
 

 

 
 
 

 

 
 

 

 

 

 

To: Alan Shepherd (BLM), Amy Dumas (BLM), Robert Hopper (BLM) 

From: Bruce Lubow (CSU), Jason Ransom (USGS), Gail Collins (USFWS) 

Date: 18 August 2010 

RE: Memo on Tri-State Horse Survey Results
 

*Note: This memo is intended for internal use by the addressee(s) and to provide information specific to 
management needs. It has not been peer-reviewed and is not considered published literature by the 
USGS. 

Summary 

An extensive aerial survey of wild horse populations in 20 Federal management units in 
the tri-state areas of California, Oregon, and Nevada was conducted in June 2010 by USFWS 
and BLM personnel. Data were analyzed by USGS to provide statistical estimates of sighting 
probabilities as a function of individual observers, horse group size, horse activity, distance of 
horses from the observers, vegetation characteristics, and terrain type. These estimates were then 
used to correct the raw counts for systematic biases (undercounts) that inevitably occur on 
wildlife surveys. The statistical methods also provided estimates of the likely error (uncertainty) 
in measuring the size of this population. Sighting probabilities were generally very high; overall, 
97.7% of the estimated population was seen by at least one of the 4 aerial observers. Estimates of 
the number of horses present in the various management units at the time of the survey ranged 
from as few as 3 to as many as 1,236. The combined estimate for the entire area surveyed was 
4,315 (95% CI = 4,234-4,424) horses. Although some unquantifiable errors could remain, these 
are most likely to have resulted in our estimate being too low rather than too high. The excellent 
sighting conditions and resulting high sighting probabilities strongly support the use of these 
estimates as a basis for management decisions.  

Field methods 

A series of flights was conducted on 9 days over a 10 day period from June 20 to June 29, 
2010 to survey mostly contiguous Federal Lands (USFWS and BLM) in the tri-State area 
surrounding the common borders of California, Oregon, and Nevada (no flights were conducted 
on June 25). The survey was flown in a fixed-wing airplane (Cessna 210 Turbo) along parallel 
transects running north and south, spaced 1.5 miles apart. To attempt to minimize the potential 
for horse movement between survey days, where possible, barriers to movement (fences and 
terrain) were used as break-off points to divide the larger survey area.  A pilot and 3 additional 
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observers from USFWS and BLM independently recorded groups of horses when sighted, along 
with the number of horses in each group and several additional variables that were expected to 
affect the probability of sighting a group. These variables included the terrain type (rugged or 
not), distance from the aircraft (0-0.25 mile, 0.25-0.5 mile, 0.5-1.0 mile, or 1.0-1.5 miles), cover 
type (open grass or other unobstructed versus trees or shrubs), percentage of the area where 
horses were located that was covered by potentially obstructing vegetation (shrubs or trees), and 
horse movement (moving or still). Groups were recorded by position relative to the flight line, 
either left, right, center, or both (spread across the flight line and visible to observers on both 
sides). 

Each of the 4 observers independently searched for horses. When necessary, observers 
could announce the sighting of a group to all members of the team so that the plane could circle 
back to allow for a more careful count of the group size and recording of covariates.  Presence of 
a group was announced only after the plane had fully passed a beam of the group giving all 
observers a chance to see it independently. Observers who had not seen a group prior to an 
announcement recorded the group as missed (not seen). In all cases, a single set of covariates 
was determined for each group by consensus of the observers—only the initial success or failure 
in sighting a group was determined independently for each observer. The same pilot (left side) 
and two observers on the right side (front and back) remained in the same positions on all flights. 
Three additional observers took part in portions of the survey, taking turns over the several days 
in the back-left seat. 

Analysis Methods 

We used the Huggins closed capture model structure in Program MARK to fit multiple 
plausible models of sighting probability to the data. This model enables inclusion of covariates 
that affect sighting probability of individual groups as well as accounting for differences among 
the observers of the survey. The model of sighting probability for group i is a logistic function 
of the following form:   

ൌ௜݌ ିሺఉ ݁1 ൅  ෡೚್ೞା ఉ

1
	
෡ಿேା ఉ෡೅்೔ାఉ෡ಲ஺ା ఉ෡ಳ஻ା ఉ෡಴஼೔ା ఉ෡ವ஽೔ା ఉ෡ಾெ೔ା ఉ෡ೇ௏೔ሻ 

Where: 

 መ௢௕௦=Estimated intercept for a specific observer and group position combination (seeߚ
table 1) 

 መே = estimated slope for group size effectߚ
 መ் = estimated slope for terrain effectߚ
 መ஺ = estimated slope for first back-left observerߚ
 መ஻ = estimated slope for second back-left observerߚ
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 መ஼ = estimated slope for cover type effectߚ
 መ஽ = estimated slope for distance effectߚ
 መெ = estimated slope for movement effectߚ
 መ௏ = estimated slope for vegetation effectߚ

N = group size (no. horses) 
T = terrain type (rugged=1, other=0) 
A = first back-left observer (1 if observer A present, 0 otherwise) 
B = second back-left observer (1 if observer B present, 0 otherwise) 
C = cover type (open=1, other=0) 
D = distance to mid-point of distance category: 0.125, 0.375, 0.75, or 1.25 miles. 
M = movement (moving=1, still=0) 
V = proportion of ground covered in obscuring vegetation (shrubs or trees) 

(Some additional model structures were considered, but received minimal support. These are 
detailed in Table 2).  

The rear observers had no ability to see horses along the center of the transect line 
(directly in front of the plane). Similarly, the front-right observer was too short to easily see over 
the console and consequently did not attempt to survey the centerline. The pilot scanned both 
sides of the flight line for other aircraft as well as horses, whereas the other observers focused 
strictly on surveying their own side. (One instance of a rear observer sighting a group on the 
opposite side of the plane was an anomaly and was excluded from the analysis.) Sighting 
probabilities were assumed to be the same for groups recorded as being on the same side as an 
observer or on both sides of the flight line. We assumed that the pilot had equal sighting 
probability for groups on the same side and on the center line because there were too few 
observations on the center line (2) to estimate a separate probability and because no other 
observers could see the centerline and we thus had no way to estimate the pilot’s ability there. 
Given these considerations, the parameters we included for ߚመ௢௕௦ were as follows: 

Table 1. Intercept parameters of sightability model for various observer, horse position 
combinations. 

Horse Group Position 
Observer Position Left Right Both Center 
Front-left (pilot) β1 β2 β1 β1 
Front-right 0 β3 β3 0 
Back-left β4 0 β4 0 
Back-right 0 β5 β5 0 
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Thus, ߚመ௢௕௦ represents these estimated 5 parameters. We also considered one simplified model 
with rear observers having equal probability (β4 = β5), thereby reducing the observer parameters 
to 4. We designate these alternatives as ߚመ௢௕௦,ହ and ߚመ௢௕௦,ସ. We did not consider models with either 
pilot or front-right observer probabilities set equal to any other values, because preliminary 
analyses indicated that such models received essentially no support from the data. We considered 
35 models with various combinations of the observer and covariate parameters (Table 2).  

To fully account for all of the measurable sources of uncertainty, we applied a bootstrap 
procedure. We constructed an empirical population containing one group with identical 
observation values to the actual groups seen for each whole group estimated from that 
observation, plus an additional group with a probability equal to the fractional portion of the 
estimated number of groups. In other words, for a group with a sighting probability of 0.4, we 
would estimate 1/0.4 = 2.5 groups. The empirical population would contain 2 groups with values 
identical to the one actually observed, plus a third identical group with 50% probability in each 
bootstrap simulation. 

We then simulated the survey of each empirical population by randomly determining 
which observers saw each group, based on the original estimates of their group-specific 
probability of sighting that group. Next, we refit all of the mark-resighting models in the 
inference set (those with QAICc < 4.0 in the original analysis) to the simulated survey data and 
computed population estimates from the simulated data with the sighting models refit to these 
simulated data and using the model weights calculated from this refitting to the simulated data. 
We repeated this process (simulate an empirical population, simulate a survey of this population, 
fit models to the simulated data, and compute weighted estimates) for 99 simulation iterations 
and recorded the population estimates from each. We calculated standard errors for the original 
population estimates as the standard deviation of the 100 estimates (99 simulated plus 1 original) 
and the 95% confidence intervals as the 2.5-percentile and 97.5-percentile of the simulated 
values. These error measures fully account for binomial sampling error, sighting model 
estimation error, covariances in sighting probabilities, model selection error, and extra-binomial 
variation (lack of model fit). 

Results 

The variance inflation factor for the most general model was 1.87, so we made inferences 
using quasi-likelihood methods. Of the 35 models considered, 17 had values with ΔQAICc <4.0. 
The effect of group size was overwhelmingly supported (QAICc evidence ratio 388:1) and, as 
expected, sighting probability increased rapidly with group size. There was stronger support 
(QAICc evidence ratio 2.73:1) for the ߚመ௢௕௦,ସ intercepts (left and right rear observers had equal 
sighting probability) than for ߚመ௢௕௦,ହ (unique sighting probabilities for back left and right 
observers). Terrain type was also well supported (QAICc evidence ratio 1.92). We included these 
17 in the inference set for further analysis. Other effects were weakly supported (QAICc 
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evidence ratio < 0.5:1). The number of horses for each management unit was estimated using the 
QAICc weighted estimates from all 17 models in this set, which takes into account all of the 
various effects of covariates to the extent that the weight of evidence supports each effect.  

Based on the most strongly supported model, sighting probabilities were high for all 
primary observers and adequate for the pilot. For a horse on the same side as the observer under 
worst-case sighting conditions (a single horse, group size = 1, in rugged terrain), the front right 
observer had an estimated sighting probability of 64.9%, the rear observers had 82.5%, and the 
pilot had 26.5%. These values rose to 77.5%, 89.7% and 40.2%, respectively, for a single horse 
in even terrain. For a typical group (~10 horses) these sighting probabilities (in even terrain) rose 
to 92.3%, 82.5% and 47.8%, respectively. Sighting probabilities rose rapidly with group size and 
were essentially 100% for all observers for the largest group (188 horses). Bear in mind that the 
probability of missing a group is the combined probability of both front and rear observers 
missing it. So, in the case of a group of 10 in even terrain, the sighting probability is 1 – (1­
92.3%)·(1- 82.5%) = 98.7% on the right side and 1 – (1-92.3%)·(1- 47.8%) =  96.0% on the left 
side. 

The estimated population for all 20 management units combined was 4,315 (95% CI = 
4,234-4,424) horses and ranged from as few a 3 to as many as 1,225 horses in individual 
management units (Table 3). The percentage of horses seen by observers was 97.7% overall and 
ranged from 94.0% to 99.2% across the 20 management units. Coefficient of variation 
(SE/Estimate) was only 1.2% overall and ranged from 1.0% to 38.8% across management units, 
with the largest error estimates occurring in units with very few observed horses.  

Many of the lower confidence interval limits are actually less than the number of horses 
sighted during the survey. For example, the lower 95% confidence limit for the Sheldon NWR is 
1,215 even though 1,225 horses were actually seen. This is a normal statistical result and reflects 
the fact that a confidence interval expresses what would likely happen if the survey were 
repeated. In 95% of repeated surveys, the estimate would be >1,215. Some surveys would miss 
more horses and produce lower estimates, even after corrections, than this survey actually did. 
For management purposes, it is reasonable to assume that there are at least as many horses as 
were observed during this survey, rather than using the lower confidence limit as a minimum 
number. 
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Discussion 

The reliability of these results rests on several important assumptions. It is assumed that 
all horse groups are flown over one time during the survey period and thus have exactly one 
chance to be counted. Although attempts were made to minimize the potential for horse 
movement between survey days, if horses were to move between days of the survey so as to be 
present and available to observers more than once or not at all, this could potentially bias the 
results. However, if such movements were random, so that it was just as likely that a horse group 
was available for observation twice as unavailable at any time, the results would not be biased. 
Only systematic movements would pose a potentially uncorrectable error. It is also assumed that 
all horse groups with identical sighting covariate values have equal sighting probability. If there 
is additional variability in sighting probability not accounted for in the sighting models, such 
heterogeneity would lead to a negative bias (underestimate) of the population. With sighting 
conditions as good as they were in this survey, this problem is less likely. The variance inflation 
factor indicates some minor lack of fit in the model, possibly due to heterogeneity of sighting 
probabilities, but a value of 1.87 is only slightly elevated (1.0 is ideal and values >3 are 
considered serious). A third potential bias is created if the number of horses in each group is not 
counted accurately. This is particularly likely to occur in very large groups where it is common 
to miss a few horses unless photographs or video is used and scrutinized following the flight. 
Given the various potential sources of bias, it is more likely that our estimates are somewhat 
lower, rather than higher, than the true population. Given the very high sighting probabilities 
estimated for this survey, we are confident that our estimates provide a sound and reliable basis 
for management decisions. 
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Table 2. Results of sighting probability model fitting for 9-day survey of 20 wild horse management units in California, Oregon, and 
Nevada in June 2010. Models in bold have ΔQAICc < 4.0 and were included in the inference set. 

Model 
Delta QAICc Quasi- Num. Q-

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Model 
 Tࢀ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Dࡰ෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 C࡯෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Mࡹ෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 T+Vࢀ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Tࢀ෡ࢼ+Nࡺ෡ࢼ+૞,࢙࢈࢕෡ࢼ
 Dࡰ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 C࡯෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Mࡹ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Nࡺ෡ࢼ+૞,࢙࢈࢕෡ࢼ
 N+Vࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 Dࡰ෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૞,࢙࢈࢕෡ࢼ
 Bࡹ෡ࢼ+Aࡹ෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૝,࢙࢈࢕෡ࢼ
 C࡯෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૞,࢙࢈࢕෡ࢼ
 Mࡹ෡ࢼ+Tࢀ෡ࢼ+Nࡺ෡ࢼ+૞,࢙࢈࢕෡ࢼ
 T+Vࢀ෡ࢼ+Nࡺ෡ࢼ+૞,࢙࢈࢕෡ࢼ
 መ஽Dߚ+መேNߚ+መ௢௕௦,ହߚ
 መெBߚ+መெAߚ+መேNߚ+መ௢௕௦,ସߚ
 መெBߚ+መெAߚ+መ்Tߚ+መேNߚ+መ௢௕௦,ହߚ
 መ஼Cߚ+መேNߚ+መ௢௕௦,ହߚ
 መெMߚ+መேNߚ+መ௢௕௦,ହߚ
 መேN+Vߚ+መ௢௕௦,ହߚ
 መெBߚ+መெAߚ+መேNߚ+መ௢௕௦,ହߚ

QAICc 

369.5510 
370.8652 
371.0503 
371.2149 
371.4300 
371.4942 
371.5566 
372.1293 
372.7431 
372.7949 
372.8441 
372.8699 
373.0647 
373.1415 
373.2287 
373.4373 
373.5034 
374.1240 
374.3498 
374.4602 
374.7303 
374.7749 
374.8521 
375.7978 

QAICc 

0 
1.3142 
1.4993 
1.6639 
1.8790 
1.9432 
2.0056 
2.5783 
3.1921 
3.2439 
3.2931 
3.3189 
3.5137 
3.5905 
3.6777 
3.8863 
3.9524 
4.5730 
4.7988 
4.9092 
5.1793 
5.2239 
5.3011 
6.2468 

Weights 
0.16477 
0.08541 
0.07786 
0.07171 
0.06439 
0.06236 
0.06044 
0.04539 
0.0334 
0.03254 
0.03175 
0.03135 
0.02844 
0.02737 
0.02620 
0.02360 
0.02284 
0.01674 
0.01496 
0.01415 
0.01237 
0.01209 
0.01163 
0.00725 

Likelihood 
1 
0.5184 
0.4725 
0.4352 
0.3908 
0.3785 
0.3668 
0.2755 
0.2027 
0.1975 
0.1927 
0.1903 
0.1726 
0.1661 
0.1590 
0.1432 
0.1386 
0.1016 
0.0908 
0.0859 
0.0751 
0.0734 
0.0706 
0.0440 

Par 
6 
5 
7 
7 
7 
7 
7 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
7 
7 
9 
7 
7 
7 
8 

Deviance 
357.4940 
360.8245 
356.9742 
357.1388 
357.3539 
357.4181 
357.4805 
360.0722 
360.6861 
360.7378 
360.7871 
360.8129 
356.9668 
357.0436 
357.1308 
357.3394 
357.4055 
360.0480 
360.2737 
356.3378 
360.6542 
360.6988 
360.7760 
359.6999 
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 መ்T+N*Obs1 375.9190 6.3680 0.00682 0.0414 10 355.7692ߚ+መ௢௕௦,ସߚ 25
 መ௢௕௦,ସ+N*Obs1 377.2882 7.7372 0.00344 0.0209 9 359.1658ߚ 26
 መேN+Day(7)2 377.9243 8.3733 0.00250 0.0152 12 353.7116ߚ+መ௢௕௦,ସߚ 27
 መ்T+N*Obs1 377.9416 8.3906 0.00248 0.0151 11 355.7618ߚ+መ௢௕௦,ହߚ 28
 መ்T+Day(7)2 378.0333 8.4823 0.00237 0.0144 13 351.7850ߚ+መேNߚ+መ௢௕௦,ସߚ 29
 መேN*Obs1 379.2938 9.7428 0.00126 0.0076 10 359.1441ߚ+መ௢௕௦,ହߚ 30
 መேN+ Day(7)2 379.9231 10.372 0.00092 0.0056 13 353.6748ߚ+መ௢௕௦,ହߚ 31
 መ்T+Day(7)2 380.0548 10.504 0.00086 0.0052 14 351.7682ߚ+መேNߚ+መ௢௕௦,ହߚ 32
 መ௢௕௦,ସ 382.7523 13.201 0.00022 0.0013 4 374.7252ߚ 33
 መ௢௕௦,ହ 384.6818 15.131 0.00009 0.0005 5 374.6411ߚ 34
 መெB+Day(7)2 387.9653 18.414 0.00002 0.0001 19 349.4448ߚ+መெAߚ+መெMߚ+መ஽Dߚ+መ௏Vߚ+መ஼Cߚ+መ்Tߚ+መேNߚ+መ௢௕௦,ହߚ 35

1 Abbreviated notation indicating separate group size slopes corresponding to each observer intercept. 
2 Abbreviated notation indicating slopes for each survey day except the first day (7 parameters). 
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Table 3. Population results of 9-day survey of 20 wild horse management units in California, Oregon, and Nevada in June 2010. 
Results are based on average across 17 models in inference set.  

Area Seen Estimate SE1 CV2 LCL3 UCL3 %Seen 
1 Burns -- Pueblo-Lone Mtn. HA 19 19 1.91 10.1% 19 19 99.2% 
2 Lakeview -- Beaty's Butte HMA 377 386 14.52 3.8% 350 410 97.8% 
3 Lakeview -- Outside HMA/HA 4 4 0.57 14.3% 4 4 98.0% 
4 Surprise Valley -- Bitner HMA 47 48 3.42 7.1% 41 55 98.0% 
5 Surprise Valley -- Carter Reservior HMA 6 6 1.54 25.2% 0 7 94.8% 
6 Surprise Valley -- Fox Hog HMA 300 317 15.00 4.7% 294 358 94.5% 
7 Surprise Valley -- High Rock HMA 300 303 11.48 3.8% 290 329 98.9% 
8 Surprise Valley -- Massacre Lakes HMA 148 149 4.74 3.2% 139 158 99.6% 
9 Surprise Valley -- New Year's Lake HA 100 102 4.67 4.6% 88 109 98.3% 
10 Surprise Valley -- Nut Mountain HMA 3 3 1.22 38.8% 0 7 94.0% 
11 Surprise Valley -- Outside HMA/HA 302 319 18.86 5.9% 288 362 94.7% 
12 Surprise Valley -- Wall Canyon HMA 87 88 3.00 3.4% 81 94 99.3% 
13 Winnemucca -- Black Rock East HMA4 69 71 5.64 10.7% 41 63 97.1% 
14 Winnemucca -- Black Rock West HMA 140 143 11.38 7.9% 121 168 97.7% 
15 Winnemucca -- Calico Mtns. HMA 436 450 15.33 3.4% 421 479 96.9% 
16 Winnemucca -- Granite Range HMA 154 160 13.09 8.2% 133 185 96.4% 
17 Winnemucca -- Outside HMA/HA 136 138 5.47 4.0% 126 149 98.5% 
18 Winnemucca -- Warm Springs HMA 342 350 16.64 4.7% 312 387 97.9% 
19 Hart Mtn. NAR -- Sheldon-Hart Mtn. NWRC 22 22 2.94 13.1% 14 31 98.4% 
20 Sheldon NWR -- Sheldon-Hart Mtn. NWRC 1225 1236 12.85 1.0% 1,215 1,263 99.1% 

All Areas Combined4 4,217 4,3155 50.26 1.2% 4,234 4,424 97.7% 
1 Standard Error 
2 Coefficient of variation 
3 Upper and lower 95% confidence interval
4 On group of 19 horses seen by right rear observer on left side of aircraft were included in seen and estimated values, but were not 

used in statistical analysis of sighting probability and no corrections were made for this group. 
5 Does not match sum of column due to rounding. 
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