting as partial barriers in the 
path-finding process (an cxamplc of a fairly common CIS capability for corridor 
ana~sis) 

- crcate a map showing thc srcepcsr downhill path through varying terrain 
(essentially the path along which water would flow) from a target area 

T h e  MOSS/MAPS packagc provides very flesiblc routines for overlay and 
ncighborhood analysis, map description, and data management. A principal advan- 
tage of this packagc is that it  is used and supporccd by numerous fcdcral agcncics, so 
that new featurcs are being added to it at a rapid rate. At present MOSS/MAPS has 
only very limitcd capabilities for infcrentiai statistical analysis (Table 10.3). Versions 
are availablc for 16- and 32-bit microcomputers, minicompuccrs, and mainframcs. 

TABLE 10.3. 

Statistical funcnions (beyond simple descriptive statistics) available in three commonly utilized 
systems 

Fundon ,MOSS,;,CIAPS IDI.iIS VICAR /IBIS 

Supcrvked clusrer analysis - X X 
Unsupcrviscd cluster analysis 
Princip~l comporwnt5 analysis 
Lcasr squares analysis 
Divergence calcularions 
Cross-tabular ion 

IDIMS 

Unlikc thc public-domain sysccm MOSS/MA!'S, thc Interactive Digital Image 
Information Syscem is a commc.rcial product of the Elcccromagnetic Systems Labor- 
atory, Inc., in Sunnyvale, California. Like VICAR, which is discuswd bclow, IDIMS 
is primarily an image-processing sysccm; for chis reason, data are organized in a 
rasccr format, and many functions rhac address problems specific co the processing 
of digical images, such as imagc-enhancement roucincs, are availablc. Many ocher 
IDIMS functions are useful for more gencral kinds ofspatial anaIysis, however, so ic 
also warrants consideration as a GIs. lDIMS incorporaccs a data-cncry componcnc, 
rhc Geographic Encry System (GES), and [he Earth Resources Inventory Systcm 
(ERIS) for daca base rnanagcment and statistical functions (Electromagnetic Sys- 
tcms Laboratory n.d.; Hanscn 1983). 
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Special features beyond functions that are routine in an image-processing or 
geographic informarion system, or char mighr be ofspecial interest for archaeologi- 
cal Locations analysis, include 

- a procedure for overlaying up to I0 maps (or images) at one time, racher 
than the two at a time possible in MOSS/IMAPS 

- a procedure that passes a three-by-three-ccll moving window across a 
land-cover map to create a diversity indcs 
- procedures for creating slope and aspecr maps from digital elevation daca 

- a procedure for creating a shaded reliefmap from a digital elevation map 
with the sun in a spccifiablc location 

- a procedure for crcating a proximal map rhar assigns each cell to the 
nearest given x g  location 

- various procedures for generating random san~ples of images fbr further 
analysis 

IDIMS runs on a minicomputer and is uscd by scvcral large fcdcral agencies. 
Hansen (1983) has discussed rhe creation ofa "generic" GIS rhrough combining rhe 
mosr ~iscful fearurcs ofMOSS, MAPS, IDIMS, and [heir various allicd programs for 
data cnrry, management, and display. 

T h e  Video Image Communication and Retrieval (VICAR) sysrem was devel- 
oped at the Jet Propulsion Laboratory UPL) ro process image dara from thc 
planetary exploration programs ofthe late 1960s and 1970s (Bracken er al. 1983; Hart 
and Wherry 1984). Unlike MOSS/MAPS and IDIhIS, VICAR is designed to run on 
large-scale digiral computers and is normally restricred to IBM systems, since a 
substantial proportion ofits code is wrirtcn in IBM 360/370 Assembler Language. A 
subset of VICAR, called mini-VICAR, was dcwloped to run on DEC minicompu- 
rers, but ir appears char this system is no longer activcly used. A DEC VAX version 
of full VICAR is now in use at JPL, however. Like MOSS/MAI'S, VICAR is in the 
public domain. Wich well over 100 application programs running ar about 25 
installations around the world, VICAR is a very powerful and widely utilized 
image-processing system. 

T h e  Image Based Informarion Sysrem (IBIS) is an enhancement co VICAR also 
developed ar JPL(Bracken er al. 1983; Zobrist and Bryant 1979). T h e  IBIS programs 
give VICAR/IBIS some of the capabiliries of a GIs, incIuding ovcrlav analysis and 
vector-ro-raster c o n w - i o n ,  which allows geo-coded information nor normally 
available in rasrcr (celI) formars (such as maps) to be analyzed. 

T h e  majoriry of VICAR application programs arc spccializcd for image 
proccssing, a task rhar may somctimes be important in predictive archaeological 
modeling-particularly when map-based dara are unavailable, I t  is also important 
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to remember that most modern, map-based data are the result ofimage interprcta- 
tion of some sort. A fcw of the VICAR programs of potential importance to 
locational modeling include 

- a multivariate classifier program using Baycs's maximum likelihood algo- 
rithm, u,hich yields a classified image (map) and, optionally, a confidence map 
for that classification. This program acccpts input eithcr from a ~rrptr~ired 
classification analysis, in which the user specifies ccrtain "training areas" on 
which thc classification function is to be based, or from an ~~nsupcrviscd 
cluster analysis 

- a multi\~ariate classifier program that uses a combination o r  parallele- 
piped and masimurn likelihood tcchniqucs, accepting input from eithcr a 
supervised or an unsupervised analysis 

- a program Ibr performing edge cnhanccmencs and, optionally, for mak- 
ing edgc exiscencc dccisions 

- a principal componcnts analysis of up co 12 input variables 

- a least-squares program that will, among other things, calcularc and 
display trend surfaces and residuals from trend surfaces 

- a program that simulaccs the effect ofshading from a specifiable angle of 
illumination on any continuous image 

T h e  fact that VICARABIS typically runs on large mainframe computers has 
both advantageous and disadvantageous aspects. In installations with which 1 am 
familiar, iiICAR/IBIS runs as a "batch" program, meanlng that jobs are submirtcd, 
and thc o u t p ~ c  latcr (possibly much latcr) received, with no intermediate intcrac- 
tion bccwcen thc user and the proccsslng system. Obviously, ir is desirable to have 
fast rcsponsc to uscr query in an interactive modc, as is typically thc case for 
geographic information systems running on mini- or microcomputers. Therc is 
great analytical utility in being able to see the mapping of some function unfold 
before your eyes, perhaps to bc interrupted and modified ifncccssary in its carly 
stages. On che other hand, some bacch systems, such as VICAR!IBIS, h a w  a huge 
variety of soph~scicated functions, and their mainframe inlplementacion allows the 
usc of v e ~  largc data bascs. As ncw data scorage technologies, such as laser disks, 
become available, and as the cost of data storage contintics to drop, onc of the 
advantages o i  mainhame-bawd systems will disappear. On the other hand, as 
chcapcr and more powerful local workstations begin to share processing with 
mainframes, the casy dichotomy bctwcen mainframc- and microcomputer-based 
geographic information systems will also bccome fuzzy, and batch systems will 
probably become things of thc past. 
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MODEL DISPLAY VS MODEL BUILDING 

Earlicr in this chaptcr, Kvammc discussed many realized or potcntiaI applica- 
tions of geographic information systcms to general spatial research in archaeology, 
including the construction, testing, and use ofpredictive locational models. Within 
the category of modcl building, a distinction can be madc between the processing 
necessary to build a data set suitable for inferential statistical tosting and the 
application of inferential procedures (for cxamplc, linear regression) to discover rhc 
"best" locational model. It is important for managers to realize that, in their prcsenr 
phase of developmcnr, most geographic information systems are much better suited 
to  the first task than to the second. Constructing an infercnrial model of site 
location inevitably involvcs the application ofinferential statistics to surveyed areas 
that contain or are devoid of archaeological resources. Geographic information - - - 
systems give unsurpassed power for the extrapolation of such models-once 
consr ructed-to the area from which the samples were originally drawn, bur actual 
inferential statistical functions available in many geographic information systems 
are rather limitcd (Table 10.3). This is not a fatal weakness for the application ofa 
GIs for model building if the GIs has the ability to format a file for use by a 
general-purpose statistical package, such as SAS or SPSS, as is usually the case. It 
does mean, however, that a GKS is usually nor the only software needed for the 
analysis of spatial data. 

Of course, geographic information systems are an important aid in modcl 
construction since they can bc used to collect data to  be passed to an inferential 
statistical analysis. As pointed out by Kvammc, anyone who has conducted a 
quantitative settlement pattern analysis-examining the distances from known 
archaeological resources and random points to various featurcs of the natural 
environment and evaluating rhc composition orcatchments around both sites and 
random points-knows how tedious and pronc to error these hand measurements 
can bc. In a GKS suitable for archacological analysis, such measurements can be made 
automatically for any of the available data planes or maps. These measurcmcnts 
constitute secondary surfaces that can be stored as new maps on which the locations 
of sircs and points without sires are replaced by measuremcnrs of catchment 
composition and distances to  critical resources around these points. These mea- 
surements can then be passed to another system for statistical analysis, and in this 
manner the most tcdious portion of model construccion has been automated. 
Pcrhaps when it is easier to consider variables related to carchmcnt vaIues and 
distanccs to resources, these variables will be used more frequently and effectively 
in predictive locational modeling than they have been to date. 
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IMAGINARY SESSlON WITH A GENERIC CIS 

Dcspicc the growing lircraturc about and increasing accessibility to geographic 
informacion systems, these systems rcmain mysterious to mosr archaeologists. 
Whac follows is a poor man's substicute tbr the only espcricncc that can really 
convey both thc r~sefulncss and the limitations of thesc systems-a "hands-on" 
session. This esamplc illustrates how a GIs might be used to map a model that has 
ulrea4 been developcd, cicher by using the GIs for data collection or by some ocher 
means. Limiting this esamplc co mapping rather than dcvelopmcnt of a modcl 
should help the reader who has no acquaintance whatsoever with geographic 
informacion systems to understand how they work. Addirionally, as pointed out in 
the previous seccion, building an infcrentid modcl is essentially a scacist~cal task in 
which the GIS serves as a technical assistant lor daca colleccion and management. 
T h e  specific ccchniqucs discussed are more appropriate for image-processing-based 
sysccms (such as IDI?vlS) than for many geographic information systems, and thcrc 
would certainly be more cficienc ways to approach chis task on some systems. 

You sit in front ofa high-resoIucion graphics terminal attached co a minicom- 
puter or a "supcrrnicro" running a relatively advanced GIs. T h e  most tedious and - 

espensive work-digitizing various maps for the data basc, correcting digirizing 
errors, geometrically corrccting rcmoce sensing imagcry, cying chat imagery into 
ground control points, and so forth-has already been done. Previous researchcrs 
havc interpreted available Landsac imager). to yield digitized maps of vegetation 
type and dcnsity and of currenc land use. Likewise, digital elevation models 
available on computer tape from the USGS (Elassal and Caruso 1983) providing 
elevations for poincs ac 30 m intervals havc already been to yield 
secondary maps ofslope and aspcct. Each of chrsc digicizcd maps has bccn scored on 
disk or tape and is accessible to the computer, and each conscicuces a iiarapimc or 
rbmc. Themes available co you for our imaginary GIs session are shown on Table 
10.4. 'These data are available for an arca aboilt 51 km on a sidc, the largcsr area your 
monitor can display at  a resolution (picture clement, pixel, or cell size) of 50 m on a 
sidc. More than a million (10242) pisels we  displayed on your screen, which shows an 
area cquivalenc to chat portrayed by abouc 16.5 USGS 7.5-minute topographic 
quadrangles. You can enlarge any portion of chis arca to fill the whole screen if you 
wish to see a subsct of the area in more detail. 

Relatively low quality copies of the conccnts of the screen can bc obtained 
quickly and cheaply in black-and-white on a peripheral doc-macrix printer; high- 
quality color copies can bc obtained using a peripheral pen plotccr or a high- 
resolution color ink-jet printer. T h e  sysccm at your disposal cost somcwherc 
berwecn S40,000 and S125,000 and so musc be shared by many diikrenc users, mosr 
of whom arc involved in natural resources inventory and analysis. 
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TABLE 10.4. 

Data themes available for your GIs session 

Drrcriprrnn 0rfsniza:im 

Archaeological sitcs uirh a~rributcs tor rypc and agc T'olygon 
Aspccr C:cH 
Elrvation Ccll 
E,xtcm[ of 3rchacolcgical 5urvcy Polygon 
Modcrn land usc Polygon 
Koads/strcwns with 3t r riburcs for rypcs:ordcrs Lint. 
Soil type Poly go11 
Slopc Ccil 
Vcgcra[ion [ypc.s I'olygon 
Vegetation density Polygon 

You wish to map a simple site Iocation model thar predicts, for esample, that 
frcqucncics for two types ofsitcs will be relatively high in locations satisfying two 
slightly diFercnt sets of criteria. Requirsmcnrs tbr the first sire rype are locations 
with 

- less rhan 5" slope, 
- no more than 8000 t i  elevation, and 

- permanent water and pinon-juniper woodland no farthcr than 0.25 km 
away . 

T h e  second cIass of sites is likcly to occur in arcas with 

- no more than 10" slope, 
- seasonal or permanent water no more than 0.25 km distant, 

- no more than 7500 ft and no less than 6000 fr elevations, 
- arable soils no more than 0. I k n ~  disrant, and 

- locations ar the base of a slope. 

You wish to create one map showing those arcas most likcly to have sitc typcs i, 2, 
both, or neither. 

There are many ways to approach this problem; details ofrhc "best" approach 
depend on the charactcrisrics of thc particular GIS at  your disposal. One likely 
approach-ignoring technical details and considering only the general strategy- 
would bc to sclcct all locations for each site rypc on cach data plane that arc 
favorable to scttlcment and code them with a 1, coding all other areas with 30. Once 
this operation is completed for cach rclcvant data planc (that is, for cach map ofa  
particular variable or environmrntal characteristic), the four data planes (in the case 
of sitc type 1) or five data planes (in the case ofsirc typc 2) can be clcctron~calIy 
overlaid, uirh valucs from the samc location on each map being summed togethcr. 
This procedure is ar~alogous to overlaying a series of accurarcly positioned and 
extremely detailed mylar maps to produce one new map in which each location is 
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the sum (or some other funcrion) for that location of the mformation presenred on 
all the overlain maps. The  next step would bc to recode all areas that yielded a sum 
of 4 in the first analysis to 1 ,  with other arcas assigned 0; all areas with a 5 in the 
second analys~s woidd be rccodcd to a 2, with other areas assigned 0. In this fashion 
rwo summary maps would becreatcd, one for each site type. These, in turn, would 
be ovcrlaid to create a final map in which any location with a 1 would mcct thc 
criteria for sitc type I only; any location with a 2 would mect only the critcria for site 
typc 2; and locations with a 3 would mcrt the requirements ofeither typc. Locations 
coded 0 would bc considered not to mect the requirements of either typc. 

With one exception, the processing to be done mirhin any data plane prior to  
overlaying che scparatc data plancs is simple and stralghcforward. For csample, the 
process of selection according to a range of elevation and slope critcria relics on a 
wry basic ability ofgeographic information systems to reclassify or rcnumber data 
planes. In the analysis for sitc type 2, for example, a new copy of thc master slope 
map would be madc in which all locations with a slopc of 10" or lcss would be coded 
I ,  while other locations would take on a valuc of 0. 

Othcr basic GIS capabilities arc illustrated by the operation offinding locations 
within a certain radius of some environmental feature or attribute (such as within 
0.25 km ofseasonal or permanent water). One way to do this is to pass a "moving 
window" wirh a radius equal to thc maximum distance allowable from the feature 
across the pixels that constitute the "electronic landscape." Any point within the 
allowable distance could be flagged on a new map with 3 certain valuc, perhaps a 1, 
while other locations would take on a valuc ofO. Another method, which is usually 
more eficicnt, employs a function that expands the perimeter of thc feature of 
incerest by the proper distance. These functions create a concentric zonc of 
specifiable width around a point, line, or polygon, an operation rhat is frequently 
useful in archacological spatial analysis. One can, for example, specify a vegeration 
zonc (piiion-juniper) to be used as a rargct; the width of thc  concentric zonc to  be 
created around any occurrence of this vegetation type; and the numbers to be 
assigned to locations within this cspanded zone. In the exarnplc discusscd abovc, 
this expansion function would be employed rwicc during the mapping of possible 
site type 1 locations-oncc on the roads/strcams data plane, using permanenr 
srrcams as a targcc, and once on the vcgetation data plane, using pinon-juniper as a 
target. 

T h e  one csccpcion rncntioned above t o  the rulc of relatively Ample informa- 
tion proccssing within each data plane involves the problcm of finding locations 
near thc basc ofa slopc. In most geographic information systems this would require 
a several-sragc process (more complex than uPc need to describe here) rhat might, 
when complered, givc less than perfect rcsulrs. This csamplc is includcd ro 
demonstrate that not all results that arc easy for a human to achicve (as locating 
areas at the base ofa slope might be) arc necessarily easy to achieve via a computer, 
given current technology. 

T h e  entire analysis just described might take a couple of hours with a large 
computer or 3 couple of days with a smaller one. In either casc, the great time and 
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cxpcnsc incurred in collecting and digitizing tllc data, once completed, nccd not be 
repeatcd, and users with different goals can profit from thc accumulated, organized, 
and highly acccssible information in chc CIS. Even with a smaller, slower computer, 
results are achieved much more rapidly and accurately than iSthc work wah done by 
hand, assuming that the data basc is in placc. 

Kcn Kvammc rcirerates his acknowlcdgmcnt of chore persons and inbtitutions nicnrioncd 3r the 
end o ichsp rc r  8. Tim Kohlcr would likc ro thank Judy Hart, David Whcrv,  and Robcrr ii'righr for 
commcnrs on 3n cxlicr version of his portion acthis chaptcr. 
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Chapter 11 

PREDICTIVE MODELING AND ITS RELATIONSHIP 
T O  CULTURAL RESOURCE MANAGEMENT APPLICATIONS 

Chris Kincaid 

One goal ofthis volume, stated in Chaptcr 1, is to "explore the feasibility and 
practicality of prcdicrivc modeling for rnccting management objcctivcs." Wc will 
addrcss this goal in rhe following pages. First, however, we need to consider just 
what our management objcctivcs are, and how they relate to what might be callcd 
"research objectives." 

Rcscarch objcctives of modeling ccnd to fall under the general heading of"an 
improved understanding of thc archaeologicd rccord." Models can improve our 
definition and recognition ofimportant typcs ofsites and our understanding of their 
distribution across the landscapc. hllodcls can clarify processes of culturc change 
and interaction and providc a rcgional hamework for understanding the dcvclop- 
ment and cvolution ofhuman systems. They can pcrmit 11s to understand cultural 
adaptation to dit'hring environmcnts and provide insight into the nature and origin 
of social, political, and economic processcs. 

Whilc initially such information might sccm abstract and removed from rhc 
practical requircmcnts of cultural rcsourcc management, in rcality it meets scveral 
critical management objectivcs. Management objectives are sometimes thought to 
be limited to  a narrow concern over "how many sites are wherc," and indeed, 
models can suggcst what types ofsitcs are in a spccific arca and where in that area 
they might occur. Sonw models can also be used to generate population estimarcs 
and statements concerning the probability of site occurrence in a particular loca- 
tion. These classes of information arc important in management decisions about 
possible surface-disturbing actions. But thc more research-oriented objcctivcs of 
modeling are also important because such models can hclp to indicatc data gaps and 
highlight rcscarch issues needing additional work. In this way the usc ofmodeis can 
hclp us to focus scarce agcncy dollars on the collection of the most necessary and 
imporrunr durn and rcducc waste causcd by repetition. Such rnodcls can hclp us to 
learn more from existing data and, in some cascs, can espedirc and streamline 
inventory programs. WhiIc some products or applications of rnodcls are marc 
important in cirher a research or a management contcxt, in a broadcr sense research 
and management objcctives ovcrlap a great dcal, and both stand to gain from a 
model that is ruliablc and adequately explains as well as predicrs site occurrcnccs. 



in the following pages are will explore [he application ofspccific theoretical and 
merhodological approaches dcscribcd in prcccding chapters to modeling in a man- 
agement setting. The  discussion is organized around the topics of preparing for, 
implementing, and evaluating a modeling project. Practical considcrarions arc 
forcmost. T h e  goal hcrc is to highlight the benefits of using modeling in cultural 
resource managcmcnt, while at rhc same time indicating somc of the potential 
limitations ofits use. T h e  desired end result is a balanced and responsible applica- 
tion of modeling concepts to managemcnr srtuations. Although discussions arc 
keyt-d to land managemen1 issues, wc havc tried not to limir thcm to a single- 
agency perspective. 

Questions have been raised as to whether inventory and evaluarion srratcgies 
employing modeling tcchniqucs meet the intent ofrhe National Historic Presenra- 
tion Acr, Section 106. This legislation requires a determination of thc effect of 
federal agcncy actions, or federally permitted or licensed actions, on all properties 
listed in or eligiblc for listing in the Kational Register of Historic Places. 

Undcr the provisions of this legislation, decisions about appropriare inventory 
and evaluation straregics are made through consultarion betwcen the federal 
agency and the Stare Historic I'rt-servarion Ofiicer (somctimt.~ also including [he 
Advisory Council on Historic Prescrvarion). There are no ser crireria for deciding 
what is appropriarc; rarher, propriety is defined on a case-by-case basis through [he 
consulrarion process, wirhin rhe broad strucrure of [he regularions. T h e  decision as 
to whether or nor nlodeling should be part ofan invenroq and cvaluation approach 
depends on individual circumsranccs. A decision to use modeling complies wirh the 
regulations if it  was reached in accordancc wirh the consulration procedures. For 
this reason, compliance questions are not addressed furrher in this chaprcr. 

WHAT ARE MODELS ABOUT? 

As analy rical tools, archaeological resource models arc especially well-suited ro 
applications in land managemcnr. Among other rhings, [hey idenrifs parterns in 
sparial relationships bctwccn sitcs and rhcir physical locarions and thus indicate 
potential relarionships between the narural or social environmenr and rhe locarions 
of pasr human activities. A causal rclarionship is envisioned: cnvironmenral factors 
influence where human acrivirics occur. Measurcmenrs that dcline or dcscribc 
conrrol~ng aspccts of the narural or social environment arc called independent 
variablcs, while measurements ol' affected hu1na11 activities, observabIc in the 
archaeological record, arc called dependen t variables. 

The  development of'modcls cenrers around thrce main tasks: classification of 
independcnr variables, classificarion of dcpcndent variablcs, and expression of thc 
relationship berwcen thcm. Sincr differcnc cultural groups inrcract with each orhrr 
and their environment in different ways, the critical independent and dependent 
variables and rheir relationship can vary widcly from cultural sysrcrn ro cultural 
system. T h e  goal of [his kind of modeling is to produce reasonably accurarv 



representations of sclectcd interrelationships for particular cultural systems. A 
successful modcl or series of models allows us to organize what we know about 
sites-their function, location, and cultural affiliation-into a series of aflirmativc 
scatcments about human bchavior. Cnder controlled conditions, thcse statements 
can be applied to unknown arcas to provide predictions about resources located in 
these areas. 

Our goal is to  corrcctly identify important aspects of the natural or social 
environment that influenccd the location ofhuman activities, and to interpret the 
archaeological record as the result of a set of functional, temporal, spatial, and 
behavioral rcsponscs to a varied environment. We may, in effect, try to reconstrucE 
the "rules" of interaction between these two components. The  relationship 
between sires and their natural environments is not as t a d ?  discoverable or as 
direct as the relationships among natutal phenomena. Although governed to an 
estcnc by thc demonstrably regular and consisccnt rulcs that apply to all living 
systems, human behavior is organized into cultural systems, which esert additional 
influences on that bchavior beyond thosc ofnatural forces. There is good reason to 
believe that sicc locations cannot, in gcmeral, bc fully prcdictcd from environmental 
variables alone. 

Because of the influence of cultural variables on human behavior, models of 
cultural systems are subject to many more sources of error than thosc for natural 
systems. The  cultural rulcs that govern how human groups intcracr with their 
social and natural environments are not easy to identify, w e n  ior modcrr~ cultures. 
Studying and identifying such relationships for cultures that h a w  bccn ex t inc~  for 
thousands ofyears is an even more diflkul[ task. In land management applications, 
therefore, modcls of natural phenomena and modcls olculcural phcnornena shoi~ld 
not be considered equivalent. Managcrs need to have a realis~ic understanding of 
what models can and cannot do in order to use them e k c i v e l y .  

WHAT CONDITIONS ARE FAVORABLE FOR 
MODELING PROJECTS? 

Conditions 

Before a dccision is rnadc to embark on a modeling project to satis6 either 
research or management objrccivcs, sevcral conditions must be met. Frequently, 
thcse conditions relatc co circumstances, such as che boitndaries of the study area, 
time, financial constraints, etc., that arc beyond the control of thc project manager. 
For cxample, the size of the potential modeling project arca is important. As a 
general rule, modeling is not fcasiblc for small projects covering less ttian 5000 to 
10,000 acrcs. Modcls arc most easily intcrprctcd and undcrstood if they rclate in a 
defined way ro cultural boundaries or to  major environmental zoncs. Whcn only a 
small portion ofa culture area or environmental zone can be analyzed, only a portion 



ofa cultural sysrem might be examined. Observed site patterning in the study area 
may be responding co factors that are "uncontrolled" in the terms of the model 
because they are a response to forces or cvenrs located outside the study area. T h c  
chances of developing an accurate and interpretable model arc greatly reduced by 
this circumstance. 

In designing small modeling projects, difficu1tic.s often occur in meeting 
minimum sample-size requirements for statistical analyses. Alrschul and Nagle 
address this problem in some dctail in Chapter 6. In general, they advise that for 
cluster analysis of site types, a minimum of30 sample units (not including empty 
units) is necessary, a condition ircquently not met in sample inventories. Unfortu- 
nately, the number ofsamplc units necessary for a valid analysis cannot be antici- 
pated prior to fieldwork. Additional inventory may be rcquircd to reduce sample 
variancc ifa majority of samplc units do not contain sites while the remaining units 
contain many sites. 

T h c  configuration of the modcling project area is also important. Linear as 
compared to areal projects are generally more di ficul t to model becausc linear 
projects tcnd to cross-cut several cnvironmcntal and cultural zoncs, each of which 
may be poorly reprcscnted as regards total acreagc. More complcs models, or 
additional models, may be needed in these cases. 

Another important factor is thc amount of time allotted for the modeling 
project. Modeling is useful as a long-term technique for organizing and structuring 
data and data collection prioritics. It is kss  useful under a short time frame that docs 
not allow for resting and rcfincment phases. 

Oftcn the nature of the archacological record itself can indicate that spccial 
strategies will be nccdcd for modeling cfforts. For cxample, if 75 percent of thc 
known sites in a n  area are classified as undiagnostic Iithic scatters, ncirhcr chrono- 
logically nor functionally specilic models can be developed. Under these circum- 
stances, care should be taken in dcsigning any new samplc inventories in the area to 
assurc that detailcd information pertaining to attributes of artifacts is collcctcd. 
This data could bc crucial in the dctinition of site classes during postinvcntory 
modeling efforts. 

Somctimes the environment determines whcthcr modeling will be easy or 
dificult. In Chapter 4, Ebert and KohIer distinguish between environ~nental 
variables (which mcasurc a single aspcct of the environmcnr, e.g., slope) and 
ecosystcmic variables (which measurc systemic attributes reflective of interaction 
among environmental variables, e.g., effective tcmpcrarure, spatial periodicity, and 
environmental divcrsiry). T h e  most usablc ecosystcmic variables for predicting site 
Iocations are those that monitor spatial availability of rcsourccs (c.g., degree of 
patchincss) and temporal availability of resources (c.g., dcgrce of constancy, con- 
tingency, and predictability). Ebert and Kohlcr conclude that, in general, hetcro- 
gcneous environments in which critical resources arc temporally predictable and 
occilr in highly concentrated and overlapping patchcs arc apt to bc best for 
locational modeIing and prediction. Convcrscly, a basically homogeneous cnviron- 
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ment, in which critical rcsources arc dispcrsed and only sporadically available, will 
bc more difficult to model. For cxamplc, site locations may be morc dillicult to 
rnodcI on a dcsert crcosote flat without major drainages or conrrasting landforms 
than they would be on a flat broken by large dry washes or bcnchlands, whcrc 
critical vegetative rcsources arc apt to occur. 

Also, changes in rhc earth's surface may have takcn placc aftcr [he deposition 
ofarchaeological materials (scc discussion of post depositional processcs in Chapters 
4, 6, and 9). I'ostdcpositional proccsses might include movement of sand dunes, 
deposition of alluvium, erosion by wind or water, etc. Largc portions of a projcct 
arca may h a w  bccn covered ovcr or scoured away as a result of thesc processes. In 
arcas undergoing active alluviation, for cxamplc, exposed surfaces may be no oldcr 
than 200-300 years. T h c  possibility offinding prchistoric sircs under such conditions 
is greatly rcduccd, and modeling efforts directed to prehistoric site locations u.ould 
be unproductive. Under these circumstances spccializcd stra tcgies (such as invcn- 
torics iocused on road cuts, arroyos, rtc.) may bc appropriate. 

Administrative Concerns 

T h e  risks ofcmbarking on a modeling project should be evaluated realistically 
at the onscr of a projcct and weighcd against such administrative constraints as 
project schedules and costs. T o  develop a model that meets a specified level of 
precision, additional resting and analyscs may be nccdcd, sometimes causing dclays 
and increased costs. Clearly, the importance of these conccrns will depend on rhe 
rypr of modeling project envisioned and its use. 

Timc should be a1lowc.d for model tcsring and revision during any projcct. In 
Chaprcr 6, Altschul describes a multistage survcy design, a useful means for staging 
sample-bawd fieldwork so that the maximum benefit is derived from each succcs- 
sive stagc. While a multistage approach may seem morc time-consuming, expe- 
rience has shown that a single data-collection phase is seldom adcquatc for model 
developmcnt (depending, of course, on the size of the initial sample and the 
availability of relevant historical, ethnographic, and other data) and may be less 
efficient ovcr the long term. 

If a modcI is k i n g  developed to reduce the cost of field inventory, various 
hidden costs should be takcn into accounr. Short-term field inventory costs are 
almost always less for partial covcrage than for full coverage, cvcn allowing for the 
substantial field time needed to locate dispersed sample units, but the cost of 
developing a predictive model is not limited to the costs of thc sample inventory. In 
any given modcling prqjcct, time and funds also should be allocated for such tasks as 

I .  the detailed analysis of existing information, 

2. prcparationofenvironmentaldata, 

3. development and exccution of successive phases of model testing (using 
independent data), and 



4. collection and processing ofsupplemental information about site variabil- 
ity (through various combinations of detailed recording, surfacc collc.ction, 
testing, excavation, and laboratory analyses). 

Planning for these additional coscs is not easy. Exact cstimaces as co chc amounc of 
work that will be needed to devclop a model of the required prccision cannot be 
made before a project is even begun. 

Perhaps the most cosc-cffeccivc context for model developmenc is within the 
fra~ncwork of general by a land-managing agency or  a local government. 
Thrsc  programs can develop and sustain long-term approaches that arc funded 
incrcmrntally and result in cumulative and refined daca bascs. Such daca bases, and 
the models based on chcm, may take years to devclop and tcsc. T h e  end result, 
h o u n w ,  is a powerfi~l and efkctive management tool. 

WHAT KINDS OF MODELS ARE THERE? 
WHEN DO WE USE WHICH TYPE? 

klodels arc classiiicd in many differcnr ways, In Chapter 2, for csamplc, models 
are compared with respect to their focus (systemic, representing acul turd system; 
analytic, rcfleccing the analysis of archaeological data), thcir logical origin (induc- 
tively or dcductively derived), and thc level of measurcmenc (nominal, ordinal, 
interval, and ratio scales). Figure 2.1 presencs the structure of chis discussion. 

In Chapter 3 ,  intuirivc models arc distinguished from objective models on che 
basis ofwhether or noc components can bc opcrationalizcd or measured. Objective 
models arc thcn broken down furchcr on the basis of geographic precision (are 
predictions specific to poincs or to areas?), on procedural logic (inductive versus 
dcductivc reasoning), and on the relative emphasis givcn difkrcnt variables. A 
summary of this approach is prcscnted in Table 3 . 1 .  

Chapter 5 concains a discussion of various statistical techniques that have been 
used co classify models (c.g., lincar regression, logistical regression, and discrimi- 
nant function analysis). Kvamme, in Chapter 8, distinguishes between models 
bascd on trcnds in "locarion only" (defined solely in terms oflocational coordinaces 
x andp) and models based on trcnds in "locational characteristics," or a wide rangc 
ofenvironmencal attributes of these locations. Hc further divides models pertaining 
to the charac~criscics oflocations according to whether they are based on parametric 
or nonparamctric statistics. 

How does the c u l t ~ ~ r a l  rcsource manager know which ty pc ofmodel is best? Is 
it not possible to dcfine one cype of' model that is besc for culcural rcsource 
management purposcs and apply this type to all situations? 

T o  understand che significance ofche modeling terms used in various portions 
ol'this volume, u7c should view chcm not as designations of types ofmodels but as 
descriptive labcls for various traits or attribuccs of models. A cultural resource 
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manager seeking rhe bcst modcl for his or  hcr purposes must ask first, mhur i i  I ~ L .  

o~era l l  O ~ ~ K ~ J P C  ~ ( r l ~ ~ z l o p i n g  a  mod& If t here is a need t har only one type of model will 
fill, rhcn clearly this type of model must be sought. More often, a managcr simply 
sceks thc most precise, detailed, cstcnsible, and accuratc model affordable. Srich 
considcrations as the naturc of the existing data base, environmental complexity, 
erc. (see discussion in the previous section), ultimately intervene to limit the 
quality of the modcl obrainablc with given data. 

One of rhc broadcsr and most uscful classifications is the one bawd on 
procedural logic, distinguishing bctwzcn inductive and dcducrive approaches. The 
relative merits of thcsc srratrgics h a w  bcrn dcbarcd throughout this volume. 
Briefly, a deductive approach, i.c., one proceeding from theory to data, often 
explains why a modcI works. This is necessary, especially if thc model is to bc 
successfully applied to other settings. The  major drawback of deductive models is 
the dificulty in making them operational. For esamplc, deductive models often 
contain gencral propositions, such as "population growth leads to more inrensivc 
resource utilirarion." The  archacologisr must determine how "population" and 
"resource utilization" will be measured to show growth and increased intensity. 
Abstract conccpts such as these may be dinicult to measure in tangible rums  from 
archaeological data, especially if these data are sparse, as is often the casc. 

In conrrasr, inductive modcls procccd from data ro thcory; observed corrcIa- 
tions in rhc data arc used to formulate general hypothcscs. If, for esamplc, several 
major village sites in a particular area arc located near or on one particular soil rype, 
one might hypothesize that large habirarion sites rend to bc located close to chis 
particuIar soil type. Such concIusions may be readrly derived through data andlysis, 
but models thar depend on them arc often criticizcd for not esplaining why thc 
obscrvcd correlations occur. Mosr modcls dcvelopcd for cultural rcsource managc- 
ment purposes arc inducrivr. 

Clearly, managers should understand why a model works, but in addition they 
need an approach thar is operationa1. joscph Tainter (personal communication, 
1982), in commenting on onc ofthe inirial drafts of this volume, offcrcd [he following 
observations on this martcr: 

Thc crucial qucs[ion is nor ahcrhcr A modcl is  dcrii.cd dcilucrivcly or inducrir~cly, bur 
whcrhcr i t  focuscs on csplaining partcrns or mcrcly pro,ir.cring rhcm. Esplan;ltions can 
prccc.de or follow data collrcrion, but must bc dcvclopcd ~t some point. 

Onc nqr ofachieving this may be ro structurt. rhc  nodc cling process ro b r  sure 
that borh deducrive and inductive phases arc included. 

In reality, in the long-term time frame of cultural resource managemenr 
programs, rhc disrinction between deductive and inducrivc approaches becomes 
blurred. T h e  model building and refinement process is bascd on a continuous cycle 
ofdata collection, analysis, and modcl refincmcnt. T h c  results ofonc cycle of field 
testing and analysis are uscd to refine cht. model, ~vhich [hen guides rhe next phase 
ofdata collection. T h c  eventual merging ofdeductive and inducrive strategies may 
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be rhe direction of furure modeling approaches in cultural resource management 
contexrs. 

How does a manager know which speciiic type of model is needed for a 
parricular applicarion? IEa model is nceded for a limited, short-term applicarion ro a 
relativeIy small projecr arca (for example, in connection with rhe processing of a 
righr-of-way or an rnergy development application), a relatively limited range of 
models will be appropriate. For more general, long-term applications in the cultural 
resource program, a wider range of modeIs could be applicable and useful. 

Given the complexity ofcultural rcsourcc management, virrualiy every type of 
model has some utility. Both inducrivc and deductive nlodels are appropriate in 
varying degrccs, depending on the circumstances. Dcducrivc models have rhe 
grearer utiliry in developing inventories and in such program activities as sire 
interprctation. Tndi~crivc, correlative models usually have the starisrical precision 
needed to develop quantitative estimates of site populations, densities, and disrri- 
burions and are currenrly the bctrer source of such estimations. Borh types of 
models may be needed in a comprehrnsive cultural resource manrrgemcnr program. 

HOW CAN WE PREPARE FOR MODEL DEVELOPMENT? 

Modcl dcvclopmcnt is a repetirive process of inventory and analysis that is 
mosr effective as a long-term srratcgy. In gencral, rhe quality ofthc model dcpcnds 
on rhc quality of the dara; better data bascs yield more precise and accurate models. 

Even before beginning rhc modeling process, thc cultural resource spccialisr 
can takc many steps thar do not require large-scale or cxpcnsive sample invcntories. 
Since the beginning of cultural resource management programs, managers have 
recognized thc nccd to make full usc of existing information. Chapter 7 specikally 
addresses ~nodcl-building rcquiremcnts and tcchniques to develop good data bases. 
As a first stcp, rhc cultural resource specialist should accumularc and screen all 
available information on the srudy area's history and ethnography, and on previous 
survey work in the arca. T h c  quality of dara on previously recorded archaeological 
sitcs and other historical propcrties should bc carefully revicwed for locational 
accuracy and completeness, and sites for which information is poor should be set 
aside fot larer evaluation. Checking selccted sircs in the field may be necessary to  
evaluate recording practiccs and improve information. 

T h c  second stcp should involve assembling informarion inroa coherent, usable 
format. Ifrhe equiprncnt and espertisc arc available, rhis might include autonlaring 
rhc sire data base. Scvcral regions and states have systems for managing sitc data. If 
onc of thesc is nor available, a data base can be set up on an ofiice computer. 
Auronlating the data basc allows the specialist ro review the dara easily and 
informally, and ro cvaIuare thcm apart from any ongoing modeling project. Ana- 
lyses of existing dara for futurc modeling pro.jccrs will bc much simplcr and lcss 
espensive than current methods. Subfilcs can bc used to  stow more detailcd sitc 
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and artifact data specific to individual sites. Thcse subfiles can be created easily and 
accesscd as needed during detailcd analysis. 

All survcyed areas should be mapped on base maps. The  type and complete- 
ness of survey coverage must be carcfully scrutinized. Using information provided 
in project rcports, the specialist should separate projects in which coveragc appears 
to have been biased, incomplete, or otherwise suspect from those in which survey 
and recording practices conform to acceptable standards. Only survey data that are 
relatively complete can be used confidently in studies ofspatial distribution. Whilc 
data recordcd during less rigorous, nonstandard surveys may be very uscful for 
site-lcvcl analyses, methodological biases that distort apparenr spatial distributions 
make thesc data unsuitable for modeling purposcs. 

Documcnts summarizing existing data in an arca, such as Class I inventories, 
state plans, and rcgional rescarch designs, can be especially useful as a preliminary 
source of site distriburion information within a study area. Research designs should 
summarize what is known about an arca in the form of model-like statements or 
hypotheses, which can thcn be tested when new data are colkctcd. These studies 
can be completed on a contract basis, generally at relatively low cost. 

T h e  definition of site types reflecting temporal, functional, and cultural 
diffcrcnces is perhaps one ofthe most useful tasks that can bc performed to prepare 
for mode1 building. (Procedures for this task arc discusscd in Chapters 5 and 8.) Site 
types or other similar classification schemes are one of the primary components of 
models. 

Environmental data are also needed for model building. T o  be useful, how- 
ever, thcy should be of a consistcnt quality and scale throughout the study area. 
Land-managing agencies typically expend considcrable effort in collectirlg a wide 
range of environmental data for land-use planning and environmental impact 
considerations. This is done through field inventories, analysis of aerial photo- 
graphs and other remote sensing data, CIS devclopment, etc. T h e  manager should 
ensure that such data collection projects take intoconsidcration the unique needs of 
the cuItural resource program. Thcsc needs (e.g., for data pertaining to  the 
paleoenvironment or identifiing postdepositional proccsscs) should be anticipated 
by the manager and, where possible, colIcctcd as part ofother specializcd studies. In 
areas of adjacent or mixed jurisdiction, opportunities for interagency development 
of cnvironmental data can be explorcd to reduce costs. 

Once the requisite data bases havc been assembled, screcncd, and organizcd, 
sevcral kinds of preliminary analyscs can bc performed to cvaluate and characterize 
thc data. This step is actually thc beginning of the model-building process, which 
will be discusscd furthcr in the following scction. These preliminary analyscs are apt 
to  be biased and inaccurate, however, because the existing data used at this point 
probably do not represenr the study arca as a whole. 

This docs not mean that trial models devclopcd at this stage are unusablc, only 
that thcir use is limited, and that thcy should be used with caution. Trial models 
provide a check on the adequacy of field recording procedures. Evcn an initial 
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modeling exercise may point out the need for additional detail in artifact recording, 
for subsurface tcsting, for an increased level of site examinations, for a shift to 
interval or ratio-scaled data, ctc. 

Appropriate changes made in site recording techniques can greatly increase 
the chanccs ofsuccessful modeling efforts in the future. Even deficient models can 
help to identi+ gaps in inventory covcragc and highlight new data needs. Similarly, 
future large-scale modeling efforts may improve substantially if preliminary small- 
scale projects can first be applied to areas for which we have relatively little 
information. 

Statistically representative data are not necessary to develop a model; if new 
data collection ir planned for purposes of modcl development, however, these are 
certainly the most effective data to collect. Model !erring, on the other hand, docs 
depend upon the availability of unbiased data that arc representative of the study 
arca, most often data that were collected using some form of random sampling. 
Until a representative sample of data is obtained through a carefully designed 
inventory project, any model developed for the area must remain essentially 
untested and should be used accordingly (see the section on model evaluation, 
belour). 

HOW DO WE PLAN A MODEL? 

Should funding become available for a modeling project, several measures can . 
be taken to ensure that management needs will be met and that the projcct will be 
as successfuI as possible. T o  begin with, in what might be caUcd a preplanning 
phase, the goal needs to be clearly defined. The  purpose of the projcct should bc 
carcfulIy considered, recorded, and reviewed by managers and other resource- 
program staff members. Both long-term and short - tcrm goals should be considcrcd, 
including all potential management applications of the product, as wcll as imme- 
diate uses. T h e  possibility of phasing the project over a period of years should be 
considered, depending on whether one-time or continued funding is anticipated. 

Two important decisions to bc made are the s i x  of the targcr study area and 
the type and resolution of desired model products. For large study areas, entering 
intojoint projects with agencies or others (e.g., Indian tribes or local governments) 
who managc adjacent lands may be advantageous, especially if the combined land 
base more nearly addresses a meaningful cultural or environmental unit. Establish- 
ing two study areas may also be advantageous-a larger one to be used during the 
analysis ofexisting data and a smaller, more limited one to be used in definition of 
the target population of inventory sample units. 

T h e  full range of available model products and their limitations should be 
weighed to ensurc that initial expectations match the rcsults. Possible types of 
products include statements about rclativc site distributions, population estimates 
(e.g., estimated numbers of sites in unsurveyed sample units, numbers of unsur- 
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vcycd samplc units wichour sitcs, and total site population), correlarions between 
ccrtain environmental factors and the locacions of certain typcs of sitcs, and 
probability statements (e.g., the probability offinding a sire in any one sample unit 
or the probability that the observcd rcsult would occur by chance alone). 

In nrany cases, the value of the rcsults depends on thc detail of the cnviron- 
mcntal data recorded for each sarnplc unit and the levels and types of measurement 
used in rccording the dara. Thcsc factors should be addressed during rhc planning 
phase of rhe modeling projccr and should rcflcct thc managcmcnt constrainrs, 
goals, and limitations idcntitied during the prcplanning phase, 

After thc managcmcnt needs havc brcn clearly defined, a modeIing project 
plan should bc dcvclopcd. T h e  purpose of a projcct pIan is to break down rhc 
modcling process into a series of rcvlcw and dec~sion points, whcrcby the manager 
or specialist and the individual implcmcnting the projcct (in most cases a contrac- 
tor) can rcvicw progress and jointl!~ participarc in key decisions. 

T h e  first step in the development of the plan should bc a rcvicw of existing 
data and formulation ofa trial model for the study area. Plans to test this trial modcl 
should be dcscribcd in a rrscarch design that clearly spclls out research issues, data 
gaps, and priorities for collection of ncw data during sample inventory work. 
Statements should address data-collection activities: sclcction of inventory arcas; 
data rccording for micro-and macro-cnvironmcntal data; and recording of site, 
feature, and artifact attributes. Each rccording activity should be carefully 
revicwcd to ensurc that the most powcrful measurement systcm will bc used, a 
critical factor ifinventory results arc to havc thc nrasimu~n applicability to model- 
ing cnbrts. 

Dctail concerning rhc rationale for srlection of sample invcntory units should 
bc provided In the samplc design. The  samplc design should clearls describe any 
proposcd stratification schcmcs and their goals, plus the configuration of the sample 
units and rhc mcthod oftheir sclcction. It should also cvaluare the nccd for multiplc 
survcy strategies (c.g., a mix of random and judgmcnral samples). 

A r  a minimum, the results of the initial data rcvicw, the trial model, and thc 
datz-collection proposal should be included in a preliminary report prepared prior 
to  initiation of ficldwork. T h r  manager and spccialisc can chus determine at this 
preliminary srage wherhcr masimum use has bccn made of cxisting data and can 
ensure that rhe first stage of ficld invcntory is dircctcd toward a modcl testing 
cflbrt. I'ccr review of this report may bc drsirablc. 

T h e  plan should nesr address chc sccond step of the projcct-the ficldwork 
phase. Dctailed information about the proposrd ficld mrthods, including raws of 
inventory, rccording standards, collection srrarcgies, and schcdulcs, should be 
provided, 

T h e  third step of thc project plan should addrcss analysis and prcparation of 
the final rcporr. In this part of rhc plan, proposcd approaches to dara prcparation 
and analysis should bc dcscribcd. T h e  rclationship b c t n w n  proposed products of 



analysis and the original management goals should be discussed, even though at this 
stage the former might be tentative. Ultimately, the results of fieldwork- 
including the number, variability, and distribution of sites-will have a principal 
role in determining thc level ofanalysis possible. The  ancicipatcd artifact studies or 
other laboratory analyscs designed co distinguish site types and functions should be 
described as well. 

The  ftnal report should be structured to presenc che model, dcscribe the uses 
of the data, explain differences between thc initial trial model and the final model, 
and describe its limitations and appropriate applications. An esplicit statement 
should also be included to detail how the modcl could or should be tcsted, 
regardless of whcther additional inventory is cnvisioncd in the near futurc. 

Specific tcchnical information on thc most effcctivc ways ofpcriorming rnodel- 
ing tasks has been prcscnted throughout this volume; this information should be 
rrad carefully by any cultural resource specialist responsible for ovcrsccing or  
monitoring a modeling projcct. A description of chc ovcral1 modcling process from 
thc pcrspcctive ofthc land managing agency is provided by Alcschul in Chapter 3. A 
critical discussion explaining cypes of measurcmtnts and chcir importance to 
modeling is prcsented in Chapter 5, followed by an cxtcnsive trcatmcnt of the 
mcchanics of the model-building proccss, including dcvelopmcnt of site classifica- 
tions. Specific topics such as sampling strategies, paramcccr estimation, chc empty 
unit probicm, phascd sampling and survcy, and data-recording strategies arc 
covered in Chapter 6 by Alcschul and Naglc. Kvammc, in Chaptcr 7, analyzes thc 
use ofcxisting data in trial modcl formulation. In Chaptcr 8 he looks morc closcly at 
diffcrcnt cypes oimodcls and comparcs thcir output and applicability to  manage- 
mcnc situations. Chaptcr 8 also contains a rcvicw of techniques for modcl ccsting 
and refinement, addressing such topics as parametric and nonparamctric statistical 
analyses and assumptions about rhc data, testing, and confidcncc intrwals. 

HOW DO WE APPLY MODELING I N  CULTURAL 
RESOURCE MANAGEMENT? 

Many aspccts of cultural rcsourcc managcmenc can benefit directly or indi- 
rectly from the usc of modeling tcchniqucs. Evcn if a formalized model is not 
developed, the techniques uscd to prcparc cultural resource data for a modcling 
cxcrcisc (see the section on preparation for modcl devclopmenc, above) can have 
useful side bencfits. Some of these arc discussed below. 

Inventory 

hlodels can bc uscd in thc design of comprehensivs inventories specific to a 
dcfincd land base or land-use area. Within this arca, information concerning site 
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rypes, site locations, and cnvironmenral characrcriscics can be ordercd as cither 
dependent or independent variables and (undcr an inductive approach) analyzed ro 
dctcct patterning in the data. Through this process, addirional daca necds (e.g., for 
more dcrailcd sire data, for inventory covcrage in specific places) bccome cvidcnr 
and can bc prioritizcd, Even in preliminary modeling elforrs (deductive or induc- 
tive), new types ofinformarion, such as siteless locations, palcoenvironmcntal dara, 
and informarion on postdcpositional proccsscs, arc ofren needed. 

Models can also drive invenrory efforts when informarion is needed ro tflt 
(rather rhan dcvclop) the model. Whilc models can be crcarcd from a diverse and 
nor rigorously representative dara basc, they can only bc rcsrcd propcrly using an 
unbiased data base, i.c., one that represenrs rhe study area as a whole. Because of 
thc ovcrall utiliry of models, the collccrion of sample inventory daca for modcl 
testing and refinement should be a high inventory priority, regardless of whether 
rhcse data arc sclecrcd wirhin an administrative land base (e.g., a resource area or 
foresr) or a limitcd scudy area wichin that adminisrracivc land basc. 

Bccausc of limited funding, somc managers may consider turning ro modeling 
as a subs[iture for, or as a way of limiring, new inventory data collection. This is not 
a cure-all approach, however, because thc rcsults ofa model are only as good as rhc 
dara on which rhe model is based. For chis reason, models sometimes do a poor job of 
predicting variability and may not bc reliable or precise. While each casc must be 
evaluared on its own mcrits, rhere are sevcral criteria char cultural resource 
managers should consider when dcciding how to use modcling in field inventory 
efforts. Onc importanr consideration is the possible repercussions if scarce invcn- 
tory dollars are spenr to dcvclop a model rhar cannor perform to the desired level of 
accuracy. T h c  purpose for which an inventory is conducted will determine how 
serious chis problem will be. T h e  typc ofmodel being used must bc cvaluarcd with 
respecc ro thc application undcr consideration. T h c  analy [icaI origin ofthe model is 
imporrant, as is rhc qucstion of whether it has been resred. (More specific criteria 
for model evaluarion are included in rhe next section.) 

T h e  types ofsites in the study area are also an importanr factor. I t is one thing 
to  limir invcntory in an area thought ro contain homogeneous archaeological 
remains, such as small sitcs with h i r e d  variability, no depth, and shared atrriburcs. 
Tr is quire differcnr to limit inventories in an area known co contain complex, large, 
or srrarified sircs; a hcterogeneous site population; or what Altschul and Nagle 
(Chapter 6) rcfcr ro as magnet sites (sites thoughr ro influence rhe location of orher 
sites). 

T h c  scale of resolution of the model is important, Zonal models perform 
differently from poinr modcls and generally cannot providc specific sitc-likelihood 
indications for designated loca~ions. 

Land managers should guard againsr the impropcr use of intuirively derived 
modcls in influencing invenrory efforts. Archaeologists who work frequently in an 
area ofcen dcvclop a "fcel" for where sitcs should be found. Occasionally, thcsc 
intuitions have bcen used as a basis for limiting inventory to ccrtain areas without 



resting others. A danger in chis approach is that ifsites are sought only where they 
are chought to csist, rhe prediction may become a self-fdfilling prophecy. Potential 
results can include dcstrucrion of significant resources or inrroducrion of a strong 
bias into rhe data base. 

Inruicions should noc be dismissed, bur ncicher should rhey be equatcd with 
scientifically verified information. They should bc formalized, expresscd in terms 
chat can be measured and applied in the inventory process, and subjected to a 
rigorous tcscing program. In this way rhey can be of vital imporrance in effective 
model developmcnc. 

Evaluation 

In cvaluacing an archaeological sicc for management purposes, two major kinds 
ofquestions are asked. One has ro do with a sire's significance (generally exprcssed 
in rerms ofeligibilicy for the Narional Register of Hisrotic.Placcs). T h e  other has to 
do wirh determination of its most appropriate use(s), coward which further man- 
agemcnc actions shoirld be direcccd. Modeling can concributc to both kinds of 
cvaluation. 

T h e  significance of a sitc can bc measured by irs pocenrial to  contribute to our 
undcrsranding of thc historica1 and prehistoric past. On a broad scale, models can 
help to clarify rhesc rescarch issucs, thus providing a morc consiscent regional 
conccxt for site evaluation. 

By focusing research on rhc location of sires, as wcll as on the I jprr of siccs 
cspccccd to occur in specific locations, [he modeling process can help ro incrcasc [he 
accuracy and precision of functional, temporal, and spacial qualifiers. ~Modoling 
helps co definc major similarities and differences among sires and rcflcccs rhe 
informacion potencial for both identified and projected sites within an area. In 
evaluating whechcr a particular site is potcnrially significant, the speciaIist ofcen 
relics on previous cxpcricnce with ocher sircs of the same rypc. 

T h e  importancc of a site cannor be cquaccd solely with its membership in a 
particular site type or class, however; clearly, the rarc or unique site, which fails to  
appear as a separate type during starisr~cal analyses, may be rhc most s~gnificanc sire 
in an area. These sites are often nor amenablc ro identification rhrough sample 
Inventory, but they can be successf~illy integrated inro predictive models i lsuf i-  
cicnr information is known about rhem. This issue is discussed furrher in the next 
section. 

11 is important to  considcr chc physical characteristics ofa site as wcll as its class 
membcrship. For examplc, a broad class labeled "habitation sices" mighr include 
sires with or without structures. Some large sices might be in poor condition, wirh 
virtuallv no remaining informacion potential, while some small sites might conrain 
subscancial undisturbed deposits. Clcarly, signiticancc assessmcnt must address 
individual sire characteristics, as well as class membership. 
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Derailed inlor~nation about the relarive scarcity, relative rcscarch imporrance, 
and locations of archaeological sites, whcrhcr rhcy have all been discovcrcd and 
recorded or nor, can help in the determinarion olrhcir appropriatc uses. Examples 
olpossiblc uscs include ongoing or potential scientific srudy, mainrenance ofa social 
and/or cultural group's tradiriorlal lifeways, public education and intcrprerarion, 
and experinrenral managemenr studies. By rdining ideas about all of rhe archaeolog- 
ical remains in a target area, models can be extremely valuable for focusing and 
organizing use and allocation decisions. 

Protection 

Anorhcr importanr program componenr wherc modeling can be applied is in 
rhc arca of prorection. Prorecrion relcrs ro measures raken to reduce natural or 
human-causrd impacts ro rhc significanr qualities of culrural proprrries or to rhc 
arrainmcnt of their appropriarc uses. hqcasures may include information signs, 
physical barriers, patrol and surveillance, moniroring, derailed rccordirig, cxcava- 
rion, stabilizarion, and administrative measures, such as acccss resrricrions, with- 
drawals from orher land-use acriviries, avoidance during consrrucrion, crc. 

T h c  prmcipal way in which modcling can contribute ro prorecrion is by 
hclping ro csrablish priorities among sires for specialized trcatmcnr. Tn gencral, 
land-manag~ng agencies arc inreresrcd in prorccting and preserving a "represcnra- 
rivc array" ofslrcs and sire dara. Ir IS useful ro visualize this array In rerms ofty pes of 
sites; all siresofa like rypc consrirure a finlrcsite pool.Theorctically, prorccrion and 
preservation efforts should bc duected roward maintaining a representarive sire 
pool ofcach s ~ r c  rypc for furure nccds. Modeling provides a basis for dctcrmining 
the array of site rypcs in a parricular area, as we have seen, and in some cases can bc 
uscd ro gencratp population estimates for varlous site pools, 

Models can also help to define research issucs. This information can serve ro 
guide data collccrion prioriries for data recovery efforts and can hclp ro csrablish 
which sites should be sclccrcd for these efforrs. ktodcls can bc uscd ro identify 
project arcas likely ro contain the typcs of sires mosr arrractive to vandals, thus 
indicaring priority areas lor patrol and surveillance. 

Planning 

Perhaps one of the mosr valuablc applicarions of inodeling is in rhc arca of 
planning. Planning for the managcmcnc of culrural resources can take place during 
the developmenr of land-use plans, environmental assessments, statewide or arca- 
wide program plans, or site-specific plans. Models arc especially suited to planning 
applications, because rhcy locus on broad-scaIe, generalized trcnds, actions, or 
information. T h e  main weakness of models, rhe inabiliry to consistenrly produce 
derailed site-level specific srarements, is usually not crirical in a planning situation. 



lModcling can hclp to plan how to reducc or anticipate adverse cffects on 
cultural resources. For examplc, a model may prcdict thc locations of sites rhat 
because of thcir complexity or thcir cultural or religious valuc to a Narive American 
group may not bc suited to data recovery. On thc orher hand, a modcl may predict 
the locations ofsircs rhar ore suitable for dara rvcovery of various kinds; csrimates of 
potentla1 costs and rimc needed for data recovery can thcn be derivcd by projecting 
site distributions in the planning area. Potential long-rerm and cumulative impacts 
to site pools by a proposed action can also bc csrimared, based on modeled 
populations of various sitc types.  modeling projcctions ofso-called scnsirivity arcas 
h a w  bccn widely used for planning purposes. 

HOW CAN MODELS BE EVALUATED? 

There are realistic limitations on the Iwcl ofaccuracy ufc can hope to achieve 
in locarional madeling, owing primarily to thc complex nature of the bchavioral 
Ihccors influencing site location. Modcls are simplified consrructs of a complex 
universe that are seldom clearly right or wrong; rather, they are best viewed as 
being more or less useful. Often a model will exccl in onc application bur fail in 
others. It is important for a manager to know whar criteria of success are mosr 
important to the proposed application of thc model, beforc embarking on a model- 
ing project. While it  is unrealistic to cxpect models to work with "pcrfect" 
predictive accuracy, it is nor unrealistic to cxpccc to know how well a particular 
modcl works and why. Indeed, this information is critical in dcciding how the model 
shoi11d bc uscd. 

Sevcral authors have discussed various criteria for modcl evaluation. In Chap- 
ter 2, Kohkr presents an esrremcly usefd discussion of inductive and deductive 
models, addressing rhcir application, complesity, intcrnal consistency, and preci- 
sion. T h c  appendix by Thoms carries this approach further, estensively comparing 
22 models. 

Undol~btedly rhc most important criterion to considcr in evaluaring a model is 
whcther or not it  has becn rcsted. As noted carlier, untested models can bc 
dcvcloped and formalized by using existing data, much of which contains biases. 
Simply because a modcl is formally sratcd, however, one should not assumc chat it 
has bccn rcsted or that its performance has becn evaluarcd. Wirhout resting or 
evaluatmn, a model is littlc morc than a guess. 

Onc of the main rcasons for testing a modcl is to control for spurious or false 
corrclarions between sitc locations and the environment in a particular sample. 
Such corrclations can be minimized by reducing chances for bias in the units 
selected for rnodcl testing, i-e., by avoiding arrilicial constraints and by selecting 
samplc units randomly. Consider, for cxample, a samplc invcnrory in which only 
sample units falling within 2 mi of a modern road have a chance of being sclecced. 
Analysis of sirc locations might reveal a markcd correlation with geographical 
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variables that actually have more to  do with road cnginecring requircmcnts than 
with past human scttlemcnt prcfercnces. 

Establishing acontrol group to bc used in modcl testing has been discussed in 
Chaptcr 8. This procedurc is useful for modcl tcsting bccausc it  provides a 
background or bascline picture of thc study arca as a whole, against which modcl- 
gencrated statcmcnts can be evaluated. If, for example, it is noted that 90 pcrcent of 
recorded sites are located within 5 mi of water, this observation could be vcry 
significant. If90 pcrcent of a control group ofsitcless locations in the project area 
were also found to bc within 5 mi ofwater, however, the modcl would have told us 
nothing of signilicancc about sitc locations. 

Anothcr reason for modcI testing is to dctcrminc the nature and strcngth of 
relationships that may have becn discovcrcd. Often sevcral cnvironmcntal phcno- 
mena occur togcther in nature (a rclationship known as autocorrelation). Testing 
can help us to understand which of the co-occurring variablcs eserts the greatest 
influcnce on site location, and this information in turn pcrrnits us to evaluatc chc 
explanatory potential ofthc model. Pcrhaps the most obvious rcabon to test a model 
is to dctermine its ovcrall accuracy ratc. Accuracy rate and precision arc generally 
inversely relatcd, T h e  more prccisc a modcl-like statcmrnt, the less accuratc it is 
apt to be. This relationship is trcated below in greater detail. 

T h e  proccdures used in modcl testing have bccn trcatcd estcnhivcly through- 
out this volume. Procedurcs for model validation and gcncralization arc presented 
in Chapter 5. Various stratcgles for tcsting modcls bascd on csisting data are 
presented in Chaptcr7, along with rcchniques for intcgrating new data. In Chaptcr 
8 the disci~ssion covcrs scveral quantitative mcthods that can be applied to data 
collected through some form ofprobabilistic sample and carry with thcm somc form 
of reliability measurerncnt, such as confidence intervals or probabilities. T h e  gain 
statistic is suggested as a uscful mcasurcmcnc for comparing accuracy rates among 
models. Thrcc NpeS of testing procedures are describcd in ordcr of increasing 
precision. Two, rcferred to  as split sampling and the jackknife method, arc based on 
testing the modcl against some portion of the original data used to drvclop the 
model. A third involves collecting ncw and indcpendent data from the project area. 

Scvcral discussions of managcmcnt concerns and modcl testing occur in this 
volume. In Chaptcr 3 ,  Altschul distinguishes betwccn wasteful errors (wherc a 
model predicts a sitc and nonc occurs) and gross crrors (whcre a model prcdicts no 
sites and sites occur). In the latter case, the potential for inadvcrtcnt site dcstruc- 
tion in many management applications is increased. 

In Chapter 8, Kvamme discusscs reduction of gross errors by adjusting the 
cutofipoint o f s  model's decision boundary (a mathematical boundary), an approach 
that applics only to quantitative models. As an example ofthe rclationship bctwecn 
gross and wastcful crrors, perhaps a model pcrrnits us to say that 80 pcrcent of the 
sitcs in a study arca will be locatcd on 50 pcrcent ofthc land surface in that arca. This 
represents a substantial reduction in the amount of land surface to  be addressed 
further, but i r  also carries ~71th  it the potential for gross errors affecting20 percent of 



rhc sircs. Using the same model, bur adjusting the cutoff point, we may be able to 
say that 95 percent of the sitcs will be located on 70 percent ofthc land surface. This 
reduccs the risk ofgro>s errors, while increasing the possibility for wastcful errors. 
The  implications of this discussion for managcmcnt applications are significant. 
Reducing study area size by 30 percent would rcpresenr a substantial and dcsirablc 
increase in project efkicncy, especially if it couId bc accomplished with little or no 
risk ro thc resource. 

In Chapter 3 ,  Alrschul cautions against passing chc point of diminishing 
returns in modcl testing. This occurs when substantial increases in collection ofncw 
inventory data result in little incrcasc in accuracy. There arc many possible causes 
of this phcnomcnon, including the influcncc of such social ficrors as prcsrncc of 
large habitation sites, trade networks, and kinship groups, which override rhc 
influence of factors of the narural environment in dcrcrmining sire locarion and 
which arc not addrcsscd in thc modeling cfforr. 

An important consideration for cvaluaring models is their ability to rake into 
account rarc sitcs. These sites constitute a very small portion of thc site popidacion 
cirhcr by virtuc ortheir own characreris[ics or by virtue of their location in relation 
ro the environment. A site type can be rare without being impossible to model; 
most modcls do not address thew sitcs, houwrr ,  because their low nunrbers make 
most statistical rcchniques unusablc. 

T h c  rare-site problem increases when samplc invcntorics at low sampling races 
are uscd to generate the data base for model development. When only a small 
pcrccntagc of the surface area is surveyed, the chances for discovering a rare site 
clearlv are reduced. Ifcrty sites ofa rare type are known in the study area, specialized 
inventory srraregics can sometimes be dcviscd to incrcasc the potential for discov- 
ering more of these sites. If large village sircs have been found only in riparian areas, 
for csamplc, riparian arcas could be sampled at a highcr rarc than other areas to 
increase chances for discovrring this type, and compensation for rhc highcr propor- 
tion of riparian arcas survcycd in an otherwise random sample can be achieved 
during latcr analysrs of the dara. 

Scveral other factors, any one of which could seriously atkct a model's validity 
and usefulness, should bc cakcn into account in evaluating a model. The  manager 
should carchlly analyze the appropriatcncss of all statistical procedures and analy- 
ses used in model devrlopmcnt. Common problcm areas include biases in thc 
sampling procedures, failure to mcet statistical assumptions about the dara, and 
inappropriatc use of ctivironmental data. Oftcn, for projects incorporating 
advanccd statistics, the scrvices ol'a professional mathematician will be needed. 

Models should bc cvaluatcd for thcir completeness. Did rhey address changes 
in [he cnvironmcnt through time? Arc there biasrs in rhc sample design that might 
affccr the reliability ofrhr data4 Also, rhc rcsolurion ofthc model is important. Ifrhe 
management nccd is for statcmcnrs spccitic to quarcrr-scction parcrls, broad zonal 
modcls may not bc useful. 
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Inductive or corrclativc models have limited explanatory value bccausc they 
do not account for observcd correlations betwcen indepcndent and dcpendcnt 
variables. For caamplc, empirical analysis may demonstracc that a certain type of 
site in a sample is always located within a limited distance of ourcrops ofa parricular 
geologic forsnation. While chis information may bc very useful in certain contexts, it 
has not been dernonstratcd that the presencc of outcrops actually 1t1/7utnccd sire 
locations. Tndcpendcnt evidcncc, such as the presence of specialized fcaturcs or 
artifact types, is nccdcd to support such an inrcrprccacion. This does nor mcan that 
the obst.rvcd corrclarion is or is not valid; it mcans rhat we cannor explain why i r  
occurrcd and thus wc are no closer to an understanding of the broader cultural 
systcm thar wc arc attcmpring to modcl. T h c  utility of the model is limitcd to rhc 
observed study area. T h c  need for indepcndent testing to  establish a noncoinciden- 
tal relationship between rhc independcnr and dependcnt variablcs, in this case 
outcrops and sirc locations, is cspecially important bccausc of the strong tendency 
for aucocorrclation among cnvironmcntal variables. Correlative models are useful 
becausc rhcy direct thcsc independent tcsrs. 

Ficld procedures are another factor to considcr whcn modcling projects are 
being evaluatcd. For instance, rhc spacing of crcw mcmbers and procedures for 
defining and recording sitcs can significantly a f k t  the kinds or  data that are 
available for analysis. Biascs in ficld procedures should be cxplicitly stated in project 
rcports, and their impact on the rcsults of the modeling efforts should bc evaluated. 

Finally, the interprctability of rhc modcl is importanr. Is rhc model simplc 
enough to be undcrsrood and explained in anthropological terms? Docs it relate 
environmental and site variables to  the everyday world? Ifnot it may not be usable 
by futurc rescarchcrs in a culturaI rcsourcc management context. 

FUTURE DIRECTIONS 

Predictive modeling holds much promise for cultural resource rnanagcment in 
land-managing agencies, even though it is currently in a highly esperimcntal and 
rapidly changing state. T h c  information in this volume is nor incendcd to limit or 
confine this development; rather, the intent is to crystallize issues and focus 
discussions on a common ground, to the benefit of both the agcncics and the 
professional archaeological community. 

A t  chc present time, no major policy directives h a w  been issued by a large 
land-managing agency concerning thc devcloprnent and use of models in cultural 
resource managcmcnt programs. Many would argue that such dircctivcs would bc 
premature. Many othcrs would argue, however, that modeling has ceased to grow 
and contribute to our undcrstanding in the way that it should because ofa lack of 
focus and purpose in agcncy cKorts. Altschul summarizes this concern in Chaptcr 3: 

I'crhaps the Innst significant criricism rhat  car) bc m d e  a b u r  predictive modeling 
programs in mas[ cuhural resourcc rrnnagcmcnr contcxrs is thar ~herc is noconscnslis as 
ro thc owrdl obiccrivc. olrhcsc programs.  



Current efforts are secn as diffuse and lacking in momcntum and direction. - 
Rather than working toward refining existing models or developing ncw typcs of 
information or mcthods, agcncics sometimes devclop new modcls that suffer from 
the same limitations as prcvious ones. Short-term goals are being pursued cxclu- 
sivcly, perhaps because long-term goals have ncvcr becn clearly dcfined or because 
incremental, long-term funding has nevcr bccn available. 

The  information in this volume should hclp agencics to identify rncans of 
increasing thc eficicncy and effectivcncss of thcir modcling efforts. The  first, of 
course, is to  dcvelop thc cxisting data basc so that maximum use can be madc of 
previously collcctcd information. In addition, agcncics need to augment thc cspcr- 
tisc of their staffs so that thcy will be able to  cvaluate and participate morc fully in 
the modcling programs. This might involve specializcd training courses in thc 
evaluation and application of modcls and especially in the usc of sampling tech- 
niques. Although advanccd statistics will no doubt rcmain bcyond the reach of the 
averagc staff person, some basic training courscs in the typcs of modcls and their 
assumptions and requircments may be helpful. Only through this kind of staff 
development will agencies bcgin to  use modcling cffectivcly and creatively to  direct 
and develop projects meeting specialized data nceds. Only through thls process will 
modeling be used as a long-tcrm strategy, where it can bc most effective and 
efficient. 

There is a clear need to develop new ways to  measure and define both 
dependent and independent variables. This can involve manipulation of tremen- 
dous amounts ofinformation, for which remote sensing technology and geographic 
information systems are essential. Excellent and detailed discussions ofthesc topics 
are provided by Ebert (Chapterg) and Kvamme and Kohler(Chapter 10). Agencics 
should be aware of the potential contribution of geographic inhrmation systcms to 
cultural resource modeling and make special efforts to  ensure that the nccds of the 
cu1tural resource program are met in the design of these systcms. Because the 
potential contribution of a GIs is significant, consideration should be given to 
funding specialized research projects to  csplore possible applications of this new 
technology. 

Finally, agencies need to focus on the development ofesplanatory theory. The  
kinds of information that can be obtained through traditional culrural resource 
survcys are limited. Surface observations madc during the courst. of these surveys 
are based on "bcst guess" estimates of limited types of information. While this 
information is useful in the formulation of ideas and hypotheses about prehistoric 
societies, qualitatively different types of information are often nccded to dcvelop 
and test esplanatory theories. This information, on topics such as dict, rnviron- 
mental exploitation patterns, technology, etc., can oftcn only be collectcd through 
subsurface testing and excavation, accompanied by detailed laboratory analyses and 
studies, and through analysis of pertinent ethnographic, historical, and other 
nonarchaeological data. Thcsc approaches involve additional costs and for this 
reason are often not included in standard inventory approaches. 
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In order to further the development ofexplanatory theory and to incrcase the 
accuracy and uscfulness of modcling efforts on a larger scale, agencies should 
seriously consider sponsoring research projects designed to measure complex social 
and cconomic parameters as they apply to thc archacologica1 record. In Chapter 4 
Eberr presents an escellent discussion of an innovative approach known as 'Ldistri- 
burional" archaeology. Herc, traditional sirc types arc sccn as artificial constructs 
developed by archaeologists, which at best only poorly rcflcct behavioral systems. 
Analysis is focuscd on distributions ofartifacts across a landscape as rhcy relate to  
larger patterns ofland usc. Experimental work using this technique has takcn place 
already in s c w r d  land management contexts, and i t  appcars ro hold much promisc 
for h t u r c  advances in explanatory theory. Efforts such as these should nor only 
scrve to advance the statc of predictive modeling, rhcy should incrcase rhc cfti- 
cicncy m d  cffwrivcncss of cultural resourcc managcmenr programs as well. 





AN APPRAISAL 

W. James Judge and Daniel W.  Martin 

In Drcembcr of 1981 the Bureau of Land Managcmenr issricd an instructional 
memorandum encouraging thc drvelopmcnr and usc of predictive modcling in 
cultural rcsource managcmcnt. Initial official inrcrcst in modeling by thc bureau 
was in conjunction with thc timely processing 0f"Applications for Prrrnits to Drill" 
(APDs) for oil and gas. The  oil and gas industry had rccommcnded chat the burcau 
initiate "regional rcviews ro identi6 areas ofhigh and low probability lor significant 
cuIrural rcsourccs, as a means for eliminaring unnecessary survcys." The  assump- 
tion was that "givcn an adcquarc data base, informcd decisions can be rnadc about 
where to concenrrarc. additional idenrification and protection cndcavors, to the 
exclusion of terrain other arcas" (Burford 1981). 

T h c  direction givcn by BLM headquarters at thar rinw was as lollows: 

Starcs with hcavy A P D  workloads arc cncnurrgcd rn conhidcr dcvcloping prcdicrivc o r  

wnsiririty model, for arcas uehcrc it  appcara t h x  cultural rcbourcc dcnsiry and disrribu- 
tion lcnd rhcmsclvcs ro rliv appro~ch.  i\ny S U C ~  enbrts should tw dircc[vd pr~marily 
r o w ~ r d  arcas with high demand, whew rhcrc i s  dso a n  csisring basis for thecxp~.~tar ion  
ol'3 rclarivcly low sirc populariun, rcpulariry ofsirc sir uxion, aimilar~~y ofsite inlorrn;l- 
ricrn porcmial, or rtthcr reasons ior anric;p~ring that the escrcisv will lead ro a producr 
1h.x allcviarcr rhc culrural rcsnurcc idcnr~lication dcmandb on BLM and ind~lsrry, 
wirhour crcxring an i~nacc~prrblc  ribk ro culrural rccources [Buriord 19SlI. 

In ar rcmpring to irnplemenr r he memorandum, resource managers found [hat 
predicrive modeling was being employed in a widc variety ofways and that thcrc 
uras lirrlc. mutually agrccd-upon theory, mcrhod, or policy to guidc rhe use ofthis 
rcchniquc. As a result, a proposal was dcvelopcd by the BLM ro fund aprojccr that 
would address rhcsc issucs. T h c  projcct was approvcd and fundcd, resulring in rhe 
producrion of this volumc. 

T h e  proposal established rhe following goals for the prokcr: 

I .  to cvaluare [rends in rhr devclopnlenr and applicarion of predicrive 
modeling critically, using knowledge gained rhrough past rcsearch cfforts; 

2. to csplorc tlic ieasibiliry arid practicality of prcdicrive modcling for 
mccting rnanagcrntrnt objectives; 



JUDGE AND MAKTIS 

3 .  to analyze and define the components of the model-building process, 
particularly with respect to cdtural resource management; 

4. to develop a set ofstandards for archaeological and cnvironmcntal data to 
be used in modcling efforts; and 

5. to provide BLM field oficcrs with information on data collection for 
modcling purposes and scatiscical manipulations of chosc daca. 

T h e  proccss by which the authors, editors, and advisory committee wcre 
selected and the lcngthy course of pccr and federal rcview to which the draft was 
subjcctcd have been discussed in Chapter I .  In this chapter we will(a) evaluace chc 
volume in regard to its succcss in achieving rhe goals ourlined a t  the beginning of 
the projecr, ( b j  summarize the results of thc pcur review, and (c) discuss what wc 
consider to bc several imporcant issues raiscd by chis volume. 

EVALUATION OF PROJECT GOALS 

In general, the five goals prescnced in the initial projcct proposal wcre rcalizcd. 
The  first, that ofcritically evaluating trends in thc devclopmcnc and application of 
prcdiccive modcling, is rhoroughly addressed throughout the volumc. 

The  sccond objeccivc, chat of dcccrmining the feasibility and pracricality of 
prcdiccivc modeling as a usefill technique for meeting federal managcmenc objcc- 
civcs, is addressed cxtensivcly in Chaprcr 11 and will also bc discussed Iarcr in this 
chapccr. Wc may norc in passing, though, that to a certain extent apparent 
"succcss" in mccting chis goal depends on how chosc fcdcral managcmcnc objcc- 
rives art: pcrceivcd. For some managers in 1983, prcdicrive modeling was vicwcd as a 
tcchnique rhar was going to rescue them from chc burdcn of compliance with 
Section 106, permitting them ro get by with minimal field survey and rhus mininlal 
cxpendicure of very scarce funds. T O  chose individuals, the results of this volume 
may well be disappointing. T o  thosc who urcrc looking for rhc satisfacrion of more 
general, long-range objecrives, the results will bc reccived much more favorably. 

Thc  third objective, that of analyzing and defining rhc components of the 
model-building proccss as they apply ro cultural resource management, is also 
addressed in detail in chis volume. I t  is apparent char model-building is a very 
complcx and cimc-consuming proccss. Ncverrheless, thcre is Creedom oichoicc as to 
how to proceed with modeling, and some ways of putting it all rogethcr may be 
mow efScctivc than others, dcpcnding on thc siruatiort and the nccds. Again, 
Chaptcr I 1  of i r s  stcp-by-step considerations to guide modeling efforts for thosc 
with !and managing rcsponsibilitics. 

The  fourth goal, to dcvelop a set of standards for che archaeological and 
cnvironmenral data required to prepare predictive models, is somewhar more 
dificulr ro evaluate. In rhc literal sense, littlc in the way of a set of standards was 
dcvclopcd by any of the aurhors. Thcir .rclucrance to provide a "cookbook" 
approach-which is implicit in the concept of scandardizarion-is undcrsrandablc, 
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givcn the variabilicy in modeling approaches and ~nanagemcntobjccrivcs, as well as 
regional physiographic and culcural differences. If, however, we consider "srand- 
ards" to  bc a sct ofguidelines for data requirements in the model-building process, 
then the goal was mcr sincc the dara rcquircmcnrs are standard in the sense rhat 
those agrced on as acceptable are presented in dccail. For cszmplc, rolcrablc levels 
of error for daca enrry, choice of appropriarc soil survey dcrail (e.g., Soil Survcys I, 
TI, III), and appropriate ccll-sizc choice for DEM (Digiral Elevation Modcl) data arc 
among rhc "srandards" prcsenrcd. Importantly, i c  is noced rhac each ofche choices 
made must be tailorcd to a specific objccrivc and phase ofthe modeling process and 
co specific regional circumsrances. 

In one scnsc, groundwork for dcvclopment of more standardized dara is 
provided in this rcport. Perhaps the besr way co establish such standards would bc 
co develop them from daca used in actual field and management applications. 
Srandards developed in rhis way wouId thus bc based on actual mmagcmrnt 
succcsses and would minimize r he possibility of error. 

With rcspccc co [he final objective, chac of rcconlnwnding rypcs of ficld 
inventory dara to bc collccrcd and of dcvcloping specific procedures for field ofice 
use, only [he initial part of chis goal has been mec in dccail: rccommcndations 
regarding field inventory data are found chroughouc thc volume. The  second parr is 
left quice open, again bccause of our rclucrancc co provide a cookbook approach, 
and also to enable field officcs co pick and choosc among rechniques themselves so 
that local managcmcnt needs are addrcsscd by the mosr cfficicnt. mcans. 

In our vicu,, then, the objecrivcs of the projccc werc cffcctivcly rnrt, particu- 
larly when one considcrs the complexity of chc subjecc macter, and [he absencc of a 
well-dcvclopcd body ofrhcory and mechod for prcdiccive modeling when the goals 
werc established. 

AN APPRAISAL O F  T H E  REVIEW COMMENTS 

This volumc beneficed from extensive pecr rcview. T h e  invitation ro rcview 
was extended ro numerous organizations in order co create a document that 
represenccd participation from a broad speccrum of the proicssional archaeological 
community. Comments wcrc received from rhe following organizations: Burrau o i  
Land Managemenr offices, Stace Historic Prcservarion orticcs, rhc National I'uk 
Scrvice, the Department ofrhe Army, [he Burcau of Indian Affairs, the Advisory 
Council on Historic Preservation, rhe Bureau of Rcclamation, rhc Forest Scrvicc, 
[he Soil Conscrvarion Scrvicc, the Sociecy for American Archaeology, and a number 
of univcrsicies. T h c  responses provided subscantivc comments on chcorerical, 
mechodological, technical, management, procedural, legal, and regulatory issues 
prcscntcd in [he draft version. Evcn [he mosc critical rw ieaws  felr rhar the volumc 
was an imporrant conrribucion and should be published. 

Many of the commencs suggested that chc dichotomy bccwccn corrclarive and 
explanatory modeling was artificial and that rhe importance of esplanatory models 
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was over-emphasized (especially as being superior ro correlative models). Some felt 
that  t hc  dichotomy bectvecn rhc kinds ofmodels was useful primarily in a hcurisric 
sense, whilc others supported the  research commitment to  esplanacory modeling 
but  fclr rhc  important  role of t h e  corrclarive approach in the  dcvt.lopmcnt of 
predictive modrls should bc acknowledgcd. Some comments noted that  in the  
normal scicntific process such contrasted approaches arc actually ~ o r n p l e m r n t a r ~ ,  
but chat the empirical search for pattcrns may well precede the  quest for csplanation. 

A majority of rhc rovicwcrs felt that  rhe report  was too negarivc about the  
potential ofmodcling in C K M  contexts. Most of the  federal reviewers felt char the  
early chapters were unnecessarily "acadt.micl' or  pedantic, and rhac more practical 
advice was ncodcd (Chapter  I I was not available with thc  rcvicw draft). Some of the  
polemic regarding distributional archaeology (Chapter 4), for instanct., and the  
extended debate  regarding inductive and deductive issues were felt ro be  of little 
valuo by this group of rc\wwers. 

Archacologists with managemenc tesponsibilitics fcarcd char the  suggested 
potential of predictive modc l~ng  was too limited. T h e y  were looking for practical 
merhods to provide bet tcr  information about cultural rcsourccs In order t o  make 
realistic rccommcndations to management. Archaeologists without management 
responsibilities appeared to fear chat the  tcchnology, if alIowed to go unchecked, 
would bc  applied by rhe government in an irresponsible manner. In this vein, 
federal reviewers felt that t hc  orientation of the  volume appcarcd to be toward 
archaeologists without management responsibilities. 

All in all, thc peer review comments, which rhcmsclvcs comprise hundreds of 
pages, proved to be  rstrcmcly h c l p h l  in guiding the  developmcnr of rhe final 
volume in a direction most useful to  the  diversity of thc  anticipatcd audicncc. 

THE ISSUES RAlSED 

A number  of key issues h a w  been raised in this volume regarding t h e  
relationship between an emergcnt technology based largely in rheory and practical 
every day management needs. Herc  we will summarize four of the  issucs that we fccl 
arc cstrcmcly important to thc  topic ofprcdictivc modeling for both archaeological 
research and cultural rcsourcc managcmcnt. 

T h e  first issue is t ha t  of rhe  complexity of rhc process; modeling past human 
acrivitics is nor a simple task. Humans,  t b r t u n a t ~ l ~ ,  d o  not behave mechanistically, 
and  rhus gcncralizations about thcir behavior arc difficult t o  dcrivc and can ncver 
be  completely accurate. T h e  relationships among humans, theiractivities, and past 
landscapcs are very complcs ro begin with, and this complexity is increased by 
subsequenr changes in those landscapes, by a depositional record rhar is both 
incomplctc and comples, and by thc  diflicultv o f t h c  quanti tat ive methods that one  
must cmploy to model these relationships-methods rhar are frequently bcyond 
the  expertise ofthose who wish ro use rhem. Modeling is a rool, but  it is by no means 
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a simple too1 and ir  is nor a panacea. As a complcx rool, its uses arc li~nircd, and i r  
requires expertise to implement corrcccly. As wirh any tool, modeling can be 
abused, and thc value of the results diminishes accordingly. Used properly, how- 
ever, modeling can be of inestimable value to both thc manager :md rhc rcscrtrch 
archaeologist. This volume, we fccl, presents thc complesity of the modeling 
process well, and Chapter 11  details its appropriate uses in the management 
context. 

T h e  second issue raised is that of thc role of predictive modeling in thc 
compliance proccss, that is, in cilbrts to comply with Scctions 106 and 110 of the 
National Historic Prescrvation Acr. This, of course, was one of the  key concerns 
thar stimulared the project in the first place. Managers a w e  almosr desperately 
secking some way to address compliance problcms in a cost-cfl>ctivc manner chat 
would also prorcct the rcsources. Archacologisrs may have felt that cosr- 
effectiveness was raking prcccdcncc over resource protection, but many managcrs 
saw the situation diffcrenrly. Shorrly after the rcIeasc of the BLX4 instructional 
memorandum noted a t  rhe beginning of this chaptrr, a projecr was proposed by 
BLM sraff that was ro use 

sra~istical discriminant analysis rcchniqucs to dcvclop3 mudul rc) prcdicr thc probability 
of cultural rcsourcc occurrence from crlvironrncnral par;lrnr.rcrs and crduatc rhc utility 
oithis; mc~hodology aa a tool in cultural rrsourcc ascssrncnr on porcnrial oil shalc arid 
cod l e ~ s c  areas.. . . Onrc rhc rnodcl i \  devclopcd and rcsrcd ir can bc turncd over to [he 
Districr or Area Onice Archeologisr uhtrr i r  can be used opcrarionally to predict rhc 
probability o is i tc  occurrcncc on rights-of-way applicarions, .rccrr.ss corridor5 and drill 
p;td clcarmcca. Ifin this 5tagr high probabilit~cs arc prcscnr! rhc corridorcouldbc movvd 
to a lower probability zone, In orhcr cases, rhc probability could bc uicd ro casc thc 
rcquirctner~t to haw a site visit prior ro clclnncc IChrra~r I C y d t ] .  

Clearly, managers were having problems with thc cornpliancc process, and 
cxpectacions that predictive modeling would soIvc or lessen those problems were 
high. 

In Chapter I I ,  Kincaid poinrs our thar Section 106 cornpliancc decisions are 
madc on a case-by-casc basis through the consultation process, and that there arc 
no  set criteria for determining appropriate invcntory and evaluation strarcgics 
apart from such consultation. In brief, thew can bc no"cookbook" approach to rhe 
role of modeling in thar proccss. We can, howcvcr, summarize the vsluc ofmodcling 
in the inventory proccss in general, whcrher ir be for research or management 
purposes. 

Predictive rnodeling of archaeological sirc locations can nevcr bc a complcrc 
substitucc for actual field invcntory (intensive survey). As noted above, not only is 
human behavior roo complcx ro permit this kind of modeling accuracy, b i ~ t  too 
many varinbIes have inrcrvencd betwr.cn the time that rhc behavior rook place and 
thc present ro allow us to achieve through modeling the accuracy available wirh 
frcld inventory. For this reason, it  is unlikely that prcdictivc modcling could, in the 
forcsceable fucurc, be suflicicnrly accuratc to satisfy the idcntificacion rcquiremcnts 



in 36CFR800.4 (the implementing regulations for Section 106 of the National 
Historic Preservation Act; see also Secretary of the Interior's Standards and Guide- 
lines, Federal Register 48(190):44721-44723). By the same token, predictive modcl- 
ing is unlikely to satisfy thc necds ofa research archeologist whose research design 
requires accuracy at a similar level. 

Modeling can, however, provide research archaeologists with estimates of 
probable sitc densities in unsurveycd areas, and this same capability is of great 
potential benefit to the manager. As noted in Chapter 11,  the role ofmodeling in the 
planning process is perhaps its most valuable contribution. In the short term, for 
cxamplc., the ability of models to  project areas of low sitc density or to indicate 
probable locations of sites not suitcd for data rceovery can be extremely helpful to  
the manager, not as a substitute for inventon but as an aid in designing cost- 
effective inventory. 

Modeling's greatest strengths, however, lie in ics contributions t o  thc long- 
term planning process. It is here that models developed with resourcc planning, 
interpretation, and evaluation in mind can be oftremendous value to the cstablish- 
ment of managcment priorities and to the integration of cultural resource manage- 
mcnt with other resource management responsibilities. Further, such modcl-bascd - 
management can facilitate research, quite apart from the preservation and protec- 
cive responsibilities of the manager. Since a hndamental purpose of cultural 
resource prcservation is to maintain the scicntific potential of the resource, chat is, 
to preserve its information concent, modcling as a component of long-range plan- 
ning is of particular value to managers and researchers alike. 

T h e  rhird major issue raised in thc volume has to do with the thcorecical basis 
of prcdiccivc modcling. Certainly the volume provides a cricical summary and 
evaluation of current pcrceptions about the relationship between modeling and 
theory. Aspects of theory dealt with include cxamination of the systemic, archaeo- 
logical, and analycic contexts, as well as sice formation proccsscs. Normative vs 
proccssual theoretical approaches as they relate to modeling elTorts are also 
detailed. 

T h e  most fundamental theoretical issue to emerge, however, is that of the 
dichotomy between correlative and cxplanatoq modcls. This dichotomy ariscs 
from the contrast between inductive m d  deductive logic, although the terms 
d~~ductir~r and rxplunutorj and the terms irrduclirt- and c o r r c l d ~ r  arc not synonymous. 
Technically, modcls chemsclvcs are either esplanatory or correlative; the ccrrns 
dcductivc and inductive refer to how the models are derived and to thc kinds of 
arguments involvcd in their implcmentarion. Correlativc models tend KO be induc- 
tivcly derived (bur not exclusively so), and explanatory models should contain 
arguments of both types. 

In Chapter 2 this cheoretical dichotomy is discussed with respect to thc various 
conccxts in which archaeological investigations arc carried out. 
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The challenge for inducrivc modcls is ro build the bridge to the systemic context by 
making t hc analy tic met hods (including discovery) ss "transparcnr"(11on-bias-makirig) 
3s pssiblc and hy controlling for rhc cf icrs  of deposiriolral and posrdcposiriond 
proccsrcs in the archacologicd conrext. 

Deductive models, on rhc othcr hand, begin with some theory predicting human 
behavior, in the systemic contcxr. The challerigc for deductive models is to build the 
bridgc to thcanaly tic conccxr, which is  where [heoutpurr ofthc systemcan bcobscrvcd. 
This bridge-building-u*hc'rhcr from rhc systrmic LO the analytic contcxr or vicc 
versa-is referred ro as cxplaliation. . . . Esplanarory models . . . are inherently neithcr 
inductive nor deductive. Instcad, they arc modcls r h ~ t  arrrmpr to build the bridgc 
between the dynamics ofr hr living system and i rs  obscrvcd our puts IKohlc-r, Chapter 21. 

As noted in Chapter 11, the contrast betwecn correlativc-inductivc and 
explanatory-deductive modeling bccomcs somewhat blurrcd in Geld modeling 
applications. In actual practice, correlative modcls arc generally casier to devclop 
and in spccific situations may bc morc accurate in their prcdictive potcntial. Thcsc 
models are criticizcd, howcver, for their lack of ability to cxplain the phenomena 
predicted. Archaeologists are concerned about the explanation of past human 
behavior, and there is general agreement rhat wc should not bc satisfied with only 
the demonstration of correlations, but that we must also provide explanations for 
those correlations. Even ifit is acknoulcdgcd that archaeologists consider csplana- 
tion to be the goal ofmodeling, however, a fundamental question still remains: how 
necessary is such explanation to the actual everyday management of cultural 
resources? This, in itself, is a key issue raiscd by this volume. 

As noted above, archaeologica1 resources are most often preserved for their 
information content. Thcre is no qucstion rhat the inherent information can best be 
extracted through the explanatory proccss, and correlative models, because they 
are derived inductively, cannot conrribute as much to the estraction of this 
information as models wirh a consciously explanatory orientation. Bur [his is nor thc 
central question in culrural resource managerncnt. In that context we must ask, 
what is the best rcchniquc to preserve the resource? What is thc most cos t - ek r ive  
means to achieve preservarion, and ro what extcnt is cxplanarion necessary for 
crectivc managcmenr? By "preservation" here, we refer to thc full complement of 
tasks involved in resource management, including discovery, recording, evaluation, 
conservation, and protection. Thcre arc no simple answers, bur we may offer some 
comments. 

Basically the issue is this: should rhe manager selccr a correlative model, 
which is easier todesign, takes less time ro develop, and is initially more accurare, or 
should he or she plan ro use an explanatory model, which is more complex and 
dificult ro develop and may not be as accurate a predictor? At firsr glance, the 
answer would sccm ro be simple: go wirh rhe correlativc model, and Ict archacolo- 
gisrs wirh research inrerests develop their own explanatory models at some rime in 
the future. In rhat way, rhe rcsourcc will have been prorccred in a cost-effecrive 
manner. Afrer all, managrmenr is under no legal obligarion to provide esplanarion 
as parr of the preservation process. 
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Yet rhc decision is not [hat straightforward. Correlative models are nor 
immediately "transferable," that is, when developed for one geographic location, 
they do not necessarily work in another; there is no logical rcason they should. The  
question then is whether ir is more cost-cKectivc to redevelop (or at least refine and 
reaffirm) the correlarive model for use in a new arca or to dcvelop the explanatory 
modcl in the first place, since rhc latccr would bc applicable in a variety ofareas and 
would address other management needs (inrerprctation, cvaluacion) at the same 
rimc. Ultimarely, this question can only be resolved on a case-by-case basis where 
all the variables ro be considered can be cvaluared properly. But certainly prior to 
invcsring time and limds in the development of an esplnatory model, chc managcr 
must determine whether it  actually would be as easily transferable as claimcd and 
whcrher it will be accurate enough to satisfy resource preservation and protection 
requirements. iiie feel that rcscarch and management srchacologisrs alikc would 
agrcc that, if'onc has the time and funding, cxplanatoy models will be morc 
generally productive in the long term, and thus ulrimatcly more cost-effective. But 
such decisions must be made for each specific instance by managers, employing the 
best information possible a t  the time. 

One further aspect of the dichotomy becwecn thc two types of models is the 
supposition that csplanatory models may scrvc lnanagcmenr bcttcr in the process 
ofsire evaluation. There is little qurstion that the determination of the signilicancc 
of a site, or class of sites, may be enhanced by the dcduccive process inrcgral to 
explanatory mode1 dcvelopmc-nt. Yet a t  times significance may havc to be dccer- 
mined on the basis of the resource's poccntia1, rather than thc dcmonstratcd 
contribution of information. This is true in archaeology, where siccs frcqi~cntly 
cannot be excavated, and thus the information content cannot be fdly demon- 
strated through deductive testing. In such cases, the potential significance is 
asscsscd from surface indications, and at rhis level olcvaluation, correlative modcls 
may be as effective as their explanatory counterparts in indicating a rcsource's 
potential conrriburion to scientific knowledge. Again, the ~ ~ s r - ~ f T c ~ t i ~ c n ~ s s  of 
redeveloping correlative modcls for use in other arcas may be the key dccision that 
managers havc to makc. 

A fourth issuc raised in this volumc was that of the technology and espcrcise 
necessary to implemcnc modeling cffectivcly. Sophisticated hardwarc and soltararc 
capabilities are rcquisitc, as well as well-trained and informed individuals a t  all 
managerial and support levels. 

For cxamplc, it  has bccome clear that succcssful application ofccrtain models 
may require the i ~ s e  of a geographic information system (GIs). The  quantity as well 
as the quality of analyses necessary require automated spatial analysis of data. 
Rcmore sensing tcchniqucs provide a source ofdaca for CIS analysis. T h e  availabil- 
ity of multispectral, high-resolution digital imagery opens up csciting possibiliries 
for pattern recognilion techniques presented in this volume. T h e  dran~atic lrap to 
10 m rcsolution by rhe SPOT satellite is only rhc beginning; h r  morc detailed 
resolution will be available in rhe fururc. Thc  scale of measurcmrnt of thc instru- 
ment has been onc limiting factor, along with limited processing capabilities for 
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gigabytes of dara. Thesc technologies are improving, and the speed of rhis 
improvement provides an insight to  the level ofrelinemenr we may expect from the 
modeling proccss in the future. T h c  basic statistical, modeling, and pattern recog- 
nition theories, met hods, and techniques presented herein provide the foundations 
upon which to build powerful new instruments of measurement and analysis. A t  
present too few people in managemenr and support positions havc the requisite 
skills in geographic informarion sysrems (Burrough 1986), statistics, remote sensing, 
and modeling to exploit the technology available currently, let alone develop future 
applications. 

Another problcm is rharofobraining access to the mosr capable sysrems and to 
adequate data bases. Access to such systems with diverse data rhemes and regular 
data maintenance is most rcadily available to pcrsons who work for, or have some 
formal connection with, large land-managing agencies. Such systems require an 
organizational support structure dificult to justify for single-purpose analysis. 
Large land-managing agencies are supporting such sysrems on the basis of their 
utility to overall land management analysis. Includcd in such support is providing 
qualiry software and hardware, software development, managemcnt, and various 
levels of staff skills, training, and technical assistance. 

These are somc, but by no means all, ofthe issues raised in this volume that we 
feel are extrcmcly imporranr to both research and rcsource management as rhey 
rclate to predictive modcling. T h e  issues that havc nor been summarized here may 
have equal signilicance in particular  nodel ling applicarions. One of rhc purposes of 
this volumc has been to bring a wide range of issucs in rhe domain of predicrive 
modeling ro the fore. 

CONCLUSIONS 

I'redictivc modeling can clearly be a worthwhile component of culrural 
rcsource management, if for no other reason than that i t  injects rigor into the 
managemcnt proccss and serves ro integrate management with archaeological 
research. T h c  process ofmodeling and rhe preparation and development of models 
arc extremeIy valuablc assets ro management, regardless of the ulrimatr "succcss" 
of the models. 

Aftcr a thorough rcvicw of predicrivc modeling, rhis volumc rcachcs somc 
conclusions char conrradict past atritudes and expecrations held by land-managing 
agencies. T h c  Bureau of Land Management's proposal noted previousIy (Garratr 
1982), for example, dealr with only a part ofan overall proccss. Wc havc learned that 
thc application of "starisrical discriminanr andvsis techniques" to environrncnt a1 . . 

variables is not suflicicnt to develop a usable model. Ccrrainly, rhc proposal made 
rhc. process sound too easy and neglected much detail. We havc lcarned rhat we - 
musr be sensitive to the facts and rheorics ofsire formation processes, and rhat it is 
necessary ro incorporare theory from anthropology, archaeology, and orher social 
scienrific disciplines because sitc distribution is a reflecrion of human behavior 
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interacting with physical phenomena in an ecosystem. Again, calling atrcnrion co 
the  con~plcsiry ol' prcdiccivc models and che modeling process is an irnportanr 
concribution of rhis volume. 

Fur ther ,  nrc h a w  learncd thar modeling is a cyclical process of ongoing 
refinement, rachcr than a one-rime event,  and thus modcls cannor be developed by 
outsiders and then simply "turned ovcr" ro agcncy field of ice  archaeologists for 
"applicarion." For many reasons the  field archaeologists and managers need co be 
full participanrs in the  modeling process. W e  can conclude that  predictive model- 
ing, as defined and dcvelopcd herein, is potcncially t h e  most cost-effective way ro 
combinc sound management practices wirh valuable research programs. Both are 
necessary ingredients lor cultural resource presenrarion and intcrprctarion in this 
country. 

It may well be char the  most cost-eflective and appropriate manncr for 
managers ro implement rhe techniques discussed in this volume would be to focus 
on  [he development of correlativc models iniciaIly and chcn work coward refining 
rhcir accuracy. Th i s  will dcmonscratc rhc potential ofmodcling and its effcctivencss 
as a tool for cultural resource managemcnc. But rhc corrclarive-inducrive approach 
should nevcr be considered an end in irself. Instead these initial models should b c  
specifically designed as inrcgral cornponcnrs of the  deductive approach to  model 
devcloprnent and as parts of the long-rangc planning process nccessary ro achieve 
rhc full potential ofpredictive modeling in resource managcmcnr through ulcimare 
reliance on crsplanacory modcls. 
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Appendix 

A SURVEY OF PREDICTIVE LOCATIONAL MODELS: 
EXAMPLES FROM THE LATE 1970s AND EARLY 1980s 

Alston V. Thorns 

T h e  purposes of this appendix arc to expose the readcr to a range of projects 
that havc devcloped prcdictivc modcls and to provide succinct comparative sum- 
maries of chcse projeccs. A variety of geographic areas, archaeological manifcsta- 
[ions, and modeling approaches arc represcnrcd. Twenty-two projects were judg- 
rncncally sclccrcd from morc than 100 rcports. The  Ionger list was nor eshaustivc; it 
reflected the inrercsts of [he aurhors of this volume and was generated by combin- 
ing lists of refcrcnces provided by the authors and by thc project advisory ceam. 

T h e  projects surnmarizcd hcrc represent a range oT approaches and arc not 

limited to  the bcst or most succcssfi~l esamples; indeed, btsr and marl r~rccmj i i l  arc 
terms char would bc difficult to define in a manner acceptable to all readers. Pro!ccts 
employing scare-of-the-arc approaelws and some earlier examples of prcdictive 
models are included, as arc exampIcs of the less successful approaches. Information 
about the characccristics of whac may bc unsuccessi~~l prcdictivc models can be 
useful in providing rhc readcr with a broad data base against which the usefulness of 
prcdicrive models under a wide range of conditions may be cvaluatcd. 

Among the 22 projects summarized here are studies from many portions ofrhc 
Unircd States (Figure A.I), from projects in Dclawarc (Cusrer ct al. 1984) and 
Georgia (Kohlcr ur al. 1980) to thosc in Washingron (Micrcndorf c t  al. 1981) and 
Alaska (Ebert and Brown 1981). T h e  emphasis, howevcr, is clearly on the ulcstcrn 
states (e.g., Bradley ct al. 1984). Included in thesample arc modcls that prcdicc the 
distriburion ofsites that are visible on the surface (Larraldc and Chandler 1981), of 
sites that arc decply buried in flood basins (Muto and Gunn 1980), and ofinundatcd 
sitw on the contincncal shcIf(Barbcr and Kobrrts 1979). Predictions ofsite distribu- 
tions are made for relarivcly undisturbed areas of the Greac Basin (I'ipps 1984) and 
for highly developed areas along chc eastcrn seaboard (Hasenstab 1983). There arc 
models for predicting the density of sitcs in areas occupied by mobile, moncanc 
hunters and gatherers (Jcrmann and Aaberg I976), and rnodcls conccrncd with more 
sedenrary Anasazi farmers (Woodward-Clyde Consultants 1978). Much of the time 
span ofhuman occupation in North America is rcprescnced by these modcls. Them 
are predicrions for chc locations ofsices occupied by rhe earliesr inhabitanrs of the 
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Figure A.1. Map o i  North Amcrica showing approxirnatc locations of prcdicrivc modcling 
pro.iccrs discurscd in rhc Apprndix. 

Ozark highlands of Arkansas (Sabo et al. 1982) and predictions for thc locations of 
rccent Euroamcrican ranchcs in the Salmon Rivcr Mountains of Idaho (Rossillon 
198 I). 

T h c  project summaries encompass dcducr~vely derived models (Thomas 1973) 
and inductively dcrived models (DeBloois 1975), including a deductive economic- 
decision-making modcl rhat predicts proportional use of the landscape (Hacken- 
berger 1984) and an inductivc landform-analysis model designed to prcdict rhe 
gcneral location of significant sitcs (Wildesen 1984). Some of the models can be 
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tested with future survey data (Kcmrcr 1982), and other projects were developed as 
tests of esisting predictive models (Thomas et al. 1983). Finally, the selected samplc 
includes predictivc models made by simplc extrapolation from known to cstimated 
site densities in large cnvironmcntal zones (Plog 1983a) and vcry complex models 
dcvclopcd using multivariatc statistics and geographic information systems to 
generate probability cstimatcs for sitc presencc/absencc in areas covering less than 
I ha (Kvamnlc 1983). 

Once the selection ofproject reports to be summarized had becn madc, it was 
necessary to dcvclop a list ofattributes or variablcs that could be monirorcd for each 
report. The  attributcs monitorcd are (a) project location and size, (b) inventory 
method, (c) analytical techniqucs, (d) thc narurc of thc model used or devclopcd, 
and(z) the succcss of modeling cfforts. The  evaluation ofcach project also includcs a 
discussion of other relevant topics introduced elscwhcre in this volumc. Toward 
these ends, thc reports were csamined in somc detail. What might bc called a 
"mcnral rcgrcssion analysis" was pcrformcd to identify those variables that could 
bc monitorcd with rcasonablc consistency and rclatcd co the ropics discussed (and 
to the terminology employed) in the various chapters oft  his volumc. On the wholc, 
chc terminology uscd hcrc corresponds most closely with chac utilizcd by Kohler in 
Chapter 2. 

T h c  rcsulrs of this survey of projccr reports arc prcscnted in two parts. The  
firsc part incIudcs dctailcd information presented in a scrics of cables dcsigncd to 
faciIitarc comparisons of the various approaches. Summaries of each modeling 
projccc arc prescntcd in thc sccond part, along with a fcw bricfcommcnts about thc 
approachcs used. Comments focus on thc rclacionship bctwccn modcling objectives 
and results, as well as on innovative aspccts of the mcrhods employcd. The  overall 
discussion ends with somc gcncral observations about the narurc of prediccivc 
modeling as represented primarily by rhe selected sample ofprojcct rcporcs. Some 
of thc cornmcnrs arc particularistic bccausc [hey refer to a given aspect oTa spccific 
projccc. Other comrncncs about a givcn project arc made because that project is 
characreriscic of a general approach co predictivc modeling. 

TABULATED SURVEY RESULTS 

Descriptive and cvaluativc information about rhc reviewed projects is sum- 
marized in tabular form. Tablc A. I provides information on general characteristics 
of each model-location, type of model (inductive or deductive), objecrivcs, 
claimed accuracy (high, low, or percentage estimates), modc of prescntarion 
(tables, maps, cham),  and vcrificacion approach (how thc model was tested). This 
table also includes a general asscssnirnr or evaluation ofcach model. T h e  evaluation 
criteria-jalr!fiabtl~~j (can the modcl be disproved?), conrirrrnr). (is it mathumaticalIy 
and logically sound?), rimplicip (is it parsimonious?), and grn~ralizabili~y (can it be 
applied ro other study areas and co human behavior in gcncral?)-are essentially 
the criteria dcfined by Koldcr in Chapccr 2. An assessmcnc is also madc as co how 



thoroughly the environmental and cultural data wcrc evaluated before they were 
used in the modeI. This asscssmcnr includes such questions as whethcr therc was an 
efFort to rcducc redundancy, whethcr the reliability of map-bascd information was 
discussed, or whcther othcr statistical tcchniques wcrc considcrcd. Results of this 
systematically judgmcntai assessmcnt arc presented as scores on a scale from 1 
(lowcst) to  5 (highcst). 

Tablc A.2 characterizes thc modcls in tcrms of thcir gcncral data bases and 
prcdictions. It prcscnts information regarding the kind ofsampling procedure uscd, 
the number of sites or cclls included, and rhc size of thc cells, transects, or grid units 
used to  subdividc the sample. Lcvels of rneasurcment (nominal, ordinal, interval, or 
ratio) used t o  dcfine or describe environmcntal variabIcs arc also Iistcd, as is thc 
nature of the predicted rcsources (sirc type, site density, or sitc presence). The  
manncr in which the survey area was classified into landfor~ns or environmcntal 
types and into sire density zones or sitc prescnt/absent units is also summarized. 
T h e  spatial resolution (c.g., block areas, landforms, grid units of various sizes) ofthe 
predictions and the nature of the prcdictions (c.g., site density, sitc prescncc, sitc 
significance, or site typc) are characterized under the heading "Rcsolurion of 
Predictions." An evaluation of thc thoroughness of the procedural discussions in  the 
report is prcsentcd as a score on a scale from I (lowest) to 5 (highest). 

Information related to the environmental variables used in rhc models is  
prcsentcd in Tablc A.3. T h e  lisrcd physiographic divisions within which the 
projccts are located follows Hunt's (1W4) classification. Major types afcontcmpo- 
rary land usc are also listed, as is thc size ofthe project or study area(i.c., the extent 
of the spatial population for which predictions are made). Environmental variables 
uscd to classify or to subdividc the project area (e.g., landform type, soil typc, 
distance to water, elcvation, and slope) are listcd, as is the source ofthat information 
(c-g., various kinds of maps, field observation, and lirerar~lrc search). The  modcling 
projects arc rated from 1 to 5 assessing(a) the degrec to which changing palcocnvi- 
ronmenral scrtings arc considered and(b) the degrcc to which the erect of various 
depositional environments on the discovery of cultural resources and/or on our 
undcrstanding of past human bchavior is taken into account. T h e  same scalc of 
ranking is used to assess the level of discussion about thc ecosystcms within which 
humans operated. In other words, the scale provides a comparativc measure of how 
well the investigators discuss the spatial and temporal distribution offood rcsourci.s 
that may have been used by past groups of people. 

Cultural variables used in the modeling projccts (e.g., site tvpe, site size, 
arrifact/feature types, or simply site location or prcscnce/abscncc) are summarized 
in Table 14.4. T h c  culture area designation follows Driver's (1961) scheme. Tcrmi- 
nology used for known and predicted site types usually is nken  from the rckrenccd 
report. T h e  sourccs ofinformation about these cultural variables arc also tabulated. 
The  models are assessed on a scale from I to 5 according to the levcl ofconsidcration - 
given to undcrstanding rhc human land-use systems represcnted by thc dcbris on 
or in the ground. 
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Table A.5 characterizes the naturc and results of field investigations con- 
ducted ro develop or test the models. In some cases fieldwork was not part of the 
modeling projuct; rather, cxisring survey data were used ro build and/or tcst the 
models. For those projects for which ncw data urerc collected, information is 
providcd regarding how the field data werc used, the sitc ofchc survey area, and the 
general methods uscd to discover and/or rccord the resources. Somc of the results of 
chc fieldwork-number, rypes, and densities of sites discovered in the survcy 
arca-arc tabulated. The  general nature of the fieldwork is assessed by evaluating 
rhc rcporrs (again on a scale from 1 to 5) according to rhc thoroughness of the 
discussion of constraints and limirations imposed by field methods. For csan~ple, is 
thew a discussion of thc kinds ofsites that potentially remained underccted whcn 
subsurface deposirs were not exposed(e.g., by clearing ofdulfor leaves, digging of 
resr pirs, or cleaning of cxisring curbanks)? Did silrvcy srraregics result in thc 
dercction of thc full range ofknown or theoretically cxpcctcd site rypes? Whar wcrc 
rhc cffccts of escluding arcas from thc survcy or of arbitrarily distinguishing 
between sitcs and isolatcd finds on the basis of artifact density? 

Projccr reports arc listed in chronological ordcr in the tables and in the 
hllowing summaries in ordcr to afford thc rcadcr an opportunity to asscss develop- 
mental trends. They span the rimc pcriod from lW3 to 1984; 15 of rhe 22 wcrc 
publishcd afrcr 1980. Rcports char wcrc publishcd or prinrcd in rhc same ycar arc 
lisrcd in alphabetical ordcr. 

SYNOPSIS OF SURVEY RESULTS 

T h e  summarics presented in this section providc a briefsynopsis ofmodeling 
componcnts of the 22 projcct reports. This information is intendcd to f i l l  in somc of 
the gaps in rhe tabular summarics and to providc cohcrcnt dcscriptivc sratements 
for uach model. Additional information is also provided about thc insriti~tional 
affiliarion of thc investigators and rhc funding agcncy for each modeling project. 
Arrrntion is drawn ro any special qualirics or porcntially undcsirablc aspects of the 
models. T h c  concluding paragraph in each synopsis is essentially a narrative 
assessmenr of how well rhc modcling pro+ achieved its statcd or implied goals. 

Reese River Ecological Project "An Empirical Tcst for Steward's Model ofGrcar 
Basin Settlement Patterns." David Hursr Thomas. American Antiquify 
38: 155- 176. 1973 

T h e  Kecse R i \ w  F,cological Project was conducted by rhc American Museum 
ofSatura1 Hisror-y and I'undcd, in part, by rhc NationaI Science Foundarion and the 
University of California (Thomas 1973). I t  is one of thc few research projects, as 
opposed to cultural resource management projects, sclccted for summarization. 
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TABLE A.3. (Continued) 

Summan. of environment and cnvironmcnral variables uscd in sclrrctc:d prcdictivc: modcls 



SURVEY OF PREDICTIVE LOCATIONAL MODELS 



TABLE A.4. 

Summary of  cultural idcnrificarion and specificity of  variables used in srlrctrd prcdiccivc modcls 
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TABLE A S .  (Continued) 

Summary of general characteristics of field invi&gacions conducted in conjunction with selecced prcdictivr model projects. 
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Basin and range topography, arid sagebrush flats and piiion-juniper woodlands 
are characteristic of the n,73O ha project study area in the upper Reese River Valley 
of central Nevada. Steward's (1938) ethnographic model for the Reese River 
Shoshone subsistence patterns was tested using archaeological data. Ethnograph- 
ically derived seasonality, resource use, activity, assemblage, and settlement infor- 
mation was quantified, and the resulting data were used in a computer-based 
simulation model. Initially the model was used to predict the nature of food 
procurement and maintenance activities in diflerent environmental zones. Ulti- 
mately, the model also predicted artifact and feature distributions and densities in 
four "lifezones." 

T h e  simulation-generated predictions were tested using new survey data. T h e  
project area was st ratified on the basis of vegetation communit ies or microenviron- 
mental zones that were exploited differentially by the Shoshone. A 500 by 500 m grid 
was superimposed on the study area, and a 10 percent sample was selected from tach 
stratum. T h e  resulting 140 grid units (25 ha each) were surveyed, and the locations 
ofindividual artifacts and features were plotted on maps; these artifacts and features 
(rather than clusters defined as "sites") served as the unit of information. Artifact 
and feature distributions and densities derived from the survey data (see Thomas 
1975) were compared with distributions and densities predicted by the simulation 
model. Finally, statistical significance tests (e.g., chi-square and Mann-Whitney U) 
were used to examine the relationship berween expected and observed values. 
Sreward's model was supported by rhe survey data in that 75 percent of the 
predicted frequencies were verified by rhe archaeological remains. 

Given the stared objectives, this project was a successful predictive modeling 
effort, and the results conrribured to existing knowledge because the nature and 
disrriburions ofcultural resources were defined and partially explained. The  ptoject 
also employed an innovative survey strategy-the nonsire approach-wherein thc. 
distributions of artifacrs and fearures across the landscape rarher rhan concenrra- 
rions of materials (sires) are monirored. That  approach circumvents some of the 
adverse effects that can result from using observed densities of artifacts to disrin- 
guish arbitrarily berween isolated finds and sites in an attempt to understand past 
human behavior. T h e  model is subject ro criticism, however, for its hea\y reliance 
on the ethnographic record. That  approach can only be jusrified insofar as it can bc. 
demonstrated that relevant aspects of the ethnographically documenred land-usc 
sysrems arc consistenr with human behavior in the area during thc lasr 4500 years. 

Elk Ridge Project The Elk Ridgt A rchatological Projtcr: A Ttr f  of Rundon Sumpling in 
Archoeulugical Suwc)'ing. Evan I .  DeBloois. Culrural Resources Report NO. 2. 
USDA Forcsr Scrvice, Intermountain Region. 1975 

T h e  Elk Ridge Projccr was sponsored, in part, by rhe Forest Service's Inrer- 
mountain Regional Ofice as a feasibility study for determining rhe validity and 
reliability of random sampling designs in archaeological survey. It was carried out 
inirially by Forest Service personnel and subsequently by individuals representing 
Brigham Young University. Irs objective was to determine whether a predictive 
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sampling strategy could be designcd and implemcntcd as an interim step in the 
coca1 invcncory of a projcct area. The  author was inceresccd in invcstigacing "the 
reliability of sampling in predicting atrributcs of the largcr population," and 
speciFically in addressing the qucscion of "how many sices can be espected in 
such-and-such an area?" (DcBloois 19754, 126). This projcct clearly has 
managcmcnt-oriented objccrivcs, but ic also had research objccrivcs as a study of 
the utility of sampling in cultural rcsourcc managrmenr. An carly version of thc 
srudy was a disscrtarion project at the University of Washingcon. The  infor~nacion 
surnmarizcd here is from DcBloois (1975). 

T h c  study focuscd on a 133,603 ha area in southcasccrn Utah comprising 
pondcrosa pine, pinon-juniper, oak-scrviccberry, and cottonu~ood vegetation 
zoncs. Somc 640 siccs were rccordcd during chc sunrey of a 4495 ha sample of the 
project area. Almost all of the sitcs wcrc cither habitation or special-use sites . . 

assigned to the Baskctmakcr/Pucblo scquencc. Environmental (c.g., vcgctation, 
soil, and Iandform types) and culturaI ( tag. ,  site size, rypc, and cultural affiliation) 
data for thc study area wcrc coded using a Topcart digitizer. Various random 
samples of diffcrenr proportions and quadrat sizcs were drawn from rhc arca 
survcycd and uscd to calcularc the total nurnbcr ofsites. Resulting cstimaccs were 
compared with the actual data base and asscssed using the chi-square rest. Asscss- 
mcnts were madc in an attempt to mcasurc chc accuracy of different sampling 
techniques and sizcs. Simplc randoni sampling was found to bc a rcliablc predictor 
of total population but not necessarily of thc disrribution ofccrrain sicc characteris- 
rics. Whcn survcy of an "unknown arca" was simularcd and a random sampling 
scheme was applied, units bctwecn600 and 800 rn sq (ca. 36-64 quadrats) were found 
to be most effective. Because of the "dangers of impropcr stratification of an 
unknown population" i r  was concluded that simple random sampling might be a 
"bettcr choicc" for initial surveys (DeBloois 1975: 126). 

T h e  Elk Ridgc Project was one ofthc earliest attcmpts to apply the conccpcs of 
sampling and predictive locational modeling to federally mandated cultural 
resource nlanagement. Given chat chis project servcd as a prototype, the relatively 
simple (largely univariate) statistical approaches used cannot be expected ro com- 
pare favorably to more rccenr modeling efforts, with their rigorous usc ofconlples 
multivariate statistics. As is the case with many predictive models generated using 
data bases where known sitcs represent only rhe last few thousand years of 
prehistory, one is left wondering about thc locations of sites representing the 
preceding 10,000 years of prehiscon in the Elk Ridgc area. 

Lake Koocanusa Project Art-heru/ogical Rrcvnnaisro~~cr in the Libbj  Rerrraoir-Lakr 
Kvacanusa A r c a ,  Norrhvrsrrrn Monrurru. Jerry V. Jermann and Stephen Aaberg. 
Department of Sociology, Montana Statc University. 1976 

T h e  Seatrlc Discrict Corps ofEnginecrs sponsored the Lake Koocanusa rccon- 
naissance project, which was carried out by personnel rcprcsenting Montana Stare 
University. It was funded bccause Corps personnel discovered a nurnbcr of prc- 
viously unrecorded sices in the denuded drawdown zone of Lake Koocanusa in 
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northwestern Montana. The  primary objective of thc projcct was to obrain esti- 
mates for thc total number, nature, and distribution ofsitcs that might bc prcsent 
in the reservoir draudown zone Ucrmann and Aabcrg 1976). 

For sampling purposcs thc 4806 ha, 80 km long study arra in the Kootenai River 
Valley was subdivided on the basis oftopography. A series ofsurvcy tracts 800 m in 
width, and of various lengths, wcre sclc.cced randomly from each topographic 
stratum. T h c  tracts represented between 3.6 and 8.2 percrnt o f the  cight subdivi- 
sions and totaled about 339 ha or approsimatcly 6 percent of the project area. 
Twenty-one prchistoric sites, identifled as spanning thc early Middle Prehistoric 
(LC., Archaic) to che Late Prehistoric periods, n7erc documented. Euroamcrican 
sircs werc also recorded. Site denary f~gurcs were calculated for rhr survcyed 
portions of the various topographic sribdivuions, and thesc figurcs were multiplied 
by the total area in each stratum to estimate the total number ofsites in the project 
area. I t  was estimated that as many as 400 sitcs might be present in the drawdown 
zone. 

This projcct is an early example ofwhat might bc termed the "direct cxtrapo- 
larion of site density" approach to prcdictive modeling, or what Kohler and Parker 
(1986) callprvJrc~ivn. Although very simple in its approach, this application can be 
considcrcd successful bccausc with this projection of high site densities thc Corps 
was able to  justify funding intcnsivc survcys. In an arca where the vast majority of 
known sites represent only the last few thousand years of occupation and arc 
siruatcd in vallcy bottoms, the detection and prediction ofolder sircs locaced well 
above the valley bottom is recognizably 3 contribution ofinformation important to 
our understanding of local prehistory. 

Wasson Field-Denver Unit C 0 2  Project Predicting Site Signilicancc: A Man- 
agement Application of High-Resolution Modeling. S. E. Jamcs, R. Knudson, 
A. Kane, and D. Bretcrnitz. Paper prcsrntcd at thc 48th Annual Meeting of thc 
Society for American ~rchacology. 1983; "Appendix E," in Ll'el/Fit~/dDt,r~~lopm~.nr 
Plrrn /or rbr Warran Firld-Dr?~arr Unir C o t  Projccc Enuiro;~mt-nral Impacr Rtpvrr. 
Woodward-Clyde Consulcan ts. 1978 

T h e  Wasson Ficld-Denvcr Unit C 0 2  predictive modeling project was funded 
by aprivace oil company as part of ics efrorr to  devclop an environmental impact 
statemcnt (EIS) for a carbon diosidc nd-Geld project in southwcstcrn Colorado. 
The  culturaI resources portion of the EIS was necessary In part because thc Burcau 
of Land Managcmcnt requircd a right-of-way pcrmit. Personnel represcnring 
Woodward-Clyde Consultants wcre responsible for preparing a planning study that 
would improve well-fieId layout by minimizing impacts to significant archacwlogical 
sircs. Information summarixd hcre is taken from two draft documcnrs (lames ct 31. 

1983; Woodward-Clydc Consultants 1978). 

Thc263,158 ha project area comprises plarcaus and canyons, agricultural land, 
rangcland, and forests. Environmental and cultural data u7erc cntercd, compiled, 
analyzed, and dispIayed using a geographic information systcm. Map-bascd infor- 
mation for land use and soil association, prehistoric farming arcas, topography, 
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roads, archaeological sites (including data on period ofoccupation, s i x ,  type, and 
condition), biological communities, and geologic materials was coded and digitized 
for 175,000 cells, each rcprescnting ca. 1.5 ha. Site significancc was identified as the 
dependent variable and defined in part on the basis ofage, type, size, and number of 
componcnts for hundreds of known Baskermaker, Puebloan Anasaxi, and posr- 
Anasaii sites. A fundamental aspect ofrhis definition ofsignificance was described as 
the "subjcctivc attitudes of professional archacologists" (Woodward-Clyde Con- 
sultants I978:E-4). T h e  investigators developed a sewn-point scale rhat they 
belicved conformed to "prevailing opinions of rhe professional archaeological com- 
munity" (James er al. 1983:17). Ultimately, three indcpcndcnt environmcnral 
variables-soil, drainage rank, and slope-were used in a step-wise mulriple rcgres- 
sion, wirh thc computed site significance valucs serving as the dcpcndenr variable. 
Sets ofsurvcyed cells wirhout sitcs were also included in the analysis. T h e  analysis 
yielded significance valucs for each ccll, and the scaled valucs wcrc then color coded 
and ptortcd on 1:24,000 scale maps. A roral of 140 randomIy selected cells were ficld 
inspected as a means ofverifying the modcl. The  modcl was supported to thc esrcnr 
thar rhe "standard error of predictcd-to-observed value was identical to the 
srandard crror of thc model" (Jamcs et al. 1983:23). 

This project serves as an example of a management-orienred mode1 designcd 
to minimize uncertainties and dclays in the permitting proccss. Iris innovative in its 
attempt to dcfine significance by relying on the experrise ofindividuals knowledge- 
able about rhc most abundant kinds of sitcs in the project arca, namely those 
considcrcd to h a w  bcen occupicd by Anasazi groups between AD 450 and 1250. 
Whar might be of concern, at least to archaeologists who specialize in hunter- 
garherer srudics, is that Archaic sires and Basketmakcr I1 sires wcrc assigned thc 
same codc fbr period of occupation. Furthermore, there is no orher provision for 
isolating site rypcs that may rcprcsent some of the h i r e d  "cvidcnce ofscasonal and 
sporadic presence of peoples from the Paleo-Indian and Archaic periods (10,000 
BC-AD 450)" (Woodward-Clydc Consultants 1978:E-8). 

Continental Shelf Project A t r h a m f o g  and P a f e o ~ r t o f o g .  Summary and Analysis of 
Cultural Resource Information on rht: ContincntaI Shelf from thc Bay ofFundy 
ro Cape Hattcras, Final Report, Vol. 11. Russell Barber and Michael E. Roberts. 
Instirute for Conservation Archaeology, I'cabody ibluseum, Harvard Univer- 
sity. 1979 

Personnel representing the Insriture for Conservation Archaeology at rhc 
Peabody Museum conducted the Continental Shelf f roject for the Bureau of Land 
Managcment. T h e  pro-iccr was dcsigncd primarily to provide thc BLM with 
information about known or cxpccred prehistoric sitcs and historically imporrant 
shipwrecks and ro generate predicrions abour where spccific types of sites will be 
found. Informarion prcscnted hcrc Ibcuscs on thc prehistoric sitcs portion of the 
study by Barber and Roberts (1979). 

Continental shelf, coasral, and nearby low-elevation terrcsrrial areas between 
Maine and North Carolina constitute chis projecr's 32,388,664 ha study area. 



Inductive sire-locational models were generated from the sirc records for dryland 
arcas similar to arcas on [he continenra1 shelf. Deducrive models wcrc gcncratcd for 
thc intensity of scttlcmcnt in a given zone by relying on knowledge and assump- 
tions about human foraging behavior and rclcvant palcocnvironmcntal conditions. 
General and specific predicrions derived from both kinds of modcls wcre combined 
to form a final model. This model was bascd on rhc results ot' a generalized 
assessment of goodncss of G t  between prcdictions. T h e  final model prescnred 
gencraiized prcdictions (i.e., high, medium, medium-low, very low likelihood) for 
site size, site density, and sire type for cach of sis 3000-ycar periods and four 
environmental zones. T h e  time periods correlate roughly with diKerent sca levcls 
and thc tesulting changes in the positions of the coastline. Thesc changes differen- 
tially affected the distribution and nature of the cscuarine, inland vallcy, upland, 
and coastal vnvironmental zoncs in each of the thrcc identified subareas-Maine, 
southcrn Ncw England, and Mid-Atlantic. T h e  model's cnd product is presented 
on a series of l:2SO,OOO scale maps that illustrate 122 archaeology zones, cach of which 
is characterized by rime period for predicted sitc types as well as generalized sire 
frequencies and sitc sizcs. 

The  authors' clain~ that the project represents an advance in the state of the art 
ofpredictive modeling for the narurc and distribution ofprehistoric sites is justifia- 
ble, although the spacial resolution of prediction is low. By combining existing 
site-file data for some 6600 sitcs with the theory of optimal foraging strategy and 
including information derived from environmental reconstruction, paleoclimarol- 
ogy, and other disciplines, the investigators wcre able to predict and partially 
cxplain the distriburion of cultural resources. They have provided planners with 
information on the predicted nature and disrribution ofsites in a vast area within 
subdivisions 2s small as SO km2. At thc same time, the approach is rcasonably 
compatible with contemporary theories, and it affords the opportunity co discover 
previously undocumented kinds ofcultural resources (for additional discussion, see 
Chapter 2). 

Fort Benning 4000-Acre Project An Archaeological S u r ~ t y  o f  S L ~ L Y ~ ~  Arm uffbc Fort 
B z n n ~ r ~ g h f i l i r a ~  Rrscrvri~ion, Alobrlmti ond Gzorgia. T. A. Kohlcr, T. P. DesJcans, C .  
Feiss, and D. E. Thompson. Remote Sensing Analysts. 1980 

Remore Sensing Analysts, a private firm based in Tucker, Georgia, conducted 
the Fort Ucnning project for the U.S. Army. The  scopc of work and contract were 
developed and adrninistcred by rhc Heritage, Conservation and Recreation Service, 
Inrcragency Archeological Services, Atlanta. That  agency was responsible for 
selecting the survey tract and specifying rhe devcIopment ofa  predictivy model co 
serve as an interim management tool. The  source of information for the site 
prcdicrivc modcl summarized here is Kohler et al. (1980). 

Fort Benning, locaced In the Fall Line Hills porcion ofeast-central Alabama and 
wcst-central Georgia, encompassvs coniferous and mixed forcsts, scrub oak and 
brush, and swamp vegctarion zoncs. A judgmentally sclccted 1619 ha arca was 
surveyed, and 3 1 sitcs wcrc identified. Ofthcse sites, 10 had historical nonaboriginal 



components and sis had historical aboriginal components; three had Mississippian 
componcnts; three had Late and Middlc Woodland components; eight had Early 
Woodland and late Archaic componcnts; and thrce had middle and carly Archaic 
components. Analysis of variance, goodness of fir, and Z-tests were used to identify 
soil type, slope, and distance ro water as variables that arcre corrrlared wirh site 
location. Several soil rypcs, slopcs of lcss t h a ~  10 percent, and arcas berwecn 75 and 
225 m lroni water were identified as favorable sitc locarions throughout the proiecr 
area. Thcse locarions werc p1orrc.d on 1:25,000 scale maps. The  locations of pre- 
dicted site-likelihood strata (masimum, inrcrmediate, and leasr Iikcly to contain 
sircs) were defined on the basis or the number olintersccting ravorablc srates and 
were pIotred on other maps. For example, areas with Cahaba sandy loam soil on 
slopcs of less than 10 percent and betwccn 75 and225 n~ hom water wcrc identified 
as parr of thc masimum likelihood stratum, whereas areas with similar soils bur on 
sreeper slopcs and lying more than 225 m from a creek werc defined as parr of the 
zone leasr likely to contain sites. T h e  model also includcd sitc-density estimates for 
rhc unsurveycd strara, and i r  includcd probability estimates lor encountering asite 
within any given randomly selcctrd area. 

The  project can be considered succclssful In rhdt a readily tcstablc modrl was 
gcncrated to predict thc probability olcncountcring a sire anywhere in thc project 
area. It is noteworthy that this project rcprescnts an carly and comparatiwly 
rigorous attcmpt to use starisrical approaches along with new field data generated as 
a rcsulr ofa systc-matic surfacc and subsurface survey. As in rnany of thc inductive or 
correlative models, most of rhc site-typc information, which can bc informarivc 
abour the potential ofa sitc to yield important information, is lost whcn the various 
kinds of prehistoric sites are merged to gencratc a siretsitelcss dichotomy lor 
prcdicriw purposes. Although rhc concept ofsire significance is nor directly dealt 
with in rhe modcl, rhcw is an implication that maximum sitc likelihood zoncs have 
the highesr probability ofcontaining significant cultural rcsourccs, especially largcr 
residcntial sites. Orhcr kinds of sites that may have porcntial ro yield important 
information arc likely to be cncountercd in rhe zones that are least likely to contain 
sitcs, and by implication rhcse sitcs arc nor as likely to be discovcrcd. For csamplc, 
somc types of vegetal procuren~enc sires mighr be cspectcd to occur on stony soils 
far from water. 

Tombigbee Early Man Project A Srudy q f  Lace Q u a r c r m ~  Environm~wrr nrrd Ear4 
MUJI Along rhr 'ITmbighr~. Rirt-r, Alabutrro and Mirrirrippi, Phuv I .  Guy K .  M ~ i t o  m d  
Joe1 Gunn. Benham-Blair and Affiliates. 1980 

The  environmental division of Bcnham-Blair arid Afiliarcs, an archirecturc 
and cnginccring firm, designed and implemented the Tombigbee Early Man 
Project. I t  was funded and par~ially administered by rhc CorpsofEnginecrb, but the 
scope ofwork and projcct review werc primarily rhc responsibility of the Herirage, 
Conservation and Recreation Service, Washington, D.C., and Intcragcncy Archco- 
logical Services, Arlanta. Thc  draft report (Muto and Gunn 1980) was the sourcc uf 
information summarized here. 
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T h e  77,733 ha project area lics within the Tombigbee River Valley ofeastern 
and wcstcrn Alabama. Forcsts and agricultural crops cover the alluvial 

rerraccs, and swamp vegetation occupies the estcnsivc flood basin. The  projccr's 
major goal was ro develop a model that would predict the locations of Paleoindian 
and carly Archaic sites. Since most of the Early Man sites wcre especred to be 
deeply buricd in larc Pleisroccnc and/or carly Holocene deposits, an important 
aspect of the projccr was the prediction of locations of landforms old cnough to 
contain early sitcs. Toward rhat end, a generalized "cmpirical" site-location model 
was developed based on rhe known distribution and nature ol'Early Man sites as 
well as on inferred Plc.istoccnc and early Holocene environmental conditions. Using 
the resulting locational critcria (e.g., inside of rivcr bend, near confluencr, ncar 
wetlands) as prcdictivc variables, chc researchers visually scanned topographic 
nr:rps for likcly site locations; 620 such locarions, rermed~uarrma~pro jec~ iom,  wcrc 
ident iced. 

A second inductive model was developed using a computer-bawd "prospect- 
ing tcchniquc" known as kriging (Muto and Gunn 1980:4-18; see also Chapter 3). 
The  kriging modcl predicted the location of landforms or arcas likely to contain 
early sitcs. Toward that end, during the kriging opcrarion the computcr searches 
its data banks for grid units cnco~npassing landforms with environmental character- 
istics like rhc landforms known ro contain sitcs. The  program provides probability 
cstirnatcs for thc likelihood that a givcn grid unit may contain the appropriate 
landform. Those grid units prcdictcd to contain sircs on the basis of rhc kriging 
model wcre rcrmcd machinc. pr+crionr. 

Both models were tcsrcd by on-rhe-ground examinations of a sanlple of the 
Quarcrnary projection locations and machinc projection units. Techniques 
designed ro detect buricd sites in lowland and swampy environments wcrc used to 
determine sire prcsence and absence at rhc sampled locarions. These techniques 
included the usc ofsoil augcrs capable ofpcnctrating and recowring several meters 
of clay-rich sediments, which ufcrc examined for the presence of artifacts and 
chemically tcsted to detcct paleosols or those deposits with the potential of 
containing cultural marcrials. A total of 56 Quaternary and machine projections 
were selected and tcsted for the prcsencc ofcultural marcrials. Ofthose, 34 locations 
wcre selccred using a proportional stratified random sampling scheme. Strata ufcrc 
defined as combinations of locational critcria. For csamplc, one stratum included 
only locations ncar stream confluences and wetlands whilc another stratum 
included locarions with the same critcria plus being on the inside of a rivcr bend. 
T h c  other 22 locarions uerc  selected on a judgmental basis for on-thc-ground 
testing because thcy cshibited unique environmental characteristics or because 
thcy filled spatial gaps in the random sample. 

The  overall approach achievcd some success in that slightly more than halfof 
thc randomly selected Quaternary projections yielded cultural materials. This 
success rare is actualIy quite high given that few of the sires would have been 
detected by examination of surface or near-surface deposits. An important conrri- 
burion of this project to predictive modeling is its exrensive use of paleocnviron- 
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ated sample data to estimate the relative frequencies of site types and the expected 
content in unsuweyed areas. 

T h e  model is appealing largely becausc of irs simplicity and probablc cost- 
effcctiveness as a first-stcp approximation of the naturc and distriburion ofcultural 
resources in a vast area. Ir providcs an idea of thc number, content, size, and other 
charactcrisrics of sitcs thar might be expccrcd in an unsurvcyed area-inhrmation 
critical ro realistic estimatcs of rhe time and moncy rcqi~ired to conduct on-rhe- 
ground survcys. As rccognizcd by the aurhors of rhe report, hourever, the prc-dic- 
tions are conditioned by thc quality of the data, which varied from survey to survey. 
Furrhcrmore, the approach is unlikely to  be particularly uscfuI in prcdicring thc 
prescnce of thcorcricaIly espectcd but as yet undocumented kinds of sites bccausc 
it rclics enrircly on information about previously discovcrcd sitc types. It is also 
apparent char the modcl would not be oigrcat use in gaining information about past 
cnvironmcnral or culrural conditions or about why cultural materials are disrrib- 
urcd across the landscapc in particular pattcrns-limitarions also rccognizcd by rhc 
authors. 

Seep Ridgc Project Archamlogical In~mror;. in the Stcp R idgt Culrrrrcrl S ~ i 4 d ~  Tract. 
Signa L. Larralde and Susan M. Chandler. Nickcns and Associates. 198 1 

T h c  Bureau of Land Managcmcnt funded thc Seep Ridgc Project, which was 
carried out by personnel from Nickens and Associates, a private archaeological 
consulting firm in Montrose, Colorado. Objcctivcs of the part of the projccr with 
which chis summary is conccrned werc(a) to dcrivc a formula that u~ould determine 
the probabiliry ofs i tc  occurrence at any poinr in the project area, and ( b )  to 
delineate for managcmcnt purposcs areas suspccrcd to contain an cxtrcmcly low 
density ofsires. T h e  authors norcd the possibility that "project-by-project cultural 
resources clearances may not be nccessary" in some porrions of thcsc extremely low 
density areas (Larralde and Chandler 1981:l). 

Semiarid canyons, ridgcs, croded buttes, and dune ficlds are characrcristic of 
rhe 44,292 ha projecr area, as are juniper, sagebrush, grasslands, and some dcscrt 
riparian vegetation. T h c  BLlM used a 10 percenr nonstratified, systcmaric random 
sampling schcme ro preselect 274 16 ha tracts for survey. Wirhin that area, 40 sires 
and 106 isolated finds were recorded; thcse rcmains reprcscnt a11 major occupations 
ofrhe area, from Paleoindian to Euroamerican. A discriminant funcrion analysis was 
used to compare the relarionships between site and nonsitc locations on thc basis of 
environmental attributes-prescnce/absence of sand duncs, viewspread, distance 
to  vantage ~ o i n t s ,  distance ro junipcr forest, and a measure comparing site or 
nonsire vegetarion with surrounding vegerarion. High, medium, and lour sensitiv- 
ity zones u w c  delimited, primarily on rhc basis of positive correlation betwccn high 
density and increasing proximity ro juniper rrees and sand dunes. 

T h e  discriminant equarion used in chis project is described as a "poweriul 
management tool" because ir requires data from only six variables and bccause 
values for thcse variables can be measured for any poinr on a USGS topographic 
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map. When valucs for these variables are "plugged into" the formula, the result is a 
probability esrimatc for sicc occurrcncc. The  authors suggest that "if the probabil- 
ity of sicc presence is low, archaeological clearance could be granrcd without rhc 
necessity ofa field chcck. If, hourcver, the probability of sire prescncc is near thc 50 
pcrcent range, a field invcnrory would be in order" (Larralde and Chandlcr 
1981: 136). The  authors srress that their results are intended as an example of the 
power o i rhe  rechnique and thar rhis parricular equation should not be uscd in the 
planning unit "until the function is strengthened by the inclusion of more data" 
(Larralde and Chandler 1981: 136). 

Given the 97.1 percent "accuracy raw" claimed for one version of the discrimi- 
nanr analysis, which classified only one of the 34 sites as a nonsite (Larraldc and 
Chandlcr 1981:i33), rhe modeling project appears to h a w  successfully achicved its 
stated objccrive. T'herc are, however, several potential problems wirh the modcl, 
rwo of which arc noted here. The  Grsr problem is that thc presclecred one-half by 
one-eighth mile transccts do not represent a random sample of thc landscape in the 
project area because rhe central portion of each quarter-secrion had no chance of 
bcing selected (Berry 1984). The  linear transects werc 'Lsituated in quarter secrions 
so rhat cadastral monumenrs could be used to maximize location conrrol. . . . Each 
sample unit was syscernarically pIaced in its quarter section to extend ftom section 
corncr ro quarrcr corncr" (Larralde and Chandlcr 1981:4). 

T h e  second potential problem concerns rhe equation of zones of low site 
dcnsiry with nonsignificancc, that is, wirh areas rhat merit no liurrher attention. 
Because ofrhis equation there is noopportunity to  determine whether scientifically 
important cultural resources arc prcsent in the low-density zone, I r  is clearly 
possible that low sire-density zones were occupied ac some poinr in the pasr when 
environmental cor~ditions wcre different and human population was low. Given the 
procedures sunlmarized above, rhere would be little chance rhar old and rare sircs 
u~ould be discovered. 

Okanogan Highlands Project A C~l iura l  Rcrmrcer Predicii~c Land Usr iModcl fir ihr 
Okrrriopn Hip;blands. R .  R. Mierendorf, T. K. Eller, D. Carlevato, and P. A. 
McLcod. ~ u l r u r a l  Resourccs Group Reporr No. 100-2. Eastern Washingcon 
University. 1981 

T h e  Bonnevillc Power Administration, Portland, Oregon, fundcd the Okano- 
gan Highlands overview/predictive modeling projccc for an area in norrh-cenrral 
Washingcon. T h c  project was designed co cvaluare possible discurbances ro 
archaeological sites along proposed transmission lines, and ir was implemented by 
the Bonncvillc Cultural Resourccs Group, Eastern Washington University. This 
summa?, bawd on Micrcndorfct a!. (1981), focuscs on the prehisroric and crhno- 
graphic aspects of rhc land-use modcl. 

Low, forest-covered mountains and stecp-wallcd valleys with srcppc vcgera- 
tion arc characteristic of the 2,166,200 ha study area. Exisring sirc-file dara werc 
available for 459 sitcs represcncing all major periods of occupation (Pakoindian 



through carly historical). A predictive modclofprt.hisroric land usc was dcvclopcd 
bascd on the bcasonal and spatial distribution of rcsourccs and on ethnographically 
documented Nativc A~nerican settlement patterns and subsisrcncc pracrices. In thc 
report thc model is prcscnrcd as a scries ofmaps that delimir seasonal activity areas 
and cspccrcd site dcnsirics (high to low); the latter are based on known sirc 
dcnsirics in similar arcas. Esamples of zones delimited on maps includc "winter 
rcsidcnce arcas wich modcrace sit<. densicy" and "summer hunting and garhering 
arcas wich che I O W C S ~  sitc density." A sensitivity analysis was conductcd to cvaluate 
construcrion impacts; it used the prcdicrive model to asscss potential sitc signifi- 
cance according ro numeric valucs :issigned for regional research significance, sire 
dcnsity, and known impacts to cultural rcsourccs. Sis sensitivity zones, which 
corrcspond to gcncralized geographic strata, a w e  plotted on maps. 

T h e  modcl provides considerable information abour the general location of 
differcnt kinds ofsiccs but almost no information abour the probability of encoun- 
rcring a site at any specific location. Even so, it permitred initial estimation of 
possiblc disturbance to sites that would result from construction of a powcrline 
across the projccr area. 'Thc authors nore that important sires could occur in the one 
"low sirc density/low sensitivity zone" and in two of the low densicy/modcratc 
scnsitivity zones that [hey havc dcfincd, bur rhcy consider che probability of 
cncounrcring such a sitc along a powcrline to bc low. They expect rhat "futurc 
surveys [in the low dcnsity/low sensitivity zone] will locace siccs rhat are regionally 
imporcant" (Micrcndorf ct al. 1981: 117). 

Rcliancc on the crhnographic rccord to prcdicr prehistoric land-use pa[terns 
considerably rcduccs the generalizing power of the modcl, T h e  authors recognize 
one aspect ofrhis problem when they suggest that changing resource distributions 
might havc caused changcs in the location olactivities. What they do  not sccm to 
recognize is rhc probability char at times in the past, cspccially when human 
population densities were much lower rhan those of the erhnographic prcsenc, ir is 
likcly that differcnc land-use systems opera~cd.  For cxamplc, one would cspect 
diflcrent distributional patterns for dilfcrcnr sitc types depending on whccher 
peoplc spcnd the winter near scored foods or depend on frcquenr moves among 
areas wherc b o d  resources are available. In the larrcr case, winter village sites might 
nor bc located in rhe riverine zonc, and fishing sircs might not be nearly as common 
as they werc during the erhnographic period. If thc prchistoric winter pattern was 
onc of frequent residential moves, a number of small, shorc-duration rcsidcntial 
sites mighr be locared at somc distancc from rhe river. Overly h c a ~ y  reliancc on the 
ethnographic record in developing prcdictivc models could rcsulc in cultural 
rcsources reprcscncative ofa very different land-use sysrcm remaining undetecrcd. 

Salmon River History Project A n  O p t r v i m  Hirtoty irr !he Drainage Briria o/tbc ~tfiddke 
Fork o / t h  Salmon Riacr. Mary P .  Rossillon. Culcural Resources Rcport No. 6. 
USDA Forest Scrvice, Intermountain Region. 1981 

Historical rescarch conducccd for the Salmon River project was done by 
personnel rcprcsenting Washington Stace Universiry and thc University ofldaho. 
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T h c  study was sponsored as a joint vonturc involving thcsc universirics, the Idaho 
Stare Hisrorical Society, the Forcsr Scrvicc, and the Idaho Statc Historic Prcscrva- 
rion Oflice (Knudson cr al. 1982). Early in thc projccc the rcscarchers recognized 
that IittIc information was avaiIable about the srockmun's culturc in thc central 
Idaho arca. As one mcans ofacquiring that information, a modcl was developed to 
predict thc locations of nineteenth-ccntury stockraising-associated sites. Informa- 
tion summarized here was rakcn from Kossillon (1981). 

Mountains and upland vallcys are characreristic of the 320,000 ha study area. 
Conifcrous forest, some of which is rclatively open, is thc dominanr vegcrarion 
zone, followed by grasslands and meadows. 'T'hc cnrire study arca was subdivided 
into 3 by 3 km grid units, and each unit was characterized according to its disrancc 
from a local marker, the palatability of summer and wintcr rangc for catrle and 
sheep (a calculation bascd on the percentage of readily acccssiblc fodder), and 
expected hay production (bascd on rhc number o l  cattle and shccp rhar could be 
supporred). High-use areas-those uirh the grcatcsr potenria1 for grazing and hay 
production and those wirh rhc longest growing seasons-were located and mapped. 
Winter cattle and sheep grazing arcas a w e  predicted to be associatcd with prrma- 
ncnt log srructures (ranch hcadquarrers), and summt-r grazing sites (temporary 
camps) were predicted ro be associatcd wirh limited scatters of historical artibcrs 
and perhaps wirh Icss-permancnr structures (c..g., simple corrals). 

The  model provides insight into rhe probable distribution of sites creatcd by 
stockraising activities, and it  provides a framework for assessing the significance of 
such sires. Although its sparia1 resolution is low, it docs providca way ofcstimaring 
site presence for every 900 ha arca, and it illustrarcs thar rhc sites tend to be near 
creeks. 1r could be argucd, with some juscificarion, chat the modcl is overly 
s~mplistic. This projecr should bc recognized, however, as one of the earlicst 
atrcmprs to deal with Euroamcrican ranch sircs as a resource ofconcern to culrural 
resourcc managcrs and 3s a potential data basc for acquiring important information 
about regional history. Viewed from that pcrspecrivc, the model was successhl. 
This model and the one dcvcloped by Hackcnbcrger (1984; sce bclow) have a similar 
procedural logic, and borh u7erc an outgrowth of a Forcsc Service reconnaissance/ 
predictive modcling project (Knudson cc al. 1982). 

Bist iStar  Lake Project Archac~ulogiccrl V a r i c r b i l i ~  m i t h i ~  ~ h c  Birf i -Slat  Lakc Rzgion. 
Meade F. Kemrcr, ediror. ESCA-Tech. 1982 

Archacological invesrigarions for the Bisti-Star Lake Projccr wcrc funded by 
thc Bureau of Land Management and carried out by personnel representing rhe 
Albuquerque ofice of ESCA-Tcch, an environmental consulting firm. Thc  model- 
ing objectives for the project were to develop and refine methods capable of 
predicring rhc presence ofsiccs with specific culrural and rcmporal characteristics. 
Thar information would rhen be used co generare formal predictions concerning rhe 
density of sites of various types throughour chc project arca (Kernrcr 1982). 



THOMS 

Sagebrush, rabbirbrush, greascwood, and other semiarid vegctation is charac- 
teristic ofrhc dissecred plarcaus in the 31,413 ha project arca, which lics within rhc 
San juan Basin of Ncw Mcxico. 1,andsar data wcre gencratcd and coded for rhe 
project area in 2 by 2 km grid units (400 ha each). Strvcnry-rwo cnvironmenral 
variablcs, consisting of diffcrenr combinations ofeighr cnvironmenral classes (c.g., 
Avalon-Sheppard-Shiprock soil association and major washcs), were dcrived from 
Landsac dara; one data scr (presence/absencc of variable starcs) conraincd all the 
unique rwo-way inccracrions bcrwecn environmental classcs. The  archaeological 
data base for the initial modcl consisrcd ofexisting sire-file dara from surveyed areas 
within and adjaccnt to thc projccr arca. Sirc type and contcnr data as well as 
informarion on cultural!rcmporal afiliation wcrc cxamined for more than 450 
componenrs. Eight sire classes were developed using analysis of variance tcch- 
niques. A backward srcp-wise multiple regression was used to reduce the number of 
cnviron~ncnral variablcs, and orhcr lincar equations were used for modcling sire 
component dcnsitics. Pro.jected site densities for rhc 2 by 2 km grid units-wcrc 
plorrcd on maps. 

The  project arca was then subdivided into a numbcr of leascs, and a samplc 
totaling about 4600 ha (ca. 15 perccnt of the rotal projecr area) was judgmcnrally 
sclccred and survcycd. Choice ofparcels ro be included in rhc judgmental samplc 
was based, in part, on land owncrship, size ofsamplc unirs, and predicted cultural 
resource variabiliry. A total of92 sitcs and 213 isolared finds ufcre documcnrcd. Some 
Palcoindian and Archaic sircs were found (1  I of3 19 components), bur most remains 
wcrc classified as Anasazi, Navajo, hisrorica1, or lithic scarcer sires. Resulting data 
werc addcd ro rhc existing site-filc dara basc as a means ofresting and refining the 
initial modcl. A rcgression analysis approach was again uscd to  producc rhe r c h e d  
model. When the augmented culrural resourcc dara base was analyzed with 34 
cnvironmenral variablcs, tigures showing rhe percenragc ofcxplaincd variance wcre 
generarcd for each ofthe site types. Mean sire-frequency predictions werc gencr- 
arcd for more than 800 grid units and plorrcd on eight maps, one for each of the 
following sire cypcs: lirhic sircs, Anasazi sitcs, prc-1933 Navajo sires, posr-1933 
Navajo siccs, rotal Navajo sites, and rotal sircs. 

The  ovcraIl modeling approach yieldcd information on thc range ofvariability 
in cultural/tcmporal componcnrs, sirc types, and site dcnsitics. T h e  means by 
which chis was accomplishcd and rhe ovcrall reliability of thc rcsults arc nor always 
obvious. Much ofrhe discussion on modc1 dcvclopmcnt is dificulr to comprehend, 
and decisions abour selection of arcas for survey wcrc highly judgmental. T h c  
projcct area, thc area from which rhe environmental dara werc cxrractcd, and the 
survcy area wcre all different, and rhc size ofsurvcy unirs differed from subarca ro 
subarea. Thcse factors may have affccrcd thc results of rhc statistical analysis. 

Thcrc are also porcnriaI problems wirh rhr manner in which field information 
was garhercd and analyzcd. Thcse problcms makc it dificulc to replicate thc overall 
approach and may well have causcd the modcl to yield arbitrary results. Isolarcd 
finds, for example, were cscludcd from sirc dcnsity escimares. Unfortunarcly rhe 
crircria used ro disringuish isolatcd finds from sircs were nor rigorous. In fact, 
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considcrablc ovcrlap is Iikcly givcn that diffcrcnt survcy tcams and different 
individuals operationalized the sitc and isolared find dcfinirions: 

Sites ucrc diKcrrnriarcd from itolatcd cultur;~l occ~~rrcnccs on rhc basis o i  inforniarion 
porcniial. h si~r.wrs dcfincd as 3 locus maniicsting the outcomcsolpa~t human behavior 
which contail~cd nlorc idcntitiablc or potential scicnrilic data v~ lucs  than could be 
cKccri\~cly csrracrcd st rhc timc ofsurvey. Isolated occurrences urrr dcfincd as thosc 
cultural manilcstations whose scientific data ~al~lcscould b ~ '  adcquawly docunicnted by 
the survcy [Cclla 1982:75]. 

Anothcr factor that might have led to arbitrary rcsdts has to do with the 
manncr in which sitcs wcre classified as to typc. T h c  mosr obvious casc is the 
mcrging of idcntificd Paleoindian and Archaic componcnts with unidentified lirhic 
componenrs ro crcatc a singlc typc. That  procedure probabIy masks a significanr 
porrion ofrhc obscrvcd cultural/temporal and sire rypc variability, ycr dcccction of 
thac variability was one of the major goals of the projccc. 

Ozark-St. Francis National Forests Project A Culiural Raourief Operpiew of ihe 
Ozark-Si. Frmdr Naiiond Forrrls, Arkanror. Gcorge Sabo 111, B. Waddcll, andJ. H. 
Housc. Arkansas Archaeological Survcy. 1982 

Arkansas Archacological Survcy personnel conducrcd this ovcrview project in 
the Ozark-S t .  Francis National Forcsts for thc Forcst Scrvicc (Saboet al. 1982). The  
principal objcctivcs wcrc to assess rhc potential naturc and distribution ofprchis- 
cork and historical sircs in unsurrcycd areas and co provide predicrions concerning 
the narurc and distribution o r  culrural rcsourccs. This information was co bc 
incorporated inro mulciplc rcsourcc management plans. 

T h c  461,000 ha projccr arca cncompasscs two national forests in northwcsccrn 
and east-ccntral Arkansas. As a means ofgcneraring cxpectarions for the naturc and 
distribution of cultural resources, a scrics of dcductivc adaptational modcls wcre 
dcvcloped. Four tcmporal periods wcrc dcfincd jointly by adaptation cype and 
paleocnvironmenral cypc: Larc Plcisrocene/Early Holoccnc hunring and garhcr- 
ing; Middle Holoccnc hunring and gathering; Larc Holocene (post-Hypsithcrmal) 
hunting, garhering, and plant husbandry; and Larc Holocrnc horticultural, hunt- 
ing, and gathering. Initial narrarive predictions wcrc madc conccrning che distribu- 
cion, contcnt, and rypcs of siccs within each of four major cnvironmenral zoncs: 
river bottomland, upland slopes, bluff Iincs, and upland plateaus. A similar 
approach was uscd co define seven major and sevcn supplementary historical 
adaptation-type models. Examplcs of chcsc cthnohistorically and historically 
rccordcd typcs include Osage (AD ?-law), Crcek (1794-1828), Spanish (1673-I803), 
pioneer huntcr/herdcr (1803-ca. 1840), Civil War (1860-I875), rcsorts (ca. 
1860-prcsent), and Forest Scrvicc (1908-present). 

Biophysical data, including clcvarion, soil typcs, topographic scrrings, physio- 
graphic subdivision, and vcgcrarion types, wcrc coded for 259 known sircs chat 
could be plotted reliably on USGS quadrangles. Q-mode cluster analyses werc 



performed separately on prehistoric and historical sites. Univariate and bivariate 
statistical procedures wcre uscd to detcrminc which variables correlated best with 
site locations. T h e  important variables were topographic setting, soil capability, 
distancc to water, and clcvation. T h c  resulting inductive models yielded four 
clusters. These were qualitatively comparcd with expectations derived from the 
adaptation-type models. I t  was concluded that the inductivc, Q-mode analyses 
generally supportcd thc dcductivc models. Site likelihood zones based on topo- 
graphic setting for historical and prchiscoric sitcs urcre pIotted on maps, and 
gcneralized site-density-potential values (high to  low) were assigned to each zone. 

As is [he case with most deductive prcdictivc modeling approaches, the end 
result of this project provides only limited spacial rcsolucion for the prcdiccions. In 
this case, most of the zoncs comprise thousands of hectares, and available data do  
not permit a finer resolution of density and/or potential anywhcre within a given 
zonc. Furthermore, this kind ofmodel is dificult to  falsify, largely because ofits low 
spatial rcsolucion and generalized trcatment ofsite content data. Ir  does, however, - 

meet its objective in that predictions are made for the potenria1 nature and 
distribution ofcultural resources. T h c  approach also allows for, and in fact cncour- 
agcs, thc discovcy ofsite cypes that arc undocumcntcd but theoretically cxpectcd 
in the study area. Examplcs include most of thc Plcistoccne sitc types and types 
rcprescntativc ofscventccnth-and eightecnth-ccntury adaptations. Furthermorc, 
thc issuc of sitc significance is divorced from the concept of site likclihood 
zones: the authors notc that "significance must be determined on a case-by-case 
basis . . ., and a site in any likelihood zone could casily turn ouc co be highly 
significant" (Sabo ct al. 1982: 188). 

Passaic River Basin Project A P r e l i m i n u ~  Culttrral Rerourcc Szns i t i~ i t j  A w & r  /or the 
Proporcd Floud Control Forilitier Cunstrurtioa in rhc Posruir Riper Busin o f N e w  'Jtrrej .  
Robert Hascnstab. Soil Systcms, Inc. 1983 

T h e  New York District Corps of Engineers funded the Passaic River Project; 
Robert Hascnstab (University of Massachusccts, Amherst) impleknccd the pro- 
jcct through a subcontract with Soils Systems, Inc,, an environmental consulting 
firm based in h4arietta, Georgia. T h c  project's objectives ulcrc to estimate the 
quantities of cultural materials likely to be affected by proposcd flood-control 
facilities and to dcfme areas with a high probability ofsitc occurrcnce (Hasenstab 
1983). 

T h e  1619 ha project area cxtends 160 linear km along the Passiac River, cross- 
cutting ridge and valley, picdmont, coastal.plain, and tidal/estuarinc arcas, Urban 
and commercial dcvelopmcnts occupy mosc of the impact zone, but 42 percent is 
cither agricultural, forested, or classified as wetlands. T h c  project area was subdi- 
vided into a high-resolution grid of0.47 ha unics (pixels) for which various environ- 
mental variables u7cre coded; all manipulation and mapping utilized a CIS. Univar- 
iate statistical rests were employed to determine which environmental variables 
were most useful for their power to "rctrodicc" known sice locacions. Significant 
variables wcre found to be soil drainagc, distance to nearcst river, distance to minor 
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rriburary confluence, and distancr to a major rributary/river confl ucncc. Grid cclls 
wcre assigncd a sensitivity rating by summarizing the various cultural componcnr- 
variable ratings. The sensitivity models werc rhcn rcsred and revised using data 
dcrivcd from a survey of 300 pixels (ca. 140 ha) rcprcscnting a stratified random 
sample of rhe projcct arca (with some modifications). Overall, rhe sample fracrion 
was about 6.5 percent of the impact zone. T h c  survey rcchniqucs included limited 
bur sysrcmatic subsurface resting within judgmenrally selccred pixels. Twcntv- 
eight historical sites and 16 prchistoric sires wcrc recorded. A scrics of computer- 
generated maps illustrated the final modcl on a pixel-by-pixel basis in terms of 
prchisroric archaeological sensitivity (high, mcdium, or low, based on thc cultural 
componenr-variable racings) and a con~binarion of historical and prehistoric 
sensitivity. 

'The author concludes rhar the GIS approach "has greatly cnhanccd rhe 
capabiliries for archaeological prediction and land-use management, . . . [but it] 
cannot bc taken as a final solurion to all cultural resource management problcms" 
(Hasenstab 1983~13). T h c  Iand managrrs did learn something ncw about thc 
distribution ofsires, but nor much abour rheir nature. Hasenstab's (1983:i-ii, 14-16) 
self-critiquc warranrs close atrenrion, sincc the problems hc idenrifics arc sharcd by 
many modcls: (4 the grid rcsoli~rion may have been roo coarse to  dctcct important 
variables (such as small sandy knolls), (b)  no artempt was made to dcal wirh 
problems of spatial aurocorrcIation, ( r )  no consideration was givcn to undemanding 
the effccrs of d~fferenr variabIcs on diffcrcnr sire rypes, and (d )  the fieldwork was 
probably not ofsuficienr scopc ro assess thc modcl adequarcly. T h c  approach is also 
problcrnatic bccausc it lumps togcthcr all prehistoric sites and rhus rends to obscure 
the variability rhar is rcprescnred by rhousands ot' years of human occupation. 

Ltkc some of the orhcr models discussed hcre, this one also equates high 
likelihood zones with a high potcnrial for the occurrcncc of significant sites. 
Furrhcrmore, i f  cquarcs low sensiriviry w ~ t h  nonsignificance and with a lack of 
nccessiry for legal protcction. This is dcmonsrrared in the following statements 
from a ,subsection of tho report entitlcd "Synthesis of Cultural Resources 
Sensitivity": 

Finally, 20 pcrcerrr of rhc projccr arca could bc "written-off" Icgitimarcly. T h e  low 
historic, low prchistoric icnsitivity strntunr(l0 pcrccnr o i thc  project area) would yield a 
\'cry low return on cr~countercd cultural rcsourccs. The  mcdium historic/ low prchis- 
m r i c  sensitivity s[ratum (10 percent), as merrtiorwl how, could be sacrificed, 3s a 
zubstantial porriorr of rhc  mcdium sensiriviry s r r ~ t u ~ n  will already havc been sampled 
1 Hascnsrab 1963:131]. 

Such a conclusion docs not seem compatible with a prdimirrury culturaj resource 
sc.nsirivity analysis, which rhc title ofrhe rcport indicates that this was inrendcd ro 
be. Neither docs it seem to be compatible with the author's recognition char rlie 
samplc survey may not havc been ofsuficiunt scopc to permir adcquate assessment 
of the modcl. 



Grand Junction Resource Area Project A Manual for Predictive Site Location 
Models. Kenneth L. Kvammc. Draft report submitted ro the Bureau of Land 
Management, Grand Junction District. 1983 

T h e  BLM funded the GrandJuncrion Kcsource Area Prosect as an overview of 
scaristical classification procedures for predicring archacological sire locations. This 
summary emphasizes aspects of rhe project rclared to rhe development and resting 
of models in rhe Grand Junecion Resource Area. For rhat area, the objective was to 
dcvelop quanrirative models rhat could be used to  predicr likely locations of 
prehisroric sircs (Kvamme 1983; see also Chaprers 7, 8, and 10). 

T h e  projccr area encompasses some 438,996 ha of western Colorado uplands. 
Vegerarion types characteristic of [he area include desert grassIands as well as 
piiion-juniper woodlands and spruce-fir tbresrs. The  subareas of rhe district were 
stratified inro five major biotic communities considered ro occur in significanr 
proportions across rhr landscape. A stratified proportional random sample of 65 ha 
quadrars (quarter sections) was selecrrd from the physiographically defined sub- 
areas. One hundred quadrars were selected for survey, specifically to provide [he 
dara base for generaring rhc models. T h e  surveyed area amounted to abour 1% 
percent of rhe projecr area. Environmenral dara were coded for site and nonsite 
locations. Through a series of staristical analyses, the following variables were found 
ro bc important in disringuishing between site and nonsite locarions: bioric zone, 
vcrrical distance to permanent water, vantage poinr disranco, slope, vicw, expo- 
sure, shelrer within 100 m, and shelrer within 250 m. Tho  models were developed 
through a partcrn-recognition approach using various muIrivariarc analyses as 
classificarion cools, the most successful ofwhich was logisric regression. Dcpending 
upon [he particular approach used, GIs-based probability surface maps were 
generarcd ro providc/ilIustrace predictions for sites and sireless loci in unsurvcycd 
arcas covering from 0.6 ro I to25 ha. T h e  accuracy of the various modcls was rested 
independently using sire-file and nonsirc data, as well as split sampling rechniques. 

Kvamme's approach to predictive locarional modcling is sratistically and 
compuracionally more sophisticared than that cxhibitcd by other projecrs summa- 
rized here. The  report is clearly an important conrriburion in rhar it providcs a 
thorough ovcrview and many examples of a wide varicry ofsratiscical approachcs to  
developing and resting inducrivc, or correlative, models. T h c  projecc did nor, 
however, achieve the goal sratcd by the aurhor, namely "to modcl the locarions of - 
all sircs, regardless of type, bccause a11 sires are of potentiaI inreresr to Culrural 
Resource Management" (Kvamme 1983:69). 

This suggestion thar the Grand Juncrion Resource Area rcport failcd ro model 
rhe locacion of all sires is based on threc observations. T h e  first conccrns the 
apparcnr paucity of sites in 38 perccnt of the project area. Kvamme suggcsrs thar 
the low dcnsity ofsites (four werc known) in the high-elevation community (which 
comprises 15 pcrcenr of the resourcc area) is a result, in part, of "rhc dense 
vegerational cover occurring at high clcvations which inhibited sitc discovery" 
(1983:62). Ar rhc same rime, only a few sires (26) occur in the desert community, 
which represents about 24 pcrcenr of rhe resource area (no cxplanarion is offered for 
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this low density). Since 85 percent of the sites are in the pinon-juniper community, 
which constitutes only 62 percent of the project area, it was determined that 

Bccausc ofthc paucity ofsires in all but thc pinyon-juniper communiries, ir will not be 
possiblc to make meaningful comparisons ofsire locar ion pattcrning bctwecn communi- 
tics in the analyses that follow although rhis was originally intended IKvamme 1983:62j. 

Becausc taro major zones with very diKerent resource potentials for aboriginal 
hunters and gatherers were effectively excluded, it seems likely that potentially 
important sitc types were not modeled accurately. 

Anothcr aspect of this research that hampered modeling of all site locations 
was the esclusion of rockshelters from the analysis owing to the assumption that 
"thcir locations cannot be predicted because of the idiosyncratic geological proc- 
esses that rcgulatc their presence" (Kvamme 1983:68). Although identified rock- 
shelters reprcsent only 2.5 perccnt of the recorded sitcs, they have considerable 
potential to yield important information. 

A final point concerns the arbitrary distinction drawn between sites (10 or 
morc artifacts in a 20 m diameter area) and isolated occurrences (fewer than 10 
artifacts in an area of the same size). 

In ordcr to rnakc [he analysis ofsirc Iocarional patterning morc managcablc and also ro 
rcducc the idiosyncratic locatio~~al variation undoubtedly exhibited by isolated occur- 
rcnccs ofartifacts (in many instances), only "mncentrarions" of artifacls upen. recorded 
as sill's and analyzed here [Kvamme 1983:67]. 

h?any archaeologists might argue that sites are often represented by fewer than 10 
pieces of pottery or chipped, ground, or battered stone. Another potentially 
important site type-small, low artifact density-was therefore excluded from the 
model. 

Kaibab and Cuba Study Area Projects T h e 0 9  and Model Building: Dtfininp: S u n y  
Stratcgirr for Locuring Prehistoric Hrrirage Raourca. Linda S. Cordell and Dec F. 
Grecn, editors. Cultural Resources Document No. 3. Forest Service, South- 
western Rcgiooal Ofiice. 1983 

The  Kaibab and Cuba study areas are part of a project sponsored by the Forest 
Service as a collaborative etlort among archaeologists from academic and federal 
communities (Cordell and Green 1983). Specifically, participants in the endeavor 
were asked to formulate trial predictive models that could be refined and tested. 
The  information summarized here is from two model-building articles, one about 
the Tusayan District in the Kaibab National Forest (Hog 19832) and one about the 
Cuba District in the Santa Fe National Forest (Plog 1983b). 

Study Area I ,  the Tusayan Ranger District of the Kaibab National Forest, is 
located in northern Arkona. It is on an upland plateau that is dissected by 
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intcrmittcnt strcams and covcrcd by piiion-juniper, pondcrosa, and sagebrush 
vegetation communities. Known sitcs in the area arc the rcsults ofArchaic, Anasazi, 
and Cohonina occupations. T h c  objectives for thc Kaibab study area were to use 
previously derived information from a 1 percent sample sunrey (designed for 
planning purposes) t o  makc predictions about site densitics across the Iandscapc 
and to "tcst" the predictions by comparing them with the results of intensive 
surveys conducted in nearby areas. 

For the sample survey the 4858 ha study arca was divided into zones based on 
drainage basins and vegetation types. Using the results of the 1 percent sample 
survey, the researchcr cstimatcd site densities for the various zones. The  estimated 
densities were found to dift'er considerably from thc observcd densities in nearby 
intensively surveycd areas. The  dilrc'rences were judged to be the result of the 
nonquantitative fashion in which the estimated density figures were generated 
(e.g., therc was no rationale for dividing the arca into drainage basins, and zones 
without sample data were assigned zero dcnsiry values). In thc case of this trial 
formulation, it was concludcd that "had SYMAP or some other spacial smoothing 
program been employed, a successful predictive model might have bcen gcner- 
atcd" (Plog 1983a:a). 

The  Cuba District study area (Study Area 4) is a 3427 ha block unit in the 
forested upland zone ofnorth-ccntral New h4exico. In this case the objcctivc was to 
csamine the feasibility ofdoing prcdictive modeling by drawing upon the results of 
intensive surveys of the block area. Thc  study area was survcycd in part by a Forest 
Service crcw and in part by a contractor's crew. A total of 142 sites, all dating to the 
Gallina phasc (AD 1150-1250), were documc'ntcd. Thesc included sites with surfacc 
structures, pithouses, towers, and check dams. An analysis of the survey data 
revcaled that % pcrcent of the sites were located on ridge tops, while this topograph- 
ic feature constituted only 23 pcrccnt of thc sun7ey area. Even though few sites were 
found on the valley floors (and all of these were found by a singlc crew), it was 
rccognizcd that these sitcs could potentially provide "important and unique 
evidcncc" about the arca. 

T h e  researchcr concludcd, thercforc, that if survcys in this study area were 
focused on the valley floors and ridge tops, covcrage could bc limited to 38 pcrccnt 
of the study area and almost all the sites would still bediscovered. It was also argued 
that once a number ofvallcy floors had becn survcyed it should soon be possible to 
distinguish the characteristics of those valley floor ecosystcms that would have 
associated sites from those that would not have sites. T h e  author concludes his 
study by stating that "data from this study area result in as clear a definition ofan 
approach for finding all sites with less than inventory survey as one can imagine" 
(Plog 1983 b:78). 

Both trial formulations ofpredictive models are presented in a bricfand simple 
fashion. The  models arc mapped to illust ratc the locat ions of high site-density zones 
within the outlines of the study areas. The  Iack of background information about 
these study area projects makes it dificult to understand how data werc gathered. 
Much of the information necessary to compare this approach with others is not 
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readily obrainablc from the report. Ir appears that rhc underlying purpose of chis 
project was ro dercrminc ulhethcr or nor porrions of the areas could be esempted 
from on-rhe-ground survey by relying on the resulrs ofprcvious survcys in similar 
cnvironmcntal set t ings. In thc ease of rhc Kaibab arca, for examplc, it is argued char 
had the appropriare LLsparial smoothing program" been used, "rhe predicrive 
model generated in rhe planning document u~ould have allowed a no-survey 
decision to bc made" (Plog 1983a:65). 

What remains uncxamined in rhcsc crial formulacions is the rcliabiliry of the 
existing survcy data. The  attributed to  a "nonquantitativc" approach in 
the Kaibab study arca can be alrernatively cxplaincd by arguing rhat different 
peoplc conducted rhe surveys for different reasons and thar, conscquenrly, the 
rcsulrs are likely co be different. The  uncritical acccprance of the survey rcsulrs in 
rhe Cuba area-which indicarcd thar rhroughout prehistory che area was inhabited 
only for a 100-year period, between AD 1150 and 1250-is also questionable. Could 
past erosional condirions have filled the vallcy floors so rhar only relatively rcccnt 
scdirnents arc esposed, thus masking evidence rhat the area was also used or 
occupied by othcr groups ofpcoplcZ Is it possible that ground cowrobscurcd all but 
chc most obvious (i-c., archirecrural) culrural features? The  information rhat one 
survcy team found all the rccordcd vallcy floor sires indicates the potencia1 for 
problems in data reliability; othcr things being equal, one might logically conclude 
that different survey mcrhods were uscd. Whar may bc nccdcd hcrc is not nwrcly 
refinement and tesring of trial formulations, bur a reformulation ofchc approach to 
predictive modeling, one rhat recognizes rhe complex variation inhcrent in thc 
archaeological record. 

Fort Benning 2200-Acre Survey Project A n  I ~ f c n s i ~ s  Surpry of a 2,200 Acrc Tract 
n:ifbir: u Prtyostsd Manrrtrsr l1rr.a a t  [hi. Fort Bzrrrring M i l i f u r j  Rzscrr~rfion. P. M. 
Thomas, Jr,, L. J. Campbell, M. T. Sulanson, J. H. Alcschul, and C .  S. Weed. 
Report of Invcscigarions No. 71. S e w  World Research, Inc. 1983 

T h c  Dcpartmenr of Dcf'cnsc (U.S. Army Infantry Center and Fort Bcnning 
Military Resenwion) funded chis projecr, chc sccond projccr carried out within che 
confines of Forr Benning to be summarized in this appcndis. This study was 
administcrcd by the Archeological Service Dranch, Division of National Registcr 
Programs, National Park Service, Southcast Region (Arlanta) and carried out by 
personnel rcprcsenting New World Research, an archaeological consulting firm 
based in Pollack, Louisiana. This project was dcsigned to conduct an intensive 
survey and to rest and refinc a predictive model developed for the arca three years 
earlier by another consulting firm (Kohler ec al. 1980; see above). Information 
presented in this stlmmary is from Thomas cc al. (1983). 

Pine forests, oak and oak/hickory uplands, bottomland hardwoods, woodcd 
swamps, and mixed pine/hardwood forcscs arc charactcriscic of the 8907 ha proposed 
maneuver area that was rhe focus ofrhis pro+. A block ofland amounting to about 
10 percent of the project area (ca. 891 ha) was preselected and surveyed ro providc a 

da t a  base for evaluation of the larger maneuver area and for thc testing of rhc 



csisting prcdictivc model. Thirty-scven sites were identified: 20 prehistoric, 15 
historical, and 2 with both prehistoric and h~storical cornponcnts. Site locations 
were assessed according to a prcdictivc modcl bascd on soil typc, slope, and distance 
co water, which xas devclopcd by Kohler ct al. (1980). T h c  model was found to bc 
basicslly sound but in nccd ofsome rcfincments, including a more accurate mapping 
of the distribution ofsoil typcs. In an effort to rcfinc thc model and dcterminc which 
variables best explained rhc obscrvcd variation, a discriminant analysis was under- 
taken. Data for 10 environmental variables, including some mformation from a 
h!.pothcrical catchment arca with a 225 m radius, were coded at thc 37 sitc locations 
and at 40 sitcless locations. Ultimately, combinations ofrhe variables were identified 
that could be uscd t o  define w r y  high, high, low, and vcry low probabilities for 
encountering prchistoric and/or historical s ~ t c s  at any given location. A second 
discriminant analysis was perfor~ncd on a data set from othcr portions ofrhe project 
arca; this data sct consisred of207 known sites and sitclcss points, including thc 77 
cases from tht. survcycd arca. The  discriminant analysis succcssfiilly reclassified 
more than 96 pcrccnt of rhe cases. 

T h c  project achicvcd its sratcd goals of testing and rcfinihg the existing 
predictive model. T h c  refinements took the form of morc accurate mapping ofsoil 
cy pcs and ofthe generation ofa d~scriminant function that permits cdculation ofthe 
probability ofencountering a sire at any given point on thc Iandscapc. Although a 
very low sitc-dcnsity zone is defined, it is neither ticd to  any significance determi- 
nation nor uscd as an argument to cxclude the arca fro~n futurc surveys. Like many 
of the orhcr correlative or inductive models, this onc masks much of thc important 
variability in the archaeological record by lumping all prehisroric site typcs into one 
group. 

Cisco Desert Project 11 Clari I1 Suwc.). ettd Prfdirrioz Model oJSelccrtd A r w  in rhe Circo 
Lhjcrt, C r m d  C O ~ I I ) . ,  Uruh. J .  E .  Bradley, W. R. Killian, G. R. Burns, and M. A. 
Martorano. Cultural Resources Report No. 10. Coodson & Associates. 1984 

Coodson and Associates, a privatc consulting firm, conductcd the Cisco Desert 
Project for the Burcau of Land Management. The  project's modeling objectives 
were to  use existing data to  construct a predictive model for the location ofsite and 
sitcless areas and to test thc model with results of a sample survey (Bradley ct al. 
1984). 

T h e  32,389 ha project area lics within thc Colorado Plateau region ofcast- 
ccncral L'tah and is characterized by descrr shrub, greasewood, and juniper wood- 
land vegctacion communities. Although the plan was to test an existing model, it 
soon bccamc apparent that the existing modcl was inadcquatc for the projcct arca, 
both becausc the project area had a much higher site density and because sites were 
found in many microcnvironmcnral tones (e.g., duncs and rocksheltcrs) that were 
nor prescnt in the areas for which the orig~nal model had been devcloped. T h e  
solution adopted was to build a model using information from a 5 percent sample 
survey conductcd as part of thc project, and rhcn ro test rhe model on data collected 



during prcvious surveys. Onc hundred 16 ha (40 acrc) tracts werc sclcctcd for 
surlrey using a simple random sampling rechnique; an additional 17 tracts wcre 
selected on what amounted to a judgmental basis. h total of 126sitcs wcre recorded 
within the randomly sampled 1619 ha arca; 15 sitcs were historical and 1 1 1  wcrc 
aboriginal, rcprcscnting early Archaic through protohistoric occupation of t  hc area. 
Eighty-eighr sites (40 Iirhic scacrcrs and 48 campsircs) and 51 siteless locations from 
within thc 5 percent sample wcrc employed to construct four discriminant analysis 
models (rwo for each site rype) using cirher "tradirional" modeling variablcs, such 
as slope, distance to water, vegetation, etc., or soil unit variables. T h c  soil unit 
models were found to be more accurate and easier to use. Sensirivity ratings for 
high, mcdium, low, and unknown ([he sample for one soil rype was too small for 
predictive purposes) chances ofcncountering a site were calculated on rhe basis of 
the various soil units. Soil unit/projcctcd sitc density values werc mapped for the 
entire project area. T h e  overall resulrs werejudged to compare favorably with those 
generated from an cxiscing model derived from a I0 percent sample survcy 0158,705 
ha in adjacent areas. 

Although [he manner in which rhc modcls wcrc dcvclopcd and rested dificrcd 
from the original plan, thc overall obiective was achieved. More specil;cally, an 
environmental variable-soil unit-was identified as an accurate predictor of sitc 
locations, and areas of low sire density were dclincated for managcmenr purposes. 
An obvious shortcoming, however, is what the authors refer to as the lack of an 
adcquarc dara basc for making prcdictions in Soil Unit 9, which constitutes 7.8 
percent of the projcct area. Too fcw rransecrs were survcyed in areas wirh this soit 
unit, and too few sites werc discovcrcd in those rransccrs ro pcrmit confident 
infercnrial modcl consrruction. 

Bradlcy et al. (1984:88) draw [he reader's attention to rhc fact that many of thc  
sitcs misclassified in the discnminanr analysis (ca. 15 pcrccnr) wcre in Soil Unit 2 
(48.3 perccnr ofrhe area and 0.95 sires per mi2 in surveyed arcas). Many ofthese sitcs 
were also locatcd within I287 m (0.8 mi) ofan area ofsoil Unir 3 (13.4 percent of the 
area, 27.35 sitcs pcr mil). Given this situation, [heir rccommcndation with regard to 
additional survcy of Soil Unit 2 areas is as follows: 

Ifsurvcy rcquircmcnrsin this zonc are waived by thcBLX1, isolated el~giblesi[cs may br 
cndangcrcd. I;  is rccommcndcd that all arcas within .8 m d c  of soil unics 3, 5, 8, m d  9 
conrinue ro bc survcyed in order to protect rhcsc \ires and further test rhe modcl's 
accuracy. T h i s  .E mile buikr includes sircs n~ i sc lw i f ed  by the soils rnodcl1Bradlcy c t  al. 
19&1%]. 

Continucd survey in thc buffer zonc would rest the modcl only in regard ro sirc 
dcnsity in the bufkr zones; i t  would not bc a tcst ofwhcthcr National Register-eligi- 
ble sites arc prescnt in the other portions ofsoil Unit 2. This approach accepts the 
possible loss ofan unknown number of sites in approximately 25-30 pcrccnt o f thc  
projcct arca, and i r  rccognizcs that somc ofthc sites may bc eligible for inclusion in 
the National Rcgisrer of Historic Places. By its rcliancc on modcrn environmental 
distributions, it porcntiallyjeopardizcs the opportunity to discover and investigate 



sitcs that may have been utilized and/or occupird at rimes in [he disrant past when 
the desert shrub stratum, including Soil Unit 2, was more likc today's juniper 
stratum (i.e., Soil Unir 8). 

Route 13 Relief Corridor Project A Culrrrrol Rcsorrrm Rtconrrairranct~ Plarrning Sludy of 
tbcProporcd Rr .  13RrlitfCorridor, N m  Custli. o n d K ~ t i f  Counties, Dtfavarr .  I. F. Custer, 
1'. Jehle, T. Klatka, and ?'. Eveleigh. Universiry of Delaware. 1984 

The  Route 13 project was funded by the Dclaware Department ofTransporra- 
rion with rhe objcctlve olident~fying zoncs within a proposed highn.ay corridor that 
wcrc Ilkcly to conraln significant prehistoric and/or hisror~cal resources. The  
project was conducted as an ovcrview/planning study by personnel representing 
the Center for Archaeological Rcsearcli ar rhc Cnivcrsiry ofDelaware(Custcr e t  al. 
1984). 

Wetlands, agricultural Iands, and urban areas occupy most of the 64.4 by 11.3 
krn pro.iect area (ca. 72,772 ha) in norrh-ccnrral Delaware. The  predictive model was 
devcloped within ditTcrcnt contexts: one for thc environment and the ocher for 
regional cultural history. It relics heavily on the results of previous overviews. A 
number of site types jc.g., macroband basecamps, procurement sires, quarry sires, 
and indusrrial, commercial, and transportation sites) were rccognized for various 
prehistoric and historical periods. Site rypes were characterized according ro rhcir 
cnvironmcntal settings, and the information was summarized in tables that rcprc- 
senr a general locarional ~nodcl.  The  grncral model was comparcd in a narrative 
wirh the results of a Landsat/Odessa terrain analysis (pixel size = 2.3 ha) rhar 
incorporated site locational information. Logistic regression analysis was used to 
correlate environmental zoncs with sire presence. hflaps wcrc produced to illuscrate 
known site locations and probabiliry zoncs for direrent ages and kinds ofprehistoric 
sircs. Tablcs provide informarion about the relative potenrial for encountering 
significant historical sircs in individual pisels. A separate and very general deduc- 
tive model was developed to predict and explain the distribution ofAdena mortuary/ 
exchange sircs. A second series of maps uras generated ro illustrate the high, 
moderate, and low sensitivit). zoncs in tcrms of their potential for containing 
significant sires. In essence, high probability zoncs had rhe greatest sensitivity and 
the greatest potential for containing significant sitcs. 

This project considers a wide range of site types in terms of rheir predicted 
locations and potenrial significance. The  concept of significance is defined in a 
manncr such rhar small, disrurbed, and plow zone sires are largcly cxcluded. 
Considerable attention is given ro an assessment of the quality ( i . ~ . ,  reliability) of 
the information in existing site files. For most zones the available intbrmarion is 
ratcd as "poor" or "fair," Civcn that kind ofdata the value ofdeveloping a series of 
correlative models for a wide variety of prehistoric and hisrorical site types scems 
questionable. High probability zones and/or big sires with large quantirics of 
artifacts are viiwed as porential National Register propertics and small procure- 
ment sires, as well as plow zone sircs in gencraI, are considered "not likcly" ro be 
eligible. T h c  authors clearly state that their assessments are preliminary, however. 
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They also note that the data prescntcd should not be vicwcdasa substitute for sitc 
location/identitication surveys anywhere within chc project area. Although "no 
specific h ldwork  was carried out as part of this study" (Custer cc 31. 1984:1), somc 
of the prcdiccions madc in the study wcrc apparently Geld tesced in 1984 and 1985. 
RcsuIts from this recent work were not included in the present rcvicw effort, bur 
according co Custcr (n.d.), "field t a r s  of the predictions showed a 90 perccnc 
accuracy rate." 

In general, the project fulfills its objective in thar it succeeds in identifying 
zones that are likely to contain significant sires. T h c  connecting links among 
rcgional prchistory/history, the existing data basc, and thc prcdictivc models are 
dificuIt co follow, however, owing co the somcwhac disorganized nature of chc 
report. 

Montane Hunter-Gatherer Project Culrural Ecolug)' and Econonrir Dcririot~ Making of 
Mortranc Hrutr~r-Gatbcrzrs in Cztrrrd I h h o .  Steven Hackenberger. M.A. thesis, 
Department of Anthropology, Washingcon Statc Ilniversicy. I984 

T h c  Moncanc Hunter-Gather Project is a masccr's thesis submictcd to  
Washingcon State Univcrsicy. It was developed with the objcctivcs of(a) determin- 
ing how u d l  proportional rcsource use by montane huntcr-gachcrers could be 
predicced by comparing hypothetical decision-making strategies with obscrved 
rcsourcc distributions, and ( h )  determining whethcr archaeological data could bc 
used to address the problem. T h c  work is a by-product of a 1978 reconnaissance 
survcy/n~odcl-building project (Knudson et al. 1982) h d c d  in part by the Forest 
Scrvice and thc Idaho State Historical Society. Information prcsented here is from 
Hackcnberger (1984). 

T h e  1,216,800 ha project area is drained by the Middlc Fork of the Salmon 
River and can be charactcrizcd as a forestcd montane environment with parklands 
and mcadows. Environmcntal data-distribution of vcgctation units, yields of 
browsc vegetation, and distribution of plant, fish, and ungulate resources in terms 
of available calories for humans-werc cncodcd for 520 23.3 ha (9 mi2) grid units. 
These data wcrc used to dcvclop general predictions h r  hunter-gathcrcr settle- 
mcnt location, proportional rcsource use, and winter popularion aggregation. 
LaPlace, Savage, and Waid decision criteria werc used in computer simulations to - 

model long-term choices of site Iocacion based on rcsourcc dcnsity and yields. 
Ethnographic data providcd analogs for modcling economic dccision making 
among historical and late prehistoric occupants of the region. 

These analyses indicated chat modcls bascd on resource distributions or 
changes in distributions were more successful st  predicting site location than 
models of various decision-making processes. Preliminary archaeological data were 
compared nich predictcd settlement locacions and population sizcs. Somc of the 
predictions (e.g., locations ofwinter village sites) could be supported with available 
archaeological data, bur in general, the researcher found that more survey would be 
requircd co provide data to test r11e models adequarely. 



This approach to prcdicrive modeling, particularly the aspects that focus on 
monitoring disrributions of food resources, is promising because it oKers the 
potential for prcdicring and csplaining the distribution ofculrural rcsources. As the 
model now stands, howevcr, its applicarion is limited to the time periods fbr which 
ethnographic land-use data arc available. Sincc sparial resolution is low and prcdic- 
tions are difficult to quantiljr the use of the approach is limited to thc carly planning 
srages of cultural rcsource management. T h e  models are rcstablc, howevcr, and 
with refincmcnt they could bccomc more rcadily falsifiable. What is particularly 
promising about thc approach is thar prcdictivc modcling for pnrposes ofcultural 
resource management can be conducted in the contexr of problem-orirntcd inves- 
tigations that arc likely to  yicld information important in prchistory and history. 

T a r  Sands Project Tht. Tur Sandr Projtcr: Culrvral Rmurce Inrrnrorj. arid Pr~dicriw 
i\fodtlirrg i ~ r  C~rrrral nrrd Sorrrhern Utah. Betsy L. Tipps. P-I11 Associates. I984 

T h e  Ta r  Sands inventory/modeling project was funded by thc Burcau of Land 
Mmagemenr and carried out by individuals rcprcscnting P-It1 Associates, an 
archacological consulting firm based in Salt Lake City. The  project's objectives 
included (a)  implcmenration of a 5 pcrccnt inventory of each tract in thc project 
arca, (6)  development ofa site locational modcl that would corrcIatc environmental 
characteristics with known sire locations,(c) inventon ofan additional 5 percent of 
each project arca tract and usc ofthe resulting data to tcst and refinc the model,((!) 
dcvclopmmt of prolcctions of sitc densiry distributions and diversir). of cultural 
resources based on the results of the 10 percent combined inventory, and ( c )  

definition of the factors thar detcrmincd cuItural resource sitr selection and have 
explanatory value for prcdicring the locat ion ofsitcs. Information summarized here 
is from Tipps (1984). 

T h c  69,635 ha study area lies in the Canyon Lands section of the Colorado 
Plareau and exhibirs typical Great Basin vcgctarion patrerns: shadscalc, sagebrush, 
and piiion-juniper zones. Two 5 percent simple random samples (with some 
modificarion) of 65 ha quadrars were drawn for sun7ey purposes from cach of four 
large tracts. Including "buffer zones," some 7400 ha wcre surveyed and found to 
contain 155 sirrs (I67 componenrs) as we11 as a number of isolated finds. The  sites 
rcpresenr occupations from thc carly Archaic to  rhe historical periods. Prchistorir 
site densiry cstimares with confidencc inrervals were made for each rract. Map- 
readable environmental variables were correlated with sitc locarions in rhrcc of the 
four rracts using a discriminanr analysis applied to dara from one 5 perccnr samplc. 
T h e  results of thc first analysis were tcstcd and refined using rhe addirional 5 
percent sampk dara and a ser of sitcless areas. A final discriminant analysis was 
based on the 10 perccnt sample. Using six environmental variables-relief, clcva- 
rion, distance ro water, disrancc ro nearesr river, drainage, and quadrar vegerarion 
cover-rhe analysis correctly classificd 71 perccnr ofrhe quadrats into caregorics of 
no sites, one sitc, and ruro or more sires; when these carcgories were coinbincd, 93 - 
percent of rhe quadrars wirh sites arcre classificd correctly. Anorher predicrivc 
model was gcncrated using Landsar imagery data and clustcr analysis to  classify the 
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area and provide probability esrimarcs ofsitc occurrcncc. Its utility for management 
purposes was found to be limited, however, because all the strata had similar 
probabilities of sire occurrence. 

This project achieved most of its goals, especially those rclatcd ro the sample 
survrys and to finding correlations between environmental variables and site 
locations. In fact, this study represents one of the more sophisticated and better 
prrsented versions of thc now-familiar correlative approach to predictive modeling 
(e.g., Larralde and Chandler 1981; Kemrer 1982; Kvamme 1983; Bradley ct al. 1984). 
T h e  discrimination of rhrcc classes of grid units-rhose wirh no sires, those with 
one site, and those wirh more rhan onc site-mav be an improvement over 
approaches that only distinguish between site-present and site-absent quadrars. It 
i s  also noreworrhy that during the course of fieldwork an eKort was made in some 
arcas to  determine whether there wcrc buried cultural materials. Existing road cuts 
and cutbanks were csamincd, and a few buried sitcs wcrc rccorded. This practice 
sccms advisable in areas noted for thcir long histories of high rares oft!rosion (e-g, 
the Sourhwest and the Great Basin). 

One shortconling of the discriminant and Landsat models was that thc White 
Canyon tract was excluded from the analysis. This exclusion is unfortunate because 
even though this tract reprcscnts only 6.1 percent of the projccr arca, it has an 
average density 012.86 sires pcr quadrat. T h c  discriminant model and the Landsat 
models arc subject to other criticisms frcqucntly madc ofprojccts using a corrclativc 
approach (see Berry 1984), including criricisms of arbitrary distinctions between 
sites and isolared finds. 

The  pro!cct was much Iess succcssfiil in achieving the goals of dcfining and 
explaining factors rhar determine site location. For example, the following partial 
esplanarion was offcrcd for thc succcss of the discriminant function in distinguish- 
ing quadrats with only one site: 

the S I ~ F I C  sircs in rhcac quadrats generally reprcscnr small, limited activity sites t h ~ r  
occur in :4 locdircd anomalous portion o i  the The q u d r ~ c s  in which rhesc 
isolarcd sires zrc iourld may rcprcscnr m x s  whcrc more sprcialircd or limitrd 17pc'i oi 
acririrics wcrc  occilrrir~g such as hunting or plmr gathering or rnareri;tl procurcmcnt. 
For such ritc:. vwixblcs such IS distance to usatcr, percent ofquadratcnvcr, etc., may not 
bc k q  iicrors in site locarion at all. U1c.notc, asdo previous rescarchcrs. rhar sitc type is s 
critical factor in undursranding rhc sircsr:lccrion process lor prchis~oric pcoplcs [Tipps 
19S4:ISS]. 

These statcnwnts recognize the problem that lumping sitc types obscurcs impor- 
tant difkrcnces, but they do nor explain why distancc ro water and vcgetarion rype 
should be less useful for predicting the locations ofhunting or vegetal procurcmcnt 
sitcs than for basrcamps or other multipIc activity sires. These explanations 
assume, as most correlation-bascd csplanarions do, that groups who used thcsc 
anomalous quadrars (35.6 percent of all those with sites) for thousands ofyears all 
did so in essentially the same manner, in spire of significant changcs in human 
population densities and technological developments, not to mention climatic 
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changes rhar surely affected the distribution of food rcsourccs. Even if such 
redundancy of land use could bt. demonstrated, it too would require considerable 
csplanation. 

Central Oregon Project Locating Significant Archaeological Sites by Landform 
Analysis in Central Oregon. Leslic E. Wildescn. Draft reporr submitted to thc 
Bureau of Land Management, Orcgon State Offrcc and Prinevillc District 
Otxce. 1984 

T h e  centraI Orcgon prcdictivc modcling project was funded by the Bureau of 
Land Managcmcnt and conductcd by personnel representing \irildescn Associates, 
a Portland-bascd archaeological consulting firm. T h c  projcct's objcctivcs were to 
idcntify lands Iikcly to contain significant prchistoric sites requiring "afirmative 
managcmcnt action" and to identify lands not likely to retain an important 
archacologica1 rccord. T h e  purpose of idcntifjing thcsc land catcgorics was to focus 
cfl>rts on sites that arc subjcct to thc rcquircmcnts of thc Xational Historic 
Prcscrvation Act, Information summarized hcre was taken from a draft docunrcnt 
by \ViIdescn (19&1), which was circulated widely for revicw purposes, 

T h e  ovcraIl project encompasses an area comprising almost 1 million ha, of 
which 427,787 ha arc managed by the ELM. Characteristic vcgctacion communities 
include sagebrush and grasslands as  well as juniper and pondcrosa forcsts. Within 
thc larger arca, 3& prehistoric sitcs were documented in existing sitc files, and 244 of 
these arc on BLM land. All  sitcs in the project arca and all lands managed by thc 
BLM werc used to develop the modcl. The  sitcs wercjudgcd to rcpresent the full 
"functional and descriptive" rangc of sitc ty pcs known from the Desert West. 

T h e  concept of sicc significance was an important clement of this study. 
Wildcscn followcd a previously established working definition for the concept of 
"important information," which was defined as 

subsrantivc new inhrniation 011 northern Crcar Basin scrrlcmcnr or subsisrcncc~ par- 
terns, chronology. toolkirsor technology, arc, or inrcrculrural relations(jncluding rravci 
or trade) [BI..CI 1982, circd in Wildcscn 1%4:2]. 

Wildcscn (1984:3) goes on to note that, by implication, significant siccs 

- will show cvidcncc of more than one kind ofusc, or inore than onc irsc rvcnt; 

- will contah diagnost ic tool ty pcs, comparable with cxisr ing rypc~logics; 

- will cshibir physicd inrcgrity ovcr nlorc rhan 50 pcrccnt of their surfiicc area; 

- may conrain inrrrnally srr;~rilicd scdimcnrs or cultural laycrs; 

- may contain arrif~crs or nlanufitcturing dcbrih, h n a l  rcn~ains, or construcrcd fc;lturcs 
(cairns, pirs, painted or pcckcd rock art pancls, or udls); or 

- may bc rcllrcd to sirnilnr or dilrcrcnr siccs within I spccific geographic a r a  (i.c., 
co~nprisc parr of 3 Sarional Regisccr Districr). 



Ethnographic data urere employed ro identify rhc kinds oflandlbrms used by 
Native Americans for various activitics. F'ivc landlbrms wcrc identified as having 
bcen uscd ethnographically and as having the potential for containing scdimencs 
with "high physical integrity." Thcsc landforms are noted as having already 
yielded "archacological sites with substantial scholarly values." Thcsc five land- 
forms, aIong with two other landlbrms "known to contain archacological remains of 
significant interest" (Wildcsen 1984:4), were classifird as high probahili!y krndfirmr. 
These scven landforrns wcrc calculated to represent only 7.3 percenr of the project 
arca. T h c  modcl is prescntcd in thc form of tcst, tables, graphs, computer print- 
outs, and maps that ilIustrate the locations of high probability landforms. 

Explanations for and potential applications of thc modeling approach wcrc as 
follows: 

By focusing rhc analysis on where natural proccsscs ;lrc nor likely to havc procrved 
intact archacologicrl vvidcncc, as much as 93 percenr airhe study arca csn bc remu\-l-d 
bum rhc porcnri:d data basc. This docs nor nlcan rha~ sonrr cvidcncc ofprchisroric usc 
may no[ be prcscnt on rhosc arrcs, or that r hose acrr~  u w e  nor used a[ somc t imc in rhr 
p ~ s r .  It  docs mcan char cvidcncc oiusc is likcly to bcd~srurbcd, inconclusivc, or missing 
entirely from rhc record. Cndcr such circun~srances, i t  is vcry unlikely that rhc archaco- 
logical values ofany sitcs locatcd on thew acrcl; udl warrant subsranrial xchacological 
rcsourcc managcmcnr activiry, or will rcquire signiiicanr ciforr to rcsolvc conilicrs w ~ r h  
orhcr rcsourw rnan+picnr activiricb I hrildcscn lW4:5-61. 

This project succccded in identilting lands likely to contain significant prchis- 
toric sitcs, but thc methods uscd to accomplish thesc goals are problematic. First, 
there seems to h a w  bccn no systematic attempt to evaluate the quality of data in 
thc sitc files. Ifthc Oregon sitc files are similar to thosc in orhcr parts ofthe United 
States, one mighr suspect that thcy need to be "cleaned" before being used ro 
construct models. Second, the model rclics heavily on ethnographic analogy. Use of 
ethnographk information to define the areas habitually exploited by human groups 
for thousands of years and during diKercnt climatic regimcs sccrns to be oflimited 
valuc. 

Ofgreatcr concern is the approach to dcfining "significant" sitcs. Categorical 
criteria are established for defining significancc, and thcy virtually cxcludc small, 
disturbed, and plow zone sitcs, which have long been argued to be potentially 
significant (Talmagc ct al. 1977). Furrhermorc, thc criteria do not acknowledge the 
potential for somc sirc typcs (e.g., task-specific sircs or small rcsidcntial sites that 
might havc bcen disturbed by natural processes) to contribute important infbrma- 
tion regarding significant research topics (c.g., land use systems for mid-Holoccne 
hunter-gatherers). Removal of a 396,559 ha arca encompassing an undctcrmined 
number of cultural resources from the potential data basc may be premature, 
especially ifthis is doneon the basis olexisting, but unevaluated, survcy data. The  
significance critcria outlined in Wildcscn (1984) imply that significance is relatcd 
dircctly to the degrcc to which an archacological site can hc considcrcd to cncapsu- 
late an undisrortcd vicw of the past. Binlbrd hns rcspor~ded co those who share this 
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expectation by noting chat "seeking a reconstrucccd Pompcii is an unrealistic and 
unprofitable goal in ~ h c  light of knowledge we have and the data available LO us in 
(chc archaeological] rccord" (Binford 1981:206). It may be possiblc to construct a 
predictive model that can be used ro "write o r '  areas because they contain only 
insignificant sites, bur in the draft document summarized herc, Wildescn (1984) 
does nor prcsent a convincing argumenr [hat rhc data base in quesrion is adequate 
for this purpose. 

CONCLUDING COMMENTS 

This survey ofprcdicrivc locational models is intended ro prcsent informarion 
on a range of approaches ro prcdictive models in different areas and for diKerent 
kinds of cultr~ral rcsources. This appendis diikrs from [he other sections of this 
volume in char it is a sample inventory of what has been and is being done in 
predictive modeling; i t  is nor an evaluacion ofhow predictive modeling is expected 
to bc done or how it should be done in the h tu r e .  The  concluding paragraphs in the 
synopses of the projects are narrative assessments ofhow well thc projects achieved 
stated objectives and, as such, arc more judgn~ental than descriptive. 

The  goals of this survey were (a) to summarize projects representative of the 
known range ofvariation in approaches, geographic settings, and types of resources 
being modeled; (h)  to provide 3 descriptive summary and assessment of the 
individual modcls; (c) to prcsent data that facilitate comparisons among the differ- 
ent models; and(d) ro enough information to permit the readcr to make an 
independent assessment of the predicrivc locational modcling approaches 
reviewed. Although this survey was not designed to be a synthetic stacenwnt 
concerning predictive modeling, nor a critical review of individual projects, it docs 
seem appropriate to  end with n few comments of a more synthetic naturc. Those 
offered hcrc are bascd mainly on the detailed examination ofthese22 project reports 
and on a perusal of many others. 

T h e  following discussion is intended to addrcss two gcncral questions. Do 
existing niodels contributc substanrialIy to [he management ofpotcntially signifi- 
cant, nonrenewable cultural rcsources? And do they contributc information impor- 
cant ro our understanding of history or prehistory? I t  is clear that some of the 

mod& contributc information important to history or prehistory. Those 
with the potential for csplaining aspects of human behavior are likely to bc of 
special intcrcsr to archaeologists. Other predictive models provide probability 
estimates fbr cncountering a particular kind of site a[ a specific place on thc 
landscape, and that intbrmation is ofspccial interest to land managcrs charged with 
protecting significant s~tcs .  None of the models assessed herc have both explained 
signilkant aspects or' human behavior upid predicted the probabiliry of finding 
cviden~eor's~ccific behavioral patterns a t  specific places on the landscapc, howcvcr. 



Givcn the widespread perception chat culcural rcsollrce management and 
rcscarch gods are separate. and nor especially compatible, this lack of models that 
meer borh goals may not be surprising. I t  is not inevitable, howcvcr, because 
prediccivc modeling has t h c p o r d a l  to contribure informarion important to both 
managing and understanding culrural rcsourccs. Granted that prcdictivc modeling 
has not been pcrfcctcd, what has i t  contributed during the past decade? 

In the firs[ place, more sitcs are being discovered and documentcd in a wider 
range ofcnviron~ncntal scttmgs than would have becn thecasc 10 years ago. 'This is 
partially because sample surveys that provide the dara base for predicting rhe total 
number of sires are ofrcn designed specificaIly ro detect the range of sitc types in 
different settings. A t  thc same time, there is an increased awarcncsa rhar a h ~ g h  
proportion of the cstant archacological materials is likcly ro be found in a sinall 
proportion of thc landscape. Convcrscly, there is recognition of thc potenr~al rhat 
imporrant cultural rcsourccs will be discovered within those portions of the  land- 
scape with lower sirc dcnsiries. Furthcrmorr, it  is becoming clear that there are few, 
ifany, arcas without any evidence ofutilization by human groups. Thcsc contribu- 
tions mean that cultural resource spccialisrs, whcthcr managers or archaeologists, 
arc in a position ro better understand thc nature ofcuItural rcsources in a givcn awa 
and rhc disc ribu tion of different kinds of archacological ~naterials on the landscape. 

Dcvelop~nent and use of predictive models also has focuscd attention on the 
interrelationships bctwcen cnvirontncntal factors and sitc locations. 'T'he search fbr 
significant spatial correlations has identified many key environmental variables 
useful in predicting sire locations. By knowing which cnvironn~cntal settings arc 
likcly to have ecrtain kinds ofsircs, managers can dztcrminc how those areas can be 
managed with minimal cffecr on cultural resources, T h e  correlations also provide 
data bases uscful in asscssing sirc function and tcsring models abour land-use 
systems. Inclusion of information about prisr environmental settings is likcly to be 
particularly useful in understanding how and why prehistoric. groups uscd the 
landscape in a particular fashion. 

Another contribution of prvdicrivc modeling has been the compilarion of' 
quantitarive, as opposed ro qualitative, data bases. Wirh informarion on rhc 
csrimatcd density and distribution ofcultural rcsourccs, land managers can devclop 
more cf ict ive plans for the long-term conservation ofsignificanr cultt~ral rcsourccs. 
Givcn rciiablc survqf methods and quanrirative results, inter- and inrrarcglonal 
comparisons of sitc distributions can be made, along with comparisons of densities 
or other measures of the inrcnsity of use. In turn, rhc dara from these comparisons 
arc useful in resting modcls abolit many aspects of past human behavior. 

T h e  predictive rnodcling approach has also resulted in a number of trends that 
may not contribure substantially to  the acquisition oSimportant information about 
history or prchisrory. Somc of thc crcnds may actually hamper the well-informcd 
managcmenr of' nonrenewable cultural resources. Of potential concern arc the 
modcls thar provide probability estimarrs fbr encountering a generic sitc-one that 
could be ofany type or agc-at a parricular point on thc landscape. T h e  generic site 
approach can imply that all sitcs arc ofequal imporrancc, whcn cloarly rhcy arc nor. 
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Land managcrs must protect o n b  rhc significant oncs. This suggcsts the need to 
become more discri~ninating about what is being predicted. 

Although prcdictive modeling has focuscd attention on thc intcrrclationship 
b e t u w n  cnvironmental factors and site locations, there is considerable variation 
among environmental variables that ostensibly prcdict site locations. Among [he 
more common prcd~ctors are specific values for vegetation typc, proximity to water, 
landform, solar exposurc, soil typc, slope, and elevation. Site locations and bchav- 
ioral pattcrns that led to thc deposition of materials probably corrclate spatially 
wirh many other key cnvironmenral factors. Regrettably, rhe reader is ofrcn left 
with no information as to  the significance and explanatory value of these corrcla- 
tions. The  imporrancc of correlations is manifested in thcir ability ro prcdict sitc 
locations, espccialIy those judged to bc significanr in tcrms of National Regisrcr 
criteria. I n  rurn, site significance is dcrermincd by thc resource's porential to 
contribute important information. Thar detcrminacion often rcq~~i rcs  understand- 
ing ofwhy cnvironmental variables corrclate highly wirh sitc Iocations and/or with 
the kinds of human bchavior rhar account for thc site locations. 

Idcnribing key cnvironmental variables without explaining how and why rhey 
correlate with sitc locarion is tantamount to making prcdictions in a cultural and 
behavioral void. A review of thc project summaries presented here iIlusrrarcs a 
tendency to prcdict where sires should bc found without adequatcly addressing thc 
question of how humans used rhc cnvironmenr. Thcre is little discussion about 
rclarionships between rhe narurc and distriburion of basic food and nonl'ood 
resources on the onc hand and complex human land-usc sysrems on the othcr. A 
dcrailcd study of some predictive models might convince thc rcadcr that the 
primary goal is to predicr rhc distribution and densiry of prehistoric things on rhe 
landscape. Such prcdictions may be uscfuI, but usually only in conjunction wirh 
othcr data that allow greater discrimination among the things predicted. 

T h c  tendency in many prcdictive models to avoid esplanarion and to make 
predictions in a cultural and behavioral void probably is rclarcd to a trend toward 
development and utilizarion of new technologies. Computers arc the focal point of 
the ncw technologies because many of the modeIing approaches depend on complex 
sratistics and massivc data files. CIS and Landsat are examples of new tcchnologies 
rhat facilitate reliable point prcdictions. There is a danger, however, rhat thcsc 
technologies could bccome the end product, rather than sewing as a source of 
information useful in managing and understanding significanr cuItural resources. 
Given an emphasis on new tcchnologies and the finite amount oftime anu money 
allocated to cultural resource management projects, therc sccms to be little time to 
study why the archaeological record appears as it does. Natural and cultural 
transformation processes are seldom discussed, and examination ofhuman land-usc 
systcms is the exception rather than the rule in the predictive models revicwcd 
here. It should bc recognized, however, that the use ofGIS, Landsat, and mulrivar- 
iatc statistics is rclarively new in prcdictive locational modeling. As with many new 
technologies, thcy can be expcctcd robe used as a mcans to more informarive ends 
as the science of predictive modeling matures. 
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In some cases there is an overrcliancc on current vegetation and young 
landforms to predict the occurrence of sircs. An esample would be thc presence of 
sand dunes formed 4000 years ago as prcdiccors oflocations occupied by people 5000 
ycars ago. Although these two events could be related, the underlying rncchanisms 
arc seldom discussed. Equally bewildering would be the significance ofhigh positive 
correlations bcrwecn the location ofa 4000-year-old pinon-juniper forcst and that of 
a hunting site occupied 6000 years ago, when the area may havc been dominated by 
grcasewood and sagebrush. I t  would seem morc appropriate to identi+ cnviron- 
mental variables that arc useful in prcdicting sitc locations m d  csplaining the 
relationships. 

Sand dunes, forests, and other aspects ofrhe environment often act to  bury or 
obscure cultural materials. Although this statement is an axiom to cultural resource 
specialists, most predictive models are nor concerncd with the discovery ofburied 
or otherwise obscured sites. Discussions abouc dcposirional processes and thc ages 
oflandforms are scldom included in prcdictive models. In general, there is a paucity 
of discussions about the visibility of cultural materials on the surface, and discus- 
sions of survcy methods rarely include a section on techniques uscd to find buried 
sires. Only a few ofthe models reviewed here address chc relationship between the 
theoretically espccted range ofsite typcs and thc rangc ofsirc rypcs recorded in thc 
rcgion or in specific survey areas. Fluvial and aeolian processcs clearly act to  bury 
older sites in many arcas, and forcst litter obsc~rrcs hundreds ofsites in other areas. 
If predictive modeling is dcsigncd co provide uscful information on che distribution 
and dcnsity ofall sitc types, the modcls should incorporate information on deposi- 
tional and erosional proccsscs and thcir effect on the archacological record. 

Anochcr factor chat limits the potential contributions ofprcdictivc modeling is 
an ovcrrcliancc on the ethnographic record in prcdicting prehistoric site distribu- 
[ions. Investigators often assumc that thc scttlemcnt and subsistcnce pattcrns 
documcntcd in the cthnographic record are manifested throughout the archaeolog- 
ical record. In other words, the investigators assurnc that by knowing something 
about scttlcment and subsistence patccrns during the"ethnographic present" thcy 
also know where people camped and what thcy ate during the prcvious millennia. 
Detailed discussions of the time depth for thc ethnographic pattern are uncommon. 
Therc are equally few in-depth discussions abouc the kinds ofland-use systems that 
may have operatcd before human populations rcachcd historical levels, or bcforc 
thcy wcre dccimated by European discascs, or before the density and distribution of 
largc land mammals were reduced by cnvironmencal factors and/or human agents. 
Seen from this pcrspcctive, the cthnographic rccord may not providc informarion 
useful in prcdicting the locations of sitcs representative of land-use systcms w t h  
very diffcrcnc settlcmcnt and subsistcncc patterns. In hc t ,  ovcrrcliance on the 
cthnographic rccord is likely to inhibit detection of the range ofsitc typcsprcscnt in 
the archacological record. 

Finally, theremaj be a growing tcndcncy to "writc oft" large traccs ofland by 
not recommending an inventory-lcvcl survcy. Although the samplc of models 
summarized in this appcndis is nor stacktically rclprcsentative of thc univcrsc of 



predictive locational models, it is informative to note that about 23 pcrccnt of them 
include statements that either open the door to "writing of?" large tracts ofland or 
actually recommend it. None of the reports written prior to 1980 make such 
recommendations, but at least one report written that year makcs that implication. 
Two  such recommendations were made in 1983, and two others in 1984. Whcthcr or 
not there is hard evidence for a growing tendency toward such recommendations is 
debatable, and in any case thcre may be justifications for somc of those rccommen- 
dations. 

T h e  decision to  not recommend an inventory survey is usually made on the 
basis of sample survey data and/or information drawn from a review of available 
sire-file data. Areas are usually written off because no sites are expccted to  occur 
there or because those that do occur there are not expected to  be significant. T h e  
main problcm with this procedure is that chc reliability of the data base uscd for 
making the recommendation is usually questionable. T h e  reliability ofthe data base 
depends upon the soundness of survcy methods and/or upon the approach used to 
determine site signifkance. A second problem is that recommendations to a r i t c  off 
an area without conducting an inventory survey tend to be based on the distribu- 
tion of sites of known rypes, sites that were discovered using methods designed to 
find the best-known kinds ofsites. This approach does not encourage the discovery 
of unknown but theoretically expected site cy pes; rat her, it focuses on refining 
established models. Generally, this encourages additional discoveries ofsites of the 
best reprcsented kinds at thc expensc of older sites and site types that are not 
readily visiblc on the surface. Exempting large areas of the landscape from inven- 
tory survey without assessing the reliability of the data base has the potential of 
ensuring that the range of site types remains undocumented. 

T h e  use of data generated by predictive locational models to  legitimize 
no-survey recommendations is of particular concern because of the nature of 
cultural resources. Cultural resources are potentially important to  many people for 
many different reasons, and they are nonrtncmable. Once nonrenewable cultural 
resources arc written off, they are likely to be excluded from further study, 
regardless of the  validity of the rational; for this recommendation. In fact, the 
legaliry and ethics of writing offresources, especially on the basis ofdubious data, is 
now being questioned. This is evidenced by lawsuits being brought against agen- 
cics that have cleared areas containing archaeological materials and by the increas- 
ing national dialog among archaeologists about this subject (Darsie and Keyser 1985; 
Tainter 1984). 

Overall [here is considerable variability in approaches among predictive mod- 
els, both among those conducted in the sysiemic context and among those carried 
out in thc analytic context. All of the models reviewed here were developed to 
provide information uscful in thc management ofsignificant, nonrenewable cultural 
resources and/or information important to  our undersranding of history or prehis- 
tory. A1 though there are e?tamples of models that provided information of special 
use to land managers and of models useful in explaining aspects ofhuman behavior, 
nonc of the models assessed here were successful in providing both kinds of 



SURVEY OF PKEDICTIVE LOCATIOXAL MODELS 

informacion. Even so, i c  seems clcar that predictive modeling, as used in cultural 
resource management, has thepotentiul to provide both kinds ofinformacion. Given 
[he relative recency of prediccive locational modeling as a scicncifk approach in 
cultural resource managemenc, both uses a?rd nhusts ofit should be erpecced (Ambler 
1984). Likewise, it should be ancicipaced chat [he potential to contributc a wide 
range of useful information will be realized as the science of predictive modeling 
matures. This volume was designed co provide the rcadcr with information abour 
how that potential might be realized. 

Several people worked with me to bring this appendix to irs prcscnt form, and I w o ~ l d  likc to 
acknowledge thcir assistancc. Beth Miksa helped to compile thc descripcivc. information summarized 
in the tables. Eilccn Draper draficd rhc figure. Lorna Elliott willingly typed several versions of rhc 
drafr manuscript and patiently I'ormatred and rcformatted thc rablcs. Debor.~hOlson roluntccrcd her 
assistancc in proofing the manuscript. Tim Rohlcr construcrively criticized carlicr versions o i  rhc 
manuscript and helped me toclarify somuoithc points I was trying to makc. Dan Martin and tticothcr 
ELM and Forcst Service pcrsonncl involved with ihc projcc~, as u d  as the chapter authori and rhc 
cditors, freely shared their ideas about prrdictiw locational modeling and otfcrcd useful suggusrions 
for how one might go about summarizing, comparing, and assessing the resul~s ofdiITcrrrnr modcling 
ellorrs. They also provided refercnccs for dozcns ofpredictivu locntiond modcls. I would cspccidly 
likc to thank the anonymous reviewers for poinring out inconsistcncies in the review draft. Finally, 
Junr-el Pipcr and Ly nne Scbas tian merit spccial acknowledgment for t hcir diligence and hard work in 
transforming my h a 1  draft into something signilicantly more prcscnrnble. Alrhough rhosc who 
assisted me descrve credir Ibr thcir idcas and orhur contributions, I bear thc responsibility for thc 
contents of rhis appendix, including any urrors it may conrain. 
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integration, 104, 3 16 
inrcrprctarion, 101, 104, 121, 159, 386, 485 
jackknife, 399 
knowledge fiom, 98 
limits, 290 
locarional, 150, 287, 301, 339, 350, 360, 372, 378, 399,414,481 
macroenvironmental, 257 
management, 292,451 
measurement, 126,4%, 497 
microcnvironmentd, 257 
MSS, 434, 440 
new, 85, 87, 88, 257,273, 2W, 301, 302, 314, 316, 317, 355, 399, 400,406, 417,432 
nonsirc, 155,287, 347, 360, 365, 372, 373, 381, 392,411, 416,417, 497 
organization, 284 
photographic, 430,43 1 
prevention of loss, 31 L 
private, 306 
problems, 304 
processing, 25U, 494, 51 8, 536 
projccr-sprciijc vs agency-wide, 87 
proportions, 308 



Data 
qualiry of, 79, 87, 257, 287, 302, 304, 306, 307, 316, 390 
quantitative, 339, 363, 386 
q u a n t i y  of, 79, 287, 302 
raw, 386 
rcformating, 85 
regarding functional dimensions of site classes, 86 
rcxional, 79, 30j, 318, 330, 331 
relationships, 284 
reliability, 151 
rcmotc-sensing, 38, I%, 157, 371,429,430 
rrprcsentacivc, 71, 85 
rc.quircnicnts, 42, 293, 301 
restructuring, 290 
sample, 69,71,99, 147,258,261,267) 270,273, 3 13, 3 16,3 17, 353,366, 372, 374, 395,399,406, 

407 
sarellitc (scc also Landsat, SPOT), 70, 430, 432-435, 476, 480 
scalc, 284, 288 
secondary error, introduction of, 307 
scquential or flat f h ,  292 
sets For model testing and building, 43 
sct t lc~ncnt ,  86, 329 
simularcd, 372 
sitc, 41, 152, 284, 285, 291, 317, 345, 360, 365, 370, 372, 373, 381,417,481, 4W 
site contcnt, 301 
sitc locarion, 265 
sire-class definition, 289 
social, 86, 332 
sources of, 78, 79, 257,466 
sparinl, 155, 352, 358, 493 
spectra!, 346 
standardization, 288, 374, 387 
static, 102 
statisrical, 292 
storage, 2M 
subsampling, 308 
subsisrencc, 80, 86 
survcy, 37,39,71,81,154,257,260,282, 284,287,291,301,302,304,330,384,446,450,451,457 
rernporal, 289 
resr,71,73, 83, 87, 126,257, 303,316,358, 392, 395,3%,399,402,403,405,411,449,4W 
ropographic, 289 
training, 350 
rransport, 292 
unbiased, 98 
unincorporated in regional plms, 257 
usrful lbr planning, 34 

Dara analysis, 31,37,65,76,98,102,122, 126, 145,154,159,284,307,314,315,317,325-327,339, 
345, 358, 360, 374, 38 1 ,  386, 394, 395,429-43 1,434,444, 493,494 



INDEX 

Datacollcction,46,78,85,88,97-99,101,121, 122,126, 145,147, 150, 151,159,257-259,264,265, 
277,280,282,284,287,288,290,292,293,303,316,317,4&l,406,429-433,449,453,493,4%, 
497 

congruent wirh theory, 98,99, 148, 281, 345 
cost-effectivc, 126, 151 
field, 284,288,292,293 
for modeling, 72, 83, 86, 287, 316 
in CRM contexts, 277 
laboratory, 302 
mulcisccp, 2% 
on basts of intuition, 65 
on-sitc discovery rates, 308 

Data rccording, 65,79, 122, 149-151,282, 287,288,290-292 
code sheers, 291 
computcrizcd, 46, 157 
consistency of, 287 
field recording, 291 
flexibility, 288 
hand-comp1ctc.d forms, 291 
inconsisrcncy in, 151 
laboratory, 288,292 
microcompurcr, 292 
optical mark, 291 

Data synrhcsis, 80 
Dcan, 32 
Debitage, 154 
Decision 

boundaries, 350, 351, 360, 361,372, 377, 390,416,565 
rcgion, 350, 360 
rulc, 42, 314, 344, 350, 355, 360, 365, 366, 373, 374,400,403 
theory, 21,40-43, 47,48, 51, 72,79, 80-82, 84, 85, 106, 107, 175,220, 332, 335, 349, 582,631 

Dcductivc logic and/or models, 1,2,4, 14, 32, 37-39,41,46-48, 50-52,63,64,67,72,73,75,76, 
156, 158) 301,303,325,386,53 1,554-556,561,564,574,576-578,580,582,583,612t 621,622, 
630 

Density-contouring algorithms, 285 
Dcpendcnr variablcs, 15,63,64,69-72,82-85,203,204,213,221,243,251,326,339-341,371,394, 

437, 454, 463, 529, 550, 567, 61 I 
Depositional processes (see also ArchacoIogical record; Discard behavior), 37,44,79,82,102, 

123-128,143,145-147, 152,155, 157, 158,259,260,275,276,281,293,434,466,467,469,475) 
476, 574, 577, 584,615, 639 

Dichoro~nous rcsponsc variable, 219, 340, 371 
Diflcrcnrial equations, 61, 84 
Difhision, 25 
Digital image procc*ssing, 158, 431, 435 
Dimensionality, 185, 233 
Discard bchavior (see also Depositiond proccsscs), IM, 155, 466 
Discrere variablcs, 183, 186 



Discriminant 
function analysis, 44,45,69,73-75, 173,174,183,210,213,T20-T22,224,225,233,235,237,242, 

247,248,251,320,355,344,366,371,372,382,387,394,396, 415,455,456,554,575,579,616, 
617,628, 629, 632, 633 

scores, 227,229, 235, 237 
Discriminating variables, 73,221,223, 3 4 ,  3 8 ,  233-235,237, 247, 363 
Distance to drainage variablc, 346, 357, 364,479, 497, 518, 613, 622, 624,629,633 
Disrancc to vantage variable, 364, 624 
Division of labor, 26 
Dolores Iiivcr Valley, 20 
Domcsrication of plants andior animals (see also Agricdturc), 23, 134, 330 
Doublc-blind tcst(s), 87, 287 

E 
Economic intensification (see Intcnsihcation) 
Ecosysccm, 25 

definiiion of, 130 
Ecosystcmic 

perspccrivc, 29, 105 
vxiables, 7, 107, 122, 128, 134, 143, 160, 434,466, 478, 479,482, 485, 552 

Edge cucct (sec also Crcw spacing; Sampling), 262, 264, 482 
Eigcnvalue, 227, 232 
Elevation variable, 352, 479, 511, 516, 518, 622 
Ellen, 25, 26, 29 
Empirical/corrclacive modcls (see Corrclativr modcls) 
Empiricism, 28 
Environmcntnl 

dctcrminism, 25, 28 
factors, 5,21-25,27,72,82, 107, 135, 141, 142,205,258,332,356,456, 519,550,559,437-639 
variables, 4-6, 10,20,28-30,31,33,44,66-68,70-72,74,80,81,84, 107, 122, In, 128,132,136, 

138, 139,142,144,200,205,208,210, no, 248,279,288,318,327,330,349,357,364,377, 417, 
435,438,439,444,446,447,455,456,459,460,463,466,479,497,515,529,53 1,555,567,579, 
584,611,620,622, 628,629, 632,633, 637-639 

Eskimo 
Ccntral, 25 

Estimation 
dcfini~ion ol; 68 
Icast-squares method, 216, 217, 218, 219 
maximum likelihood method, 195, 219, 364, 367, 374, 377, 390,454, 455,482, 538 
paranwrer, 16, 44, 68, 69, 219, 281, 372, 560 

Ethnoarchaeologiscs, 37, 112 
Ethnographers, 37,2'i7 
Erhnographic 

analogy, 40, 79 
conrent, 47,79,81, 104, 107, 108, 111-115, 143, 145, 156,257, 345,388,466,532,608,617,618, 

63 1 ,  632, 635,639 
models, 39, 608 
rccord, 4, 41, 51,608, 618,639 
rcsrwch, 30,75, 78,79 



INDEX 

Ethnohisron, 41, 78, 113, 145, 257,621 
Euclidean distar~ce, 373 
Evans-Pritchard, 23 
Ilvolur ion, 

biological, 24 
culturtl, 24 

Evolu[ionary ecology, 29, 46 
Execurivc Ordcr 11593, 34 
Explanation, 1, 3, 4,6, 8,9, 14,22,24-26, 29, 37,61,67,75, 100-102, IM-106, 121, 128, 154, 158, 

160,1b1, 195,212,215,220,259,386-389,401,429,463,465,466,479, 481,555,574,577,624, 
633-635,638 

Explanatory 
niodcls, 4, 6-9, 14, 37, 52, 61, 105, 265, 463, 573, 576, 578, 580 
variables, 213, 214, 216,218, 219 

Exploratory data analysis, 201-203 
Exponcnrial distriburion, 196, 198 
Esposurc variable, 624 

F 
F-to-cr~tcr/F-ro-re mot,^, 238, 241 
Factor analysis, 185, 208, 210, 212 
Factorial, 191 
Falsifiabiliry, 15, 39, 102, 564, 583, 622,632 
Fisher's liricar discrirninar~t function, 234 
Flanncry, 29 
Food rcsourccs, 32, 40, 42 
Foragers (sce also Collectors), 35, 50, 1 13, 130, 133-135, 137, 141, 142 
Foraging radius, 109, 110, 112, 113, 118, 119, 134, 135 
Forest Scrvicc, 9, 10, 34, 75, 79, 97, 535,408, 618, 619,621, 625, 626,631 
Forniacion proccsscs (we Archaeo!ogical record; Transformarion processes) 
Fuel rrsourccs, 32, 40 
Functionalism, 23 

G 
Gain 

definition of, 329, 343 
statistic, 329, 344, 347, 361, 365, 366, 371, 374, 377, 378, 381, 40.1, 565 

Gamma distribution, 196, 199 
Gcnrralis~ cricorlncer srraregy, 110, 117, 133 
General~zability, 5, 6, IS, 39, 42, 50-52, 67, 583 
Generalizing in sciencc, 4-7,9,15, 16, 19,23,38,39,40,42,45,47,48,50-52,67,69,72,74,85,86, 

127, 174, 175, 18 1, 182, 189, 195,200,234,241-243,246-248,250,257,258,261,265, 279,281, 
302,386,388,435,437-439,447,465,466,470,476,478,563,565,574,583,612,614, 618,622 

Grnotypc, 46 
Gc.oarchacology, 123, 293, 469 
Geographic determinism, 23, 24 
Geographic information system (CIS), 10, 17,38,46,51,97,98, 143,186,302,313,318,320,349, 

352, 363, 344, 366, 383, 384, 416, 439, 444, 451, 485, 493-543, 557, 568, 578, 579, 583,610, 
622-624, 638 



INDEX 

Gcographic information systcm (GIs) 
andytic surbces, 501 
data planes, 501 
digital clevarion models, 5-92 
raster or cell-based, 501 
vcctor-bascd, 50) 

Gcomctric distribution, 191, 192 
Geography, 20,21, 24 
Geological Survey (USGS), 333 
Geomorphology, 260,275 
CIS (see Geographic information system) 
Glacken, 22 
GoId, 2 I 
Goodness-oT-ht (scc dso  Statistical, fit), 66, 363, 378, 381,405 
Grass Mesa, 20 
Gravity model, 75, 338, 531 
Great Basin, 26,27, 79, 82, 110, 113, 145,283, 581, 585, 632-634 
Grcat kiva, 338 
Grecn, 

Dee, 75, 4Y9, 501,625 
Ernestinc, 33, 332, 345, 387 
Paul, 370 
Scanton, 29 

Grosb error (see also T y p e  I and Typc  I1  errors), 62, 63, 274, 347, 390, 565, 566 
Ground stccpncss variabIc, 516 

H 
Habitation sire, 283, 338, 519, 555, 562, 566 
Haggctt,  21 
Hardesty, 29 
Harris, 

Marvin, 24,28 
Haury, 30 
Hcircr, 30 
Hierarchical analysis, 41, 47, 52, 72, 382, 383 
Higgs, 3 1 
Hill, 

lames, 31, 32 
~ i s t o ~ r a m s ,  200, 313 
Historic Sircs Act, 34 
Historical particularism, 24, 25 
Hodgen, 22,23 
Hohokam, 20, 80,258,274,276 
Human ccology, 22,29 
Human geography, 75 
Human population 

aggregates, 33, 130,631 
analytic units, 29, 346 
change, 78, 555,633,639 
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Human population 
density, 24, 26, 31, 112, 132, 133, 195, 475, 617, 618, 633, 639 
distribution, 25,26, 30, 3 1 ,  37, 13 1 
genetic rraits, 46 
interaction, 32 
packing, 136, 141 
size vs sirc sire, 48, lC9 

Huntcr-gatherers, 5,8, 15,29,35,39,44,51, 106,112-114, 130, 133-135, 146,258,284, 332,335, 
337, 345, 356, 387,466, 479, 581,611,625,63 1,635 

Hybrid variablcs, 185,222 
Hydrographic variables, 345 
Hydrologic variables, 4-42 
Hypcrgcomerric distribution, 193 

I 
IDIMS (Digital Imagc Inlormation System), 536 
Inclusive fitness, 46 
Indcpcndcnt testing, 303, 395, 416, 567 
Indepcndcnt variables, 5, 15,33,40,63,64,67,69,71,72,81,83,85, 107,120, 127, 139, 142, 173, 

174, 181,185,202-204,208,210, 21 l,2l3-2l6,237,243,2Sl, 387,434,437,439,463,465,478, 
550, 561, 568 

Inductivc logic and/or models, 1,4, 14,28, 35,37-39,41,46,51, 52,63,64,72,73,76, 142, 156, 
264,279,447,465,470,478,545-556,561,564,567,574,576,577,58O1 582,583,611,613,614, 
622,624,628 

Industrial locarion, 21 
Inferential logic and/or models, 19, 31, 32,35,37, 38,42-44,48, 51, 52, 137, 142, 143, 174,351, 

355, 536, 539, 629 
Intcnsificarion, 5, 27, 40, 50, 131-136, 138, 139, 141, 142, 159 
Interagency Archcological Scrvices (IAS), 34, 612,613 
Intcrcorrclation, 361 
Intermountain Antiquities Computer System (IMACS), 79 
Intcrnal consistency, 15, 39, 564, 583 
Intersection of cvcnr sets, 180 
Inrervd Icvcl (scc Mcasurement, interval) 
Intuitive logic and/or models, 4, 35,63-65,68, 76, 125, 156, 207, 222, 248, 350, 554, 561 
Inventory (sec also Class I1 and Class 111 inventory) 

100 pcrccnt, 2, 34,275 
purposive selection, 260, 294, 308 

lnyo Mountains, 27 
Isaac 

Glynn, 108, 145, 146 
Isolated artilact/find/occurrences, 43,44 144, 151, 153,282-284, 305, 382, 383, 585,608,616, 

620,621,625,632,633 

J 
Jackknife test (scc Statistical validation) 
Joint lrcqucncy distribution, 202 



INDEX 

K 
Kalahari Desert, 110, 480 
King, 34, I%, 267 
Kohl, 28 
Kolrnogorov-Srnirnov (KS) one sample test, 197, 358 
Kriging, 69, 80, 340,614, 615 
Krocber, 25,26 
Kurtosis, 189, 197, 198, 200 

L 
Landform variabIe, 345, 357 
Landsat (see also Remote sensing), 44,70,71,79,355,432-485 passim, 517,540,615,620,630, 

632, 633,638 
Lcasr-cost model, 21, 39 
Least-squares method (see Estimation) 
Level-slice classifier, 373 
Limp,41,42,47, 51, 52,72, IM,406,407, 409 
Linear additive model, 42, 42 
Linear equation, 83,456,620 
Linear regression 

assumptions, 185,208, 213-215 
general, 174,2 13, 214,216, 539, 554 

Lithic quarry, 283 
Lithic scatter, 43,74,246, 283, 3W, 340, 383, 388, 410, 519, 529, 531, 552, 629 
Local relief variable, 364 
Location 

definition of, 175 
Location reuse, 48, 135 
Locational behavior, 32 
Locational bias, 306, 308 
Locational variables, 78, 81, 338 
Logical models, 63, 85 
Logistic mobility, 11 1, 113, 121, 130, 134 
Logistic regression, 69,73-75, 173, 174, l83,210,213,216,219,242,247,248,251,320,JJO, 341, 

355,360,361,363,364,371,372,378,38t, 384,387,406,415,444,457,460,519,531,554,624, 
630 

Logis tical radius, 1 I0 
Lognormal distribution, 196, 198 
Low-density artifact scatter, 286, 289,290 

M 
Magnet sites, 20, 80,81, 258, 269, 273475,280, 281, 293, 561 

definition of, 258 
Mahalanobis generalized distance tneasurc, 209,234, 241,244 
Maine, 46, 48,611,612 
Mainframe computers, 290, 292 
h4anagemcnr dccisions, 67, 73, 74, 87, 549-551, 559, 563, 571, 575, 578,627,640 
Managemenr needs 

definition of, 559 
influence on survey design, 277 
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Map-based variables, 186 
Map interpolation techniques, 69, 72, 80, 508, 510 
Mappable variables, 248 
Marginalism, 42 
Marsh, 24 
Mathematical models, 74, 85, 186, 393, 463 
Maya Indians, 33 
Maximum likelihood method (see Estimation) 
Mean, staristical, 189, 194, 1%- 198,200-202,214,220,224,225,227,229,237,244,261,267,268, 

271,272,279,311,313,332,351,357,358,36I, 364,365,370,373,374,377,394,395,403,404, 
454,620 

Mcans analysis, 285 
Measure of dispersion, 189 
Measure of locar ion, I89 
Measurement 

categorical, 35, 216, 221, 251, 332, 335, 341, 350, 351,457, 505, 506 
interval, 35,182-184,186,187,I97,l99,208-210,216,221,232,251,291,332,337,346,371,554, 

558, 584 
level of, 35,41-43, 64, 182-185, 186,202, 209,221 
nominal, 35,39,183,199,202,208,216,251,291,332,333,340,345,346,371,4%, 505,513,554, 

584 
ordinal, 35,41, 42,48, 183, 184, 199, 202,216, 291, 335, 371, 554, 584 
ratio, 35, 41, 43, 182, 184, 199, 208-210, 216, 221, 251, 554 

Mcasuremcn r spacc 
definition of, 350 

Median, statistical, 189, 200, 357 
iMcsolithic, 3 17, 3 18, 320-322, 33 1, 383-385, 532 
Mid-Atlantic, 48, 612 
Middle-range theory, 102, 117, 144, 155, 158 
Micrcndorf, 39-41, 581, 617, 618 
Minimum dislznce classifier, 373 
Mini-site, 146 
Mobiliry pattrrns, 4, 109-1 11, 146 
Mode, statis~ical, 189 
Model building 

definition of process, quantitative predictive models, 204 
steps, 76 

Model performance, 16, 242, 244, 247, 302, 303, 314-316, 322, 327, 344, 347, 353, 355, 357, 
361-363,366,371,372,377,389,392,393,395,3%,3!W, 400,404,4i)6,410,411,414,415,52I, 
532, 563 

Model refinement, 6,10,15,21,38,45,78,87,152,282,317,493,532,552,555,560,561,579,580, 
627, 628,632 

Model testing, 10, 15, 38,43, 87, 316, 347, 406,408,497, 528, 531, 532, 553, 559-561, 564-566 
rheorrrical vs statistical, 1 0 j  

Modcl validation, 72,75, 87, 174, 242-244,246, 247, 355, 386, 565 
Modcl verification, 2,7, 38, 242,243, 246,251, 288, 308, 386, 476,494, 583 
Model(s) 

dcfinition of, 61 
hierarchical clustering, 279 
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Modcl(s) 
m u l ~ i s ~ c p ,  250 
rgpcs of, 15, 63, 85, 173, 554, 556, 560 
ut~l i ty ,  5, 6, 10, 32, 52, 61, 72, 73, 160, 329, 347, 400, 402, 405, 447, 556, 561, 567, 575, 633 

Modcling 
definition of, 101 
gods, 308 

h4onism, 29 
Montcsquicu, 23,24 
Morgan, 24 
MOSS (,Map Overlay and Statistical Systcm), 504, 535 
Moundvillc, 258 
Multicollinearity, 185, 208, 214, 215, 221, 222 
Multinomial distribution, 193 
Multiple activity scts, 123 
Multiplc linear rcgrcssion, 33, 42, 69, 71, 157, 210, 242, 371 
Mulristcp sampling, 261, 294 
X.lultivariate 

classification, 370, 394, 538 
distribur ions of variables, 201 
logistic models, 216 
marhcmatical techniques, 84, 325, 374, 403 
mcasurc of group diffcrcnces, 233, 395 
normal distribution, 183, 223,234, 355, 371, 373 
normality assumption, 235, 364, 367 
paramccric rcchniqucs, 208 
pattern-rccognit ion modcl, 273 
prcdictivc modcl(s), 43, 203, 212, 320, 322 
site location modcls, 78, 322 
statistical modcls, 33, 182 
statistics, 173,174, 181, 182,200,202,203,208,212,224,234,238,313,314,322, 

364, 370, 583, W ,  624,638 

N 
National Environmental Policy Act (NEPA), 34 
Kational Historic Prcscrvation Act (NHPA), 7, 34, 550, 575,634 
National Park Service (NPS), 148, 149, 440, 442,447, 450, 451, 470,475,482,615,627 
National Register of  Historic Placcs, 7, 34, 449, 550, 562, 627,629, 630, 634, 638 
Natural cnvironmcnt, 21, 23, 24, 26 
Natural proccsses (sec also Poscdcpositional proccsscs; Taphonomic proccsses), 101, 123, 

125, 126, 128, 151, 152, 159,259, 275,447,449, 635 
Natural selection, 29 
Navajo, 114, 148, 152, 153, 470,620 
%*gar ivc binomial distriburion, 194-196,268 
N c ~ r i n g ,  29 
Kew England, 48,612 
New Mesico, 70, 114, 122, 148, 344,442, 447, 49,451,  455,462, 470, 620, 626 
Kcyrnan Typc  A disrribution, 195 
Kcy man's allocation (see aIso Sampling), 272 
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N o  collcct~on surwy/policy, 16, 86, 151, 286 
Nominal jscc Mcaruremcnt, nominal) 
Nondimensional variable, 186 
Nonaitc 

distr~burlonal archacology, 119, 122, 144-148, 155,207, 283, 347, 478, a 8  
sitc abscnt, 56,74, 144, 174, 181,204,207,208,220-222,225,228,229,234,235,244,238,261, 

283,287, 314,326, 329, 347, 350, 351, 355-358, 360-417 passim, 442,436,4!J7-4Y9,528,531, 
616, 617, 624 

Normal (Gaussian) distribut~on, 1%-198, 200, 202,222-224, 345, 355, 403 
Normal equation, 218 
Northern I'aiutc, 27, l l l 

0 
Objcctivc rnudcls, 64, 65 
Objccrivc(s) 

analytic, 174 
choice of, 76, 260, 555 
d c h i r i o n ,  85 
managcment, 10,68,78,83,86,88, 100,257-259,282,286,549,551,555,567,571-573,609,610, 

622, 624,626, 628, 634 
mapplng, 35 
measurement, 80, 85 
modcl, 1, 6, 35, 63, 65, 554, 583 
of distributional archaeology, 138 
proccdurcs, 206, 207,210, 248, 350, 405,494 
rcscarch, 7,68,76,83,86,87, 100,237,257-259,261,264,265,2?7,28 1,282,457,549,551,555, 
6W, 610,615-617,619,621,622,624, 626,628,632, 634 

Objectivity, 28, 386 / 

Occupation 
diversity, 206 
duration ol, 48, 119, 133, 135, 444 
function of, 109, 124, 135, 143, 206, 289, 301, 321, 3 4 4  
inrcnsivc, 20, 48, 135, 206, 250,446 
muhiplc, 33, 48, 115, 116, 124, 125, 283, 289, 444, 567, 475, 616, 626, 629, 632 
peak of, 20 
recurring, 1 13, 115,259, 385 
season, pcriod or pcriodiciry of, 119, 123, 135, 301, 321,367, 61 1,617,623 
single, 116, 123, 156, 157, 467 

Off-site archaeology, 156, 148 
Operationalization,27,32,35,39,41,42,63,64,68,76, 126,143, 146,207,304,313,330,333,335, 

382, 390,430, 460, 532, 554, 555, 621 
Optimal allocation, 273, 293 
Optimal foraging thcory, 4 2 , 6 4 8 ,  50, 51,612 
Optimal location modcl, 75 
Optimizing behavior, 3 1 
Ordinal (scc Mcasuremen~,  ordinal) 
Orthogonal variable, 204 
O w n s  Valley, 27 



P 
Palcocnvironmcnt, 47, 50, 86, 143, 557, 561, 584, 612, 614, 621 
Paleocnvironmcnd reconstructions, 29 
I'alcoindian, 6, 276, 308, 330, 344, 475, 614, 616, 617, 620, 621 
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