
# HERPETOLOGICAL SURVEY OF SOUTHCENTRAL IDAHO

by

Jeremy P. Shive Charles R. Peterson





## Herpetological Survey of Southcentral Idaho

Jeremy P. Shive Charles R. Peterson

Herpetology Laboratory
Department of Biological Sciences
Idaho State University

Final Report for a FY 2000 Challenge Cost-Share Agreement between the U.S. Bureau of Land Management, Burley Field Office; Idaho Department of Fish and Game, Magic Valley Region; Idaho State University; and U.S. Fish and Wildlife Service Minidoka Wildlife Refuge

## **Table of Contents**

| Fable of Contents   2                               |
|-----------------------------------------------------|
| Executive Summary                                   |
| Introduction                                        |
| Methods 5                                           |
| Study Area 5                                        |
| Sampling Site Selection                             |
| Determination of Site Coordinates                   |
| Site Characteristics and Environmental Measurements |
| Amphibian and Reptile Sampling                      |
| Visual Encounter Surveys (VES)                      |
| Road Driving                                        |
| Aquatic Funnel Trapping                             |
| Incidental Observations                             |
| Data Management                                     |
| Results and Discussion                              |
| Site Characteristics and Environmental Measurements |
| Occurrence                                          |
| Distribution                                        |
| Relative Abundance                                  |
| Habitat Relationships                               |
| Species Accounts                                    |
| Tiger Salamander (Ambystoma tigrinum)               |
| Pacific Treefrog ( <i>Pseudacris regilla</i> )      |
| Boreal Chorus Frog ( <i>Pseudacris maculata</i> )   |
| Northern Leopard Frog (Rana pipiens) 16             |
| Longnose Leopard Lizard (Gambelia wislizenii)       |
| Side-blotched Lizard ( <i>Uta stansburiana</i> )    |
| Sagebrush Lizard (Sceloporus graciosus)             |
| Western Fence Lizard (Sceloporus occidentalis)      |
| Western Skink (Eumeces skiltonianus)                |
| Western Whiptail (Cnemidophorus tigris)             |
| Racer (Coluber constrictor)                         |

| Striped Whipsnake (Masticophis taeniatus)                          | 18 |
|--------------------------------------------------------------------|----|
| Gopher Snake (Pituophis catenifer)                                 | 18 |
| Western Terrestrial Garter Snake (Thamnophis elegans)              | 19 |
| Western Rattlesnake (Crotalus viridis)                             | 19 |
| Acknowledgments                                                    | 19 |
| References                                                         | 20 |
| Table 1. Idaho Gap Analysis Categories Found Within the Study Area | 21 |
| Table 2. Species Occurrence by Idaho Gap Analysis Categories       | 22 |
| Table 3. Amphibian Species Summary Table                           | 23 |
| Table 4. Lizard Species Summary Table                              | 24 |
| Table 5. Snake Species Summary Table                               | 25 |
| Figure 1. Southcentral Idaho Survey Locations                      | 26 |
| Figure 2. Survey Techniques and Days of the Year                   | 27 |
| Figure 3. Amphibian Life Stages                                    | 27 |
| Figure 4. Lizard Life Stages                                       | 28 |
| Figure 5. Snake Life Stages                                        | 28 |
| Figures 6-30. Maps of Survey Sites                                 | 29 |
| Appendix A. Site Photographs                                       | 54 |
| Appendix B. Standard Amphibian and Reptile Survey Form             | 73 |
| Appendix C. Survey Data                                            | 74 |
| Appendix D. Voucher Photographs                                    | 91 |
| Appendix E. Amphibian and Reptile Multiple Observation Form        | 92 |
| Appendix F. Multiple Observation Data                              | 93 |
| Appendix G. Road Driving Data                                      | 95 |
| Appendix H. Aquatic Funnel Trapping Data                           | 96 |
| Appendix I. Survey Site Information                                | 07 |

## **Executive Summary**

The primary objective of this study was to provide information concerning current amphibian and reptile occurrence throughout southcentral Idaho where few historical data are available. This information will be incorporated into the Northern Intermountain Herpetological Database, shared with Idaho Conservation Data Center, and will provide a more thorough understanding of current species distributions in southcentral Idaho. These results provide baseline data for future comparisons and management decisions in this region.

Based on current range maps, 27 species of amphibians and reptiles were identified as potentially occurring within the study area. Three potentially occurring amphibian species, the Western Toad (*Bufo boreas*), Northern Leopard Frog (*Rana pipiens*), and Columbia Spotted Frog (*Rana luteiventris*) are considered to be Sensitive Species (BLM) and State Species of Special Concern (IDFG) for the state of Idaho. The Columbia Spotted Frog is also currently a candidate for Threatened and Endangered status by the U.S. Fish and Wildlife Service. There are also three potentially occurring reptile species, the Longnose Snake (*Rhinocheilus lecontei*), Ringneck Snake (*Diadophis punctatus*), and Ground Snake (*Sonora semiannulata*) which are considered to be Sensitive Species and State Species of Special Concern.

We employed multiple sampling techniques such as visual encounter surveys, aquatic funnel trapping, and road driving surveys to increase the chances of detecting species that occur within the study area. Site surveys were conducted over 33 total days that began on 8 June 2000 and ended on 4 August 2000. We detected the presence of 16 species within the study area including the Northern Leopard Frog, which was locally abundant at the Minidoka National Wildlife Refuge. An unconfirmed incidental observation of a Western Toad on the Big Cottonwood Wildlife Management Area (BCWMA) was contributed by an Idaho Fish and Game employee, and further observations in this area are required to establish species presence. Three other amphibian species were detected including the Tiger Salamander (Ambystoma tigrinum), Pacific Treefrog (Pseudacris regilla), and Boreal Chorus Frog (Pseudacris maculata). The occurrence of Tiger Salamanders in this part of the state suggests a westward expansion of the currently known distribution. Five lizard species were detected including the Longnose Leopard Lizard (Gambelia wislizenii), Side-Blotched Lizard (Uta stansburiana), Sagebrush Lizard (Sceloporus graciosus), Western Fence Lizard (Sceloporus occidentalis), and Western Whiptail (Cnemidophorus tigris). An additional incidental observation of a Western Skink (Eumeces skiltonianus) was contributed by BLM employees from the Chokecherry Canyon area. Five species of snakes were detected within the study area including the Racer (Coluber constrictor), Striped Whipsnake (Masticophis taeniatus), Gopher Snake (Pituophis catenifer), Western Terrestrial Garter Snake (*Thamnophis elegans*), and Western Rattlesnake (*Crotalus* viridis).

Pacific Treefrogs exhibited the greatest relative abundance throughout the study area contributing 42% (56% of amphibians) to the total observations. Surprisingly, the Northern Leopard Frog had the second highest observed abundance representing 24% (33% of amphibians) of the total. Western Fence Lizards had the highest observed lizard abundance contributing 55% (8% of the total observed) to all lizard observations. Gopher Snakes were the most abundant snake species observed representing 38% (4% of total observed) of the snake observations.

#### Introduction

The primary objective of this study was to document reptile and amphibian species occurrence in south central Idaho, which encompasses Cassia county and also includes Minidoka, Power, and Twin Falls counties, a region of the state where historical observational data and formal surveys are few (McDonald 1996, Makela 1998). The collected information will provide updated records of current distributions of amphibian and reptile species in this part of the state, especially for those species considered to be Sensitive by the Bureau of Land Management (BLM) or considered State Species of Special Concern by the Idaho Department of Fish and Game (IDFG). The data will be shared with the Idaho Conservation Data Center and have also been incorporated into the Northern Intermountain Herpetological Database (NIHD) of the Idaho Museum of Natural History (IMNH), where it will be used to establish a more comprehensive understanding of current statewide species distributions and to provide baseline data for future comparisons and management decisions.

## **Methods**

## **Study Area**

The survey area extends throughout four counties in south central Idaho (Figure 1). The majority of survey sites are primarily located within Cassia County with only a few isolated survey sites located throughout the surrounding counties of Minidoka, Power, and Twin Falls. The majority of survey sites were located on the Sawtooth National Forest (55%) with shorter excursions onto BLM land (12%), U.S. Fish and Wildlife (USFWS) Minidoka Wildlife Refuge land (12%), State land (6%), and private -land (14%). With a study area this large, there is a considerable amount of variation in

habitat composition and characteristics. Elevations in the study area ranged from 1250m at Minidoka National Wildlife Refuge to 2806m at Independence Lake 4 on the Sawtooth National Forest. The lowlands are generally dominated by xeric sage-steppe habitat with an overstory of native species such as Wyoming Big Sagebrush (*Artemisia tridentata wyomingensis*) and Utah Juniper (*Juniperus osteosperma*), but also an understory of nonnative species such as Crested Wheatgrass (*Agropyron cristatum*) and Downy Brome (*Bromus tectorum*). The higher elevation forested uplands were generally dominated by species such as Quaking Aspen (*Populus tremuloides*), Douglas-Fir (*Pseudotsuga menziesii*), and Lodgepole Pine (*Pinus contorta*).

## **Sampling Site Selection**

We determined the location of survey areas based on historical observations of Sensitive Species in south central Idaho and from numerous other suggested areas of interest to local BLM and IDFG biologists. Within an identified survey area (i.e., Big Cottonwood Canyon), we chose specific sites based on background knowledge of potentially suitable habitat (i.e., wetlands or south-facing talus slopes) for the species in these areas. We took photographs of most of the sites we surveyed throughout the study for identification and to provide visual examples of the various habitats we encountered (Appendix A). Our goal was to determine which species were present in the study area, not to obtain unbiased data for modeling habitat relationships.

#### **Determination of Site Coordinates**

We collected Universal TransMercator (UTM) coordinates at each survey site and for any amphibian or reptile species observation. We used a Trimble GeoExplorer GPS

(Trimble Navigation Limited, Sunnydale, CA) receiver on 8 June 2000 through 12 June 2000, and 19 June 2000 through 23 June 2000. Due to difficulties in detecting satellites with the Trimble unit in many of the deep canyons located throughout the study area, we began using a Garmin GPS II Plus receiver following the surveys on 23 June 2000 which provided a faster and more reliable contact with satellites. We continued using this unit for the duration of the study.

We only recorded location coordinates when the displayed position dilution of precision (PDOP) was at least 7.0 or lower when using the Trimble unit, or when the estimated potential error (EPE) was 10 meters or lower when using the Garmin unit. The Department of Defense turned off Selective Availability (SA) this year which formerly was responsible for the intentional scrambling of satellite signals that created position coordinate errors of 100m or more. Currently GPS receivers are capable of determining locations with position estimate errors of only about 10m without differential correction to account for SA. Consequently, we did not differentially correct any of the recorded GPS points collected in the study.

#### **Site Characteristics and Environmental Measurements**

We collected habitat and environmental measurements at all surveyed sites and locations where species observations were made using a standard form for amphibian and reptile surveys (Appendix B, Peterson 1997). Various environmental conditions such as radiation, cloud cover, precipitation, and air temperature were recorded at each survey site. Radiation and cloud cover were visually estimated, while shaded 1m height air temperature measurements were made using a Taylor (Model 9841) digital thermometer.

We also collected data on wetland characteristics when surveying aquatic sites such as length, width, depth, water temperature, water chemistry (pH and conductivity), and National Wetlands Inventory (NWI) classification (Cowardin et al. 1979). Site length and width were visually estimated, while wetland depth was classified as either <1 meter, 1-2 meter, or >2 meter. All water temperature measurements were taken at roughly 1 cm depth and approximately 1 m from the shoreline using the same thermometer used for the air temperatures measurements. We used a TDSTester 3 ATC for all conductivity measurements, and an Oaktown pHTester 2 ATC pocket meter (Forestry Supply, Jackson, MS) for all pH measurements. Various other data were collected at each wetland site surveyed, such as primary substrate, dominant vegetation, and relative percent of shoreline with emergent vegetation. We visually estimated each of these parameters following visual encounter surveys to ensure the entire site is represented in the reported data. A comprehensive listing of all environmental conditions and habitat characteristics that were recorded are reported in Appendix C.

We also estimated a habitat classification for each survey site based on the land cover classification system developed for the Idaho Gap Analysis. Land cover classification is divided into nine major categories: Urban or Developed Land (1000), Agricultural (2000), Non-Forested Lands (3000), Forest Uplands (4000), Water (5000), Riparian and Wetland Areas (6000), Barren Land (7000), Alpine Meadow (8000), and Snow, Ice, Cloud or Cloud Shadows (9000). Within each of these major categories are sub-categories which further specify distinct habitat types, and these codes are explained when reported (Tables 1 and 2).

We calibrated the pH and conductivity meters prior to the beginning of the survey and about every two weeks until the completion of the study. Waders, dipnets, and

aquatic funnel traps were rinsed and sterilized using a diluted bleach solution (roughly 10%) in conjunction with equipment calibration to decrease the chance of transmitting disease or pollutants among wetland survey sites.

#### **Amphibian and Reptile Sampling**

Based on range maps in Nussbaum et al. (1983), Stebbins (1985), Baxter and Stone (1985), and records from the Northern Intermountain Herpetological Database, 27 species (7 amphibians and 20 reptiles) were identified as potentially occurring in the study area (Tables 3-5).

We conducted sampling at numerous times throughout the late spring and summer of 2000. Site surveys were conducted on 8 June 2000 through 12 June 2000, 19 June 2000 through 23 June 2000, 28 June 2000 through 2 July 2000, 5 July 2000 through 8 July 2000, 18 July 2000 through 22 July 2000, 25 July 2000 through 28 July 2000, and 1 August 2000 through 4 August 2000. A summary of the days we surveyed and the corresponding sampling techniques that were used on those days can be found in Figure 2.

We did not perform Calling Surveys during the study because the study began too late in the spring and breeding amphibians had already undergone mating.

Voucher photographs were taken of all sensitive species we found within the study area. The photographs can be found in Appendix D.

Visual Encounter Surveys (VES)

This method of survey was the most frequently used technique throughout the study. Using this method, we walked within an identified survey site visually searching

for amphibian and reptile species. Visual encounter surveys were employed in all terrestrial sites with the effort focused on sampling particular areas which appeared to provide suitable habitat for potentially present species. Visual encounter surveys were also made around the perimeter of wetland sites prior to entering the water, and again throughout the main portions of the site itself. Shed snake skins were collected whenever encountered and were later used to identify the species through scalation patterns.

Dipnetting and cover turning are complementary techniques to visual encounter surveys, and were subsequently used throughout the study as well. These additional sampling components were employed to maximize the possibility of detecting species that generally remain hidden within vegetation or underneath cover.

- 1. Dipnetting -Historically, this method has been proven effective at locating amphibian species hidden in submerged vegetation (Crisafulli 1997). We used a fine-mesh dipnet, and dipped approximately every 5 steps around wetland perimeters. In shallow ponds, we also waded portions of the interior wetlands to access potentially good habitat.
- 2. Cover turning -This method incorporates the lifting and turning of cover objects, such as rocks and logs, to locate animals hidden beneath them. All cover objects were returned to the original placement after turning. This method was primarily used in terrestrial sites, especially where rocks and downed logs were abundant throughout the landscape.

#### Road Driving

We drove roads in the mornings and early evenings and identified any reptiles or amphibians that were observed (Shaffer and Juterbock 1994). Roads were also continually surveyed while driving to and from survey sites throughout the study

period. Any species observations made while road driving were recorded using a standard form for amphibian and reptile multiple observations (Appendix E) and the results are reported in Appendix F. The dates that roads were driven and the corresponding results are listed in Appendix G .

## Aquatic Funnel Trapping

We used standard minnow traps to perform aquatic funnel trapping. These traps incorporate a central holding chamber with two tapered openings that direct organisms towards the traps interior. This method has proven effective for capturing amphibian larvae, but also for some adults of smaller species (Adams et al. 1997). The number of traps placed in a wetland was determined based on the general size of the wetland, and the relative area of shallow shorelines. We placed traps in a generally even distribution around a site whenever possible, and specifically in locations that contained emergent vegetation or submerged aquatic vegetation with depths deep enough to cover the openings of the traps. We also placed a few traps in open water areas so that these locations were not excluded from sampling. The number of traps placed in a wetland site ranged from four to ten possible based upon the number of traps available and wetland characteristics mentioned above. Traps were placed and left out for two nights to collect animals. Traps were placed in shallow water so that they were not completely submerged. This helped ensure that non-target species would not drown if caught accidentally. The data collected from the Aquatic Funnel Trapping are summarized in Appendix H.

#### **Incidental Observations**

We made incidental observations any time a species was located in an area that was not actively being sampled. GPS points were collected at the location of the observation, and some general descriptions of the species and location were made as well. Any observations that were contributed from an outside source (e.g., BLM or IDFG employees) were considered incidental observations.

#### **Data Management**

We entered the data into a Microsoft Excel spreadsheet for management and analysis. The data were also incorporated into the NIHD of the IMNH. Maps of species distributions were developed using ArcView 3.2 (ESRI Redlands, California) Geographic Information Systems (GIS). The topographic maps used in the creation of the species distribution maps were acquired from the Idaho All Topo Maps: Idaho software (iGage, Salt Lake City, UT).

#### **Results and Discussion**

#### **Site Characteristics and Environmental Measurements**

Throughout the study, shaded air temperatures ranged from 17.2°C to 34.9°C with an average temperature of 26.2°C. Wetland water temperatures taken at 1cm depth ranged from 14.1°C to 28.1°C with an average of 23.2°C. Water chemistry exhibited considerable variation over the course of the study with pH values ranging from 5.3 to 10.8, and conductivity values ranging from 10 mg/L to 660 mg/L.

#### Occurrence

We encountered 16 (5 snake species, 6 lizard species, and 5 amphibian species) of the 27 potentially occurring species within our study area (Tables 3-5). We detected one Sensitive Species (BLM) within the study area. Northern Leopard Frogs (*Rana pipiens*) were found at three separate locations on the Minidoka National Wildlife Refuge, and an additional observation was contributed from Murtaugh Lake. One additional incidental observation of a Western Toad (*Bufo boreas*) was reported along Big Cottonwood Creek by an IDFG employee stationed at the Big Cottonwood Wildlife Management Area (BCWMA), but this observation has not been confirmed through specimen or photograph voucher. For most cases we only sampled survey sites once throughout the study, and it is important to realize the failure to detect a particular species does not indicate that species is absent from a site.

#### Distribution

Throughout the study area we surveyed 49 sites; 29 terrestrial and 20 aquatic/wetlands. We detected amphibian or reptile species in 10 of the wetland sites (50%) and in 19 of the terrestrial sites (66%). The Minidoka National Wildlife Refuge proved to be a "hotspot" for amphibian observations, while the South Hills area (i.e. Big Cottonwood Canyon, Big Cedar Canyon, Little Cedar Canyon, Robber Gulch, Buckhorn Canyon, and Mountain Road) near the BCWMA represented the area with the most common and diverse reptile observations.

#### **Relative Abundance**

Of the 543 amphibian and reptile observations made throughout the study area, Pacific Treefrogs (Pseudacris regilla) exhibited the highest relative abundance representing 42% of the total number of observations (56% of all amphibian observations) (Figure 3). Many of these observations were of tadpoles and it is important to realize that not all of these individuals may metamorphose, mature, and subsequently contribute to the population. Interestingly, Northern Leopard Frogs, which are considered a Sensitive Species (BLM) and Species of Special Concern (IDFG), exhibited the second highest relative abundance in the study area representing 24% of the total number of observations (33% of all amphibian observations). Contrary to the Pacific Treefrog, the majority of Northern Leopard Frog observations were metamorphs that have already overcome the initial hardships of metamorphosing from tadpoles. Western Fence Lizards (Sceloporus occidentalis) had the highest relative abundance of any lizard species representing 55% of all lizard observations, but only contributed 8% to the total number of observations made throughout the study area (Figure 4). Gopher Snakes (Pituophis catenifer) had the highest relative abundance of any snake species detected throughout the study area representing 38% of all snake observations, but only contributed 4% to the total number of observations made throughout the study area (Figure 5).

#### **Habitat Relationships**

Of the nine major Idaho Gap Analysis categories for vegetation and cover classification, we identified six (Agricultural, Non-Forested Lands, Forest Uplands, Water, Riparian and Wetland Areas, and Barren Land) of these categories within the sites

we surveyed in our study (Table 4). Species occurrence throughout these recognized vegetation and cover classifications was fairly limited to one or two different habitat types, with the Non-forested Lands (specifically the Xeric Shrubland sub-category) providing the most utilized habitat (Table 5). The majority of species we identified in this study are habitat generalists (Stebbins 1985) and are not expected to be associated specifically with certain habitat types. Western Terrestrial Garter Snakes (*Thamnophis elegans*) and Racers (*Coluber constrictor*) were both considerably widespread with respect to habitat preference. We observed both species in three different vegetation and cover categories.

## **Species Accounts**

## Tiger Salamander (Ambystoma tigrinum)

The observed distribution of Tiger Salamanders was very limited and centered primarily at Sagehen Spring pond. We found 12 larvae at Sagehen Spring pond.

There were contributed observations from this site of 34 larvae, two metamorphs, and a single adult. There was an additional contributed observation of a single adult found at gravel pits near Rock Creek, south of Hansen, ID. This species is not considered Sensitive or of Special Concern, however these observations do suggest a westward extension of this species currently understood state distribution.

## Pacific Treefrog (Pseudacris regilla)

This species was the most abundant and widespread species detected in the study area. This species was locally very abundant in some sites such as

Independence Lake 3 where 200+ larvae were observed, while in other sites such as the spring below Curtis Reservoir, only a single individual was detected. We observed 219 larvae, four metamorphs, and seven adults. Three additional observations were contributed by BLM and IDFG employees.

#### Boreal Chorus Frog (Pseudacris maculata)

This species' distribution was limited throughout the study area, and was detected in only one site near the Minidoka Wildlife Refuge Headquarters. A single metamorph was observed at this site. One additional observation of this species at Murtaugh Lake was contributed by a BLM employee.

#### Northern Leopard Frog (Rana pipiens)

The observed distribution of this species was limited to three separate wetland sites at the Minidoka Wildlife Refuge. This species holds the status of Sensitive (BLM) and Species of Special Concern (IDFG) for the state of Idaho, however it was the second most abundant species found within the study area. We detected three larvae, 129 metamorphs, and two adults. A single additional observation from Murtaugh Lake was contributed by a BLM employee.

## Longnose Leopard Lizard (Gambelia wislizenii)

This species' observed distribution was limited to an area of exposed rocky desert north of the Minidoka National Wildlife Refuge Headquarters. The number of individuals observed was low, with only one juvenile and three adults found at this site.

#### Side-blotched Lizard (*Uta stansburiana*)

The observed distribution of this species was limited with only two observations made throughout the study area. One juvenile was detected in Big Cedar Canyon and an additional juvenile was detected in sagebrush-steppe uplands near Curtis Reservoir.

## Sagebrush Lizard (Sceloporus graciosus)

This species exhibited an intermediate distribution, which was mostly concentrated around the City of Rocks National Reserve, Emery Creek, and an access road near McClendon Springs. This species was the second most abundant lizard encountered during our surveys with six juvenile and 20 adult observations.

## Western Fence Lizard (Sceloporus occidentalis)

The observed distribution of this species was widespread with the majority of observations made in habitat dominated by talus slopes and exposed rocks in the South Hills, particularly in Big Cottonwood Canyon, Big Cedar Canyon, and Little Cedar Canyon. This species was the most abundant lizard species encountered throughout the study area with 12 juvenile and 32 adult observations.

## Western Skink (Eumeces skiltonianus)

This species was not detected in any of the sites that we surveyed. A single observation was contributed by BLM employees from the Chokecherry Canyon area.

#### Western Whiptail (Cnemidophorus tigris)

The observed distribution of this species was limited to one site in Little Cedar Canyon and one observation from an access road near McClendon Springs. This species' observed abundance was considerably low with only three juvenile and one adult observations made throughout the study area.

#### Racer (Coluber constrictor)

The observed distribution of this species was intermediate with the majority of sightings occurring around wetlands or riparian areas such as the pond surveyed in Big Cottonwood Canyon and near the stream in Cave Canyon. We detected four juveniles and three adults throughout the study area.

## Striped Whipsnake (Masticophis taeniatus)

The observed distribution of this species was intermediate with no particular area of concentrated observations. We observed four juveniles and three adults throughout the study area.

#### Gopher Snake (Pituophis catenifer)

The observed distribution of this species was primarily limited to the South Hills particularly on roads near the BCWMA and surrounding canyons. This species was the most abundant snake species found throughout the study area with 12 juvenile and nine adult observations. A number of these observations were road killed individuals.

## Western Terrestrial Garter Snake (Thamnophis elegans)

The observed distribution of this species was widespread with individuals detected in most of the regions surveyed throughout the study area. This species was the second most abundant snake species detected with nine juvenile and six adult observations.

### Western Rattlesnake (Crotalus viridis)

The observed distribution of this species was limited primarily to the roads near BCWMA, and a single observation from Bobcat Canyon on the Minidoka National Wildlife Refuge. We detected two juveniles and three adults throughout the study area.

## Acknowledgements

We would like to thank Paul Makela (BLM Burley Field Office) and Mike McDonald (IDFG Magic Valley Region) for the opportunity to perform this study. Funding was provided via Idaho's BLM Challenge Cost Share Program and the IDFG provided a vehicle and housing for the fieldwork. Ted Scherff (Idaho State Parks and Recreation, National Park Service) provided useful information concerning historical observations and suggestions for potential survey sites at the City of Rocks National Reserve. Steve Bouffard (USFWS) provided housing and transportation while surveying the Minidoka National Wildlife Refuge, and also provided valuable information concerning historical observations and suggestions for potential survey sites. We would like to thank Rob Wilson for contributed observations and for the initial tour of the canyons near the BCWMA. Will Hayes spent a few days in the field surveying sites and his help was greatly appreciated. We want to thank Carl Austin for the opportunity to survey on his private ranch, and also for pointing out the areas on the ranch where previous casual observations have been made.

#### References

Adams, M.J., K.O. Richter, and W.P. Leonard. 1997. Surveying and Monitoring Amphibians Using Aquatic Funnel Traps. *In* Olson, D.H., W.P. Leonard, and R.B. Bury (ed.). *Sampling Amphibians In Lentic Habitats*. Society For Northwestern Vertebrate Biology. Pp. 47-54.

Baxter, G.T., and M.D. Stone. 1985. *Amphibians and Reptiles of Wyoming*, second edition. Wyoming Game and Fish Department. 136pp.

Cowardin, L.M., V. Carter, F.C. Go1et, and E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. United States Fish and Wildlife Service Bulletin OBS-79/31.

Crisafulli C.M. 1997. A Habitat-Based Method For Monitoring Pond-Breeding Amphibians. *In Olson*, D.H., W.P. Leonard, and R.B. Bury (ed.). *Sampling Amphibians In Lentic Habitats*. Society For Northwestern Vertebrate Biology. Pp. 94-96.

Makela, P.D. 1998. A survey for northern leopard frogs (*Rana pipiens*) in the Snake River Resource Area 1997. U.S. Bureau of Land Management Idaho Technical Bulletin No. 98-8. 55pp.

McDonald, M. 1996. Amphibian survey of the Jarbidge and Snake River Resource Areas. U.S. Bureau of Land Management Idaho Technical Bulletin No. 96-13. 22pp.

Nussbaum, R.A., E.D. Brodie Jr., and R.M. Storm. 1983. *Amphibians and Reptiles of the Pacific Northwest*. Moscow, Idaho: University of Idaho Press. 322pp.

Peterson, C.R. 1997. Checklist For Amphibian Survey Reports. *In Olson*, D.H., W.P. Leonard, and R.B. Bury (ed.). *Sampling Amphibians In Lentic Habitats*. Society For Northwestern Vertebrate Biology. P. 113.

Shaffer, H.B., and J.E. Juterbock. 1994. Night driving. *In* Heyer, W.R., M.A. Donnelly, R.W. McDiarmid, L.C. Hayek, and M.S. Foster (ed.). Measuring and Monitoring Biological Diversity Standard Methods for Amphibians. Pp.163-166.

Stebbins, R.C. 1985. A Field Guide to Western Reptiles and Amphibians: The Peterson Field Guide Series. Houghton Mifflin Company, Boston. 336pp.

Thorns, C., C.C. Corkran, and D.H. Olson. 1997. Basic Amphibian Survey for Inventory and Monitoring in Lentic Habitats. *In* Olson, D.H., W.P. Leonard, and R.B. Bury (ed.). *Sampling Amphibians In Lentic Habitats*. Society For Northwestem Vertebrate Biology. P. 44.

Table 1. Idaho Gap Analysis categories found within the study area. The row headings represent the major areas in southcentral Idaho that were surveyed during this study. The column headings denote the major land cover classifications from the Idaho Gap Analysis that were present in the study area. The numbers in each cell represent the sub-categories in each of the major land classifications that were observed in each surveyed area (2000= Agricultural, 33XX= Xeric shrublands, 41XX= Broadleaf Forest, 42XX= Needleleaf Forest, 5000= Water, 61XX= Forested Riparian, 62XX= Non-forested Riparian, 63XX= Wetlands, 7300= Exposed Rock, 7301= Lava). Within each of these areas there may have been more than one site surveyed, and the data presented here reflect all of the habitat types encountered within each of these larger areas.

|                             | Agricultural | Non-Forested<br>Lands | Forest Uplands | Water | Riparian and Wetland<br>Areas | Barren Land |
|-----------------------------|--------------|-----------------------|----------------|-------|-------------------------------|-------------|
| Big Cottonwood Canyon       | 2000         | 33XX                  | 41XX           | 5000  | 61XX, 63XX                    |             |
| Cave Canyon                 |              | 33XX                  | 41XX           |       |                               |             |
| Big Cedar Canyon            |              | 33XX                  | 41XX           |       |                               |             |
| Little Cedar Canyon         |              | 33XX                  |                |       |                               |             |
| Robber Guich                |              | 33XX                  |                |       |                               |             |
| Buckhorn Canyon             |              | 33XX                  |                |       |                               |             |
| Goose Creek Reservoir       |              |                       |                |       |                               | 7301        |
| Emery Creek                 |              | 33XX                  | 41XX           |       |                               |             |
| Austin Ranch                | 2000         | 33XX                  |                |       | 63XX                          |             |
| Curtis Reservoir            |              | 33XX                  |                |       |                               |             |
| Sagehen Spring              |              | 33XX                  |                |       | 63XX                          |             |
| Cooper Property             |              |                       |                |       | 62XX                          |             |
| N. Cottonwood Cr. Reservoir |              |                       |                | 5000  | 63XX                          |             |
| City of Rocks               |              | 33XX                  | 41XX           |       | 62XX                          | 7300        |
| Minidoka Wildlife Refuge    |              | 33XX                  |                | 5000  | 62XX, 63XX                    |             |
| Raft River (BLM Exclosure)  |              | 33XX                  |                |       | 62XX                          |             |
| Independence Lakes          |              |                       | 42XX           | 5000  |                               |             |
| Sublett Reservoir           |              | 33XX                  |                | 5000  | 62XX                          |             |
| McClendon Springs           |              | 33XX                  |                |       | 61XX                          |             |

Table 2. Species occurrence by Idaho Gap Analysis categories. The row headings represent all species that were observed in our surveys, and do not reflect any contributed observations from outside sources. The column headings denote the major land cover classifications from the Idaho Gap Analysis that were present in the study area. The numbers in each cell represent the sub-category code for each of the major land classifications where those species were observed (2000= Agricultural, 33XX= Xeric shrublands, 41XX= Broadleaf Forest, 5000= Water, 61XX= Forested Riparian, 62XX= Non-forested Riparian, 63XX= Wetlands, 7300= Exposed Rock, 7301= Lava).

|                                  | Agricultural | Non-Forested<br>Lands | Forest Uplands | Water | Riparian and<br>Wetland<br>Areas | Barren Land |
|----------------------------------|--------------|-----------------------|----------------|-------|----------------------------------|-------------|
| Tiger Salamander                 |              |                       |                |       | 63XX                             |             |
| Pacific Treefrog                 | 2000         |                       |                | 5000  | 63XX                             |             |
| Boreal Chorus Frog               |              |                       |                |       | 61XX                             |             |
| Northern Leopard Frog            |              |                       |                |       | 61XX, 63XX                       |             |
| Longnose Leopard Lizard          |              | 33XX                  |                |       |                                  |             |
| Side-blotched Lizard             |              | 33XX                  |                |       |                                  |             |
| Sagebrush Lizard                 |              | 33XX                  |                |       |                                  | 7300        |
| Western Fence Lizard             |              | 33XX                  | 41XX           |       |                                  | 7301        |
| Western Whiptail                 |              | 33XX                  |                |       |                                  |             |
| Racer                            |              | 33XX                  | 41XX           |       | 62XX, 63XX                       |             |
| Striped Whipsnake                |              | 33XX                  |                |       |                                  | 7301        |
| Gopher Snake                     | 2000         |                       |                |       |                                  |             |
| Western Terrestrial Garter Snake |              | 33XX                  |                | 5000  | 62XX, 63XX                       |             |
| Western Rattlesnake              |              | 33XX                  |                |       |                                  |             |

Table 3. Amphibian species summary table. This table provides concise information about potential and observed amphibian species with their corresponding legal status, and summarizes the study results by distribution, estimated abundance, type of voucher taken, successful survey techniques (ranked), and the observed life stages. The data in this table do not reflect any contributed observations. The ratio in the distribution column denotes the number of wetland sites where this species was observed out of the total surveyed.

|                             | T                   | 1                  | T .             | T                       | T .                                     | 1                                                                      | 1                             |
|-----------------------------|---------------------|--------------------|-----------------|-------------------------|-----------------------------------------|------------------------------------------------------------------------|-------------------------------|
| Common Name                 | Scientific Name     | Status             | Distribution*   | Estimated<br>Abundance* | Voucher                                 | Successful Sampling<br>Techniques*                                     | Comments                      |
| Confirmed                   |                     |                    |                 |                         |                                         |                                                                        |                               |
| Tiger Salamander            | Ambystoma tigrinum  |                    | Limited (1/20)  | Uncommon                |                                         | visual encounters,<br>aquatic funnel traps                             | larvae, metamorphs,<br>adults |
| Pacific Treefrog            | Pseudacris regilla  |                    | Limited (5/20)  | Abundant                |                                         | visual encounters,<br>aquatic funnel traps,<br>incidental observations | larvae, metamorphs,<br>adults |
| Boreal Chorus Frog          | Pseudacris maculata |                    | Limited (1/20)  | Uncommon                |                                         | visual encounters                                                      | metamorphs                    |
| Northern Leopard Frog       | Rana pipiens        | s, sc              | Limited (3/20)  | Uncommon                | photograph                              | visual encounters,<br>incidental observations                          | larvae, metamorphs,<br>adults |
| Possible                    |                     |                    |                 |                         |                                         |                                                                        |                               |
| Western Toad                | Bufo boreas         | s, sc              |                 |                         |                                         |                                                                        |                               |
| Great Basin Spadefoot Toad  | Spea intermontana   |                    |                 |                         |                                         |                                                                        |                               |
| Columbia Spotted Frog       | Rana pretiosa       | s, sc              |                 |                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                        |                               |
| Classification Information: |                     |                    |                 |                         |                                         |                                                                        |                               |
| Names Based on Integrated   |                     | Based on Rankings  | Widespread      | Abundant                | museum specimen                         | Techniques Employed:                                                   | Life Stages:                  |
| Taxonomic Information       |                     | from the Idaho     | Intermediate    | Common                  | photograph                              | visual encounter                                                       | eggs                          |
| System (ITIS) website 2001  |                     | Conservation Data  | Limited         | Uncommon                |                                         | aquatic funnel traps                                                   | larvae                        |
|                             |                     | Center 2001        |                 | Rare                    |                                         | road driving                                                           | metamorph                     |
|                             |                     |                    | * based on this | * based on this         |                                         | incidental observation                                                 | juvenile                      |
|                             |                     | S (BLM)= Sensitive | survey and      | survey and              |                                         | ranked by success                                                      | adult                         |
|                             |                     | Species            | recently        | recently                |                                         |                                                                        |                               |
|                             |                     | SC (IDFG)= Species | contributed     | contributed             |                                         |                                                                        |                               |
|                             |                     | of Special Concern | observations    | observations            |                                         |                                                                        |                               |

Table 4. Lizard species summary table. This table provides concise information about potential and observed lizard species with their corresponding legal status, and summarizes the study results by distribution, estimated abundance, type of voucher taken, successful survey techniques (ranked), and the observed life stages. The data in this table do not reflect any contributed observations. The ratio in the distribution column denotes the number of terrestrial sites where this species was observed out of the total surveyed.

| Common Name                | Scientific Name         | Status             | Distribution*          | Estimated<br>Abundance* | Voucher         | Successful Sampling<br>Techniques*                             | Comments          |
|----------------------------|-------------------------|--------------------|------------------------|-------------------------|-----------------|----------------------------------------------------------------|-------------------|
| Confirmed                  |                         |                    |                        |                         |                 |                                                                |                   |
| Longnose Leopard Lizard    | Gambelia wislizenii     |                    | Limited (1/29)         | Rare                    |                 | visual encounters                                              | juveniles, adults |
| Side-blotched Lizard       | Uta stansburiana        |                    | Limited (1/29)         | Rare                    |                 | visual encounters                                              | juveniles         |
| Sagebrush Lizard           | Sceloporus graciosus    |                    | Intermediate<br>(6/29) | Abundant                |                 | visual encounters, road<br>driving, incidental<br>observations | juveniles, adults |
| Western Fence Lizard       | Sceloporus occidentalis |                    | Widespread<br>(14/29)  | Abundant                |                 | visual encounters, road<br>driving, incidental<br>observations | juveniles, adults |
| Western Whiptail           | Cnemidophorus tigris    |                    | Limited (1/29)         | Rare                    |                 | visual encounters, road<br>driving                             | juveniles, adults |
| Possible                   |                         |                    |                        |                         |                 |                                                                |                   |
| Short-Horned Lizard        | Phrynosoma douglassii   |                    |                        |                         |                 |                                                                |                   |
| Desert Horned Lizard       | Phrynosoma platyrhinos  |                    |                        |                         |                 |                                                                |                   |
| Western Skink              | Eumeces skiltonianus    |                    |                        |                         |                 |                                                                |                   |
| Classification Information |                         |                    |                        |                         |                 |                                                                |                   |
| Names Based on Integrated  |                         | Based on Rankings  | Widespread             | Abundant                | museum specimen | Techniques Employed:                                           | Life Stages:      |
| Taxonomic Information      |                         | from the Idaho     | Intermediate           | Common                  | photograph      | visual encounters                                              | juveniles         |
| System (ITIS) website 2001 |                         | Conservation Data  | Limited                | Uncommon                |                 | road driving                                                   | adults            |
|                            |                         | Center 2001        |                        | Rare                    |                 | aquatic funnel traps                                           |                   |
|                            |                         |                    | * based on this        | * based on this         |                 | incidental observation                                         |                   |
|                            |                         | S (BLM)= Sensitive | survey and             | survey and              |                 |                                                                |                   |
|                            |                         | Species            | recently               | recently                |                 |                                                                |                   |
|                            |                         | SC (IDFG)= Species | contributed            | contributed             |                 |                                                                |                   |
|                            |                         | of Special Concern | observations           | observations            |                 |                                                                |                   |

Table 5. Snake species summary table. This table provides concise information about potential and observed snake species with their corresponding legal status, and summarizes the study results by distribution, estimated abundance, type of voucher taken, successful survey techniques (ranked), and the observed life stages. The data in this table do not reflect any contributed observations. The ratio in the distribution column denotes the number of survey sites where this species was observed out of the total surveyed (all sites were included for those species which may be found terrestrially or at wetlands).

| Common Name                      | Scientific Name       | Status             | Distribution*          | Estimated<br>Abundance* | Voucher         | Successful Sampling<br>Techniques*                                                   | Comments          |
|----------------------------------|-----------------------|--------------------|------------------------|-------------------------|-----------------|--------------------------------------------------------------------------------------|-------------------|
| Confirmed                        |                       |                    |                        |                         |                 |                                                                                      |                   |
| Racer                            | Coluber constrictor   |                    | Intermediate<br>(4/49) | Common                  |                 | visual encounters, road<br>driving, incidental<br>observations                       | juveniles, adults |
| Striped Whipsnake                | Masticophis taeniatus |                    | Intermediate<br>(2/49) | Common                  |                 | visual encounters, road<br>driving                                                   | uveniles, adults  |
| Gopher Snake                     | Pituophis catenifer   |                    | Widespread<br>(2/29)   | Abundant                |                 | visual encounters, road<br>driving, incidental<br>observations                       | juveniles, adults |
| Western Terrestrial Garter Snake | Thamnophis elegans    |                    | Widespread<br>(8/49)   | Abundant                |                 | visual encounters, road<br>driving, aquatic funnel traps,<br>incidental observations | iuveniles, adults |
| Western Rattlesnake              | Crotalus viridis      |                    | Intermediate<br>(1/29) | Common                  |                 | visual encounters, road<br>driving                                                   | juveniles, adults |
| Possible                         |                       |                    |                        |                         |                 |                                                                                      |                   |
| Rubber Boa                       | Charina bottae        |                    |                        |                         |                 |                                                                                      |                   |
| Longnose Snake                   | Rhinocheilus lecontei | s, sc              |                        |                         |                 |                                                                                      |                   |
| Ringneck Snake                   | Diadophis punctatus   | s, sc              |                        |                         |                 |                                                                                      |                   |
| Ground Snake                     | Sonora semiannulata   | s, sc              |                        |                         |                 |                                                                                      |                   |
| Night Snake                      | Hypsiglena torquata   |                    |                        |                         |                 |                                                                                      |                   |
| Common Garter Snake              | Thamnophis sirtalis   |                    |                        |                         |                 |                                                                                      |                   |
| Classification Information:      |                       | Based on Rankings  | Widespread             | Abundant                | museum specimen | Techniques Employed:                                                                 | Life Stages:      |
| Names Based on Integrated        |                       | from the Idaho     | Intermediate           | Common                  | photograph      | visual encounters                                                                    | iuveniles         |
| Taxonomic Information            |                       | Conservation Data  | Limited                | Uncommon                |                 | road driving                                                                         | adults            |
| System (ITIS) website 2001       |                       | Center 2001        |                        | Rare                    |                 | funnel traps                                                                         |                   |
|                                  |                       |                    | * based on this        | * based on this         |                 | incidental observation                                                               |                   |
|                                  |                       | S (BLM)= Sensitive | survey and             | survey and              |                 |                                                                                      |                   |
|                                  |                       | Species            | recently               | recently                |                 |                                                                                      |                   |
|                                  |                       | SC (IDFG)= Species | contributed            | contributed             |                 |                                                                                      |                   |
|                                  |                       | of Special Concern | observations           | observations            |                 |                                                                                      |                   |

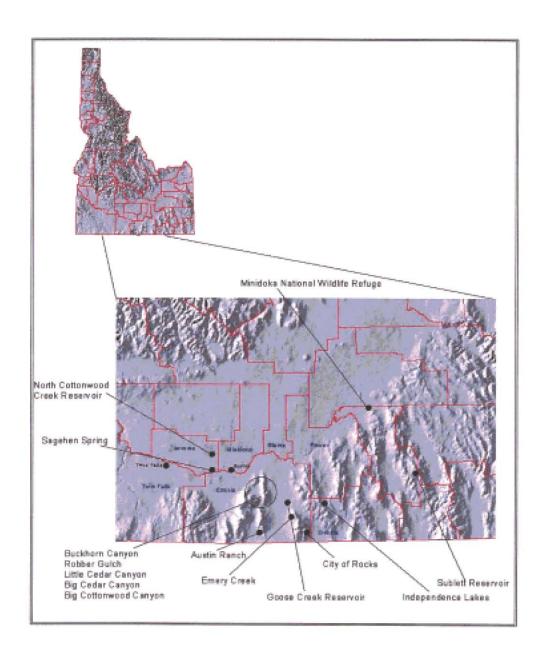



Figure 1. The southcentral region of the state showing the locations of the specific areas where we surveyed for amphibians and reptiles. The red lines delineated county boundaries and the county names are listed in blue. Twin Falls and Burley are shown for geographic reference.

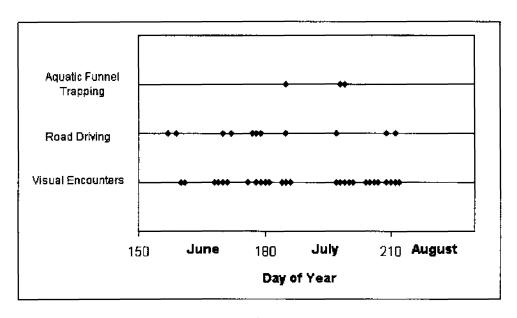



Figure 2. Days of the year when we surveyed and the corresponding sampling techniques used on those days.

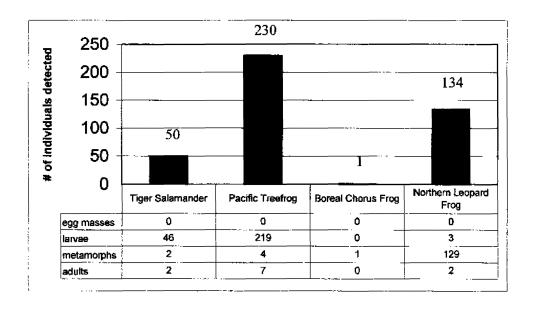



Figure 3. The amphibian species and corresponding life stages observed throughout the survey. These numbers do not reflect any contributed observational data that did not report a life stage with the submitted information.

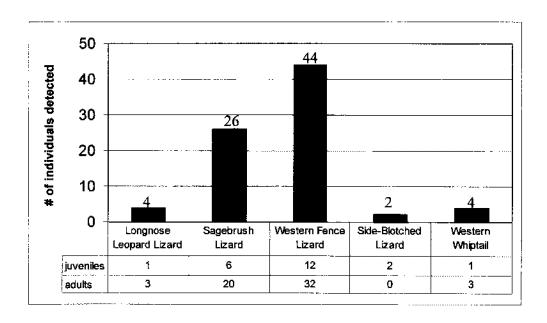



Figure 4. The lizard species and corresponding life stages observed throughout the survey. These numbers do not reflect any contributed observational data that did not report a life stage with the submitted information.

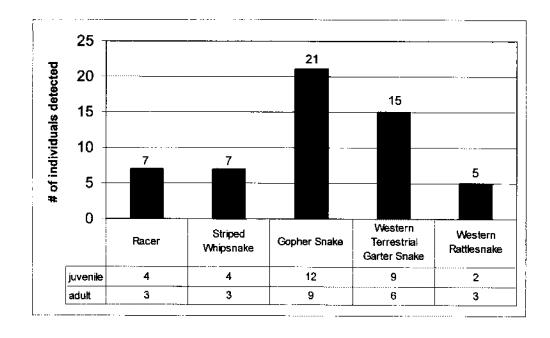



Figure 5. The snake species and corresponding life stages observed throughout the survey. These numbers do not reflect any contributed observational data that did not report a life stage with the submitted information.

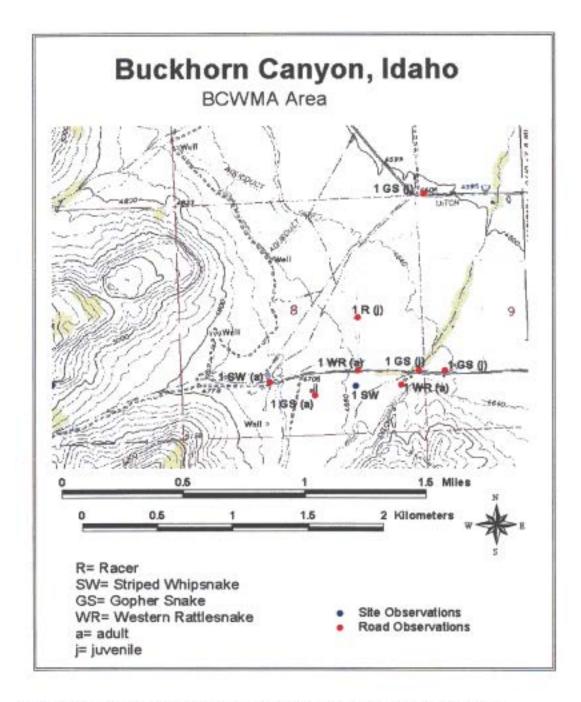



Figure 6. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

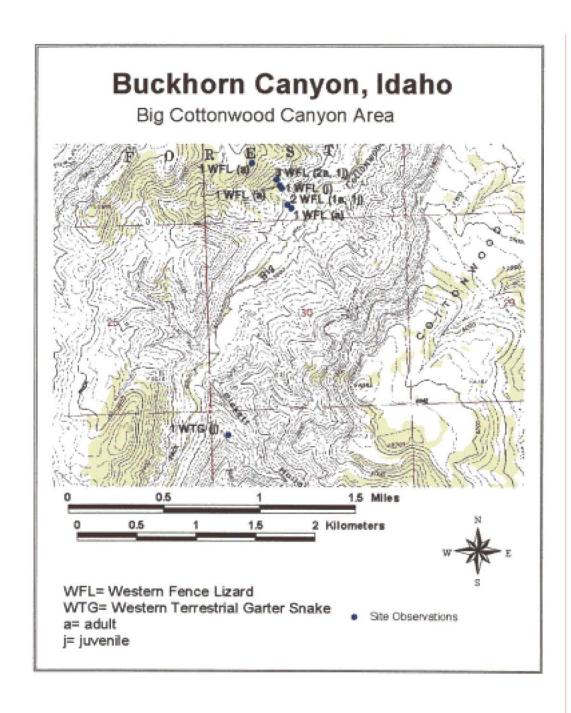



Figure 7. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

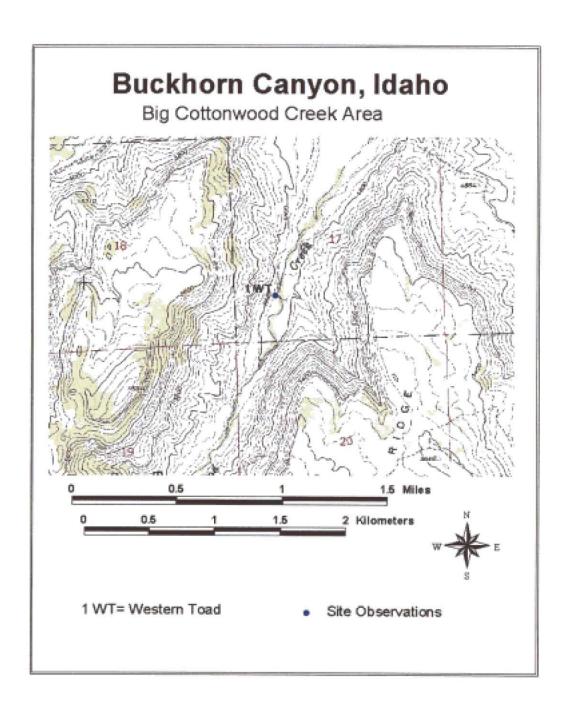



Figure 8. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

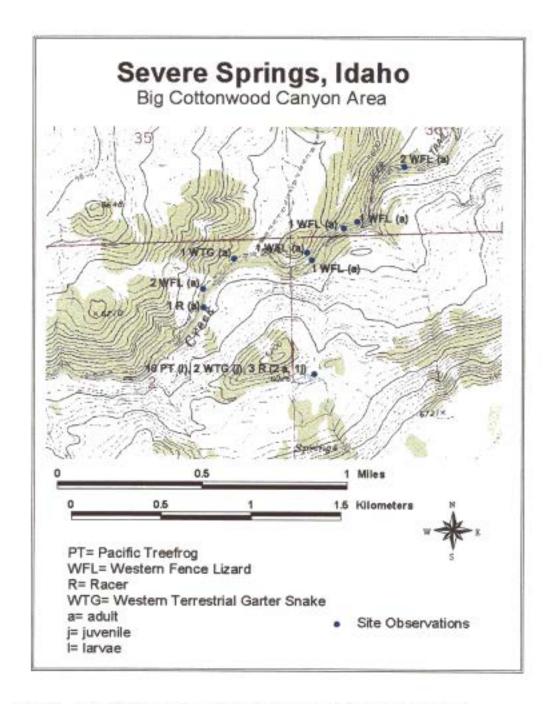



Figure 9. A portion of the Severe Springs Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

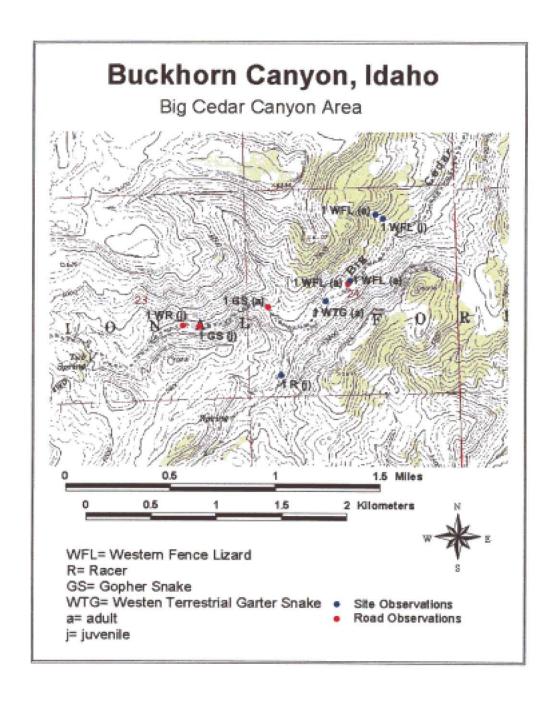



Figure 10. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

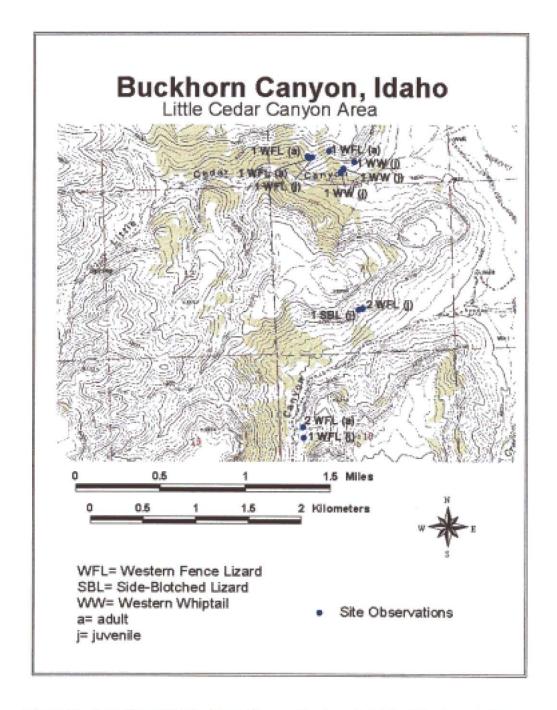



Figure 11. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

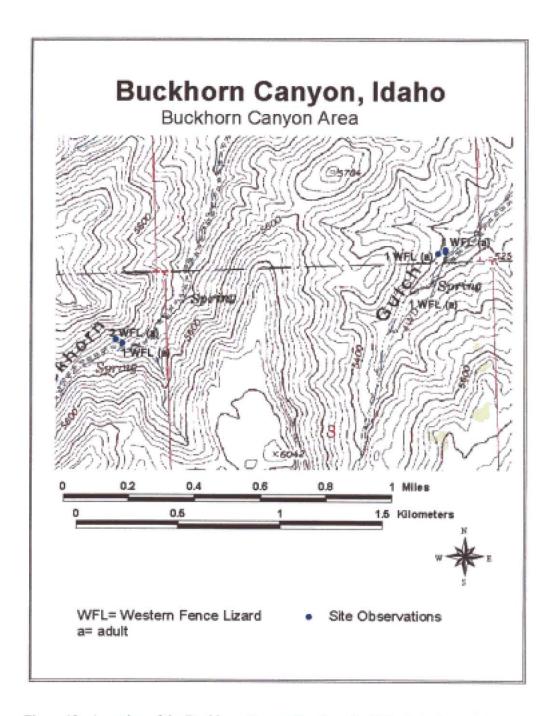



Figure 12. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

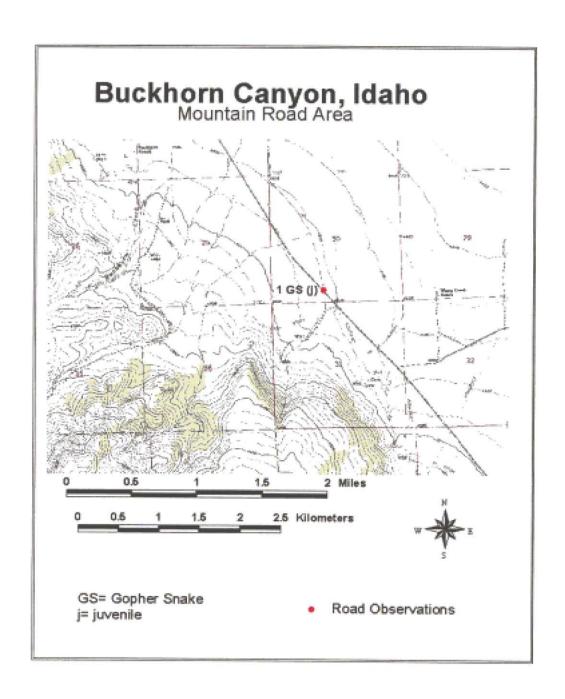



Figure 13. A portion of the Buckhorn Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

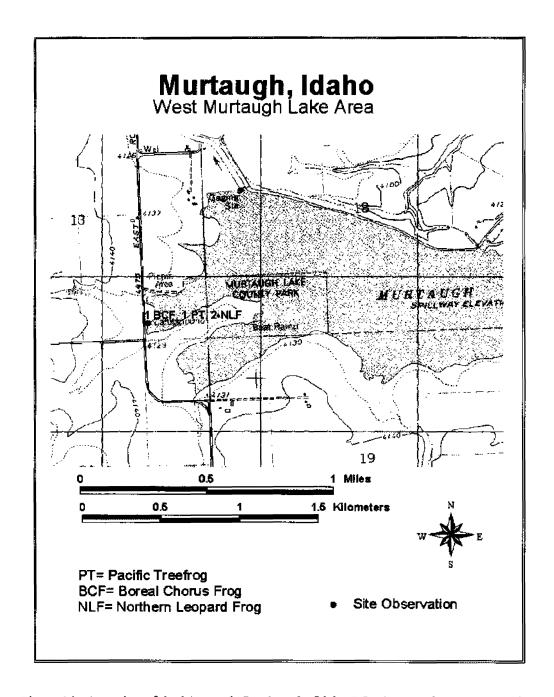



Figure 14. A portion of the Murtaugh Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. These observations were contributed and do not represent observations from our survey

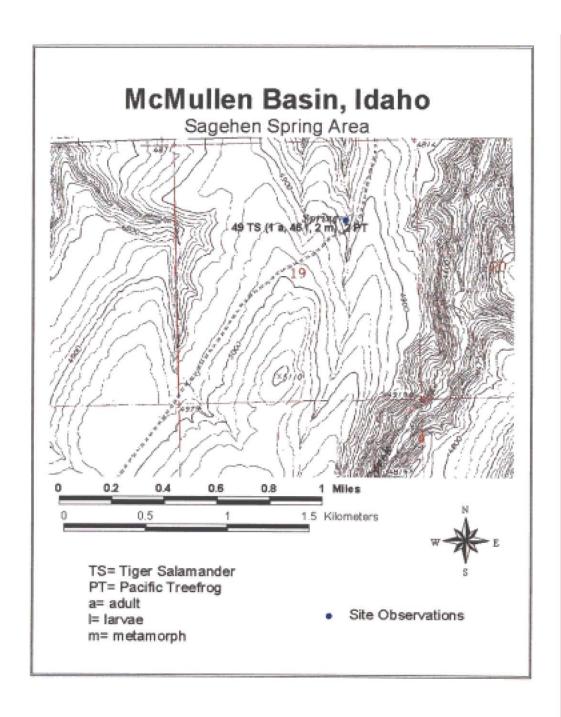



Figure 15. A portion of the McMullen Basin Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

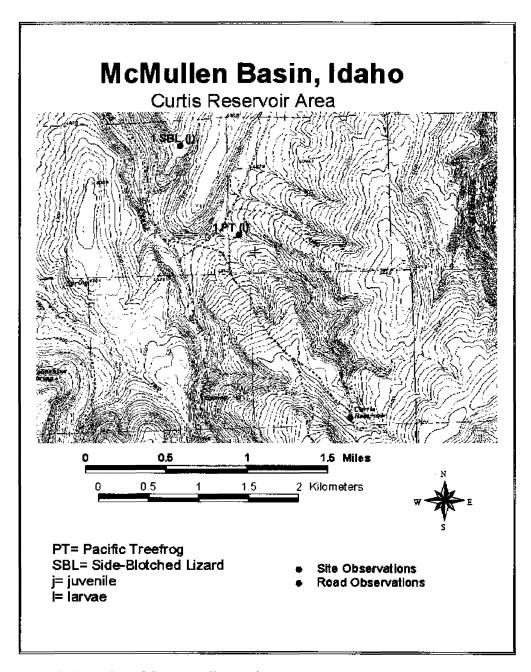



Figure 16. A portion of the McMullen Basin Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. The site with no corresponding observation label shows the location of Curtis Reservoir, and no species were detected at this site.

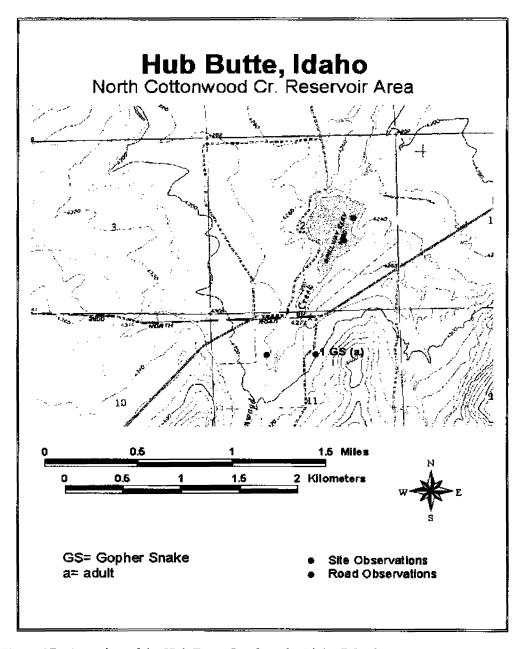



Figure 17. A portion of the Hub Butte Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. The sites with no corresponding observation labels show the locations of the spring on Cooper's property and North Cottonwood Creek Reservoir. No species were detected at either site.

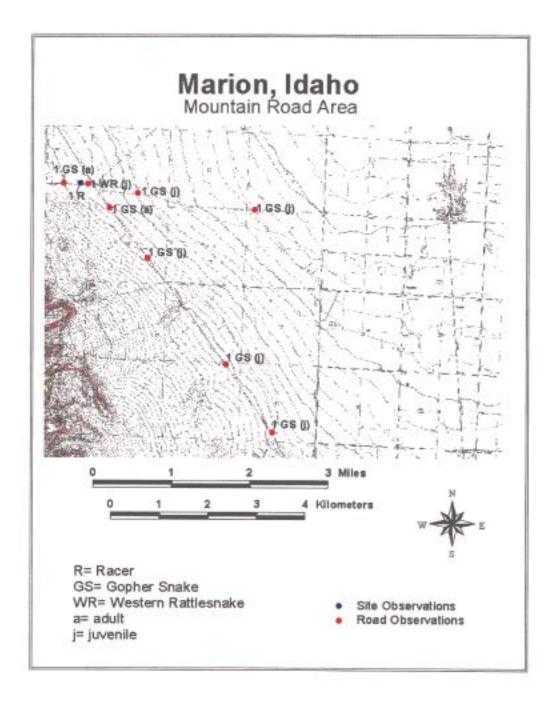



Figure 18. A portion of the Marion Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

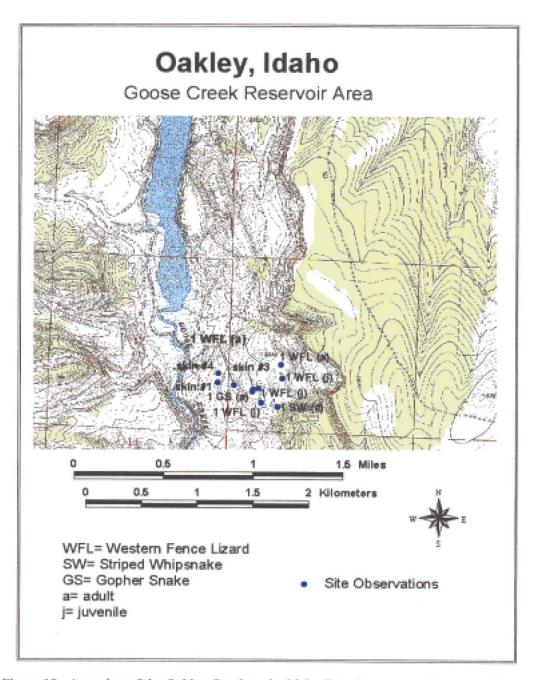



Figure 19. A portion of the Oakley Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. Snake skins #1 and #4 were both identified as *Thamnophis*, however the species could not be determined. Snake skin #3 could not be accurately identified.

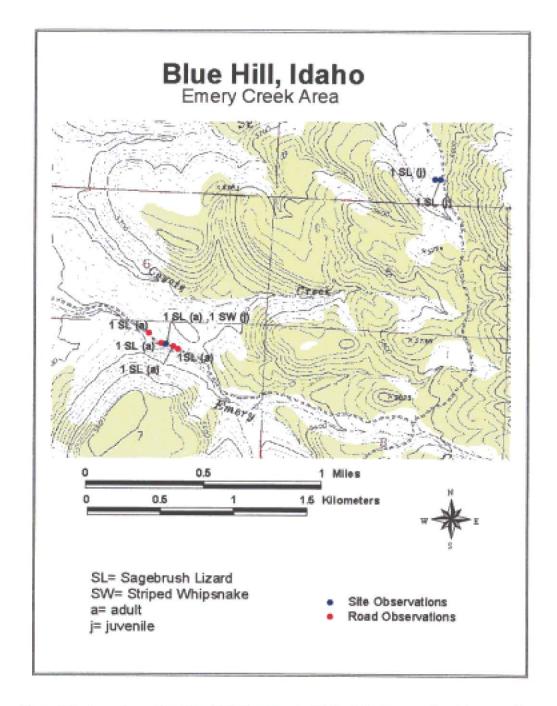



Figure 20. A portion of the Blue Hill Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

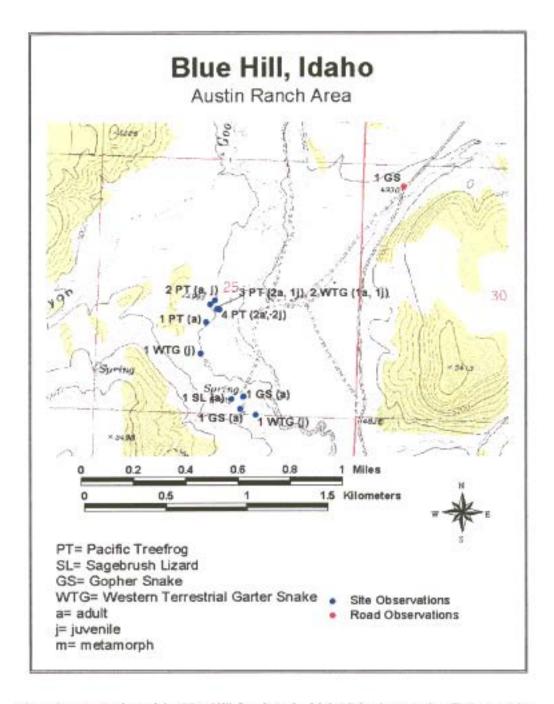



Figure 21. A portion of the Blue Hill Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

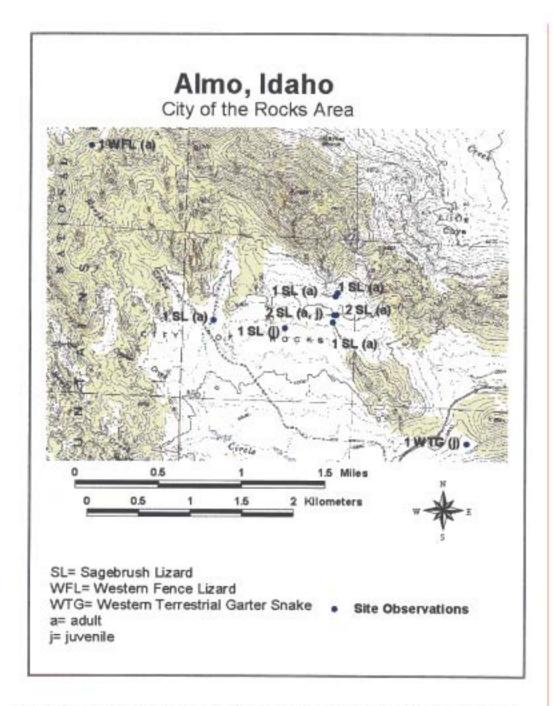



Figure 22. A portion of the Almo Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

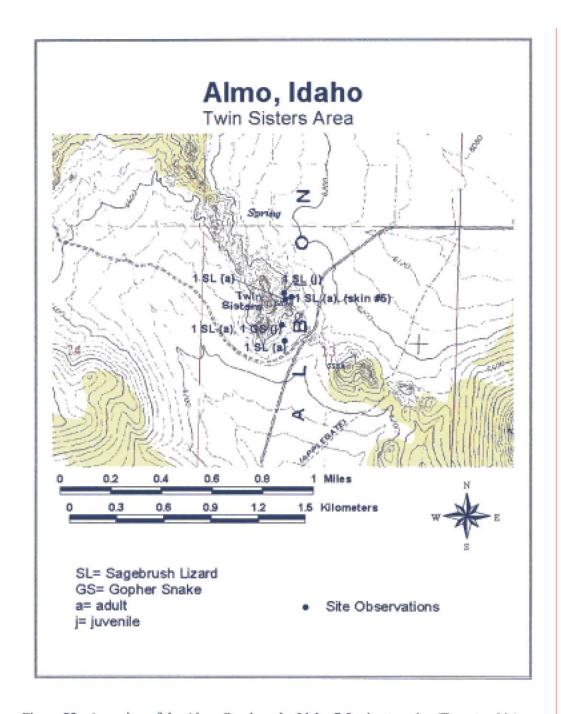



Figure 23. A portion of the Almo Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. Snake skin #5 could not be accurately identified.

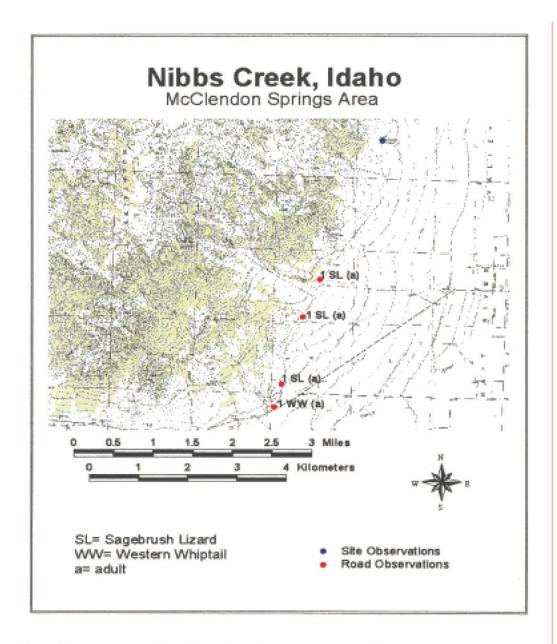



Figure 24. A portion of the Nibbs Creek Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. The site with no corresponding observation label shows the location of McClendon Springs, and no species were detected at this site.

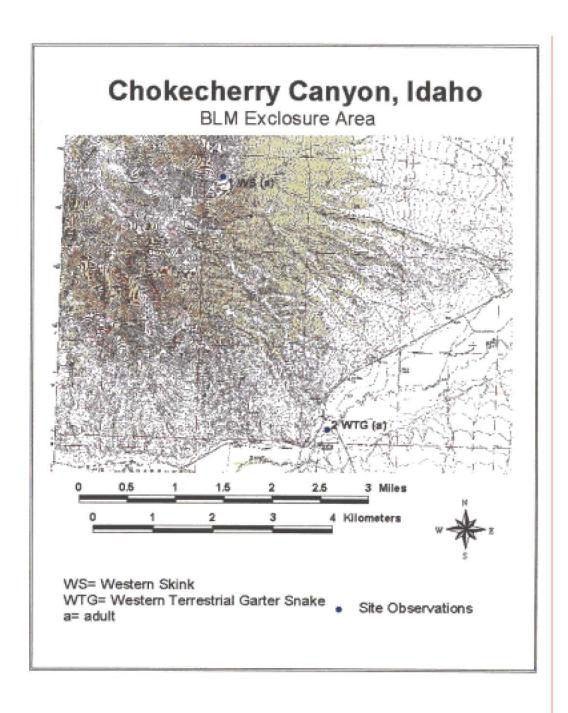



Figure 25. A portion of the Chokecherry Canyon Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

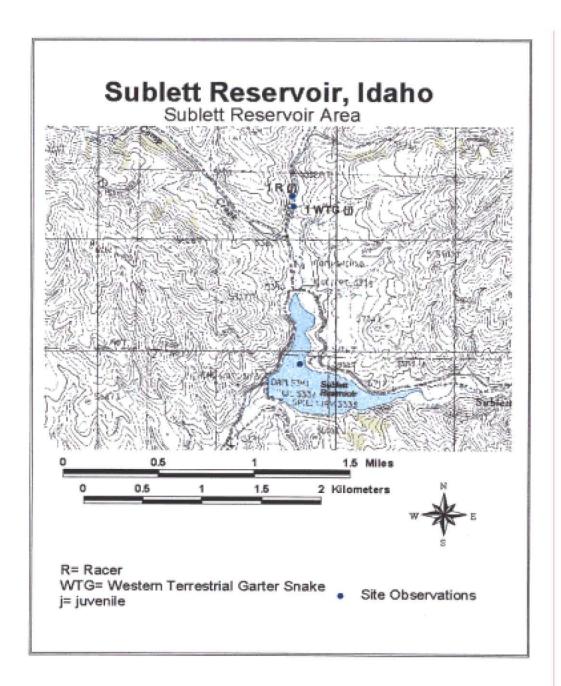



Figure 26. A portion of the Sublett Reservoir Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. The site with no corresponding observation label shows the location of the northern portion of Sublett Reservoir, and no species were detected at this site.

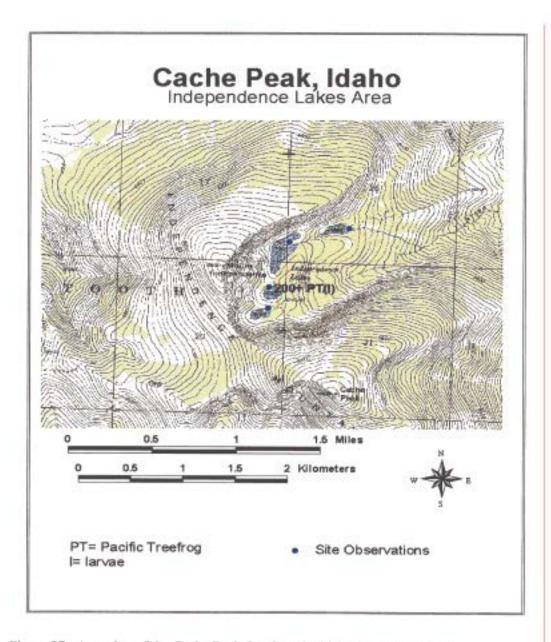



Figure 27. A portion of the Cache Peak Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. The sites with no corresponding observation labels show the location of the Independence Lakes where no species were detected.

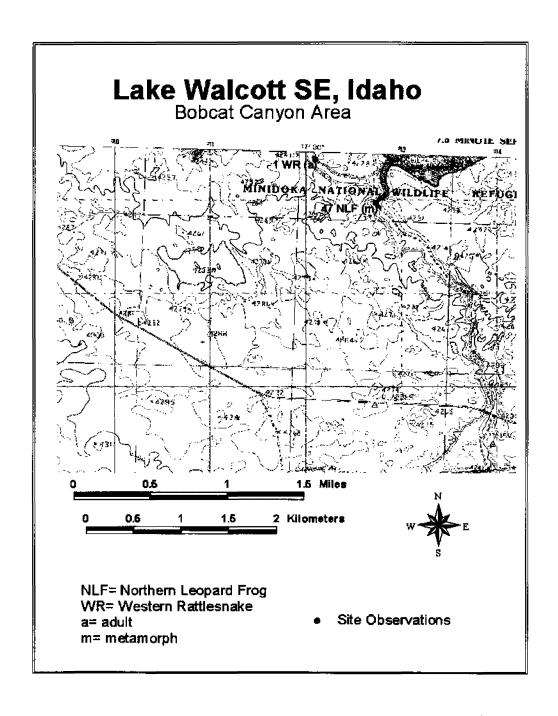



Figure 28. A portion of the Lake Walcott SE Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

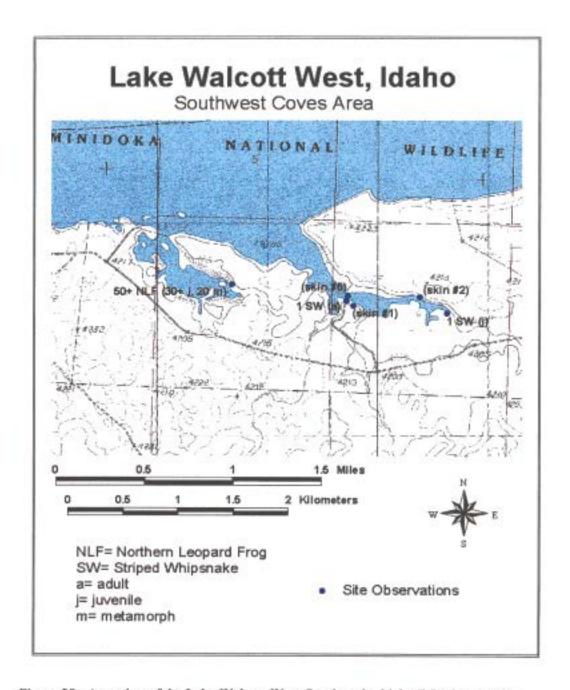



Figure 29. A portion of the Lake Walcott West Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages. Snake skin #5 was identified as *Thamnophis*, but the species could not be determined. Snake skins #1 and #2 could not accurately be identified.

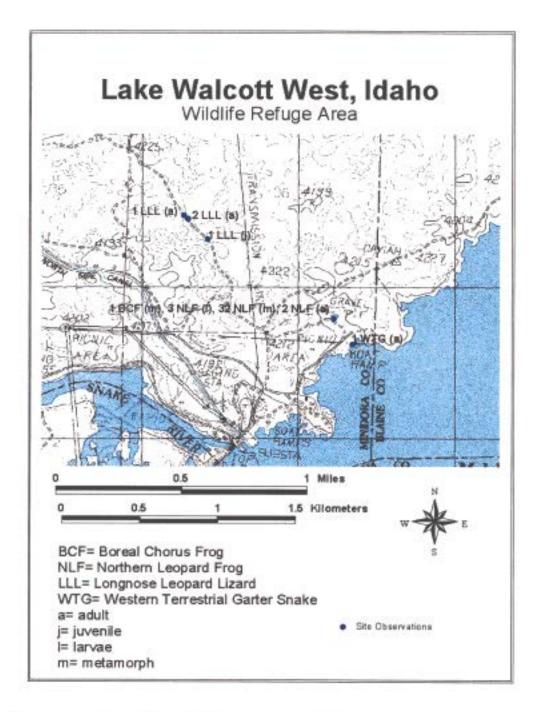
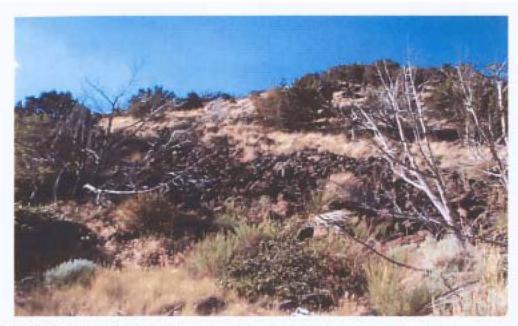


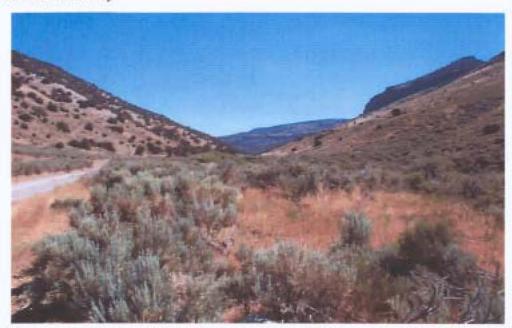

Figure 30. A portion of the Lake Walcott West Quadrangle, Idaho 7.5 minute series (Topographic) that shows the observed species and their distribution for this area. The labeling numbers refer to the number of individuals observed, the letters represent species identification codes, and the letters in parentheses identify the observed life stages.

Appendix A. Survey site photographs taken during the study.




This site is located in Big Cottonwood Canyon, and is generally characterized by rocky hillsides and talus slopes with intermixed juniper and sagebrush. The photograph was taken looking west. A single adult Western Fence Lizard was observed at this site.




This site is located near Bosteter Road east of Big Cottonwood Canyon and is characterized by exposed rocky wash with a riparian area located just east of this view. The photograph was taken looking north. There were no species found at this site.

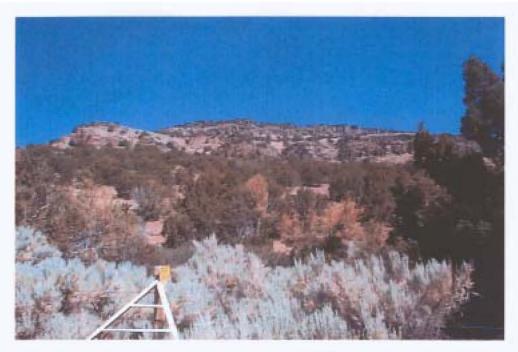


This site is an emergent wetland that lies in about the middle of this photograph and is located in Big Cottonwood Canyon up and behind one of the ridges to the east. The photograph was taken looking west and characterizes typical upland habitat in Big Cottonwood Canyon. Eighteen Pacific Treefrog larvae, one juvenile and two adult Racers, and two juvenile Western Terrestrial Garter Snakes were detected at this site.



This site is located in Cave Canyon and is primarily characterized by talus slopes with a riparian area and small stream located approximately 20 meters to the south. This photograph was taken looking northwest. Two Western Fence Lizards, one adult and one juvenile, were observed at this site and a dead Racer was found on the access trail nearby.

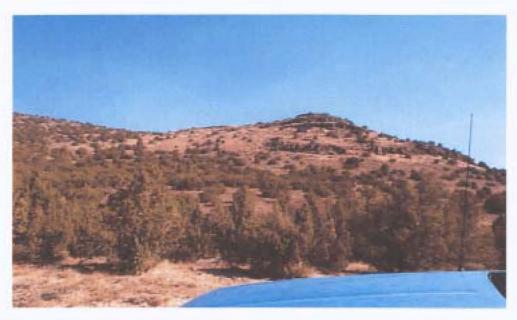



This site is riparian habitat located in Big Cedar Canyon. This photograph was taken looking northeast. Two Western Fence Lizards, one juvenile and one adult, and one adult Western Terrestrial Garter Snake were observed at this site.

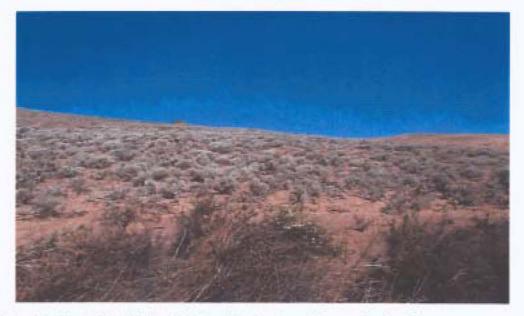


This site is located in Big Cedar Canyon and is characterized by numerous exposed rocky areas. The photograph was taken looking southeast. No species were detected at this site.




This site is located in Big Cedar Canyon and is a juniper and sagebrush dominated hillside with regions of exposed rock. This photograph was taken looking northwest. Three adult Western Fence Lizards were seen at this site.




This site is located in Big Cedar Canyon near the USFS boundary and is characterized by juniper and sagebrush intermixed with talus slopes and exposed rocky cliffs. The photograph was taken looking west. One juvenile Side-Blotched Lizard and two juvenile Western Fence Lizards were observed at this site.



This site is located in Little Cedar Canyon and is characterized by exposed rocky areas intermixed with dense stands of juniper and sagebrush. The photograph was taken looking south. No species were detected at this site.



This site is located in Little Cedar Canyon and is primarily characterized by large rocks and talus slopes. This photograph was taken looking north and this site lies across the valley from the previous site. Four Western Fence Lizards, three adults and one juvenile, were observed in the exposed rocky uplands, while three juvenile Western Whiptails were detected in the sagebrush and juniper dominated lowlands.



This site is located in Robber Gulch and is dominated by sagebrush with numerous areas of exposed rock. The photograph was taken looking northwest. One adult Western Fence Lizard was found at this site.



This is the Curtis Reservoir site. The photograph was taken looking west. This site had dried at the time of the survey and no species were detected.



This site is a spring that is located below Curtis Reservoir to the north. This photograph was taken looking northwest. One Pacific Treefrog larvae was caught in an aquatic funnel trap at this site.



This is the Sagehen Spring site. This isolated wetland was dominated by submergent aquatic vegetation. The photograph was taken looking northeast. Twelve Tiger Salamander larvae were observed at this site. Contributed observations included 34 Tiger Salamander larvae, two metamorphs, one adult, and one Pacific Treefrog.



This site is located at the bottom of the upland hills where Sagehen Springs was located. This photograph was taken looking north. No species were found at this site.



This site is the southern portion of North Cottonwood Creek Reservoir. This photograph was taken looking west. Eight aquatic funnel traps were placed in this portion of the reservoir, but no amphibian or reptile species were detected.



This photograph shows the remaining portion of North Cottonwood Creek Reservoir. This photograph was taken looking north. No species were detected at this site.



This site is located at the southern end of Goose Creek Reservoir and is characterized by vast boulder fields and talus slopes. This photograph was taken looking southeast. Four Western Fence Lizards, two juveniles and two adults, and an adult Striped Whipsnake were observed at this site while an adult Gopher Snake was identified via a shed skin.

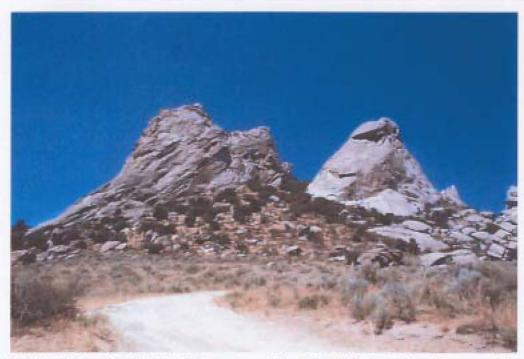


This site is Emery Creek. There is a small riparian area about 7 meters wide surrounded by sagebrush dominated uplands. This photograph was taken looking south. No species were detected at this site. Two juvenile Sagebrush Lizards were observed at a site to the northeast of Emery Creek which was not photographed.



This site is located at the Austin Ranch and lies north of the house. This site is characterized by talus slopes and sagebrush dominated lowlands. This photograph was taken looking northwest. No species were found at this site.




This photograph shows part of the Austin Ranch and the single wetland site located to the west of the canal (dark blue wetland). The portion of the connected emergent wetlands that lie to the east of the canal are also visible. This photograph was taken looking east. No species were detected in the western wetland.



This site is located at the Austin Ranch. There is a canal that runs along the west of the agricultural fields and Goose Creek can be seen in the middle of this photograph. All of the wetland areas to the east of the canal were connected and were considered a single site. This photograph was taken looking southeast. Four Pacific Treefrogs, two metamorphs and two adults, were observed at this site



This wetland site is located on the lower southeast corner of the City of Rocks National Reserve and was dominated by aquatic vegetation. This photograph was taken looking southeast. One juvenile Western Terrestrial Garter Snake was caught in an aquatic funnel trap at this site.



This site is located at the Twin Sisters area of the City Of Rocks National Reserve. This photograph was taken looking west. One juvenile and four adult Sagebrush Lizards were observed at this site. We also identified a juvenile Gopher Snake from a shed skin.



This site is located near the Circle Creek Trailhead at the City of Rocks National Reserve. This photograph was taken looking north. Two juvenile and five adult Sagebrush Lizards were observed at this site.



This site is a potion of a large cove near the southeast corner of the Minidoka National Wildlife Refuge. Both sides of this cove were thickly vegetated with bulrush and cattails which made surveying difficult. No species were detected in the wetland, but through shed skins, we identified one juvenile and one adult Striped Whipsnake.



This site covers a major portion of a large cove near the southeast corner of the Minidoka National Wildlife Refuge. This photograph was taken looking southeast. The southeast edge of this cove is where we surveyed shallow emergent wetlands. We detected 50+ Northern Leopard Frog metamorphs at this site and a voucher photograph was taken here.



This site is a backwater cove that lies east of Bobcat Canyon. The photograph was taken looking south. Forty seven Northern Leopard Frog metamorphs were found at this site.



This site is Bobcat Canyon on the Minidoka National Wildlife Reserve. This photograph was taken looking northwest. One adult Western Rattlesnake was found at this site.



This site is located northwest of the Minidoka National Wildlife Refuge Headquarters and is characterized by exposed rocky areas surrounded by sagebrush dominated desert. The photograph was taken looking northwest. One juvenile and three adult Longnose Leopard Lizards were detected at this site.



This site is an isolated wetland located north of the boat ramp near the Minidoka National Wildlife Refuge Headquarters. This photograph was taken looking north. Three Northern Leopard Frog larvac, 32 metamorphs, and two adults were found here, as well as one Boreal Chorus Frog metamoroph.



This site is the first lake and has the lowest elevation of the Independence Lakes. This photograph was taken looking west. No species were found at this site.



This site is the second Independence Lake. This photograph was taken looking southwest. No species were encountered at this site.



This site is the third Independence Lake. The photograph was taken looking west. Approximately two hundred Pacific Treefrog tadpoles were found at this site.



This is the fourth Independence Lake and it has the highest elevation of the four lakes. The photograph was taken looking southwest. No species were detected at this site.



This site is the northern shallow portion of Sublett Reservoir. This photograph was taken looking south. No species were observed at this site, but one juvenile Racer and one juvenile Western Terrestrial Garter Snake were encountered north of this site in riparian habitat.



This site is McClendon Springs Pond. This photograph was taken looking southeast. No species were detected at this site.

## AMPHIBIAN SURVEY DATA SHEET - modified after S.P. Com, NBS, Fort Collins, CO.

(ver. 1 May 1996)

Herpetology Laboratory, Idaho State University and Idaho Museum of Natural History, Box 8007, Pocatello, ID 83209 (208) 236-3922 voice 236-4570 FAX e-mail: petechan@leu.edu

| DATE        |               | BEGIN TIME   |             | END TIME            |            | OBSERVERS    |             |                  |                  |  |  |
|-------------|---------------|--------------|-------------|---------------------|------------|--------------|-------------|------------------|------------------|--|--|
| LOCALITY    |               |              |             | -                   |            |              |             |                  |                  |  |  |
| STATE       |               | COUNTY       |             | MAP NAME            |            | OWNER        |             | ELEVATIO         | N                |  |  |
| Т           | R             | 5            |             | UTM ZONE/D          | ATUM       | NORTHING     |             | EASTING          |                  |  |  |
| AMPHELAN /  | NO REPTILE    | SPECIES PRE  | SENT (INDIC | ATE NUMBER          | SIN CATEGO | RES IF POSSI | BLE)        |                  |                  |  |  |
| SPECIES     | ADULT         | JUVENILE     | METAM.      | LARVAE              | EGGS       | CALLING      | TECH        | NIQUE(S)         | VOUCHER          |  |  |
|             |               |              |             |                     |            |              |             |                  |                  |  |  |
|             |               |              |             |                     |            |              |             | _                |                  |  |  |
|             |               |              |             |                     |            |              |             |                  |                  |  |  |
| RISH PRESE  | NT            | YES 777 1    | WO.         | FISH SPECIE         | 850        |              |             |                  |                  |  |  |
| ENTIRE SITE | SEARCHED?     | YES          | NO          | IF NO, IDICA?       | TE AREA:   |              |             | meters of s      | horeline habitat |  |  |
| WEATHER:    | RADIATION     | CLEAR F      | WRTIAL C    | MERCAST             |            | WIND: CALM   | I LIGHT N   | EDIUM HE         | AVY              |  |  |
| AIR TEMPLE  | NATURE (1 M S | SHADED)      | °C OR F     |                     | % CLOUD C  | OVER:        | PRECIPTAT   | TON: SHOW        | / RAIN           |  |  |
| WATER       | TEMPERATU     | JRE (1CM)    |             | pHt                 | CONDUCTIV  | MY           | SAMPLE?     |                  |                  |  |  |
|             | COLOR         | CLEAR        | STAINED     |                     | TURBIDITY  | CLEAR C      | LOUDY       | 7                |                  |  |  |
| SITE DESCR  | BPTION .      | PUT SKETO    | HAND ADDIT  | ONAL COMME          | NTS ON BAC | K OF SHEET   |             |                  |                  |  |  |
| OFEGIN      | NATURAL       | MANIMADE     | MANHMODE    | RED                 | DRAINAGE   | PERMANE      | ENT OCCA    | SIONAL N         | ONE              |  |  |
| SITE TYPE   | TEMPORAR      | Y or PERMANE | ENT LAKE/PC | OND MARSH B         | OG STREAM  | A SPRINGSE   | EP ACTIVE O | x INACTIVE       | BEAVER POND      |  |  |
| NATIONAL V  | METLAND INV   | ENTORY CLAS  | BIFICATION  |                     | GAP ANALY  | SIS COVER TY | PE (IF KNOW | MN)              |                  |  |  |
| STREAM OF   | DER           | 1            |             | 2 3                 |            | 4 E          |             | 6                |                  |  |  |
| SITE LENGT  | TH m          | SITE WIDTH   | m           | MAXIMUM D           | EPTH       | < 1M         | 1-2M        | >2M              |                  |  |  |
| PRIMARY S   | UBSTRATE :    | SILT/MUID SA | NDGRAVEL    | COBBLE B            | OULDER/BEI | DROCK OTH    | ER:         |                  |                  |  |  |
| % OF LAKE   | MARGIN WITH   | HEMERGENT    | VEGETATION  | N                   | 0          | 1 - 25       | 25 - 50     | >50              |                  |  |  |
| EMERGENT    | VEGETATION    | SPECIES (IN  | ORDER OF    | ABUNDANCE)          |            |              |             |                  |                  |  |  |
| NORTH SHO   | ORELINE CHA   | RACTERISTIC  | 8           | SHALLOWS<br>PRESENT |            | PRESENT      | VEG         | EMERGE<br>ABSENT | NT VEG           |  |  |
| DISTANCE    | TO FOREST E   | DGE m        |             | FOREST TR           | EE SPECIES |              |             |                  |                  |  |  |

Appendix C. Data collected from all site surveys including incidental observations. The data presented in this appendix are from a larger spreadsheet that should be read across the row and then down the columns for each observation. Following the data is a page of metadata explaining the categories and information listed in the appendix.

| Date      | Time  | Locality                                          | Observers           | UTM | Elevation     | Northing | Easting |
|-----------|-------|---------------------------------------------------|---------------------|-----|---------------|----------|---------|
| 20-May-99 | 14:00 | Murtaugh Lake                                     | P. Makela           |     | 4125ft        | 4704695  | 732290  |
| 20-May-99 | 14:15 | Murtaugh Lake                                     | P. Makela           |     | 4125ft        | 4704695  | 732290  |
| 20-May-99 | 14:30 | Murtaugh Lake                                     | P. Makela           |     | 4125ft        | 4704695  | 732290  |
| 24-May-00 | 11:00 | Jim Sage Mountains (Chokecherry Canyon exclosure) | P. Makela, W. Hayes | 12  | 6060ft        | 4664470  | 295950  |
| 10-Jun-00 | 16:00 | Buckhorn Canyon near USFS fenceline               | J. Shive            | 11  | 1547          | 4690424  | 739773  |
| 10-Jun-00 | 16:10 | Buckhorn Canyon near USFS fenceline               | J. Shive            | 11  | † <b>54</b> 0 | 4690434  | 739772  |
| 11-Jun-00 | 15:20 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1632          | 4680866  | 742315  |
| 11-Jun-00 | 15:50 | Big Cottonwood Canyon near Cave Canyon junction   | J. Shive            | 11  | 1665          | 4680486  | 741461  |
| 11-Jun-00 | 16:11 | Big Cottonwood Canyon near Cave Canyon junction   | J. Shive            | 11  | 1665          | 4680382  | 741464  |
| 11-Jun-00 | 16:40 | Big Cottonwood Canyon near Cave Canyon junction   | J. Shive            | 11  | 1662          | 4680658  | 741632  |
| 11-Jun-00 | 17:14 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1586          | 4681175  | 742575  |
| 11-Jun-00 | 17:42 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1590          | 4681177  | 742573  |
| 11-Jun-00 | 18:40 | Big Cottonwood Carryon                            | J. Shive            | 11  | 1580          | 4682215  | 743630  |
| 19-Jun-00 | 10:00 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1485          | 4684159  | 744154  |
| 19-Jun-00 | 10:09 | Blg Cottonwood Canyon                             | J. Shive            | 11  | 1501          | 4684187  | 744120  |
| 19-Jun-00 | 10:35 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1530          | 4684188  | 744120  |
| 19-Jun-00 | 10:50 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1533          | 4684325  | 744075  |
| 19-Jun-00 | 11:00 | Big Cettonwood Canyon                             | J. Shive            | 11  | 1533          | 4684348  | 744056  |
| 19-Jun-00 | 11:19 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1546          | 4684403  | 744032  |
| 19-Jun-00 | 11:41 | Big Cottonwood Canyon                             | J. Shive            | 11  | 1546          | 4684404  | 744030  |
| 19-Jun-00 | 12:10 | Big Cettonwood Canyon                             | J. Shive            | 11  | 1646          | 4684540  | 743825  |
| 20-Jun-00 | 11:05 | Buckhorn Canyon                                   | J. Shive            | 11  | 1651          | 4689985  | 738159  |
| 20-Jun-00 | 11:57 | Buckhorn Canyon                                   | J. Shive            | 11  | 1645          | 4689966  | 738194  |
| 20-Jun-00 |       | Robber Gulch                                      | J. Shive            | 11  | 1559          | 4690414  | 739735  |
| 21-Jun-00 | 10:00 | Little Cedar Canyon                               | J. Shive            | 11  | 1543          | 4689138  | 743642  |
| 21-Jun-00 | 10:26 | Little Cedar Canyon                               | J. Shive            | 11  | 1543          | 4689130  | 743612  |
| 21-Jun-00 | 10:40 | Little Cedar Canyon                               | J. Shive            | 11  | 1538          | 4689144  | 743597  |
| 21-Jun-00 | 11:05 | Little Cedar Canyon                               | J. Shive            | 11  | 1523          | 4689192  | 743803  |
| 21-Jun-00 |       | Little Cedar Canyon                               | J. Shive            | 11  | 1479          | 4689093  | 744037  |
| 21-Jun-00 | 12:05 | Little Cedar Canyon                               | J. Shive            | 11  | 1472          | 4689027  | 743935  |
| 21-Jun-00 | 12:19 | Little Cedar Canyon                               | J. Shive            | 11  | 1469          | 4688989  | 743915  |

| Date      | Species Present                 | Wind   | Radiation | % Clouds | TA   | Precip. | <b>GAP Analysis</b> | Length |
|-----------|---------------------------------|--------|-----------|----------|------|---------|---------------------|--------|
| 20-May-99 | 1 PSRE                          | calm   | partial   | 60       | 75F  | กอ      | -                   |        |
| 20-May-99 | 1 PSMA                          | calm   | partial   | 60       | 75F  | по      | <u> </u>            |        |
| 20-May-99 | 2 RAPI                          | calm   | partial   | 60       | 75F  | no      | -                   | -      |
| 24-May-00 | 1 EUSK adult                    | _      | partial   | -        | 70F+ | no      | -                   | -      |
| 10-Jun-00 | 1 SCOC adult male               | calm   | partial   | 70       | 20.6 | no      | 33XX                | -      |
| 10-Jun-00 | 1 SCOC adult male               | calm   | partial   | 70       | 20.6 | по      | 33XX                | -      |
| 11-Jun-00 | 1 SCOC adult male               | light  | overcast  | 70       | 21.1 | по      | 33XX / 61XX         | -      |
|           | 2 SCOC adult maies              | light  | overcast  | 70       | 21.2 | no      | 33XX / 61XX         |        |
| 11-Jun-00 | 1 COCO adult                    | calm   | partial   | 60       | 21.9 | no      | 33XX / 61XX         | -      |
| 11-Jun-00 | 1 THEL adult                    | light  | overcast  | 75       | 20.8 | πο      | 33XX / 61XX         |        |
| 11~Jun-00 | 1 SCOC adult                    | calm   | partial   | 70       | 20.6 | no      | 33XX / 61XX         | -      |
| 11-Jun-00 | 1 SCOC adult                    | calm   | partial   | 60       | 20.1 | no      | 33XX / 61XX         | -      |
| 11-Jun-00 | 1 THEL juvenile                 | calm   | overcast  | 100      | 19.1 | no      | 33XX / 61XX         | -      |
| 19-Jun-00 | 1 SCOC adult                    | light  | clear     | 5        | 16.6 | no      | 33XX                | -      |
| 19-Jun-00 | 1 SCOC adult male               | light  | clear     | 5        | 18.1 | no      | 33XX                | -      |
| 19-Jun-00 | 1 SCOC juvenile female          | medium | clear     | 2        | 18.2 | no.     | 33XX                | -      |
| 19-Jun-00 | 1 SCOC juvenile                 | medium | clear     | 5        | 19.2 | no      | 33XX                | -      |
| 19-Jun-00 | 1 SCOC adult                    | medium | clear     | 5        | 19.8 | no      | 33XX                |        |
| 19-Jun-00 | 1 SCOC juvenile                 | light  | clear     | 5        | 20.6 | по      | 33XX                | -      |
| 19-Jun-00 | 2 SCOC adults                   | light  | clear     | 5        | 20.1 | no      | 33XX                | -      |
| 19-Jun-00 | 1 SCOC adult                    | medium | clear     | 10       | 21.6 | 10      | 33XX                | -      |
| 20-Jun-00 | 2 SCOC adults (1female, 1 male) | light  | clear     | 0        | 18.5 | no      | 33XX                | -      |
| 20-Jun-00 | 1 SCOC adult male               | medium | clear     | 0        | 17.2 | по      | 33XX                | -      |
| 20-Jun-00 | 1 SCOC adult male               | calm   | clear     | 0        | 24.4 | no      | 33XX                | -      |
| 21-Jun-00 | 1 SCOC juvenile                 | calm   | clear     | 15       | 23.2 | no      | 33XX                | -      |
| 21-Jun-00 | 1 SCOC adult                    | calm   | clear     | 20       | 24.2 | по      | 33XX                | -      |
| 21-Jun-00 | 1 SCOC adult female             | light  | clear     | 20       | 23.6 | по      | 33XX                | -      |
| 21-Jun-00 | 1 SCOC adult                    | calm   | clear     | 25       | 24.1 | no      | 33XX                | -      |
| 21-Jun-00 | 1 CNTI juvenile                 | calm   | dear      | 35       | 24.9 | по      | 33XX                | -      |
|           | 1 CNTI juvenile                 | calm   | dear      | 35       | 28.6 | no      | 33XX                |        |
|           | 1 CNTI juvenile                 | light  | clear     | 35       | 28.5 | no      | 33XX                | -      |
| 22-Jun-00 | 2 SCOC juveniles                | calm   | clear     | 5        | 25.1 | no      | 33XX                | -      |

| Date      | Width | Depth | Site Type | NWI | Substrate | Origin | Drainage | рН | Cond. | Tw | Color | Turbidity | Dom Em Veg   |
|-----------|-------|-------|-----------|-----|-----------|--------|----------|----|-------|----|-------|-----------|--------------|
| 20-May-99 | -     | -     | -         | -   | -         | -      | -        | -  | -     | -  | -     | -         |              |
| 20-May-99 | -     |       | -         | -   | -         | •      | -        | -  | -     | •  | +     | •         | -            |
| 20-May-99 |       | -     | -         | -   | ,         | -      | -        | -  | -     | -  | _     | -         | -            |
| 24-May-00 | _     | -     | -         |     | -         | -      |          | -  | -     | -  | -     | -         | -            |
| 10-Jun-00 |       | -     | -         | -   |           | _      | -        | -  | -     | -  | -     | -         | -            |
| 10-Jun-00 | -     |       | -         | -   | -         | -      |          | -  | -     | -  | -     | _         | <del>-</del> |
| 11-Jun-00 | -     | -     | -         | -   | -         | -      |          | _  | -     | -  | -     | -         | -            |
| 11-Jun-00 | -     | -     | -         | -   | -         | -      | -        | -  | -     | -  | -     | _         | -            |
| 11-Jun-00 | •     |       | -         | -   | -         | -      | -        |    | _     | -  | -     | -         | -            |
| 11-Jun-00 | -     | -     | -         | -   | •         |        | -        | •  | ,     | -  | -     | -         | -            |
| 11-Jun-00 | -     | -     | <u> </u>  | -   |           | -      | <u> </u> | -  | -     | -  |       |           | -            |
| 11-Jun-00 | •     | -     | -         |     | ,         | -      | -        | 5  |       |    | -     | -         | -            |
| 11-Jun-00 |       | -     | -         | ,   | -         |        | _        | -  | -     | -  | -     | -         | -            |
| 19-Jun-00 | -     | -     | -         |     |           |        | -        | -  | -     | ,  |       |           | -            |
| 19-Jun-00 |       | *     |           | •   |           | -      | -        | -  | -     | •  | -     | -         |              |
| 19-Jun-00 |       |       | •         | -   | 1         | -      | -        | -  | -     |    |       | -         | -            |
| 19-Jun-00 | -     | -     | -         | •   |           | -      | -        | -  | -     | -  | -     | -         | -            |
| 19-Jun-00 | -     | -     | ,         | -   | -         | -      | -        | -  | -     | -  | -     | v         | -            |
| 19-Jun-00 | -     | -     | -         | -   | -         | -      | -        |    | -     | -  | -     | -         | -            |
| 19-Jun-00 | -     |       |           |     | -         |        | -        | -  |       | -  | -     | _         | -            |
| 19-Jun-00 | -     |       |           | -   | <u>-</u>  |        |          |    |       | -  | -     | -         | -            |
| 20-Jun-00 | -     | -     | -         | -   | -         | -      | <u> </u> |    | -     | -  | -     | -         | <u> </u>     |
| 20-Jun-00 | -     |       |           |     |           | -      | •        | -  | -     | _  | -     | -         |              |
| 20-Jun-00 | •     | -     |           | -   | -         | -      | -        | -  | -     | -  | -     |           | -            |
| 21-Jun-00 |       | -     | -         | -   |           | -      |          |    | -     | -  | -     | -         |              |
| 21-Jun-00 |       | -     |           | -   |           |        |          | -  | -     |    |       | -         | <u>-</u>     |
| 21-Jun-00 | -     |       | -         | -   | _         |        | -        |    |       | -  | ٠.    | •         |              |
| 21-Jun-00 |       | ,     |           |     |           |        | •        | -  | -     | -  |       | -         | -            |
| 21-Jun-00 | -     |       | •         | -   |           |        | -        | -  | _     | •  | -     |           |              |
| 21-Jun-00 |       | •     |           | -   |           | -      | -        |    | -     | -  | -     | -         | -            |
| 21-Jun-00 | -     | -     | _         | -   |           | -      | -        | -  |       | -  | -     | +         | -            |
| 22-Jun-00 | -     | -     |           | -   |           | -      | · ·      | -  |       | -  | -     |           | •            |

| Date      | % Shore w/ Em Veg | N. Shore Characteristics | Fish | Forest Distance |
|-----------|-------------------|--------------------------|------|-----------------|
| 20-May-99 | -                 | -                        | -    | -               |
| 20-May-99 | -                 | -                        | -    | -               |
| 20-May-99 |                   | -                        | -    | -               |
| 24-May-00 | -                 | -                        |      | -               |
| 10-Jun-00 | -                 | •                        | •    | - "             |
| 10-Jun-00 | -                 | -                        | -    |                 |
| 11-Jun-00 | •                 | -                        |      | •               |
| 11-Jun-00 |                   | -                        | -    | 1               |
| 11-Jun-00 |                   | -                        | -    | -               |
| 11-Jun-00 | -                 | -                        | -    |                 |
| 11-Jun-00 |                   | -                        | -    | ÷               |
| 11-Jun-00 |                   | -                        | -    |                 |
| 11-Jun-00 |                   | •                        | •    | ·               |
| 19-Jun-00 |                   |                          |      | -               |
| 19-Jun-00 |                   | -                        | -    | 1               |
| 19-Jun-00 | •                 |                          | -    | -               |
| 19-Jun-00 | -                 | -                        | -    | -               |
| 19-Jun-00 | *                 | -                        |      | •               |
| 19-Jun-00 | -                 | -                        |      | -               |
| 19-Jun-00 |                   |                          | -    | -               |
| 19-Jun-00 | +                 | -                        | -    | -               |
| 20-Jun-00 |                   | -                        | -    | -               |
| 20-Jun-00 |                   |                          |      | -               |
| 20-Jun-00 |                   | -                        | -    | -               |
| 21-Jun-00 | -                 | -                        | -    | -               |
| 21-Jun-00 | =                 | <del>-</del>             | -    |                 |
| 21-Jun-00 | -                 | -                        | -    | -               |
| 21-Jun-00 | •                 | •                        | +    | -               |
| 21-Jun-00 |                   | -                        | -    | •               |
| 21-Jun-00 | -                 |                          | +    | -               |
| 21-Jun-00 | •                 | -                        | -    | -               |
| 22-Jun-00 | -                 |                          | -    |                 |

| Date      | Time  | Locality                             | Observers                     | UTM | Elevation | Northing | Easting |
|-----------|-------|--------------------------------------|-------------------------------|-----|-----------|----------|---------|
| 22-Jun-00 | 9:45  | Big Cedar Canyon                     | J. Shive                      | 11  | 1557      | 4687675  | 744083  |
| 22-Jun-00 |       | Big Cedar Canyon                     | J. Shìve                      | 11  | 1531      | 4686449  | 743572  |
| 22-Jun-00 | 12:00 | Big Cedar Canyon                     | J. Shìve                      | 11  | 1539      | 4686551  | 743566  |
| 22-Jun-00 | 17:50 | Big Cedar Canyon                     | J. Shive                      | 11  | 1628      | 4685413  | 742781  |
| 22-Jun-00 |       | Big Cedar Canyon                     | J. Shive                      | 11  | 1620      | 4685382  | 742836  |
| 22-Jun-00 |       | Big Cedar Canyon                     | J. Shive                      | 11  | 1596      | 4684732  | 742404  |
| 23-Jun-00 |       | Big Cedar Canyon                     | J. Shive                      | 11  | 1597      | 4684894  | 742589  |
| 27-Jun-00 |       | Cave Canyon                          | J. Shive                      | 11  | 1715      | 4683244  | 741115  |
| 27-Jun-00 | 10:40 | Cave Canyon                          | J. Shive                      | 11  | 1750      | 4683264  | 741073  |
| 27-Jun-00 | 12:38 | Cave Canyon                          | J. Shive                      | 11  | 1625      | 4684151  | 742065  |
| 27-Jun-00 | 17:37 | Big Cottonwood Canyon                | J. Shive                      | 11  | 1655      | 4680650  | 742065  |
| 27-Jun-00 | 17:59 | Big Cottonwood Canyon                | J. Shive                      | 11  | 1676      | 4680692  | 742038  |
| 27-Jun-00 | 18:50 | Big Cottonwood Canyon                | J. Shive                      | 11  | 1651      | 4680828  | 742238  |
| 28-Jun-00 | 15:30 | South End of Goose Creek Reservoir   | J. Shive, P. Makela, W. Hayes | 12  | 1460      | 4668342  | 257670  |
| 28-Jun-00 | 15:45 | South End of Goose Creek Reservoir   | J. Shive, P. Makela, W. Hayes | 12  | 1508      | 4668254  | 257983  |
| 28-Jun-00 | 16:05 | South End of Goose Creek Reservoir   | J. Shive, P. Makela, W. Hayes | 12  | 1518      | 4668275  | 257986  |
| 29-Jun-00 | 12:00 | Pond up Big Cottonwood Canyon        | J. Shive                      | 11  | 1822      | 4680004  | 742079  |
| 30-Jun-00 | 10:45 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1510      | 4668148  | 258061  |
| 30-Jun-00 | 11:15 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1542      | 4668115  | 258208  |
| 30-Jun-00 | 12:10 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1523      | 4668505  | 258240  |
| 1-Jul-00  | 13:30 | Austin Ranch                         | J. Shive, M. Austin           | 12  | 1453      | 4663682  | 256662  |
| 1-Jul-00  | 14:25 | Austin Ranch (Canal)                 | J. Shive, M. Austin           | 12  | 1444      | 4663213  | 256890  |
| 2-Jul-00  | 10:00 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1479      | 4668425  | 257675  |
| 2-Jul-00  | 10:50 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1514      | 4668285  | 258039  |
| 2-Jul-00  | 11:51 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1529      | 4668374  | 258252  |
| 2-Jul-00  | 12:40 | South End of Goose Creek Reservoir   | J. Shive                      | 12  | 1481      | 4668315  | 257819  |
| 5-Jul-00  |       | Austin Ranch (Canal)                 | J. Shive                      | 12  | 1452      | 4663820  | 256715  |
| 5-Jul-00  |       | Austin Ranch (Canal)                 | J. Shive                      | 12  | 1446      | 4663095  | 256966  |
| 5-Jul-00  | 14:45 | Austin Ranch                         | J. Shive                      | 12  | 1467      | 4663135  | 256869  |
| 5-Jul-00  | 15:10 | Austin Ranch (Canal)                 | J. Shive                      | 12  | 1446      | 4663485  | 256626  |
| 5-Jul-00  | 16:05 | Austin Ranch (wetland west of canal) | J. Shive                      | 12  | 1451      | 4663796  | 256685  |
| 6-Jul-00  | 13:40 | Spring near Curtis Reservoir         | J. Shive                      | 11  | 1461      | 4689976  | 712679  |
| 6-Jul-00  | 14:25 | Sagehen Spring Pond                  | J. Shive                      | 11  | 1474      | 4693963  | 715123  |
| 20-Jun-00 |       | Sagehen Spring Pond                  | P. Makela, J. Tharp           | 11  | -         | -        | -       |
| 22-Jun-00 |       | Sagehen Spring Pond                  | P. Makela, W. Hayes, J. Tharp | 11  | -         | **       | -       |
| 7-Jul-00  |       | Emery Creek                          | J. Shive, W. Hayes            | 12  | 1689      | 4661513  | 260335  |

| Date      | Species Present                                                   | Wind   | Radiation | % Clouds | TA   | Precip. | GAP Analysis | Length |
|-----------|-------------------------------------------------------------------|--------|-----------|----------|------|---------|--------------|--------|
| 22-Jun-00 | 1 UTST juvenile                                                   | light  | clear     | 0        | 26.2 | no      | 33XX         | _      |
| 22-Jun-00 | 1 SCOC juvenile                                                   | light  | clear     | 5        | 28.4 | no      | 33XX         |        |
| 22-Jun-00 | 2 SCOC adult males                                                | calm   | clear     | 5        | 28.6 | no      | 33XX         | -      |
| 22-Jun-00 | 1 SCOC adult male                                                 | calm   | clear     | 45       | 30.5 | no      | 33XX         | -      |
|           | 1 SCOC juvenile                                                   | calm   | clear     | 45       | 30.1 | no      | _33XX        | -      |
| 22-Jun-00 | 1 THEL adult                                                      | light  | clear     | 20       | 27.2 | no      | 41XX / 33XX  | -      |
| 23-Jun-00 | 1 SCOC adult female (Incidental observation)                      | calm   | partial   | 60       | 24.3 | no      | 41XX / 33XX  | -      |
| 27-Jun-00 | 1 SCOC juvenile                                                   | light  | clear     | 40       | 26.1 | no      | 41XX / 33XX  | -      |
| 27-Jun-00 | 1 SCOC adult                                                      | light  | clear     | 40       | 26.4 | no      | 41XX / 33XX  | -      |
| 27-Jun-00 | 1 COCO juvenile dead (incidental observation)                     | calm   | clear     | 50       | 27.9 | no      | 41XX         | -      |
| 27-Jun-00 | 1 SCOC adult male                                                 | light  | clear     | 0        | 25.6 | no      | 41XX / 33XX  | -      |
| 27-Jun-00 | 1 SCOC adult male                                                 | light  | clear     | 0        | 25.4 | no      | 33XX         |        |
| 27-Jun-00 | 1 SCOC adult male (incidental observation)                        | calm   | clear     | 5        | 25.9 | no      | 41XX         | -      |
| 28-Jun-00 | skin #1(Thamnophis ?)                                             | light  | clear     | 25       | 25.5 | no      | 73XX         | -      |
| 28-Jun-00 | skin #2 (1 PICA adult)                                            | light  | clear     | 30       | 25.1 | no      | 73XX         | -      |
| 28-Jun-00 | skin #3                                                           | light  | clear     | 30       | 25.2 | no      | 73XX         | -      |
| 29-Jun-00 | 2 THEL juvenile, 18 PSRE larvae, 3 COCO (2 adults and 1 juvenile) | light  | clear     | 0        | 25.2 | no      | 63XX / 5000  | 40     |
| 30-Jun-00 | 1 SCOC juvenile male                                              | light  | clear     | 10       | 31.1 | no      | 73XX         | -      |
| 30-Jun-00 | 1 MATA adult                                                      | light  | clear     | 20       | 31.3 | na      | 73XX         |        |
| 30-Jun-00 | 1 SCOC adult                                                      | calm   | clear     | 55       | 32.4 | no      | 73XX         | -      |
| 1-Jul-00  | 1 PSRE adult (incidental observation)                             | light  | clear     | 20       | 31.8 | no      | 2000 / 63XX  |        |
| 1-Jul-00  | 1 PICA adult (incidental observation)                             | light  | clear     | 25       | 32.6 | по      | 2000         | -      |
| 2-Jul-00  | skin #4 (Thamnophis ?)                                            | light  | partial   | 10       | 21.6 | no      | 73XX         | -      |
| 2-Jul-00  | 1 SCOC juvenile male                                              | medium | clear     | 10       | 21.9 | no      | 73XX         | -      |
| 2-Jul-00  | 1 SCOC juvenile                                                   | medium | clear     | 20       | 23.4 | no      | 73XX         | -      |
| 2-Jul-00  | 1 SCOC adult male                                                 | medium | clear     | 20       | 27.7 | no      | 73XX         | -      |
| 5-Jul-00  | 1 PSRE metamorph, 1 PSRE adult                                    | medium | clear     | 10       | 26,1 | ПÔ      | 2000 / 63XX  |        |
| 5-Jul-00  | 1 THEL juvenile                                                   | medium | clear     | 15       | 28.3 | no      | 2000 / 33XX  |        |
| 5-Jul-00  | 1 PICA adult (incidental observation)                             | light  | clear     | 20       | 28.5 | no      | 2000         | -      |
| 5-Jul-00  | 1 THEL juvenile                                                   | light  | clear     | 15       | 28.4 | no      | 2000 / 63XX  |        |
| 5-Jul-00  |                                                                   | light  | clear     | 30       | 31.1 | no      | 2000 / 63XX  | 25     |
| 6-Jul-00  | 1 PSRE larvae                                                     | calm   | clear     | 40       | 23.7 | no      | 33XX         | 20     |
| 6-Jul-00  | 12 AMTI larvae                                                    | light  | dear      | 40       | 21.6 | по      | 33XX / 63XX  | 15     |
| 20-Jun-00 | 1 AMTI adult, 4+ AMTI larvae, 2 PSRE                              | medium | clear     | -        | 70F  | по      | 33xx         | -      |
|           | 30 AMTI larvae, 2 AMTI metamorphs                                 |        | clear     | -        | 75F  | no      | 33xx         | -      |
| 7-Jul-00  | 1 SCGR juvenile female                                            | calm   | clear     | 5        | 23.3 | no      | 33XX         |        |
|           |                                                                   |        |           |          |      |         |              |        |

| Date      | Width | Depth | Site Type   | NWI | Substrate | Origin   | Drainage  | рН  | Cond. | Tw   | Color | Turbidity | Dom Em Veg    |
|-----------|-------|-------|-------------|-----|-----------|----------|-----------|-----|-------|------|-------|-----------|---------------|
| 22~Jun-00 | -     | -     | -           | -   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 22~Jun-00 | -     | -     | -           | -   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 22-Jun-00 | -     | -     |             | -   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 22-Jun-00 | -     | -     | -           | -   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 22-Jun-00 | -     | -     | -           | -   | -         | -        | -         | -   |       | -    | -     | -         | -             |
| 22-Jun-00 | -     | -     | -           | -   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 23-Jun-00 | -     | -     | -           | -   | -         | -        | -         |     | -     | -    | -     | -         | -             |
| 27-Jun-00 |       | -     |             |     | -         | -        | -         | -   |       | -    | -     | -         | -             |
| 27-Jun-00 | -     | -     |             | 1   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 27-Jun-00 | -     | -     |             |     | -         | -        | -         | -   | -     | -    | -     | -         |               |
| 27-Jun-00 | -     | -     | ı           | 1   | -         | •        | -         | -   |       |      | -     | -         | -             |
| 27-Jun-00 |       | -     | -           | 1   | -         |          |           | -   | -     | -    |       | -         | •             |
| 27-Jun-00 | -     | -     |             |     | -         | •        |           | -   | -     | -    | -     | -         | -             |
| 28-Jun-00 | -     | -     |             |     | -         | -        |           | -   | -     | -    | -     | -         | -             |
| 28-Jun-00 |       |       | -           | -   | -         |          | -         | -   |       | -    | -     |           | -             |
| 28-Jun-00 |       |       | •           | ,   | -         | -        | -         | -   | -     |      | _     | 7         | -             |
| 29-Jun-00 | 30    | <1m   | perm. pond  | 띧   | mud       | natural  | none      | 5.3 | 520   | 21.4 | dear  | clear     | rush, grasses |
| 30-Jun-00 | -     | ,     | •           | ı   | -         |          | -         | •   | -     |      | -     | -         | -             |
| 30-Jun-00 | -     | -     | 1           | ı   | -         | -        |           | -1  | -     | _    | -     |           |               |
| 30-Jun-00 | -     | -     | 1           | ı   | •         | •        | -         | -   | -     | -    | -     | -         | -             |
| 1-Jul-00  | 1     | <1m   | stream      | PE  | mud       | man-made | permanent | 7.5 | 480   | 22.1 | clear | clear     | rush, grasses |
| 1-Jul-00  | -     | •     |             | -   | -         | -        | -         | -   | -     | -    |       | -         | •             |
| 2-Jul-00  |       | •     | -           |     | -         | -        | -         | -   | -     | -    |       | -         | -             |
| 2-Jul-00  | -     | -     | -           | 1   | -         |          | -         | -   |       | -    | -     |           | -             |
| 2-Jul-00  | -     | -     | -           | -   | -         | -        | -         | -   | -     | -    | -     | -         | -             |
| 2-Jul-00  | -     | -     | -           | -   | -         | -        | -         | -   | -     |      | -     | -         | -             |
| 5-Jul-00  | 1     | <1m   | stream      | PE  | mud       | man-made | permanent | 7   | 420   | 21.8 | clear | clear     | rush, grasses |
| 5-Jul-00  | -     | -     | -           | -   |           | -        | -         | -   | -     | -    | -     | -         | -             |
| 5-Jul-00  | -     | -     | -           | -   | _         |          | -         |     | -     | -    | -     | -         |               |
| 5-Jul-00  | -     | -     | -           | •   |           | -        | -         | -   | -     | -    | -     | -         | -             |
| 5-Jul-00  | 20    | <1m   | temp. pond  | PE  | mud       | natural  | none      | 5.4 | 450   | 27.8 | clear | clear     | rush, grasses |
| 6-Jul-00  | 15    | <1 m  | spring seep | PE  | mud       | man-mod  | permanent | 6.8 | 240   | 26.4 | clear | clear     | rush, grasses |
| 6-Jul-00  | 15    | 1-2m  | spring seep | PAB | mud       | man-made | none      | 8.1 | 320   | 27.5 | clear | cloudy    | -             |
| 20-Jun-00 | -     | -     |             |     | -         | -        | -         | -   | -     | -    |       | -         | -             |
| 22-Jun-00 | -     | -     | -           | -   | -         |          | +         | -   | -     | -    | -     | -         | . •           |
| 7-Jul-00  | -     | -     | -           | -   | _         | -        | -         |     | -     |      | -     | -         |               |

| Date      | % Shore w/ Em Veg | N. Shore Characteristics      | Fish | Forest Distance |
|-----------|-------------------|-------------------------------|------|-----------------|
| 22-Jun-00 | -<br>-            | -                             |      | -               |
| 22-Jun-00 | •                 | -                             | -    |                 |
| 22-Jun-00 |                   | -                             | -    |                 |
| 22-Jun-00 |                   | -                             | -    | -               |
| 22-Jun-00 | -                 | -                             | -    | -               |
| 22-Jun-00 | -                 | -                             | -    |                 |
| 23-Jun-00 | -                 | <u>-</u>                      | -    | -               |
| 27-Jun-00 | -                 | •                             | -    | -               |
| 27-Jun-00 | +                 | -                             | -    | -               |
| 27-Jun-00 | -                 | -                             | -    |                 |
| 27-Jun-00 | -                 | -                             | -    | -               |
| 27-Jun-00 | -                 | -                             | -    | -               |
| 27-Jun-00 | -                 | -                             | -    | -               |
| 28-Jun-00 | -                 |                               | •    | -               |
| 28-Jun-00 | •                 | -                             |      | -               |
| 28-Jun-00 | -                 | -                             | -    |                 |
| 29-Jun-00 | >50               | shallows pres./ em veg pres.  | no   | 10              |
| 30-Jun-00 | -                 | -                             | -    | -               |
| 30-Jun-00 | •                 | -                             | -    | -               |
| 30-Jun-00 | -                 | <u>-</u>                      | -    | -               |
| 1-Jul-00  | >50               | shallows pres./ em veg pres.  | yes  | 50              |
| 1-Jul-00  | *                 |                               |      | -               |
| 2-Jul-00  |                   | -                             | -    | •               |
| 2-Jul-00  |                   | -                             | -    | -               |
| 2-Jul-00  | -                 | -                             | -    | -               |
| 2-Jul-00  | -                 | <u>-</u>                      | -    |                 |
| 5-Jul-00  | >50               | shallows pres./ em veg pres.  | yes  | 50              |
| 5-Jul-00  | -                 |                               | -    | -               |
| 5-Jul-00  | •                 |                               | -    |                 |
| 5-Jul-00  | -                 | -                             | -    | -               |
| 5-Jul-00  | >50               | shallows pres./ em veg pres.  | no   | 50              |
| 6-Jul-00  | >50               | shallows pres./ em veg pres.  | no   | •               |
| 6-Jul-00  | 1-25              | shallows pres./ em veg absent | no   | +               |
| 20-Jun-00 | -                 | -                             | _    | <del>-</del> ·  |
| 22-Jun-00 |                   | -                             | -    | -               |
| 7-Jui-00  |                   | -                             | -    | -               |

| Date      | Time  | Locality                                      | Observers            | UTM  | Elevation        | Northing             | Easting |
|-----------|-------|-----------------------------------------------|----------------------|------|------------------|----------------------|---------|
| 7-Jul-00  | 10:35 | Emery Creek                                   | J. Shive, W. Hayes   | 12   | 1678             | 4661512              | 260297  |
| 7-Jul-00  | 12:12 | Emery Creek                                   | J. Shive, W. Hayes   | 12   | 1539             | 4660374              | 258472  |
| 7-Jul-00  | 13:30 | Austin Ranch (wetlands east of canal)         | J. Shive, W. Hayes   | 12   | 1442             | 4663762              | 256745  |
| 7-Jul-00  | 14:04 | Austin Ranch (Canal)                          | J. Shive, W. Hayes   | 12   | 1443             | 4 <del>6</del> 63767 | 256729  |
| 7-Jul-00  | 15:00 | Austin Ranch (wetlands east of canal)         |                      |      |                  |                      |         |
| 7-Jul-00  | 16:00 | Austin Ranch                                  | J. Shive, W. Hayes   | 12   | 1478             | 4663196              | 256817  |
| 18-Jul-00 | 15:15 | Cooper Property                               | J. Shive             | 11   | 1280             | 4697174              | 711215  |
| 18-Jul-00 | 16:15 | North Cottonwood Creek Reservoir              | J.Shive              | 11   | 1290             | 4698227              | 711878  |
| 19-Jul-00 | 11:50 | North Cottonwood Creek Reservoir              | J. Shive, R. Wilson  | 11   | 1310             | 4698435              | 711958  |
| 20-Jul-00 | 9:50  | City of Rocks                                 | J. Sh <del>ive</del> | 12   | 1733             | 4661746              | 278965  |
| 20-Jul-00 | 11:32 | City of Rocks (Twin Sisters)                  | J. Shive             | 12   | 1930             | 4658030              | 275030  |
| 20-Jul-00 | 11:58 | City of Rocks (Twin Sisters)                  | J. Shive             | 12   | 1950             | 4658059              | 274985  |
| 20-Jul-00 | 12:17 | City of Rocks (Twin Sisters)                  | J. Shive             | 12   | 1950             | 4658018              | 274991  |
| 21-Jul-00 | 9:35  | City of Rocks (Twin Sisters)                  | J. Shive             | 12   | 1965             | 4657849              | 274971  |
| 21-Jul-00 | 10:03 | City of Rocks (Twin Sisters)                  | J. Shive             | 12   | 193 <del>4</del> | 4657745              | 274988  |
| 21-Jul-00 | 10:45 | City of Rocks (Circle Creek Trail)            | J. Shive             | 12   | 1893             | 4663015              | 277685  |
| 21-Jul-00 | 11:10 | City of Rocks (Circle Creek Trail)            | J. Shive             | 12   | 1916             | 4663196              | 277696  |
| 21-Jul-00 | 12:00 | City of Rocks (Circle Creek Trail)            | J. Shive             | 12   | 1918             | 4663231              | 277712  |
| 21-Jul-00 | 12:10 | City of Rocks (Circle Creek Trail)            | J. Shive             | 12   | 1896             | 4663017              | 277704  |
| 21-Jul-00 | 12:33 | City of Rocks (Circle Creek Trail)            | J. Sháve             | 12   | 1877             | 4662882              | 277209  |
| 22-Jul-00 |       | City of Rocks                                 | J. Shive             | 12   | 1857             | 4662959              | 276523  |
| 22-Jul-00 | 10:29 | City of Rocks                                 | J. Shive             | 12   | 2128             | 4664691              | 275340  |
| 22-Jul-00 | 13:03 | City of Rocks                                 | J. Shive             | . 12 | 1894             | 4662943              | 277668  |
| 25-Jul-00 | 16:15 | Minidoka Wildlife Refuge                      | J. Shive             | 12   | 1281             | 4725221              | 300781  |
| 25-Jul-00 | 16:15 | Minidoka Wildlife Refuge                      | J. Shive             | 12   | 1275             | 4725301              | 301380  |
| 25-Jul-00 | 16:15 | Minidoka Wildlife Refuge                      | J. Shive             | 12   | 1270             | 4725151              | 301625  |
| 25-Jul-00 |       | Minidoka Wildlife Refuge                      | J. Shive             | 12   | 1285             | 4725265              | 300713  |
| 25-Jul-00 | 16:15 | Minidoka Wildlife Refuge                      | J. Shive             | 12   | 1269             | 4725317              | 300726  |
| 26-Jul-00 | 14:02 | Minidoka Wildlife Refuge                      | J. Shive, W. Hayes   | 12   | 1266             | 4725423              | 299677  |
| 27-Jul-00 | 11:40 | Minidoka Wildlife Refuge (Bobcat Canyon)      | J. Shive             | 12   | 1269             | 4721417              | 312102  |
| 27-Jul-00 |       | Minidoka Wildlife Refuge (Bobcat Canyon Area) | J. Shive             | 12   | 1270             | 4720957              | 312735  |
| 28-Jul-00 | 10:57 | Minidoka Wildlife Refuge                      | J. Shive, A. Taylor  | 12   | 1277             | 4728458              | 296271  |
| 28-Jul-00 | 11:25 | Minidoka Wildlife Refuge                      | J. Shive, A. Taylor  | 12   | 1271             | 4728439              | 296297  |
| 28-Jul-00 | 11:40 | Minidoka Wildlife Refuge                      | J. Shive, A. Taylor  | 12   | 1280             | 4728304              | 296420  |
| 28-Jul-00 | 12:27 | Minidoka Wildlife Refuge                      | J. Shive, A. Taylor  | 12   | 1251             | 4727785              | 297230  |
| 28-Jul-00 | 1:26  | Minidoka Wildlife Refuge                      | J. Shive, A. Taylor  | 12   | 1250             | 4727617              | 297351  |

| Date      | Species Present                                                    | Wind   | Radiation | % Clouds | TA   | Precip. | GAP Analysis | Length |
|-----------|--------------------------------------------------------------------|--------|-----------|----------|------|---------|--------------|--------|
|           | 1 SCGR juvenile                                                    | calm   | clear     | 0        | 21.8 | no      | 33XX         | -      |
| 7-Jul-00  | 1 MATA juvenile, 1 SCGR adult                                      | calm   | clear     | 5        | 26.9 | no      | 41XX / 33XX  | -      |
| 7-Jul-00  | 2 PSRE metamorphs, 2 PSRE adult males                              | light  | clear     | 20       | 27.2 | no      | 2000 / 33XX  | 90     |
| 7-Jul-00  | 2 PSRE adults, 1PSRE metamorph, 1 THEL adult, 1 THEL juvenile      | light  | clear     | 30       | 26.1 | no      | 2000 / 33XX  | 100    |
| 7-Jul-00  |                                                                    | light  | clear     | 25       | 26.1 | no      | 2000         | 40     |
| 7-Jul-00  | 1 SCGR adult (incidental observation)                              | light  | clear     | 30       | 26   | no      | 2000 / 33XX  |        |
| 18-Jul-00 |                                                                    | lìght  | partial   | 70       | 28.6 | no      | 62XX         | 40     |
| 18-Jul-00 |                                                                    | fight  | partial   | 60       | 28.9 | no      | 5000 / 63XX  | 80     |
| 19-Jul-00 |                                                                    | light  | clear     | 30       | 27.5 | no      | 5000 / 63XX  | 85     |
|           | 1 THEL juvenile                                                    | calm   | clear     | 10       | 25.3 | no      | 41XX / 62XX  | 35     |
|           | 1 SCGR adult, skin #5                                              | caim   | clear     | 15       | 28.4 | no      | 73XX         | -      |
| 20-Jul-00 | 1 SCGR juvenile                                                    | calm   | clear     | 15       | 30.4 | no      | 73XX         | -      |
| 20~Jul-00 | 1 SCGR adult                                                       | calm   | clear     | 15       | 31.7 | no      | 73XX         | -      |
| 21-Jul-00 | 1 SCGR adult, 1 PICA juvenile                                      | calm   | clear     | 10       | 29.9 | no      | 73XX         | -      |
|           | 1 SCGR adult                                                       | light  | clear     | 10       | 29.6 | по      | 73XX         |        |
| 21~Jul-00 | 1 SCGR adult, 1 SCGR juvenile                                      | light  | clear     | 5        | 29   | по      | 73XX         | -      |
| 21-Jul-00 | 1 SCGR adult                                                       | light  | clear     | 5        | 29.5 | no "    | 73XX         | -      |
| 21-Jul-00 | 1 SCGR adult                                                       | light  | clear     | 20       | 30.3 | no      | 73XX         | -      |
| 21-Jul-00 | 2 SCGR adult                                                       | calm   | clear     | 20       | 30.4 | no      | 73XX         | -      |
| 21-Jul-00 | 1 SCGR juvenile                                                    | calm   | clear     | 15       | 30.4 | по      | 73XX         | -      |
| 22-Jul-00 | 1 SCGR adult                                                       | calm   | clear     | 0        | 27.9 | no      | 73XX         | -      |
| 22-Jul-00 | 1 SCOC adult                                                       | light  | clear     | . 0      | 29.4 | no no   | 73XX         |        |
| 22-Jul-00 | † SCGR adult                                                       | light  | clear     | 0        | 34,9 | no      | 73XX         |        |
| 25-Jul-00 | skin #1                                                            | calm   | partial   | 75       | 29.6 | no      | 5000 / 63XX  | -      |
| 25-Jul-00 | skin #2                                                            | calm   | partial   | 75       | 29.6 | no      | 5000 / 63XX  | -      |
| 25-Jul-00 | skin #3 (1 MATA juvenile)                                          | calm   | partial   | 75       | 29.6 | no      | 5000 / 63XX  | -      |
| 25-Jul-00 | skin #4 (1 MATA adult)                                             | calm   | partial   | 75       | 29.6 | no      | 5000 / 63XX  | -      |
| 25-Jul-00 | skin #5 (Themnophis ?)                                             | calm   | partial   | 75       | 29.6 | nç      | 5000 / 63XX  | -      |
| 26-Jul-00 | 50+ RAPI metamorphs                                                | calm   | partial   | 80       | 30.1 | nó      | 5000 / 63XX  | 110    |
|           | 1 CRVI adult                                                       | medium | overcast  | 20       | 28.8 | no      | 33XX         |        |
| 27-Jul-00 | 47 RAPI metamorphs                                                 | medium | overcast  | 100      | 31.7 | no      | 5000 / 63XX  | 60     |
|           | 1 GAWI adult male                                                  | calm   | clear     | 15       | 27.7 | по      | 33XX         |        |
| 28-Jul-00 | 2 GAWI adults                                                      | calm   | clear     | 10       | 29.1 | no      | 33XX         | -      |
| 28-Jul-00 | 1 GAWI juvenile                                                    | calm   | clear     | 15       | 29.4 | no      | 33XX         | -      |
| 28-Jul-00 | 1 PSMA metamorph, 2 RAPI adults, 3 RAPI larvae, 32 RAPI metamorphs | calm   | clear     | 15       | 30.5 | no      | 61XX         | 25     |
| 28-Jul-00 | 1 THEL adult (incidental observation)                              | calm   | clear     | 15       | 30.8 | no      | 5000         | -      |

| Date      | Width | Depth | Site Type     | NWI  | Substrate   | Origin   | Drainage   | рН    | Cond.    | Tw   | Color    | Turbidity | Dom Em Veg        |
|-----------|-------|-------|---------------|------|-------------|----------|------------|-------|----------|------|----------|-----------|-------------------|
| 7-Jul-00  | -     | -     |               |      | -           | -        | -          | -     | -        | -    | -        | -         | -                 |
| 7-Jui-00  | -     | -     | -             | ŗ    | -           |          | -          |       | -        | -    | -        |           | •                 |
| 7-Jul-00  | 40    | <1m   | temp, pond    | PE   | mud         | natural  | попе       | 6.3   | 440      | 28.1 | clear    | ciear     | grasses, rush     |
| 7-Jul-00  | 1     | <1m   | stream(canal) | PE   | mud         | man-made | permanent  | 6.3   | 380      | 27.6 | clear    | clear     | grasses           |
| 7-Jul-00  | 10    | <1m   | temp. pond    | PE   | mud         | natural  | none       | 6.2   | 480      | 27.5 | clear    | clear     | grasses, rush     |
| 7-Jul-00  | -     | ,     | ·             | -    | -           | •        | -          | -     | -        | -    | -        | -         | -                 |
| 18~Jul-00 | 10    | 1-2m  | spring/pond   | PE   | mud         | man-mod  | permanent  | 8.4   | 660      | 25.8 | clear    | clear     | rush, grasses     |
| 18-Jul-00 | 80    | >2m   | perm. iake    | LLME | mud         | man-mod  | occasional | 10.8  | 440      | 28   | clear    | clear     | rush, grasses     |
| 19-Jul-00 | 80    | >2m   | perm, take    | LLME | mud         | man-mod  | occasional | 10.6  | 320      | 24.9 | clear    | clear     | rush, grasses     |
| 20-Jul-00 | 13    | <1m   | perm. pond    | PAB  | sand/gravel | man-mod  | permanent  | 6.8   | 430      | 21.3 | clear    | clear     | rush              |
| 20-Jul-00 |       | ,     | -             | -    | -           | -        | -          | -     | -        | -    | -        |           | -                 |
| 20-Jul-00 |       | -     | -             | -    | -           |          | -          | -     | -        | -    | -        |           |                   |
| 20-Jul-00 | -     | -     | -             | -    | -           | -        | -          |       | -        | -    | •        | -         | -                 |
| 21-Jul-00 | -     | -     | -             |      | -           | -        |            |       | -        | -    |          | -         |                   |
| 21-Jul-00 | -     | -     | -             | -    | -           |          | -          | -     |          | -    | -        | -         | -                 |
| 21-Jul-00 | -     | -     | -             | -    | -           |          | +          | -     | -        |      |          | -         | -                 |
| 21~Jul-00 | -     | -     |               |      |             | -        | -          |       |          | -    | -        | -         | -                 |
| 21-Jul-00 | -     | -     | -             | -    |             | -        | -          | -     | -        | -    | -        | -         | -                 |
| 21-Jul-00 | -     | -     | -             | -    | -           | -        | -          | _     | -        | -    |          | -         | <del>-</del>      |
| 21-Jul-00 | -     | -     | -             | -    | -           | -        | -          |       | -        | -    | -        |           |                   |
| 22-Jul-00 | -     |       | -             | -    | •           | -        | -          | -     |          | _    | -        | -         | -                 |
| 22-Jul-00 | -     |       |               | -    | -           | -        | _          | - , , |          |      | -        | -         | -                 |
| 22-Jul-00 | -     |       |               | -    | -           | -        | -          | -     | -        | •    | -        | -         | -                 |
| 25-Jul-00 | -     |       | •             | -    | -           | -        |            | -     | -        | _    | -        |           | _                 |
| 25-Jul-00 | -     | -     | -             | -    | -           | -        | -          | -     |          |      | -        | -         |                   |
| 25-Jul-00 | -     | -     | -             | -    | -           | -        | -          | -     | -        | -    | -        |           |                   |
| 25-Jul-00 | -     | -     | -             | -    | -           | -        | -          | -     | -        | -    | -        |           | -                 |
| 25-Jul-00 | -     | -     | -             | -    | -           | -        | -          | -     | -        |      | -        | -         | -                 |
| 26-Jul-00 | 50    | >2m   | perm. lake    | LLME | mud         | man-mod  | permanent  | 8     | 240      | 22.4 | clear    | clear     | bullrush,cattails |
| 27-Jul-00 | -     | -     | -             | -    | -           | -        | -          | -     | -        |      | <u> </u> | -         | -                 |
| 27-Jul-00 | 20    | >2m   | perm, lake    | LLME | mud         | natural  | permanent  | 8.2   | 270      | 25.2 | clear    | clear     | bullrush,cattails |
| 28-Jul-00 |       | -     | -             | -    | •           |          | -          |       | <u>.</u> |      | -        | -         | -                 |
| 28-Jul-00 |       | -     | -             | -    | -           | -        | •          |       | -        |      | -        |           | -                 |
| 28-Jul-00 | -     |       | -             | -    | 1           | -        | -          | -     | -        |      | -        | -         | -                 |
| 28-Jul-00 | 20    | 1-2m  | perm. pond    | PE   | mud         | natural  | none       | 6.9   | 580      | 14.1 | clear    | clear     | cattails          |
| 28-Jul-00 | -     |       | -             | -    |             | -        | -          | -     |          | -    | -        | -         |                   |

| Date      | % Shore w/ Em Veg | N. Shore Characteristics     | Fish | Forest Distance |
|-----------|-------------------|------------------------------|------|-----------------|
| 7-Jul-00  | -                 | -                            | -    | -               |
| 7-Jul-00  | -                 | -                            | -    | -               |
| 7-Jul-00  | >50               | shallows pres./ em veg pres. | no   | 50              |
| 7-Jul-00  | >50               | -                            | no   | 50              |
| 7-Jul-00  | >50               | shallows pres./ em veg pres. | no   | 50              |
| 7-Jul-00  | - """             | -                            | -    | -               |
| 18-Jul-00 | >50               | shallows pres./ em veg pres. | yes  | -               |
| 18-Jul-00 | >50               | shallows pres./ em veg pres. | yes  |                 |
| 19-Jul-00 | >50               | shallows pres./ em veg pres. | yes  | -               |
| 20-Jul-00 | 25-50             | shallows pres./ em veg pres. | no   | -               |
| 20-Jul-00 | -                 | - <u>-</u>                   | -    |                 |
| 20-Jul-00 | -                 | -                            | -    | -               |
| 20-Jul-00 | -                 | -                            | -    | -               |
| 21-Jul-00 | •                 | -                            | -    |                 |
| 21-Jul-00 |                   | -                            | -    | -               |
| 21-Jul-00 |                   | -                            | -    | -               |
| 21-Jul-00 | *                 | -                            | -    | -               |
| 21-Jul-00 | *                 | -                            | -    | -               |
| 21-Jul-00 | -                 | -                            | -    | -               |
| 21-Jul-00 |                   | -                            |      | -               |
| 22-Jul-00 | -                 |                              |      | -               |
| 22-Jul-00 |                   | -                            | -    | -               |
| 22-Jul-00 | -                 | -                            | -    | -               |
| 25-Jul-00 | -                 | -                            | -    |                 |
| 25-Jul-00 | -                 | -                            |      | ,               |
| 25-Jul-00 | -                 | -                            | _    | -               |
| 25-Jul-00 | -                 | -                            | -    | -               |
| 25~Jul-00 |                   |                              | -    | -               |
| 26-Jul-00 | >50               | shallows pres./em veg pres.  | yes  | -               |
| 27-Jul-00 | *                 | -                            | -    | -               |
| 27-Jul-00 | >50               | shallows pres./em veg pres.  | yes  | _               |
| 28-Jul-00 |                   |                              | -    | -               |
| 28-Jul-00 | -                 | -                            | -    | -               |
| 28-Jul-00 | -                 | -                            | •    | -               |
| 28-Jul-00 | >50               | shallows pres./em veg pres.  | NO.  | -               |
| 28-Jul-00 | -                 | -                            | -    | •               |

| Date      | Time  | Locality                   | Observers          | UTM        | Elevation | Northing | Easting |
|-----------|-------|----------------------------|--------------------|------------|-----------|----------|---------|
| 1-Aug-00  | 12:58 | Raft River BLM Exclosure   | J. Shive           | 12         | 1488      | 4660186  | 297690  |
| 2-Aug-00  | 12:31 | Independence Lakes 1       | J. Shive           | 12         | 2687      | 4675326  | 280442  |
| 2-Aug-00  | 13:34 | Independence Lakes 2       | J. Shive           | 12         | 2750      | 4675180  | 279865  |
| 2-Aug-00  | 14:30 | Independence Lakes 3       | J. Shive           | 12         | 2763      | 4674710  | 279675  |
| 2-Aug-00  | 15:31 | Independence Lakes 4       | J. Shive           | 12         | 2806      | 4674485  | 279664  |
| 3-Aug-00  | 11:25 | Sublett Reservoir          | J. Shive           | 12         | 1607      | 4687878  | 331703  |
| 3-Aug-00  | 13:36 | North of Sublett Reservoir | J. Shive           | 12         | 1650      | 4689380  | 331634  |
| 3-Aug-00  | 13:45 | North of Sublett Reservoir | J. Shive           | 12         | 1648      | 4689289  | 331643  |
| 4-Aug-00  | 9:00  | McClendon Springs          | J. Shive, W. Hayes | 12         | 1472      | 4689674  | 301752  |
| Jun-00    | -     | Contributed Observations   | M. McDonald        | 11         | -         | 4700687  | 721907  |
| Jul-00    | -     | Contributed Observations   | M. McDonald        | 11         |           | 4700709  | 721817  |
| 25-Aug-00 | 19:21 | Contributed Observations   | R. Wilson          | 11         | -         | 4686081  | 745360  |
| 11-Sep-00 | -     | Contributed Observations   | R. Wilson          | <b>1</b> 1 |           | 4687789  | 253422  |
| 11-Sep-00 | -     | Contributed Observations   | R. Wilson          | 11         | -         | 4687676  | 746135  |

| Date      | Species Present   | Wind  | Radiation | % Clouds | TA   | Precip. | GAP Analysis       | Length |
|-----------|-------------------|-------|-----------|----------|------|---------|--------------------|--------|
| 1-Aug-00  | 2 THEL adults     | calm  | partial   | 40       | 31.9 | no      | 33XX / 62XX        |        |
| 2-Aug-00  |                   | light | partial   | 75       | 22.1 | по      | 4000 / 73XX / 5000 | 50     |
| 2-Aug-00  |                   | light | partial   | 85       | 22.7 | по      | 4000 / 73XX / 5000 | 60     |
| 2-Aug-00  | 200+ PSRE larvae  | light | partial   | 80       | 22.7 | yes     | 4000 / 73XX / 5000 | 50     |
| 2-Aug-00  |                   | light | partial   | 60       | 22.8 | по      | 4000 / 73XX / 5000 | 50     |
| 3-Aug-00  |                   | light | partial   | 70       | 29.8 | no      | 5000 / 33XX        | 50     |
| 3-Aug-00  | 1 COCO juvenile   | calm  | partial   | 85       | 30.6 | ло      | 62XX               | -      |
| 3-Aug-00  | 1 THEL juvenile   | calm  | partial   | 85       | 30.7 | no      | 62XX               | -      |
| 4-Aug-00  |                   | calm  | partial   | 65       | 23.1 | ΠQ      | 61XX / 33XX        | 20     |
| 1-Jun-00  | 1 AMTi adult dead | -     | -         | ~        |      | -       | 4                  | •      |
| 1-Jul-00  | 1 PSRE            |       | -         | -        | _    | -       | 1                  | -      |
| 25-Aug-00 | 1 BUBO            |       |           | -        |      | -       |                    | -      |
| 11-Sep-00 | 1 0000            |       | -         | - "      | -    | -       |                    | -      |
| 11-Sep-00 | 1 MATA            | -     | -         | -        | -    | -       | -                  | -      |

| Date      | Width | Depth | Site Type  | NWI          | Substrate   | Origin  | Drainage  | рΗ  | Cond. | Tw   | Color | Turbidity | Dom Em Veg    |
|-----------|-------|-------|------------|--------------|-------------|---------|-----------|-----|-------|------|-------|-----------|---------------|
| 1-Aug-00  | -     | -     | -          | _            |             | -       | -         |     | -     | •    | -     | -         |               |
| 2-Aug-00  | 35    | >2m   | perm. lake | LLMAB        | mud/cobble  | natural | permanent | 8.5 | 10    | 19.3 | clear | clear     | grasses       |
| 2-Aug-00  | 35    | >2m   | perm. lake | LLMAB        | mud/bedrock | natural | permanent | 9.2 | 20    | 21.1 | clear | clear     | rush, grasses |
| 2-Aug-00  | 40    | >2m   | perm. lake | LLMAB        | mud/bedrock | natural | permanent | 9   | 20    | 20.1 | clear | clear     | grasses       |
| 2-Aug-00  | 50    | >2m   | perm. lake | LLMAB        | mud/bedrock | natural | permanent | 8.5 | 20    | 20   | clear | clear     | grasses       |
| 3-Aug-00  | 50    | >2m   | perm. lake | LLMAB        | mud         | man-mod | permanent | 9.7 | 380   | 24.2 | clear | clear     | -             |
| 3-Aug-00  | ľ     | -     | -          | -            | •           |         |           | •   | -     | •    |       | -         |               |
| 3-Aug-00  | ,     | - 1   | -          | <del>-</del> | -           | -       | •         | •   |       | ,    | ,     | -         | -             |
| 4-Aug-00  | 15    | >2m   | perm. pond | PAB          | mud         | man-mod | none      | 9   | 430   | 17.3 | clear | clear     | grasses       |
| 1-Jun-00  |       |       | -          | _            | -           | •       | -         | •   | -     | -    | -     | -         | -             |
| 1-Jul-00  | -     | -     | -          |              | -           | -       | ,         | -   | -     | ,    |       | -         | 1             |
| 25-Aug-00 |       | -     | ·          | -            | -           | •       |           | -   | -     |      | -     |           |               |
| 11-Sep-00 |       | -     | -          | -            | -           | -       | -         | -   | -     | -    | -     | -         | -             |
| 11-Sep-00 |       | -     | -          | -            | -           | -       | -         | -   |       | -    | -     |           | -             |

| Date      | % Shore w/ Em Veg | N. Shore Characteristics      | Fish | Forest Distance |
|-----------|-------------------|-------------------------------|------|-----------------|
| 1-Aug-00  | -                 | -                             | -    | -               |
| 2-Aug-00  | >50               | shallows pres./em veg pres.   | yes  | 1               |
| 2-Aug-00  | 1-25              | shallows pres./em veg absent  | yes  | 12              |
| 2-Aug-00  | 1-25              | shallows pres./ern veg absent | по   | 3               |
| 2-Aug-00  | 1-25              | shallows pres./ern veg absent | по   | 3               |
| 3-Aug-00  | 0                 | shallows pres./em veg absent  | yes  | -               |
| 3-Aug-00  | -                 |                               |      |                 |
| 3-Aug-00  | -                 | -                             |      | •               |
| 4-Aug-00  | 1-25              | shallows pres./em veg absent  | yes  | 1               |
| 1-Jun-00  | -                 | -                             | -    |                 |
| 1-Jul-00  | -                 |                               | -    |                 |
| 25-Aug-00 | -                 |                               | -    | -               |
| 11-Sep-00 |                   |                               | -    |                 |
| 11-Sep-00 | -                 | _                             | -    | -               |

| Date             | date of observation                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------|
| Time             | time observations were made                                                                              |
|                  |                                                                                                          |
| Site             | Survey sites.                                                                                            |
| Locality         | survey site                                                                                              |
| Observers        | name(s) of observer(s)                                                                                   |
| UTM              | Universal TransMercator; NAD 27                                                                          |
| Elevation        | in meters                                                                                                |
| Northing         | UTM north-south coordinate                                                                               |
| Easting          | UTM east-west coordinate                                                                                 |
|                  | AMTI = Ambystoma tigrinum, BUBO = Buto boreas, PSRE = Pseudacris regilla, PSMA = Pseudacris maculata,    |
|                  | RAPI = Rana pipiens, GAWI = Gambelia wislizenii, UTST = Uta stansburiana, SCGR = Sceloporus graciosus,   |
| 1                | SCOC = Sceloporus occidentalis, EUSK = Eumeces skiltonianus, CNTI = Cnemidophorus tigris, COCO =         |
|                  | Coluber constrictor, MATA = Masticophis taeniatus, PICA = Pluophis catenifer, THEL = Thamnophis elegans, |
| Species Present  | CRVI = Crotalus viridis                                                                                  |
| Wind             | calm, light, medium, heavy                                                                               |
| Radiation        | clear or partial                                                                                         |
| % Clouds         | percent cloud cover                                                                                      |
| Та               | shaded air temperature at 1 meter                                                                        |
| Precip.          | precipitation yes or no                                                                                  |
| GAP Analysis     | Idaho GAP analysis categories which characterize the habitat                                             |
| Length (m)       | estimated longest dimension                                                                              |
| Width (m)        | estimated maximum wdith                                                                                  |
| Depth            | < 1, ~1 m, > 1 m                                                                                         |
| Site Type        | beaver pond; a = active; i = inactive; perm. = permanent; temp = temporary                               |
|                  | National Wetland Inventory Classification for wetlands: LLMAB = lacustrine, limnetic, aquatic bed; LLT = |
| NWI              | lacustrine, littoral; PAB = palustrine, aquatic bed; PE = palustrine, emergent                           |
| Substrate        | mud, gravel                                                                                              |
| Origin           | man-made, man-mod = man modified, natural                                                                |
| Drainage         | none, occasional, permanent                                                                              |
| pH               | measured pH                                                                                              |
| Cond.            | conductivy in mg/l                                                                                       |
| Tw               | water temperature at 1 cm depth                                                                          |
| Color            | clear or stained                                                                                         |
| Turbidity        | clear or cloudy                                                                                          |
| Dom Em Veg       | Dom Em Veg = dominant emergent vegetation: grasses, rush, sedge, (-) = not applicable (none)             |
| % Shore w/Em Veg | percent of shoreline with emergent vegetation: 0, 1-25, 25-50, > 50 %                                    |
| Northern Shore   | <u></u>                                                                                                  |
| Characteristics  | shallows: absent or present; emergent vegetation: absent or present                                      |
| Fish             | yes (present) or no (not seen)                                                                           |
| Forest Distance  | estimated distance in meters from shoreline to nearest stand of trees                                    |
| I DIGST DISTRICT | estimated distance in meters from shoreline to nearest stand or trees                                    |

Appendix D. Voucher photograph taken of a Northern Leopard Frog metamorph at the Minidoka National Wildlife Refuge



Appendix E. Amphibian and reptile multiple observation form used for road driving observations.

| interes  In Number  The instructions for filling out the Amphibian and Reptile Individual Observation Form for details on what information to provide.  SPECIES  DESCRIPTION  DATE & TIME  LOCALITY  HABITAT  REMARK  LOCALITY  HABITAT  REMARK  REMAR | ne              |                           |                           |                                   |                                   |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|---------------------------|-----------------------------------|-----------------------------------|---------|
| The Number the instructions for filling out the Amphibian and Reptile Individual Observation Form for details on what information to provide.  SPECIES DESCRIPTION DATE & TIME LOCALITY HABITAT REMARK  A PROVIDENT OF THE PROPERTY OF THE PRO |                 |                           |                           |                                   |                                   |         |
| the instructions for filling out the Amphibian and Reptile Individual Observation Form for details on what information to provide.  SPECIES DESCRIPTION DATE & TIME LOCALITY HABITAT REMARK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                           |                           |                                   |                                   |         |
| SPECIES DESCRIPTION DATE & TIME LOCALITY HABITAT REMARK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the instruction | s for filling out the Amp | hibian and Reptile Indivi | dual Observation Form for details | s on what information to provide. |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPECIES         | DESCRIPTION               | DATE & TIME               | LOCALITY                          | HABITAT                           | REMARKS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           | ****                              |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           | <del></del>                       |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,               |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                           |                           |                                   |                                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -                         | +                         |                                   |                                   |         |

Appendix F. Amphibian and reptile multiple observation data collected from road driving surveys and any other observations from roads that were made while driving to survey sites.

| Species | Description                      | Date      | Time  | UTM  | Northing | Easting | Elelvation | Habitat                                                  | Remarks                                     |
|---------|----------------------------------|-----------|-------|------|----------|---------|------------|----------------------------------------------------------|---------------------------------------------|
| PICA    | 1 m, adult                       | 1-Jun-00  | 14:00 | 11   | 4687610  | 745864  | 1422       | agriculture                                              | Observation by M. McDonald                  |
| CRVI    | 91.4 cm, adult                   | 2-Jun-00  | ,     | 11   | 4587784  | 746147  | 1400       | ag/ sagebrush steppe interface                           | Observation by M. McDonald                  |
| PICA    | 61 cm, juvenile                  | 8-Jun-00  | 15:20 | 11   | 4688992  | 746586  | 1398       | ag/ sagebrush steppe interface                           |                                             |
| PICA    | 53.3 cm, juvenile                | 8-Jun-00  | 15:30 | 11   | 4692232  | 743727  | 1374       | sagebrush/ crested wheat dominated                       | dead on road                                |
| CRVI    | 15.2 cm, juvenile                | 10-Jun-00 | 19:10 | 11   | 4684541  | 741316  | 1677       | lowland between sage/ crested wheat<br>hillsides         | very aggressive, had a black button on tail |
| coco    | 30.5 cm, juvenile                | 13-Jun-00 | 15:00 | 11   | 4688148  | 746151  | 1411       | ag/ sagebrush, crested wheat interface                   | Observation by R. Wilson; dead on road      |
| PICA    | 25.4 cm, juvenile                | 20-Jun-00 | 17:00 | . 11 | 4696656  | 741346  |            | ag/ ag interface                                         | Observation by R. Wilson; dead on road      |
| CRVI    | 61 cm, adult                     | 14-Jun-00 | 11:00 | 11   | 4687687  | 746436  | 1400       | agriculture, near round corral at BCWMA                  | Observation by R. Wilson; killed by worker  |
| PICA    | 61 cm, juvenile                  | 14-Jun-00 | ٠     | 11   | 4687782  | 746726  |            | ag/ crested wheat dominated interface                    |                                             |
| PICA    | 30.6 cm, juvenile                | 18-Jun-00 | -     | 11   | 4687240  | 256995  |            | sagebrush, cheatgrass, crested wheat dominated           | very aggressive                             |
| scoc    | adult male                       | 22-Jun-00 | 19:20 | 11   | 4684874  | 742572  | 1593       | sage stepp next to a riparian area                       | sitting on a boulder near roadside          |
| PICA    | 45.7 cm, juvenile                | 23-Jun-00 | 10:38 | 11   | 4684537  | 741439  | 1667       | sagebrush, cheatgrass/ riparian interface                | very docile and slow                        |
|         | 91.4 cm, adult                   | 27-Jun-00 | _     | 11   | 4687701  |         |            | riparian/ sagebrush, cheatgrass, crested wheat interface | dead on road                                |
| PICA    | 76.2 cm, adult                   | 28-Jun-00 | 11:20 | 11   | 4684689  | 741961  | 1637       | interface between sage steppe uplands                    | dead on road                                |
| PICA    | 22.9 cm, juvenile                | 28-Jun-00 | 18:10 | 11   | 4687783  | 746553  | 1389       | ag/ ag interface near BCWMA                              | dead on road                                |
| CRVI    | 30.5 cm, juvenile                | 28-Jun-00 | 19:15 | 12   | 4687776  | 253566  | 1377       | ag/ sagebrush, crested wheat interface                   | dead on road, missing head and rattle       |
| THEL    | 45.7 cm, juvenile                | 29-Jun-00 | 9:20  | 11   | 4675937  | 740650  | 2143       | Aspen forest/ sage steppe upland interface               | dead on road                                |
| PICA    | 30.5 cm, juvenile                | 29-Jun-00 | 20:24 | 12   | 4686221  | 254806  | 1368       | sagebrush, cheatgrass, crested wheat interface           | very aggressive, hissing and rattling tail  |
| PICA    | 45.7 cm, juvenile                | 30-Jun-00 | 8:37  | 12   | 4683999  | 256414  | 1389       | sagebrush, cheatgrass, crested wheat<br>interface        | dead on road                                |
| PICA    | 91.4 cm, reddish, adult          | 5-Jul-00  | 18:40 | 12   | 4687791  | 253064  | 1391       | ag/ sagebrush, crested wheat, cheatgrass interface       | very docile                                 |
| PICA    | 61 cm, dark colored,<br>juvenile | 5-Jul-00  | 21:30 | 12   | 4687576  | 254593  | 1371       | ag/ sagebrush, crested wheat, cheatgrass interface       | very mailow, skin feels cold                |
| UTST    | juvenile female                  | 6-Jul-00  | 11:50 | 11   | 4690889  | 712096  | 1481       | upland sage steppe interface                             | tail was missing, reddish tint              |
| PICA    | 76.2 cm, adult                   | 7-Jul-00  | 9:22  | 12   | 4664535  | 257877  | 1484       | juniper, sage steppe uplands interface                   | reddish in color                            |
| SCGR    | adult                            | 7-J⊔⊢00   | 11:53 | 12   | 4660338  | 258558  | 1537       | burnt juniper woodland/ riparian interface               |                                             |
| SCGR    | adult                            | 7-Jul-00  | 12:05 | 12.  | 4660357  | 258523  | 1545       | burnt juniper woodland/ riparian interface               |                                             |

| Species | Description     | Date      | Time  | UTM | Northing | Easting | Elelvation | Habitat                                             | Remarks                         |
|---------|-----------------|-----------|-------|-----|----------|---------|------------|-----------------------------------------------------|---------------------------------|
| SCGR    | adult           | 7-Jul-00  | 12:25 | 12  | 4660380  | 258440  | 1527       | burnt juniper woodland/ riparian interface          |                                 |
| SCGR    | adult           | 7-Jul-00  | 12:30 | 12  | 4660448  | 258358  | 1532       | burnt juniper woodland/ riparian interface          |                                 |
| PICA    | adult           | 2-Jul-00  | 8:45  | 12  | 4687271  | 254009  | 1          | sagebrush, cheatgrass, crested wheat interface      | quickty took refuge in a burrow |
| PICA    | 61 cm, juvenile | 19-Ju∔-00 | 8:45  | 12  | 4682573  | 257358  | l .        | sagebrush, cheatgrass, crested wheat interface      | dead on road, thin bodied       |
| PICA    | 1.06 m, adult   | 19-Jul-00 | 14:15 | 11  | 4697175  | 711637  | 1331       | sage steppe/ riparian interface                     | dead on road                    |
| SCGR    | adult female    | 21-Jul-00 | 10:38 | 12  | 4662936  | 277822  | •          | pinyon pine, mahogany, sagebrush/ granite interface | brown background color          |
| SCGR    | adult           | 4-Aug-00  | 10:16 | 12  | 4686577  | 300475  | 1511       | sagebrush, crested wheat interface                  |                                 |
| SCGR    | adult           | 4-Aug-00  | 10:33 | 12  | 4685738  | 300143  | 1530       | sagebrush, crested wheat interface                  | distinct dark brown coloring    |
| SCGR    | adult           | 4-Aug-00  | 10:47 | 12  | 4684243  | 299712  | 1467       | sagebrush, crested wheat interface                  | distinct dark brown coloring    |
| CNTI    | adult           | 4-Aug-00  | 10:58 | 12  | 4683730  | 299558  | 1440       | sagebrush, crested wheat interface                  | very fast, active               |

Appendix G. The dates, times spent surveying, genral route descriptions, and the corresponding results from road driving surveys.

| Date      | Time        | Route                                                                                                                          | Results                        |
|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 8-Jun-00  | 17:00-19:30 | Up Big Cedar Canyon, across to Dry Creek down, and back to the BCWMA on Mountain Rd.                                           | No Observations                |
| 10-Jun-00 | t           | Mountain Rd. to Goose Creek Rd., turned around at the Austin<br>Ranch entrance and back on same route                          | 1 Western Rattlesnake juvenile |
| 21-Jun-00 | 20:30-22:30 | Up Big Cedar Canyon, across to Buckhorn Canyon, down and back to the BCWMA on Mountain Rd.                                     | No Observations                |
| 23-Jun-00 | 8:30-11:00  | Up and down Buckhorn Canyon and Big Cedar Canyon via Mountain Rd. to and from the BCWMA                                        | 1 Gopher Snake juvenile        |
| 28-Jun-00 | 9:00-12:30  | Up and down Little Cedar Canyon, Robber Gulch, and Buckhom<br>Canyon via Mountain Rd.                                          | 1 Gopher Snake adult           |
| 29-Jun-00 | 20:00-22:00 | Mountain Rd. to Goose Creek Rd., turned around at the Idaho/Utah border and back on same route                                 | 1 Gopher Snake juvenile        |
| 30-Jun-00 | 19:00-20:30 | Up and down Buckhorn Canyon via Mountain Rd, to and from the BCWMA                                                             | No Observations                |
| 6-Jul-00  |             | Mountain Rd. to Birch Creek Rd., turned around at the junction to the<br>City of Rocks National Reserve and back on same route | No Observations                |
| 18-Jul-00 | 19:00-21:00 | Mountain Rd. to Birch Creek Rd., through the City of Rocks National Reserve, and back on same route                            | No Observations                |
| 1-Aug-00  | 19:15-20:45 | Up Big Cedar Canyon, across to Buckhorn Canyon, down and back to the BCWMA on Mountain Rd.                                     | No Observations                |
| 3-Aug-00  | 18:30-19:30 | Up Big Cedar Canyon, turned around at the junction with Buckhom Canyon, and back on same route                                 | No Observations                |

Appendix H. The dates, locations (UTM), number of aquatic funnel traps, trap nights, and the corresponding results from aquatic funnel trapping surveys.

| Date      | Locality                           | Northing | Easting | # of Traps | # of Nights | Results                                     |
|-----------|------------------------------------|----------|---------|------------|-------------|---------------------------------------------|
| 6-Jul-00  | Spring below Curtis Reservoir      | 4689976  | 712679  | 4          | 2           | 1 Pacific Treefrog tadpole                  |
| 19-Jul-00 | Ponded Stream (Cooper Property)    | 4697174  | 711215  | 5          | 2           | No Observations                             |
| 19-Jul-00 | North Cottonwood Creek Resevoir    | 4698435  | 711958  | 8          | 2           | No Observations                             |
| 20-Jul-00 | Pond on SE Corner of City of Rocks | 4661746  | 278965  | 4          | 2           | 1 Western Terrestrial Garter Snake juvenile |

Appendix I. The locations, dates, start and end points, and the estimated widths of all survey sites sampled in this study.

| Locality                                        | Date      | Time        | Start Location  | Farthest Location Away                               | Approximate Width of Area Surveyed                         |
|-------------------------------------------------|-----------|-------------|-----------------|------------------------------------------------------|------------------------------------------------------------|
| Big Cottonwood Canyon                           | 11-Jun-00 | 12:00-19:00 | Trailhead       | 4680486, 741461                                      | surveyed along trail (5 m) scouting potential survey sites |
| Big Cottonwood Canyon                           | 19-Jun-00 | 9:45-12:40  | 4684143, 743813 | surveyed to rocky face at top on the west side       | surveyed about 70 meters wide                              |
| Buckhorn Canyon                                 | 20-Jun-00 | 10:10-10:35 | 4689909, 736750 | about 60 meters up talus slope on northwest side     | surveyed about 40 meters wide                              |
| Buckhorn Canyon                                 | 20-Jนก-00 | 10:40-12:00 | 4689966, 738194 | followed ridge up talus slope for 50 meters          | surveyed about 40 meters wide                              |
| Buckhorn Canyon                                 | 20-Jun-00 | 15:00-15:45 | 4690183, 738450 | followed ridge up past exposed rocks                 | surveyed about 50 meters wide                              |
| Robber Gulch                                    | 20-Jun-00 | 16:30-17:50 | 4690387, 739768 | surveyed to top of hill on northern side             | surveyed about 100 meters wide                             |
| Little Cedar Canyon                             | 21-Jun-00 | 9:30-12:30  | 4688907, 743892 | surveyed to top of hill on northern side             | surveyed about 250 meters wide                             |
| Little Cedar Canyon                             | 21-Jun-00 | 15:30-18:00 | 4688779, 743844 | surveyed hillside on southern side up 60 meters      | surveyed about 100 meters wide                             |
| Big Cedar Canyon                                | 22-Jun-00 | 9:00-10:15  | 4687360, 744170 | surveyed to top of exposed rocks<br>on northern side | surveyed about 150 meters wide                             |
| Big Cedar Canyon                                | 22-Jun-00 | 10:20-10:50 | 4687288, 744081 | surveyed up to fenceline on southern side            | surveyed about 50 meters wide                              |
| Big Cedar Canyon                                | 22-Jun-00 | 10:55-12:10 | 4687027, 743610 | surveyed uphill on northern side about 100 meters    | surveyed about 100 meters wide                             |
| Big Cedar Canyon                                | 22-Jun-00 | 16:30-19:30 | 4684574, 742280 | followed stream to the north for 200 meters          | surveyed about 25 meters wide                              |
| Cave Canyon Trail                               | 27-Jun-00 | 10:00-10:45 | 4683244, 741115 | 4683307, 741076                                      | suveyed about 70 meters wide                               |
| Cave Canyon Trail                               | 27-Jun-00 | 11:00-11:20 | 4683033, 740900 | 4683074, 740848                                      | surveyed about 30 meters wide                              |
| Big Cottonwood Canyon                           | 27-Jun-00 | 16:45-17:30 | 4681188, 742652 | surveyed up hiliside for about 30 meters             | surveyed about 90 meters wide                              |
| Big Cottonwood Canyon                           | 27-Jun-00 | 17:35-18:30 | 4680650, 742065 | surveyed up eastern talus slope for about 60 meters  | surveyed about 200 meters wide                             |
| Bosteter Road (exposed rocky area and riparian) | 28-Jun-00 | 9:45-10:30  | 4676192, 740299 | 4676009, 740173                                      | surveyed about 25 meters wide                              |
| Big Cottonwood Canyon                           | 28-Jun-00 | 12:00-13:20 | 4680004, 742079 | surveyed entire wetland                              | surveyed entire wetland                                    |

| Locality                       | Date      | Time        | Start Location  | Farthest Location Away                       | Approximate Width of Area Surveyed                             |
|--------------------------------|-----------|-------------|-----------------|----------------------------------------------|----------------------------------------------------------------|
| South End of Goose Creek       |           |             |                 | 1                                            |                                                                |
| Reservoir                      | 30-Jun-00 | 9:30-12:30  | 4668371, 257508 | 4668427, 258497                              | surveyed about 150 meters wide                                 |
| Austin Ranch                   | 1-Jul-00  | 12:15-12:45 | 4663805, 256630 | 4663853, 256515                              | surveyed about 30 meters wide                                  |
| South End of Goose Creek       |           |             |                 |                                              |                                                                |
| Reservoir                      | 2-Jul-00  | 9:30-12:45  | 4668371, 257508 | 4668427, 258497                              | surveyed about 200 meters wide                                 |
| Austin Ranch                   | 5-Jul-00  | 10:05-12:15 | 4663805, 256630 | 4663853, 256515                              | surveyed about 50 meters wide                                  |
| Austin Ranch (Canal)           | 5-Jul-00  | 12:20-15:20 | 4663820, 256713 | 4663057, 257091                              | surveyed 3 meters from shoreline on both sides                 |
| Austin Ranch (wetland west of  |           |             |                 |                                              |                                                                |
| canal)                         | 5-Jul-00  | 15:20-16:15 | 4663796, 256685 | surveyed entire wetland                      | surveyed entire wetland                                        |
|                                |           |             |                 | surveyed where water had been                |                                                                |
| Curtis Reservoir               | 6-Jul-00  | 12:35-11:15 | 4688082, 713792 | before dryng up                              | surveyed where water had been before dryng up                  |
|                                |           |             |                 |                                              |                                                                |
| Spring Below Curtis Reservoir  | 6-Jul-00  |             | 4689976, 712679 | surveyed entire wetland                      | surveyed entire wetland                                        |
| Sagehen Springs                | 6-Jul-00  | 14:25-15:05 | 4693963, 715123 | surveyed entire wetland                      | surveyed entire wetland                                        |
| Spring Near Fencline Below     |           |             |                 |                                              |                                                                |
| Sagehen Springs                | 6-Jul-00  | 16:00-16:20 | 4689563, 715104 | surveyed entire wetland                      | surveyed entire wetland                                        |
| Emery Creek                    | 7-Jul-00  | 9:55-10:40  | 4661525, 260352 | surveyed entire rock outcrop                 | surveyed about 20 meters wide                                  |
| Emery Creek (riparian)         | 7-Jul-00  | 11:00-11:50 | 4660567, 258191 | 4660324, 258598                              | surveyed 3 meters from shoreline on both sides                 |
| Austin Ranch (wetlands east of |           |             |                 |                                              |                                                                |
| canal)                         | 7-Jul-00  | 13:20-14:55 | 4663762, 256745 | 4663474, 256692                              | surveyed all associated wetlands east of canal                 |
| Austin Ranch (wetlands east of |           |             |                 |                                              |                                                                |
| canal)                         | 7-Jul-00  | 15:00-15:35 | 4663474, 256692 | surveyed entire wetland area                 | surveyed entire wetland area                                   |
| Cooper Property (Spring)       | 18-Jul-00 | 15:19-16:10 | 4697174, 711215 | surveyed entire ponded portion of the stream | surveyed entire ponded portion of the stream                   |
| North Cottonwood Creek         | -         |             |                 | surveyed around the perimeter of             |                                                                |
| Reservoir                      | 18-Jul-00 | 16:15-17:26 | 4698227, 711878 | the reservoir                                | surveyed around the perimeter of the reservoir                 |
| North Cottonwood Creek         |           |             |                 | surveyed around the perimeter of             |                                                                |
| Reservoir                      | 19-Jul-00 | 11:50-14:22 | 4698435, 711958 | the reservoir                                | surveyed around the perimeter of the reservoir                 |
| Pond Near Lower SE of City of  |           |             |                 |                                              |                                                                |
| Rocks                          | 20-Jul-00 |             | 4661746, 278965 | surveyed entire wetland                      | surveyed entire wetland                                        |
| Twin Sisters (City of Rocks)   | 20-Jul-00 |             | 4658030, 275030 | surveyed around rocky peaks                  | surveyed about 50 meters wide                                  |
| Twin Sisters (City of Rocks)   | 21-Jul-00 | 9:15-10:25  | 4658030, 275031 | surveyed around rocky peaks                  | surveyed about 70 meters wide                                  |
| Circle Creek Overlook (City of |           |             |                 | }                                            |                                                                |
| Rocks)                         | 21-Jul-00 | 10:35-12:35 | 4662942, 277653 | 4663465, 277805                              | surveyed about 30 meters wide                                  |
| Circle Creek Trail (Loop)      | 22-Jul-00 | 8:20-13:15  | 4662942, 277653 |                                              | surveyed east to Bread Loaves and finished near<br>Stripe Rock |

| Locality                                             | Date      | Time        | Start Location  | Farthest Location Away                             | Approximate Width of Area Surveyed                                           |
|------------------------------------------------------|-----------|-------------|-----------------|----------------------------------------------------|------------------------------------------------------------------------------|
| Minidoka National Wildlife<br>Refuge                 | 25-Jul-00 |             | 4725298, 300716 | surveyed perimeter of cove and shoreline           | surveyed perimeter of cove and shoreline                                     |
| Minidoka National Wildlife<br>Refuge                 | 26-Jul-00 | 10:30-16:12 | 4725423, 299677 | surveyed perimeter of cove and shoreline           | surveyed perimeter of cove and shoreline                                     |
| Minidoka National Wildlife<br>Refuge (Bobcat Canyon) | 27-Jul-00 | 9:30-13:00  | 4721304, 302737 | 4721451, 312079                                    | surveyed primarily the exposed rock cliffs on the northern side              |
| Minidoka National Wildlife<br>Refuge                 | 27-Jul-00 | 13:09-14:47 | 4720957, 312735 | surveyed perimeter of cove and shoreline           | surveyed perimeter of cove and shoreline                                     |
| Minidoka National Wildlife<br>Refuge (desert)        | 28-Jul-00 | 9:20-11:50  | 4727914, 296565 | surveyed rocky desert for about 100 meters length  | surveyed about 70 meters wide                                                |
| Minidoka National Wildlife<br>Refuge (wetland)       | 28-Jul-00 | 12:27-13:10 | 4727785, 297230 | surveyed entire wadable porion of the wetland      | surveyed entire wadable porton of the wetland                                |
| Raft River (BLM exclosure)                           | 1-Aug-00  | 12:20-15:22 | 4659716, 297380 | 4660306, 297793                                    | surveyed about 10 meters from shoreline on both sides                        |
| Independence Lakes (1)                               | 2-Aug-00  | 12:31-13:28 | 4675326, 280442 | surveyed perimeter and shallows of lake            | surveyed perimeter and shallows of lake                                      |
| Independence Lakes (2)                               | 2-Aug-00  | 13:34-14:22 | 4675180, 279865 | surveyed perimeter and shallows of take            | surveyed perimeter and shallows of lake                                      |
| independence Lakes (3)                               | 2-Aug-00  | 14:30-15:23 | 4674710, 279675 | surveyed perimeter and shallows of<br>lake         | surveyed perimeter and shallows of lake                                      |
| Independence Lakes (4)                               | 2-Aug-00  | 15:31-16:20 | 4674485, 279664 | surveyed perimeter and shallows of lake            | surveyed perimeter and shallows of lake                                      |
| Sublett Reservoir                                    | 3-Aug-00  | 11:25-13:24 | 4687878, 331703 | surveyed northern shallow portion of the reservoir | surveyed northern shallow portion of the reservoir                           |
| Sublett Reservoir                                    | 3-Aug-00  | 13:30-14:10 | 4689440, 331656 | 4689249, 331614                                    | surveyed 8 meters from shoreline on both sides and<br>associated wet meadows |
| McClendon Springs                                    | 4-Aug-00  | 9:00-10:20  | 4689674, 301752 | surveyed perimeter of wetland                      | surveyed perimeter of welland                                                |