

U. S. Department of the Interior Bureau of Land Management BLM-Alaska Open File Report 96 BLM/AK/ST-009+7200+930 December 2003

Alaska State Office 222 West 7th Avenue Anchorage, Alaska 99513

Water Resources of the Colville River Special Area, National Petroleum Reserve-Alaska

By Jon Kostohrys, Kristine Kosnik, and Ethan Scott

Cover Photo

The Colville River flows on the northern slope of the Brooks Range in northern Alaska.

Disclaimer

The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government.

Authors

Jon Kostohrys is a hydrologist with the Bureau of Land Management, Northern Field Office, in Fairbanks, Alaska. Kristine Kosnik is a GIS specialist at the Northern Field Office. Ethan Scott, formerly an ECO Associate in Fairbanks, is a graduate student in Montana.

Open File Reports

Open File Reports issued by the Bureau of Land Management-Alaska present the results of inventories or other investigations on a variety of scientific and technical subjects that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published or distributed in quantity.

The reports are available while supplies last from BLM External Affairs, 222 West 7th Avenue #13, Anchorage, Alaska 99513, telephone (907) 271-3318; and from the Juneau - John Rishel Minerals Information Center, 100 Savikko Road, Mayflower Island, Douglas, AK 99824, (907) 364-1553. Copies are also available for inspection at the Alaska Resource Library and Information Service (Anchorage), the USDI Resources Library in Washington, D. C., various libraries of the University of Alaska, the BLM National Business Center Library (Denver), and other selected locations.

A complete bibliography of all BLM-Alaska scientific reports can be found on the Internet at: http:// www.ak.blm.gov/affairs/sci_rpts.html. Related publications are also listed at http://juneau.ak.blm.gov.

The BLM Mission

The Bureau of Land Management sustains the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations.

Water Resources of the Colville River Special Area, National Petroleum Reserve-Alaska

Jon Kostohrys, Kristine Kosnik, and Ethan Scott

BLM-Alaska Open File Report 96 December 2003

U. S. Department of the Interior Bureau of Land Management

Table of Contents

Abstract	v
Acknowledgments	v
Introduction	1
Description of Study Area	1
Physiography	1
Climate	2
Methods	2
GIS Analysis	2
Hydrology	8
Water Quality	9
Results and Discussion	9
GIS Analysis of Drainage Basin Characteristics	9
Hydrology	9
Water Quality	. 10
Recommendations	. 10
Hydrology	. 10
GIS Analysis of Drainage Basin Characteristics	. 16
Water Quality	. 16
Literature Cited	. 19
Appendix A	-37
Appendix B	-43

Figures

Figure 1.	Map of Northern Alaska, NPR-A, and the Colville River Special Area.	3
Figure 2.	A hydrologic basin map and a map of the lakes in the Colville River	
	Special Area generated from GIS analysis.	4
Figure 3.	The Colville River Area begins upstream of the Nuka River, where steep 78	
Figure 4.	While not as common as on the coastal plain, large lakes such as	
	Liberator Lake are found within the Colville River Special Area.	10
Figure 5.	The lower portion of the Colville River Special Area has bluffs at the	
-	mouths of the Kogosukruk and Kikiakrorak Rivers.	11
Figure 6.	Blankenship Creek, with the presence of a large overflow icing (aufeis).	16
Figure 7.	Plot of Colville River Special Area and NE NPR-A water samples analyzed	
0	for oxygen and hydrogen isotopes.	17

Tables

Table 1.	Colville River Special Area rivers and lakes surveyed beginning in July 2000	9
Table 2.	Drainage basin characteristics from GIS analysis	12
Table 3.	Bankfull channel characterisics and flood frequency of streams in the CRSA.	13
Table 4.	Bankfull discharge and width regressions based on field	
	survey and GIS data	13
Table 5.	Summary of field-determined discharge and water quality values for all years	
Table 6.	Summary of laboratory-determined water quality values for all years sampled	15
Table 7.	2001 CRSA water samples analyzed for oxygen isotope ¹⁸ O and deuterium	15

Appendix A

Figure A-8.	Looking downstream at the survey site on the Colville River above	
	the Kiligwa River. The Colville supports grayling and whitefish in this	
	reach, according to the Alaska Dept. of Fish and Game	
Figure A-9.	Channel cross section for the Colville River above the Kiligwa River.	
Figure A-10.	Looking downstream at the survey site on the Nuka river. The pool-riffle	

	channel and vegetation provide excellent aquatic habitat, according to the	
	Alaska Dept. of Fish and Game.	22
Figure A-11.	Channel cross section for the Nuka River.	22
Figure A-12.	Looking downstream at the survey site on the Kiligwa River. The Kiligwa	
	supports arctic grayling, according to the Alaska Dept. of Fish and Game	23
Figure A-13.	Channel cross section for the Kiligwa River.	23
Figure A-14.	Looking downstream at the survey site on the Kuna River. The stream	
	bank vegetation and pool-riffle channel formations provide abundant	
	aquatic habitat, according to the Alaska Dept. of Fish and Game	24
Figure A-15.	Channel cross section for the Kuna River.	24
Figure A-16.	Channel cross section for Blankenship Creek. The remnant ice fields indicate a	
	groundwater spring system in the basin.	25
Figure A-17.	Cross section of Blankenship Creek.	25
Figure A-18.	Looking downstream at the survey site on the Ipnavik River. The Ipnavik	
	supports arctic grayling, according to the Alaska Dept. of Fish and Game	26
Figure A-19.	Channel cross section for the Ipnavik River.	26
Figure A-20.	Looking upstream at the survey site on the Etivluk River above the East	
	Fork. The Etivluk River supports a wide range of anadromous fish,	
	including salmon, according to the Alaska Dept. of Fish and Game.	27
Figure A-21.	Channel cross section for the East Fork Etivluk River.	27
Figure A-22.	Looking upstream at the survey site on the Etivluk River. The Etivluk	• •
	is a braided stream for most of its course.	28
Figure A-23.	Channel cross section for the Etivluk River above East Fork.	28
Figure A-24.	Looking downstream at the survey site on the Lookout River near the mouth.	20
E. 4.95	The Awuna River is in the background, just beyond the ridgeline.	29
Figure A-25.	Channel cross section for the Lookout River.	29
Figure A-26.	Looking upstream at the survey site on the Awuna River above the	
	Lookout River. The Awuna was studied as a wild and Scenic River, but	20
Figure A 27	Channel gross spation for the Ayung Diver above the Leekout Diver	30
Figure A-27.	Looking unstream at the survey site on the Ayana Diver near the mouth	30
rigure A-20.	Looking upstream at the survey site on the Awuna Kiver hear the mouth.	
	Dent. of Fish and Come	21
Figure A 20	Channel gross section for the Ayung Diver near the mouth	31
Figure A 30	Looking downstream at the survey site on Maybe Creek. The Ikniknuk River	51
Figure A-50.	is formed at the confluence of Maybe Creek and the Kigalik River	32
Figure A 31	Channel cross section for Maybe Creek	52
Figure A-31.	Looking downstream at the survey site on Prince Creek. The channel has	52
rigure A-52.	excellent aquatic habitat which supports arctic gravling according to the	
	Alaska Dent of Fish and Game	33
Figure A-33	Channel cross section for Prince Creek	33
Figure A-34	Looking downstream at the survey site on the upper Kikiakrorak	
	River. The deep channel pools and bank vegetation provide excellent	
	aquatic habitat, according to the Alaska Dent, of Fish and Game	34
Figure A-35	Channel cross section for the upper Kikiakrorak River	
Figure A-36	Looking downstream at the survey site on the upper Kogosukruk River	
-8	The bluffs along the Kogosukruk support raptors and other avian species	
	according to the Alaska Dept. of Fish and Game	
Figure A-37.	Channel cross section for the upper Kogosukruk River.	35
0		

Figure A-38.	Looking downstream at the survey site on the lower Kikiakrorak River.	
	The bluffs along the Kikiakrorak support raptors and other avian species,	
	according to the Alaska Dept. of Fish and Game.	36
Figure A-39.	Channel cross section for the lower Kikiakrorak River.	36
Figure A-40.	Looking downstream at the survey site on the lower Kogosukruk River.	
_	The bluffs along the Kogosukruk support raptors and other avian species,	
	according to the Alaska Dept. of Fish and Game.	37
Figure A-41.	Channel cross section for the lower Kogosukruk River.	37

Appendix B

Table 1B.	Field-determined discharge and water quality values for July 2000.	38
Table 2B.	Laboratory analysis of water quality samples taken in July 2000.	38
Table 3B.	Summary of field-determined discharge and water quality values for July 2001	39
Table 4B.	Laboratory analysis of water quality samples taken in July 2001.	40
Table 5B.	Summary of field-determined discharge and water quality values for 2002	41
Table 6B.	Laboratory analysis of water quality samples taken in 2002.	42
Table 7B.	Summary of field-determined discharge	42
Table 8B.	Laboratory analysis of water quality samples taken in 2003	43

<u>Abstract</u>

In July 2000, the BLM began a systematic inventory of the water resources of the Colville River Special Area, as recommended by the Record of Decision for the Northeast National Petroleum Reserve-Alaska Integrated Activity Plan/Environmental Impact Statement. Six lakes and seventeen river sites were surveyed to provide baseline limnological and hydrological information for the Special Area. Field crews measured streamflow, surveyed channel geometry, and collected water quality samples. Drainage basins and their physical characteristics were determined using Geographic Information System analysis. A hydrologic basin map was produced. Flood frequency relationships and bankfull discharge were estimated using computer models. The basin characteristics, streamflow data, channel geometry, and water quality information will be used to characterize those areas subject to future management plans and mitigate potential disturbances in site-specific environmental analyses.

Acknowledgments

Bunny Sterin, a hydrologist formerly with the Alaska State Office and now with the U. S. Forest Service in Jackson, Wyoming, assisted with streamflow measurements and water quality collection during the 2000 survey. Tim Hammond, GIS Coordinator, Northern Field Office, developed the methodologies used in the GIS analysis. Lon Kelly, Outdoor Recreation Planner, Northern Field Office, produced the final GIS maps. Stan Bloom provided a wizard's touch to the entire document. Richard Kemnitz and Susan Flora, Northern Field Office, provided much of the 2002 data. Valerie Barber, University of Alaska Fairbanks, provided insight into water quality sampling and data analysis. Chris Eastoe, Arizona State University, provided the oxygen and hydrogen isotope laboratory analysis. Logistical support came from BLM staffers Mike Kunz, Connie Adkins, and John Dube, and from Tundra Copters pilot Rick Olson and mechanic George Kellen.

vi

INTRODUCTION

The Colville River Special Area (CRSA) was designated by the Secretary of Interior in 1977 to assure maximum protection of its subsistence, wildlife, recreational, and other identified values, such as the unique bluff and riparian habitats associated with the Colville River and its tributaries. The CRSA is located within the National Petroleum Reserve - Alaska and about one-third of it is within the Northeast NPR-A Planning Area (Figure 1). In October 1998, the Bureau of Land Management (BLM) issued a Record of Decision (ROD) regarding the Northeast National Petroleum Reserve-Alaska Integrated Activity Plan/Environmental Impact Statement (IAP/EIS). The ROD stated that in developing a management plan for the CRSA, the BLM will determine the status of the various resources, including water resources, within the CRSA. In addition, the inventory and monitoring recommendations, described in Appendix A of the IAP/EIS, state that in order to minimize undue and unnecessary degradation to water resources in the Northeast NPR-A Planning Area and adjacent watersheds, hydrology and limnology should be correlated to critical aquatic habitat areas for fisheries and waterfowl. For more information on the ROD, IAP/EIS, and history of the CRSA, the reader is referred to USDI 1998a and USDI 1998b.

To meet the requirements of the ROD and the IAP/EIS, hydrologic and limnologic field surveys, consisting of stream channel geometry and water quality sampling, were initiated. While some preliminary work was done in 1999 in conjunction with a survey of the Northeast Planning Area (Kostohrys et al. 2000), the surveys for the CRSA began in 2000 and continued in 2001, 2002, and 2003. A geographic information system (GIS) was used to delineate drainage basins for each stream channel reference site and to determine the physical characteristics of each contributing area. Drainage basin characteristics were used in a statewide regression model to determine flood frequency relationships. Field survey parameters were input into a slope-conveyance model to compute bankfull discharge estimates. The purpose of this paper is to document and disseminate the results.

Description of Study Area

The CRSA is located in northern Alaska on the north slope of the Books Range. The Special Area covers the central portion of the foothills and the coastal plain just south of the Beaufort Sea (Figure 1). In general, the designated Special Area forms a corridor along much of the Colville River, excepting portions of the headwaters and the delta area near the mouth. The lower reaches of the tributary streams are also included within the designated area, and two of them, the Kikiakrorak and Kogosukruk Rivers, also include portions of their headwaters. Physiography and climate are the dominant factors influencing the water resources.

Physiography

As defined by Wahrhaftig (1965), the CRSA contains two primary physiographic regions: the Arctic Coastal Plain, which comprises the northern-most portion of the area, and the Arctic Foothills of the Brooks Range, which includes the majority of the area.

Ice-rich marine sediments underlie the Arctic Coastal Plain, the result of numerous marine transgressions and recessions (Sellmann et al. 1975). Permafrost, perennially frozen ground, is virtually continuous throughout the planning area. Permafrost prevents infiltration of surface water, forms a largely saturated active (thawed) soil layer, and isolates the much deeper ground water of the area (Sloan 1987). Disturbance and thaw settlement of the perennially frozen, ice-rich sand and silt have created a mosaic of lakes, ponds, and interconnected streams (beaded drainages). The thaw lake cycle (Sellman et al. 1975) creates a continuously changing landscape as lakes form, expand, and drain in response to disturbance of the permafrost terrain. The limited relief of the coastal plain also results in low-gradient, meandering and braided streams, as well as shallow-water tracks, surface flow unconfined by channels, that can convey significant discharge in these areas (Hinzman et al. 1993). Portions of the coastal plain are underlain by low, undulating sand dunes. These relic Pleistocene eolian dunes are generally stabilized by vegetation, though numerous active blowouts along bluffs bordering streams and lakes indicate that this terrain is easily disturbed and subject to renewed erosion (Carter and Galloway 1979). Tussock grass is the most abundant type of vegetation in the poorly drained soils.

The Arctic Foothills of the Brooks Range form the southern and western portion of the planning area. The foothills begin as a band of low hills, approximated by the 500-foot elevation contour, adjacent to the coastal plain. These hills terminate on the steeper slopes of the Brooks Range. The foothills north of the Colville River are termed the northern foothills, and tend towards longer, flat-topped ridges, while those to the south are often more rugged, isolated hills. Lakes are rarer, river valleys narrower, and streams generally of steeper gradient than those on the coastal plain. The rolling hills and mesa-like tablelands are a sharp contrast to the mosaic of lakes and wetlands to the north. Ice-rich permafrost soils and tussock vegetation are still abundant, but steeper valleys, ridges, and higher hilltop soils often contain well-drained sand and gravel, with occasional exposures of weathered bedrock. Many of the foothills rivers are incised within their meanders, confined by bedrock walls that erode into scenic bluffs and cliffs. Other valleys contain thick riparian stands of head-high willow and alder. These cliffs and riparian zones are an important habitat for raptors and other migratory birds.

Climate

The climate of the area has been divided into three zones, Arctic Coastal, Arctic Inland and Arctic Foothills (Zhang et al., 1996). All three zones have short, moderately warm summers and long, very cold winters. Temperature ranges are extreme, with the winter lows often down to -60°F and summer highs to near 90°F. Annual precipitation varies from over 12 inches in the foothills to less than 8 inches along the coast. About half of the annual precipitation falls as snow. The snowpack is highly variable due to the extreme winter winds that scour snow from exposed ridges and hilltops and form deep drifts along protected side slopes and valley bottoms. The deepest snowpack tends to be in the northern foothills and decreases northward to the coast (Sloan 1987). Summer precipitation is usually light, but heavy rainstorms do occur, most often during July or August in

the inland and foothills areas, especially the higher foothills near the Brooks Range, south of the Colville River. While no precipitation data was collected during the field surveys, about a half an inch of rainfall was observed at the base camp at Ivotuk during one thunderstorm in July 2001. Another storm caused a significant rise on the Nuka River later that same week.

METHODS

GIS Analysis of Basin Characteristics

The delineation of a drainage basin for each stream channel reference site was necessary to determine basin characteristics used in hydrologic computer models. Development and analysis of the drainage basins were performed using terrain and hydrologic modeling routines available in Arc/Info Geographic Information System (GIS) software. Once delineated, a basin's drainage area, perimeter, mean elevation, percent of lake area, and percent of forested area were calculated (approximated) using GIS. The following is a technical discussion of the use of GIS in delineating and characterizing the drainage basins in the CRSA.

Terrain Modeling: A 60-meter resolution digital elevation model (DEM) of the entire study area was produced by merging 144 USGS 15-minute series DEMs. Errors in the USGS DEMs due to sampling and rounding effects often create hydrologic sinks. These sinks interfere with hydrologic analyses performed in a GIS, and filling them is a standard practice prior to using DEMs for hydrologic analyses. Filling sinks is an iterative process involving five steps:

- 1. Determine the direction of flow for each grid cell in the DEM.
- 2. Locate all sinks in the DEM.
- 3. Find the contributing area to each sink.
- 4. Find the depth of each sink.
- 5. Fill the sinks to the level of the lowest neighboring grid cell.

The process is repeated until there are no remaining sinks. Arc/Info's GRID module provides pre-written routines to facilitate each of these steps. Filling sinks creates two new data prod-

Map 1

back of map

map 2

back of Map2

ucts: a "hydrologically corrected" digital terrain model (DTM) and a flow direction model (a corresponding grid in which the cell values represent the direction of flow for each grid cell in DTM). These are both used in the hydrologic modeling process.

Hydrologic modeling: The flow direction grid was used to create a flow accumulation model (a grid in which the cell values represent the total number of cells that drain into each grid cell). A threshold was applied to the flow accumulation grid to determine which grid cells represented stream channels. In this exercise, choosing all grid cells with a flow accumulation of 500 or more produced a reasonable approximation of streams in the study area.

The next step was to identify the outflow or pour points for the drainage basins that were to be delineated. Here, each reference site represented a basin outflow, or pour point, location. The stream channel reference site locations were determined in the field using global positioning system receivers. From this data a grid of the pour point locations was created. Then each point was adjusted to the nearest grid cell that was within 300 meters of its actual location and coincident with a stream channel represented by the terrain model, as determined above.

Using a pre-written routine in Arc/Info, the flow direction grid was used to determine groups of cells that drain to the same pour point. This provided an initial approximation of the contributing areas to each pour point. The perimeter of each contributing area was plotted over Digital Raster Graphics (DRGs) of USGS 15-minute topographic quadrangles. Errors in the basin perimeters were identified by the hydrologist using these plots and orthophoto quadrangles derived from National Technical Systems. The basin perimeters were then manually edited to produce perimeters for the

Figure 3. The Colville River Special Area begins upstream of the Nuka River, where steep bluffs confine the river.

area contributing exclusively to each pour point site. The immediate contributing area to each pour point was combined with the contributing areas for all upstream basins to produce a perimeter for the total contributing basin to each pour point. The perimeters were stored as polygons in a GIS database. The area and perimeter of each polygon was automatically generated in the polygon attribute table.

Terrain description: Each basin was converted to a raster data set at the same resolution as the DTM. Descriptive statistics (mean, minimum, maximum) about the population of DTM cells that fell within each basin were generated and stored in a database table.

Lake area determination: All lakes contained in the USGS 15-minute Digital Line Graph (DLG) files were extracted into a separate GIS database. The union of each basin with the lakes was calculated. This, in effect, added the basin ID number to the polygon attribute table record for each lake that fell within the basin. The area was summed for all lakes with the same basin ID number to determine the total area of lakes within each basin.

Determination of forested area: Pixels representing tall shrub or low shrub were extracted from a land-cover classification produced from Landsat Thematic Mapper and SPOT XS satellite imagery (Ducks Unlimited, Inc. 1998) and were used as an approximation of the forested portion of the study area. The tall and low shrub pixels were extracted into a separate data set. This produced a grid representing the forested portion of the study area. The raster version of each basin was combined with the forested area grid to produce an attribute table containing the number of 30 m by 30 m forested pixels falling within the basin. This was used to calculate the total forested area within each basin.

Hydrology

Data collection methods used to define a series of stream channel reference sites were similar to the hydraulic geometry surveys of Emmett (1972) and reconnaissance hydrologic surveys of Childers et al. (1979) in their pioneering investigations in northern Alaska. The initial survey sites were located on topographic maps prior to each summer field season. Sites

within or near the Colville River Special Area were selected to provide a range of stream types and drainage basins representative of the planning area. Since logistics prohibited flying a boat to the remote Colville River and the larger tributaries, survey sites were restricted to stream reaches where water depths were shallow enough to measure cross sections with chest waders. This limitation meant that the tributary streams were sampled in greater frequency than the Colville River. Because of this limitation, USGS data for the Colville and Etivluk Rivers (Childers et al. 1979) were used to supplement some of the analysis. Two sites, the lower Kogosukruk and Kikiakrorak Rivers, were established in 2000 in conjunction with other surveys in the Northeast planning area. These were revisited in 2001 when the additional fifteen sites in the Special Area were surveyed. A few sites were resurveyed in 2002. A total of seventeen sites were visited in the three years and all were surveyed sufficiently for channel morphology analysis (Table 1).

At each site, cross-sectional discharge (streamflow) measurements were made using a Price AA current meter to measure water velocity and a top-setting wading rod and tag line for depth and width, respectively (Rantz et al. 1982). The stream banks, high-water marks and water surface profiles were surveyed using a surveyor's level and stadia rod (Benson and Dalrymple 1967). Water samples and photographs of the channel and surrounding areas were taken. The roughness coefficients (n values), used in the slope-conveyance model, were selected according to the criteria discussed by Barnes (1967). The bankfull channel determination followed the active floodplain definition of Leopold and Skibitzke (1967).

A water level versus discharge rating was then developed by utilizing the direct discharge measurement to verify parameters used in the computer-generated streamflow (slope-conveyance) model (Dalrymple and Benson 1967). Information determined at each cross-section included instantaneous discharge, elevation of the current year's flood marks, and bankfull channel characteristics. Bankfull geometry relationships for width, depth, and discharge were then analyzed following the regression methods used in Emmett (1972). After the stream channel reference site locations were entered into a GIS

database and the basin characteristics determined, the two-year recurrence interval discharge was computed from the regional estimator equations listed in Curran et al. (2003) to compare to the bankfull discharge.

Water Quality

Six lakes and seventeen river sites were sampled in the two years of field surveys to provide baseline limnological information. During each trip, water quality readings were taken with portable, single-parameter meters, which recorded water temperature, specific conductance, pH, and turbidity. Additional water samples were also collected from some rivers and lakes, stored in coolers, and then transported to Fairbanks for an independent laboratory determination of major anions and cations. The dissolved oxygen and hydrogen isotope analysis was performed by Arizona State University. All samples were collected from either the main portion of flow in the river or lake outlet, or by wading out into the deeper portion of the lake basin if no outfall could be found.

RESULTS AND DISCUSSION

GIS Analysis of Drainage Basin Characteristics

A hydrologic basin map generated from the GIS analysis is shown in Figure 2. The basin characteristics data generated from this analysis are listed in Table 2. Lake sampling sites in the CRSA area are also shown in Figure 2.

Hydrology

Table 3 contains bankfull channel geometry and discharge data at the surveyed sites. Appendix A has a brief description of the stream reach at each survey site and graphs of the cross-sectional data used for the hydraulic mod-

Figure 4. While not as common as on the coastal plain, large lakes such as Liberator Lake are found within the Colville River Special Area.

Figure 5. The lower portion of the Colville River Special Area has bluffs at the mouths of the Kogosukruk and Kikiakrorak Rivers.

els. Table 4 lists the regression relationships for bankfull discharge, width, and depth as a function of drainage area. While the bankfull discharge and width relationships appear to be reasonably accurate, the relationship of bankfull depth to drainage area was not. The variation in the respective bankfull discharges might at first seem large. However, the diverse nature of some of the watersheds, especially their basin areas, mean elevations, and the lake and shrub percentages, as listed in Table 2, would imply very disparate runoff characteristics. Since Childers (1979) surveyed two sites within the planning area, data from these were also analyzed with the current data set. The regressions, utilizing the additional sites (also listed in Table 4), show a higher correlation and lower standard error that those computed with just the BLM data alone. While Childers et al. (1979) also noted large differences in bankfull discharge and peak runoff rates, such that they

were unable to determine any clear relationships to drainage basin physiography or climate, more recent work in NPR-A has correlated some basin characteristics to bankfull discharge (Kostohrys et al. 2000).

Table 3 lists the 2-year and 100-year flood frequency discharges computed from the USGS regional estimator equations (Curran et al. 2003) and the basin characteristics in Table 2. While Leopold (1994) and others state unequivocally that the bankfull discharge "has a recurrence interval that averages 1.5 years," Williams (1978), in an analysis of 233 stream sites, found that the bankfull discharge does not have a common recurrence frequency. The field-surveyed bankfull discharges, listed in Table 3, were almost all greater than the calculated two-year recurrence interval flood. The BLM data for the larger rivers not only had the highest bankfull discharge, but also the longest return period. Smith (1979) noted a long

	Area of Shrub	Cover (%)	5.0%	3.3%	5.7%	6.1%	4.0%	3.3%	1.6%	7.7%	2.0%	2.0%	2.0%	22.4%	5.4%	4.3%	4.7%	1.3%	5.1%
	Area of Shrub	Cover (sq mi)	63.6	16.6	30.7	39.9	1.9	17.5	21.6	46.1	5.8	18.0	30.5	38.5	12.3	3.4	8.9	4.4	26.4
	Area of Lakes	and Ponds (%)	0.4%	0.9%	0.1%	0.2%	0.0%	0.1%	0.6%	0.3%	0.2%	0.2%	0.9%	0.1%	0.9%	0.2%	0.5%	9.2%	1.9%
	Area of Lakes &	Ponds (sq mi)	3.4	0.4	0.7	1.2	0.0	0.6	8.3	1.7	0.7	2.2	2.9	0.2	2.0	0.1	0.9	25.4	6.3
	Mean Basin	Elevation (ft)	2,064	2,198	2,099	1,987	1,626	2,032	2,470	2,386	1,087	1,122	1,105	661	714	564	530	350	439
ו GIS analysis	Drainage Area	(Sq. mi.)	1,273	499	534	653	46	533	1,309	601	288	207	1,515	172	225	79	191	354	519
2. Drainage basin characteristics from	Stream Survey Site		Colville River above Kiligwa River	Nuka River	Kiligwa River	Kuna River	Blankenship Creek	Ipnavik River above Medial Creek	Etivluk River above East Fork	East Fork Etivluk River	Lookout River	Awuna River above Lookout River	Awuna River near the Mouth	Maybe Creek	Prince Creek	Upper Kikiakrorak River	Upper Kogosukruk River	Lower Kikiakrorak River	Lower Kogosukruk River
Tabl	Site	No.	_	5	3	4	5	9	2	8	6	10	11	13	14	15	16	17	18

Stream Channel Survey Site	Discharge	Runoff	Maximum	Width	Area	Average	Average	Two-Year	Hundred-Year	
	(cfs)	(cfsm)	Depth (ft)	(ft)	(sq.ft)	Velocity (fps)	Depth (ft)	Flood(Q,)	Flood (Q_{100})	
Colville River above Kiligwa River	50,000	39.27	20.0	408	6,440	7.8	15.8	16,500	41,400	
Nuka River	15,000	30.06	11.7	229	1,950	7.7	8.5	7,100	18,900	
Kiligwa River near Brady	18,800	35.22	11.6	328	2,360	8.0	7.2	7,600	20,000	
Kuna River	20,500	31.38	11.2	459	3,400	6.0	7.4	9,100	2,400	
Blankenship Creek	1,600	34.9	4.8	155	457	3.5	3.0	850	2,600	
Ipnavik River above Medial Creek	14,500	27.21	8.7	295	1,950	7.4	9.9	7,600	20,000	
Etivluk River above East Fork	22,000	16.81	11.0	347	3,080	7.1	8.9	16,900	42,300	
East Fork Etivluk River	10,500	17.47	7.0	692	2,640	4.0	3.8	8,400	22,100	
Lookout River	5,500	19.09	9.9	155	1,140	4.8	7.4	4,400	11,900	
Awuna River above Lookout River	28,000	30.86	17.4	279	3,620	7.7	13.0	12,200	31,200	
Awuna River near the Mouth	33,500	22.11	21.0	438	6,070	5.5	13.9	19,200	47,900	
Maybe Creek	2,500	14.57	7.4	135	683	3.7	5.1	2,800	7,700	
Prince Creek	3,000	13.33	4.6	169	542	5.5	3.2	3,500	9,700	
Upper Kikiakrorak River	2,500	31.68	7.2	73	383	6.5	5.2	1,400	4,000	
Upper Kogosukruk River	4,500	23.51	8.0	132	812	5.6	6.1	3,000	8,500	
Lower Kikiakrorak River	7,500	21.21	10.0	356	2,330	3.2	6.5	5,300	14,200	
Lower Kogosukruk River	15,000	28.89	14.8	251	2,600	5.8	10.4	7,400	19,500	

Table 3. Bankfull channel characteristics and flood frequency of streams in the Colville River Special Area

Table 4. Bankfull dischar	rge and width reg	ressions based on fi	eld survey and GIS da	tta
Gage Site		Parameters		
	ш	p	r^2	se
Bankfull Discharge	1.001	3.203	0.900	0.333
Bankfull Discharge*	1.017	3.137	0.945	0.359
Bankfull Width	0.468	2.716	0.624	0.362
Bankfull Width*	0.556	2.232	0.815	0.389
Bankfull Depth	0.383	-0.355	0.591	0.318
Bankfull Depth*	0.293	0.135	0.583	0.364
* Includes additional data	from Childers, et	t al (1979)		
m - Slope of re	gression line			
b - Y-intercept	of regression line			
r^2 - Coefficient (of determination			
se - Standard er	ror			

return period for the bankfull discharge on 25 rivers that had significant ice flows. He concluded that channel enlargement occurred due to the scouring power of the ice-laden flow. While the flood recurrence values used here are approximations derived from the statewide regressions, they still indicate that the relationship of the bankfull discharge to a specific recurrence interval flood, while uncertain, has been traditionally underestimated in the Arctic. The effects of ice, snow, and permafrost during peak runoff may have considerable impact to the stream channel and floodplain, so these factors should be carefully evaluated in any land use or development plan.

Water Quality

The results of each year's water quality field surveys are listed in Appendix B. With the addition of the 2002 and 2003 data, there is a limited amount of information with which to assess seasonal or annual changes, as well as the differences related to the basin physiography. Tables 5 and 6 summarize the data where multiple sampling was done. Of the sites surveyed more than once, none showed any significant differences. Work done by others (Kling et al. 1992) related the water quality differences surveyed along a transect between Atigun Pass in the Brooks Range to Prudhoe Bay on the Beaufort Sea to the presence of continuous permafrost, the geological differences in the parent material, and the proximity to the sea.

In general, the waters in the CRSA are pristine, and the parameters recorded during the trips reflect this. Lake and river pH were similar; all were neutral to slightly alkaline, with a range of 6.7 to 8.5. The waters are dilute, with specific conductances ranging from .011-.220 mS cm⁻¹. Lake and river temperatures in July averaged 12.5°C. In general, the warmest waters were those that flowed from the foothills north of the Colville River, while those rivers that drained the Brooks Range had the coolest water. Turbidity ranged from less than 1 NTU in some of the western most rivers and lakes, to over 50 NTU in some of the shallower lakes where wind had stirred up bottom sediments. Values for total hardness, an expression of ionic strength of primarily calcium and magnesium ions, were relatively low. This is probably due to presence of continuous permafrost, which

limits ground water infiltration, so that the waters are almost totally derived from snowmelt runoff (Sloan 1987). The notable exception is Blankenship Creek (Figure 6) where the presence of a large overflow icing (aufeis) in July, low water temperature, and relatively high specific conductance indicates a year-round, continuously flowing groundwater spring. Sloan (1987) noted that icings invariably form downstream from springs due to the extremely low winter temperatures on the North Slope. A similar aufeis field was observed on a tributary stream in the headwaters of the East Fork of the Etivluk River, just outside of the NPR-A.

The oxygen and hydrogen isotope values, listed in Table 7, were generally more negative than those collected during 1999 in the Northeast NPR-A (Figure 7). This is expected, since the more inland waters of the Special Area would be expected to be depleted in heavier isotopes, as compared to the isotopically heavier waters of the coastal regions of NPR-A. For a more complete of discussion of the isotopes of oxygen and hydrogen in water, as well as a description of the Northeast NPR-A sample locations, the reader is referred to the water quality discussion in Kostohrys et al. (2000).

Though no fish sampling was attempted, Arctic grayling were observed in pools of the upper Kikiakrorak and Kogosukruk rivers. The Alaska Department of Fish and Game has collected baseline fisheries data on most of the streams in the Special Area. Researchers found grayling in all of the streams inventoried, whitefish and burbot in many, and Arctic char and lake trout in the lower Colville River (Bendock et al. 1979).

RECOMMENDATIONS

Hydrology

The data and statistical calculations presented here should be considered preliminary. Direct measurements of peak flow during spring break up would provide more reliable flood estimates than computer-generated discharges. Installing stream-level recorders, (automated data loggers with pressure transducers), during ice break up, combined with streamflow measurements, would then provide a complete record of the flood events that ac-

Table 5. Summary of field determine	d discharge a	nd water o	uality value	s for all yea	ars sampled							
	Number of	Discha	urge (cfs)	Water	Temperature	(°C)	Conductan	ce(ms/cm)	Hd	<u>`</u>	Furbidity	(NTU)
Rivers	samples	Min	Max	Min		lax	Min	Max	Min	Max	Min	Max
Colville River above Kiligwa River	ε	515	ΩN	2.6		9.0	0.137	0.168	7.8	8.2	4.9	45
Nuka River	ω	673	ŊŊ	2.2		13.0	0.088	0.171	7.9	8.1	2.2	15
Kiligwa River near Brady	ω	492	Ŋ	2.6		9.0	0.164	0.195	7.8	8.0	2.3	75
Kuna River	7	488	ND	8.3		8.5	0.114	0.153	7.7	8.0	2.2	99
Blankenship Creek	7	18	84	5.8	~~~~	6.8	0.115	0.135	7.4	7.5	1.9	QN
Ipnavik River above Medial Creek	7	344	992	7.7		9.0	0.128	0.135	7.4	7.9	1.5	7.8
Etivluk River above East Fork	6	762	QN	7.8		9.0	0.049	0.064	7.2	7.8	3.0	51
Maybe Creek	ę	8	ŊŊ	2.0		18.0	0.053	0.079	7.5	7.5	1.0	2.2
Prince Creek	ę	22	341	5.3		16.0	0.055	0.096	7.3	7.5	1.0	3.2
Upper Kikiakrorak River	ę	6	160	3.5		14.0	0.102	0.143	7.6	8.0	1.0	2.6
Upper Kogosukruk River*	4	13	306	5.5		16.6	0.042	0.138	7.8	8.0	7.6	16
Lower Kikiakrorak River	4	58	385	3.6		16.8	0.123	0.157	7.8	8.3	3.5	24
Lower Kogosukruk River	4	48	415	6.9		16.3	0.146	0.151	7.8	8.1	0.8	7.6
Lakes						•						
Dog Bone Lake Outlet	3	\sim 1	1.2	6.9		16.5	0.025	0.028	6.9	7.1	0.0	0.8
Liberator Lake Outlet	2	8.6	13	3.4		12.0	0.036	0.068	7.8	7.8	0.5	28.8
*Originally sampled in 1999												
ND - not determined												
Table 6. Summary of laboratory-dete	ermined water	quality v	alues for all	years samp	led							
	Number of	Calci	um (mg/L)	Magne	sium (mg/L)	II.	on (mg/L)	Silicor	n (mg/L	Hε	rdness (T	otal)
Rivers	samplesMin	Max	Min	Max	Min	Max	Min	Max	Mii	n M	ах	
Colville River above Kiligwa River	Э	18.0	22.0	3.9	6.0	0.04	2.00	0.96	3.30	9	1	80
Nuka River	n	17.0	24.0	3.5	5.5	0.05	0.09	1.00	2.20	ŝ	7	83
Kiligwa River near Brady	ω	20.0	22.0	5.9	7.3	0.05	3.90	1.20	4.60		6	80
Kuna River	2	14.0	17.0	4.4	5.7	0.04	3.70	1.30	4.30	ŝ	8	61
Ipnavik River above Medial Creek	2	15.0	17.0	4.3	5.7	<mrl< td=""><td>0.04</td><td>1.40</td><td>1.70</td><td>ŝ</td><td>5</td><td>99</td></mrl<>	0.04	1.40	1.70	ŝ	5	99
Etivluk River above East Fork	2	7.0	9.1	4.4	4.9	0.04	4.40	1.00	5.20	ς.	8	41
Prince Creek	ς	3.7	12.0	0.5	2.9	0.06	0.25	0.10	3.50	~	8	42
Upper Kikiakrorak River	2	14.0	15.0	2.8	3.4	0.20	0.30	1.80	2.90	4	6	50
Upper Kogosukruk River	ŝ	6.3	21.0	2.4	3.9	0.33	0.60	1.10	3.06		9	68
Lower Kikiakrorak River	ς	14.0	23.0	2.9	4.5	0.15	1.00	1.59	3.10	9	9	86
Lower Kogosukruk River	2	20.0	27.0	2.9	4.5	0.15	0.96	1.59	3.20		9	86

26

24

1.15

0.13

0.62

0.10

2.4

2.1

6.3

6.3

7

Figure 6. Blankenship Creek, with the presence of a large overflow icing (aufeis), indicates a ground water source.

count for 70% or more of the annual discharge (Sloan 1987). Collecting five or more years of peak-flow data at selected sites would provide a reliable database as well as allow computation of flood-recurrence statistics that meet state and federal guidelines (Alaska DNR 1984, Childers 1970). Surveying more stream reaches for hydraulic geometry relationships would increase the reliability of the channel geometry regression equations, providing a more accurate environmental evaluation for permitted activities. Critical fisheries and aquatic wildlife habitat needs to be identified within the special area, so that these areas can be referenced in future environmental analyses.

GIS Analysis of Drainage Basin Characteristics

The use of GIS was inefficient in this project, largely due to limitations in available data, hardware, and software. The currently available digital elevation models do not provide adequate resolution to capture the necessary terrain details on the North Slope of Alaska. Because of this, an inordinate amount of time was spent manually editing the GIS-derived basins for this project. The National Elevation Dataset (NED) in production by USGS is likely to provide some improvement when it becomes available. Remote sensing techniques using Synthetic Aperture Radar (SAR) can be also used to provide higher resolution and higher accuracy DEMs, but at a higher cost than the NED data set.

Water Quality

Sampling over the course of the summer for several years would not only provide baseline data, but also allow the determinations of seasonal and annual patterns of change in the lakes and rivers as well as an insight into mechanisms controlling these changes. Fisheries inventories to determine locations of overwintering, spawning, and rearing areas would provide insight into identifying these areas of critical aquatic habitat.

Figure 7. Plot of Colville River Special Area and NE NPR-A water samples analyzed for oxygen and hydrogen isotopes.

Table 7. 2001 CRSA water samples a	nalyzed for oxyg	en isotop	e ¹⁸ O and deuterium	
Sample site	Date sampled	¹⁸ O	D	
Nuka River near the mouth	14-Jul	-21.0	-153	
Ipnavik River above Medial Creek	10-Jul	-20.8	-153	
Etivluk River above East Fork	11-Jul	-21.1	-157	
Awuna River near the mouth	13-Jul	-19.6	-146	
Liberator Lake Outlet	12-Jul	-18.5	-145	
Lookout Lake Outlet	9-Jul	-18.4	-145	
Smith Mountain Lake Outlet	12-Jul	-19.9	-151	
Puddin Lake	16-Jul	-17.6	-136	
Prince Lake	16-Jul	-16.0	-126	
Analytical Precision	(1 sigma)	0.08	0.9	

Literature Cited

Alaska Department of Natural Resources. 1984. Water User's Handbook. State of Alaska, Division of Land and Water Management. 45 pages.

Barnes, H.H. 1967. Roughness Characteristics of Natural Channels. U.S. Department of Interior, Geological Survey. Water Supply Paper 1849. 213 pages.

Benson, M.A. and Dalrymple, Tate. 1967. General Office and Field Procedures for Indirect Discharge Measurements. In: Techniques of Water Resources Investigations, Book 3, Chapter A1. U.S. Department of Interior, Geological Survey. 12 pages.

Bendock, T.N. 1979. Inventory and Cataloging of Arctic Waters. Annual Performance Report Volume 20: G-I-I. Alaska Department of Fish and Game, Sport Fish Division. Juneau, Alaska.

Carter, L.D. and J.P. Galloway. 1979. Southward Progressing Stabilization of Holocene Eolian Sand on the Western Arctic Coastal Plain. In: Johnson, K.M. and J.R. Williams, eds. The United States Geological Survey in Alaska; Accomplishments during 1978: U.S. Geological Survey. Circular 804-B.

Childers, J. M. 1970. Flood Frequency in Alaska. U.S. Department of Interior, Geological Survey. Water Resources Division, Alaska District. Open-file Report. 30 pages.

Childers, J. M., D. Kernodle and R. Loeffler. 1979. Water Resources Reconnaissance in Western Arctic Alaska. U.S. Department of Interior, Geological Survey. Water Resources Division, Alaska District. Open-file Report. 60 pages.

Curran, J. H., D. F. Meyer and G. D. Tasker. 2003. Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada. U.S.G.S. Water Resources Investigations Report 03-4118. 21 pages. Dalrymple, Tate and Benson, M.A. 1967. Measurement of Peak Discharge by the Slope-Area Method. In: Techniques of Water Resources Investigations, Book 3, Chapter A2. U.S. Department of Interior, Geological Survey. 30 pages.

Ducks Unlimited, Inc., 1998. National Petroleum Reserve - Alaska Earth Cover Classification: Final Report. Ducks Unlimited, Inc., Rancho Cordova, CA. 81 pages.

Emmett, William W. 1972. The Hydraulic Geometry of Some Alaskan Stream South of the Yukon River. Open-file Report. U.S. Department of Interior, Geological Survey, Water Resources Division—Alaska District. 102 pages.

Interagency Advisory Committee on Water Data. 1982. Guidelines for Determining Flood Flow Frequency. Bulletin #17B of the Hydrology Subcommittee. U.S. Geological Survey, Office of Water Coordination. Reston, VA. 28 pages, 14 Appendices.

Kling, G.W. et al., 1992. The Biogeochemistry and Zoogeography of Lakes and Rivers in Arctic Alaska. Hydrobiologia 240: 1-14.

Kostohrys, J., V. Barber and T. Hammond. 2000. Water Resources of the Northeast National Petroleum Reserve-Alaska.. Open File Report 80. U.S. Department of Interior, Bureau of Land Management. Anchorage, AK. 27 pages.

Leopold, L.B. and H.E. Skibitzke. 1967. Observations on Unmeasured Rivers. Geogr. Ann. 49A: 247-255.

Rantz, S.E. and others. 1982. Measurement and Computation of Streamflow: Volumes 1&2. USGS Water-Supply Paper 2175. U.S. Department of Interior, Geological Survey. 631 pages.

Sloan, C. 1987. Water Resources of the North Slope, Alaska. In: Geology of the North Slope, Alaska. Anchorage, AK. 600 pages. Smith, D. G. 1979. Effects of Channel Enlargement by River Ice Processes on Bankfull Discharge in Alberta, Canada. Water Resources Research 15 (2): 469-475.

U.S. Department of Interior, Bureau of Land Management. 1998a. Final Integrated Activity Plan/Environmental Impact Statement, Northeast National Petroleum Reserve-Alaska. Anchorage, Alaska.

U.S. Department of Interior, Bureau of Land Management, 1998b. Record of Decision. Integrated Activity Plan/Environmental Impact Statement, Northeast National Petroleum Reserve-Alaska. Anchorage, Alaska. 44 pages.

Williams, G.P. 1978. Bank-Full Discharge of Rivers. Water Resources Research 14 (6): 1141-1154.

Appendix A

Figure A-8. Looking downstream at the survey site on the Colville River above the Kiligwa River. The Colville supports grayling and whitefish in this reach, according to the Alaska Dept. of Fish and Game.

Figure A-9. Channel cross section for the Colville River above the Kiligwa River.

Figure A-10. Looking downstream at the survey site on the Nuka river. The pool-riffle channel and vegetation provide excellent aquatic habitat, according to the Alaska Dept. of Fish and Game.

Figure A-11. Channel cross section for the Nuka River.

Figure A-12. Looking downstream at the survey site on the Kiligwa River. The Kiligwa supports arctic grayling, according to the Alaska Dept. of Fish and Game.

Figure A-13. Channel cross section for the Kiligwa River.

Figure A-14. Looking downstream at the survey site on the Kuna River. The stream bank vegetation and pool-riffle channel formations provide abundant aquatic habitat, according to the Alaska Dept. of Fish and Game..

Figure A-15. Channel cross section for the Kuna River.

Figure A-16. Channel cross section for Blankenship Creek. The remnant ice fields indicate a groundwater spring system in the basin.

Figure A-17. Cross section of Blankenship Creek.

Figure A-18. Looking downstream at the survey site on the Ipnavik River. The Ipnavik supports arctic grayling, according to the Alaska Dept. of Fish and Game.

Figure A-19. Channel cross section for the Ipnavik River.

Figure A-20. Looking upstream at the survey site on the Etivluk River above the East Fork. The Etivluk River supports a wide range of anadromous fish, including salmon, according to the Alaska Dept. of Fish and Game.

Figure A-21. Channel cross section for the East Fork Etivluk River.

Figure A-22. Looking upstream at the survey site on the Etivluk River. The Etivluk is a braided stream for most of its course.

Figure A-23. Channel cross section for the Etivluk River above East Fork.

Figure A-24. Looking downstream at the survey site on the Lookout River near the mouth. The Awuna River is in the background, just beyond the ridgeline.

Figure A-25. Channel cross section for the Lookout River.

Figure A-26. Looking upstream at the survey site on the Awuna River above the Lookout River. The Awuna was studied as a Wild and Scenic River, but not nominated, due to low water that limited floating.

Figure A-27. Channel cross section for the Awuna River above the Lookout River.

Figure A-28. Looking upstream at the survey site on the Awuna River near the mouth. The lower Awuna supports grayling and whitefish, according to the Alaska Dept. of Fish and Game.

Figure A-29. Channel cross section for the Awuna River near the mouth.

Figure A-30. Looking downstream at the survey site on Maybe Creek. The Ikpikpuk River is formed at the confluence of Maybe Creek and the Kigalik River.

Figure A-31. Channel cross section for Maybe Creek.

Figure A-32. Looking downstream at the survey site on Prince Creek. The channel has excellent aquatic habitat, which supports arctic grayling, according to the Alaska Dept. of Fish and Game.

Figure A-33. Channel cross section for Prince Creek.

Figure A-34. Looking downstream at the survey site on the upper Kikiakrorak River. The deep channel pools and bank vegetation provide excellent aquatic habitat, according to the Alaska Dept. of Fish and Game.

Figure A-35. Channel cross section for the upper Kikiakrorak River.

Figure A-36. Looking downstream at the survey site on the upper Kogosukruk River. The bluffs along the Kogosukruk support raptors and other avian species, according to the Alaska Dept. of Fish and Game.

Figure A-37. Channel cross section for the upper Kogosukruk River.

Figure A-38. Looking downstream at the survey site on the lower Kikiakrorak River. The bluffs along the Kikiakrorak support raptors and other avian species, according to the Alaska Dept. of Fish and Game.

Figure A-39. Channel cross section for the lower Kikiakrorak River.

Figure A-40. Looking downstream at the survey site on the lower Kogosukruk River. The bluffs along the Kogosukruk support raptors and other avian species, according to the Alaska Dept. of Fish and Game.

Figure A-41. Channel cross section for the lower Kogosukruk River.

Table 1B. Field-determined discharg	ge and water qua	ality values for July	2000.				
Stream Site	Date Sampled	Discharge cfs	Temperature (°C)	Conductance (ms/cm)	Hd	Turbidity NTU	Hardness (Total)
Lower Kikiakrorak River	15	63	16.8	0.157	8.3	3.5	62
Lower Kogosukruk River	15	68	15.9	0.148	8.0	2.5	82
Table 2B. Laboratory analysis of way	tter quality samp	les taken July 2000					
Cita	Data	Caloium	Iron	Magnacium	Dotaccium	Silion	Nitrata N

Table 2B. Laboratory analysis of wat Site Lower Kikiakrorak River	ter quality samp Date Sampled 15	bles taken July 200 Calcium mg/L 24	0. Iron mg/L 0.15	Magnesium mg/L 4.5	Potassium mg/L 0.9	Silicon mg/L 2.20	Nitrate-N mg/L <rl< th=""></rl<>
Lower Kogosukruk River	15	27	0.21	3.6	0.8	1.30	<rl< td=""></rl<>

<RL - less than reporting limit

	1	1		1001			
Iable 3B. Summary of field-determined	uischarge	and water quarity	values ior July		11	E	
Stream Site	Date	Discharge cfs	Water Temp.(°C)	Conductance (ms/cm)	Нq	Iurbidity	AIT Temp.(°C)
Nuka River	14	673	13.0	0.088	8.1	3.5	20.0
Colville River above Kiligwa River	12	515	9.0	0.168	8.2	Q	8.0
Kiligwa River near Brady	12	492	9.0	0.193	8.0	ND	8.0
Kuna River	6	488	8.5	0.153	8.0	2.2	8.0
Lookout River	6	211	11.5	0.051	7.6	14.0	7.0
Blankenship Creek	10	18	5.8	0.135	7.5	QN	7.0
Ipnavik River above Medial Creek	10	344	9.0	0.135	7.9	1.5	7.0
Awuna River above Lookout River	10	427	11.0	0.055	7.7	2.0	8.0
Etivluk River above East Fork	11	762	9.0	0.049	7.8	3.0	7.0
East Fork Etivluk River	14	943	12.0	0.111	7.8	5.0	11.0
Awuna River near the Mouth	13	437	11.5	0.056	7.7	2.0	15.0
Maybe Creek	16	8.0	18.0	0.079	7.5	1.0	18.0
Prince Creek	16	22	16.0	0.096	7.5	1.0	24.0
Upper Kikiakrorak River	17	9.0	16.0	0.143	8.0	1.0	14.0
Upper Kogosukruk River	18	13	16.6	0.138	7.8	Ŋ	19.0
Lower Kikiakrorak River	18	58	15.0	0.156	8.2	QN	13.0
Lower Kogosukruk River	18	48	16.3	0.151	8.1	ND	11.0
Lookout Lake Outlet	6	1.0	13.8	0.011	6.7	3.5	ŊŊ
Liberator Lake Outlet	12	13	12.0	0.036	7.8	0.5	ND
Smith Mountain Lake Outlet	12	3e	12.0	0.066	7.8	52.8	ND
Puddin Lake	16	ND	13.7	0.036	7.4	1.5	20.0
Prince Lake	16	ŊŊ	17.3	0.220	8.5	3.5	24.0

e - estimated ND - not determined

Table 4B. Laboratory analysis of wate	r quality san	nples taken in .	July 2001.				
Stream Site	Date	Calcium	Iron	Magnesium	Potassium	Silicon	Hardness
	Sampled	mg/L	mg/L	mg/L	mg/L	mg/L	(Total)
Nuka River	14	17.0	0.05	3.5	0.39	1.00	57
Colville River above Kiligwa River	12	18.0	0.04	3.9	0.43	0.96	61
Kiligwa River near Brady	12	22.0	0.05	5.9	0.41	1.20	62
Kuna River	6	17.0	0.04	4.4	0.57	1.30	61
Lookout River	6	5.6	0.45	2.2	0.21	1.50	23
Ipnavik River above Medial Creek	10	15.0	0.04	4.3	0.36	1.40	55
Awuna River above Lookout River	10	5.7	0.50	2.9	<dl< td=""><td>1.40</td><td>26</td></dl<>	1.40	26
Etivluk River above East Fork	11	9.1	0.06	4.4	0.22	1.00	41
East Fork Etivluk River	14	14.0	0.04	4.6	0.50	1.30	54
Awuna River near the Mouth	13	6.3	0.43	3.2	<dl< td=""><td>1.60</td><td>29</td></dl<>	1.60	29
Prince Creek	16	12.0	0.06	2.9	1.20	2.20	42
Upper Kogosukruk River	18	21.0	0.33	3.9	1.10	3.00	68
Liberator Lake Outlet	12	6.3	0.10	2.1	0.70	0.13	24
Smith Mountain Lake Outlet	12	6.0	1.70	2.1	0.95	1.10	24
	Mean	12.5	0.28	3.6	0.59	1.36	46
	Max	22.0	1.70	5.9	1.20	3.00	62
	Min	5.6	0.04	2.1	0.21	0.13	23

<DL - less than detection limit

able 5B. Summary of field determi	ned disch	narge and wa	iter quality v	alues for 2002						
Stream Site	Date	Discharge	Water	Conductance	Ηd	Turbidity	Dissolved	Alkalinity	Hardness	Air
		cfs	Temp.(°C)	(ms/cm)		NTU	Oxygen mg/L	(HCO3) mg/L	(Total)	Temp.(°C)
Colville River above Kiligwa River	Sep.10	ND	2.6	0.137	7.9	4.9	11.9	51.0	70	5.0
Nuka River	Sep.10	770	2.2	0.162	7.9	2.2	11.9	52.8	67	3.3
Kiligwa River near Brady	Sep.10	<i>611</i>	2.6	0.195	7.8	2.3	12.3	37.8	84	6.1
Maybe Creek	Aug. 24	131	4.9	0.053	7.5	2.2	11.0	19.2	26	10.0
Prince Creek	July 13	157	13.0	0.059	7.4	2.5	7.0	25.8	30	12.8
Upper Kikiakrorak River	Aug. 24	72	7.2	0.105	7.7	1.6	10.6	41.2	50	10.0
Upper Kogosukruk River	Aug. 24	124	7.5	0.126	7.9	7.6	10.8	57.8	61	10.0
Lower Kikiakrorak River	July 13	157	11.3	0.123	7.8	8.0	7.5	54.8	<u>66</u>	13.9
Lower Kogosukruk River	Aug. 20	415	16.3	0.151	8.1	ND	3.5	ND	ND	11.0
Dogbone Lake Outlet	July 10	1.2	14.1	0.027	7.1	0.8	8.4	9.8	12	18.3
Liberator Lake Outlet	Sep. 10	8.6	3.4	0.068	7.8	28.8	12.2	25.0	26	7.2
	Mean	261	L'L	0.110	7.7	6.1	9.7	37.5	49	9.8
	Max	779	16.3	0.195	8.1	28.8	12.3	57.8	84	18.3
	Min	1.2	2.2	0.027	7.1	0.8	3.5	9.8	12	3.3

ND - not determined e - estimated

41

Table 6B. Laboratory analysis of wai	ter quality	/ samples tak	cen in 2002.							
Stream Site	Date	Calcium	Iron	Magnesium	Potassium	Silicon	Manganese	Sodium	Chlorine	Sulfate
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Colville River above Kiligwa River	10-Sep	18.80	0.38	5.53	0.5	1.86	0.01	2.62	<mdl< td=""><td>ŊŊ</td></mdl<>	ŊŊ
Nuka River	10-Sep	18.43	0.09	5.15	9.0	1.64	0.02	2.59	0.1	QN
Kiligwa River near Brady	10-Sep	22.12	0.13	7.08	0.5	1.77	0.02	3.52	0.1	ND
Maybe Creek	24-Aug	7.06	0.29	2.05	0.3	2.17	0.01	1.49	<mdl< td=""><td>4.9</td></mdl<>	4.9
Prince Creek	13-July	8.79	0.25	2.03	0.4	1.78	ND	1.42	<mdl< td=""><td>ND</td></mdl<>	ND
Upper Kikiakrorak River	24-Aug	15.32	0.19	2.75	0.8	2.93	0.01	2.86	0.4	4.9
Upper Kogosukruk River	24-Aug	18.52	0.40	3.49	0.7	3.06	0.01	3.30	0.6	5.7
Lower Kikiakrorak River	13-July	21.76	0.96	2.88	0.7	1.59	ŊŊ	2.42	1.7	QN
Dogbone Lake Outlet	10-July	3.73	0.13	0.54	0.1	0.06	ŊŊ	0.84	1.3	Ŋ
Liberator Lake Outlet	10-Sep	6.27	0.62	2.41	0.7	1.15	0.03	4.09	0.3	Q
	Mean	14.08	0.34	3.39	9.0	1.80	0.01	2.52	9.0	5.2
	Max	22.12	0.96	7.08	0.8	3.06	0.03	4.09	1.7	5.7
	Min	3.73	0.09	0.54	0.3	0.06	0.01	0.84	0.1	4.9

ND - not determined <MDL - less than method detection limit

ç	\mathbf{r}
<	\supset
ç	\supset
(\sim
	<u> </u>
	0
-	-
	ŝ
	ല
_	2
	a
	5
	2
	\geq
•	Ξ
	3
	3
	5
	<u> </u>
	2
,	ц.
	B.
	≥
	- ·
	0
	9
	a S
	0
	50
	ц.
	g
-	9
	õ
	2
-	5
_	-
	8
	Ξ.
	Ħ
	Я
	Η.
	5
,	Ĕ.
_	e
ſ	J
-	d
-	÷
	E
د	Ë,
ς	
	0
	~
	5
	5
	Ц
	Ħ
	Ц
	3
С	5
1	-
,	n.
t	-
ſ	
_	9
	Ó
1	3
Ľ	

Stream Site	Date	Discharge	Water	Conductance	Hq	Turbidity	Dissolved
		cfs	Temp. (°C)	(ms/cm)		NTU	Oxygen mg/L
Ipnavik River	14-Aug	992	7.7	0.128	7.4	7.8	DN
Blankenship Creek	14-Aug	84	6.8	0.115	7.4	1.9	ND
Etivluk River	14-Aug	QN	7.8	0.064	7.2	51	QN
Kuna River	15-Aug	ŊŊ	8.3	0.114	7.7	99	ND
Kiligwa River	15-Aug	QZ	7.8	0.164	7.9	75	Ŋ
Colville River	15-Aug	ND	8.4	0.161	7.8	45	ND
Nuka River	15-Aug	Q	8.6	0.171	7.9	15	Ŋ
Lower Kogosukruk River	4-Sep	189	6.9	0.151	8.0	7.6	12.0
Dogbone Lake Outlet	4-Sep	$\overline{\nabla}$	6.9	0.028	6.9	QN	11.0
Upper Kogosukruk River	4-Sep	306	5.9	0.121	7.8	16	12.1
Lower Kikiakrorak River	6-Sep	385	3.6	0.146	8.0	24	12.7
Upper Kikiakrorak River	6-Sep	160	3.9	0.102	7.6	2.6	12.6
Prince Creek	6-Sep	341	5.3	0.055	7.3	3.2	12.4
Maybe Creek	4-Jun	ŊŊ	2.0	ND	ŊŊ	15	ND

ND - not determined

Stream Site	Date	Calcium	Iron	Magnesium	Potassium	Silicon	Manganese	Sodium	Chloride	Hardness
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	(101a1)
Ipnavik River	14-Aug	17.0	<mre>MRL</mre>	5.7	<mkl< td=""><td>1.7</td><td><mkl< td=""><td>2.5</td><td><mrl< td=""><td>99</td></mrl<></td></mkl<></td></mkl<>	1.7	<mkl< td=""><td>2.5</td><td><mrl< td=""><td>99</td></mrl<></td></mkl<>	2.5	<mrl< td=""><td>99</td></mrl<>	99
Blankenship Creek	14-Aug	16.0	0.2	5.6	<mrl< td=""><td>1.9</td><td>0.01</td><td>1.8</td><td><mrl< td=""><td>63</td></mrl<></td></mrl<>	1.9	0.01	1.8	<mrl< td=""><td>63</td></mrl<>	63
Etivluk River	14-Aug	7.0	4.4	4.9	0.5	5.2	0.17	0.7	<mrl< td=""><td>38</td></mrl<>	38
Kuna River	15-Aug	14.0	3.7	5.7	0.9	4.3	0.12	2.6	<mrl< td=""><td>58</td></mrl<>	58
Kiligwa River	15-Aug	20.0	3.9	7.3	1.1	4.6	0.14	3.2	<mrl< td=""><td>80</td></mrl<>	80
Colville River	15-Aug	22.0	2.0	6.0	0.9	3.3	0.05	3.5	<mrl< td=""><td>80</td></mrl<>	80
Nuka River	15-Aug	24.0	0.9	5.5	0.4	2.2	0.02	3.6	<mrl< td=""><td>83</td></mrl<>	83
Lower Kogosukruk River	4-Sep	20.0	0.4	3.8	0.7	3.2	ND	4.9	1.4	99
Upper Kogosukruk River	4-Sep	17.0	0.6	3.3	0.7	4.2	3.60	<mrl< td=""><td>0.3</td><td>56</td></mrl<>	0.3	56
Lower Kikiakrorak River	6-Sep	23.0	1.0	3.2	1.0	3.1		3.3	2.2	71
Upper Kikiakrorak River	6-Sep	15.0	0.2	2.8	0.5	3.4		2.4	<mrl< td=""><td>49</td></mrl<>	49
									-	

 Table 8B. Laboratory analysis of water quality samples taken in 2003.

<MDL - less than method detection limit