





# BLM's Riparian and Wetland Assessment, Inventory, and Monitoring (AIM)

# Data Management, Quality Assurance, and Quality Control Protocol

# 2025 Field Season



VERSION 4.0 -Spring 2025

Produced by BLM National Operations Center (NOC) and Colorado State University (CSU)'s Colorado Natural Heritage Program (CNHP)

# **CONTENTS**

| DATA I | MANAGEMENT PROTOCOL OVERVIEW                       |    |
|--------|----------------------------------------------------|----|
| 1.     | Field Training and Orientation                     |    |
| 2.     | Calibration Protocol                               |    |
| 3.     | Collect, Backup, and Submit Data                   |    |
| 4.     | Data review                                        |    |
| 5.     | Resolve Errors                                     |    |
| 6.     | Early-Season and End-of-Season Meetings            |    |
|        | IDIX A. RIPARIAN AND WETLAND AIM TECHNOLOGY MANUAL |    |
| 1.     | Setting up your iPad                               | 49 |
| 2.     | Preparing for Field Visits                         | 57 |
| 3.     | Survey123 and field data collection                | 70 |
| 4.     | Returning from a hitch: Data review and submission | 88 |
| APPEN  | IDIX B. EXAMPLE TEXT FOR COMMENT FIELDS            | 91 |

# DATA MANAGEMENT PROTOCOL OVERVIEW

The purpose of this protocol is to detail steps for managing data and assuring data quality during the field season (Figure 1). The protocol describes six steps and includes responsible parties and required files and tools for each step.

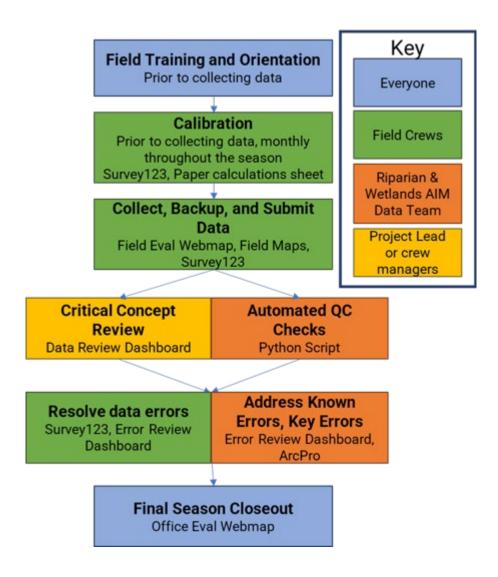



Figure 1. Six steps for managing data and assuring data quality during the field season. Steps are color-coded by responsible parties and the timeframe for completing.

Users should consult this protocol for data collection, data management, and ensuring data quality. Refer to Appendix A: *Riparian and Wetland AIM Technology Manual* for details on how to use data collection tools such as Survey123 and Field Maps. If questions remain after reading this protocol, the Technology Manual, or the Design Management and Site Evaluation Protocol, please reach out to your crew lead, BLM Project Lead, or State Lead. If you need additional support, please contact the appropriate National AIM Team member:

- General project coordination and implementation support: State Lead or Michelle Stropky (mstropky@blm.gov)
- Sample design questions: Anine Rosse (arosse@blm.gov) or Ruth Whittington (ruth.whittington@colostate.edu)
- Field data collection questions (e.g., field methods): Lindsay Reynolds (lreynolds@blm.gov) or Joanna Lemly (joanna.lemly@colostate.edu)
- Technology and applications questions (e.g., Survery123, Field Maps, ArcGIS Online Webmaps): Kevin Kovacs (kkovacs@blm.gov) or Tom Baldvins (tom.baldvins@colostate.edu)
- If someone from the list above is not available and there is an immediate issue, please contact Lindsay Reynolds (lreynolds@blm.gov) or Michelle Stropky (mstropky@blm.gov)

# 1. Field Training and Orientation

#### Overview

Prior to field data collection each year, the National Riparian and Wetland AIM Team and local BLM resource specialists lead annual field methods trainings following the *Technical Reference 1735-3 Draft AIM National Aquatic Monitoring Framework: Field Protocol for Lentic Riparian and Wetland Systems*. The trainings are a combination of online pre-training coursework (~ 8hrs) and six days of in-person field instruction. The main objective of field-based training is for participants to become proficient in the application of Riparian and Wetland AIM core and contingent field methods.

# **Training requirements:**

- All Riparian and Wetland AIM training attendees must complete the required online training materials before attending the field methods training.
- Seasonal BLM data collectors or contract/agreement staff responsible for Riparian and Wetland AIM data collection must have successfully completed Riparian and Wetland AIM field methods training during the year in which data will be collected.
- In rare circumstances, staff responsible for Riparian and Wetland AIM data collection will be hired after all of the trainings have been concluded. All data collectors must be trained before collecting and submitting Riparian and Wetland AIM data. Contract/agreement managers, or BLM supervisors for BLM seasonals, must convey all staff changes throughout the field season with the National Riparian and Wetland AIM team so that contingent training options can be identified. Failure to report staff changes may result in the National Riparian and Wetland AIM Team rejecting the crew's data.
- Contract/agreement staff not collecting Riparian and Wetland AIM data directly, but responsible for Riparian and Wetland AIM crew management and data QAQC should attend training at minimum every other year.
- BLM staff collecting Riparian and Wetland AIM data must have successfully completed Riparian and Wetland AIM field methods training within the last three years and must review protocol updates and online training materials every year as a refresher. BLM staff collecting data for the first time must complete the entire training in the same year they plan to collect AIM data. They should also have actively collected Riparian and Wetland AIM data in the years since attending a training.
- BLM Project Leads overseeing Riparian and Wetland AIM data collection should attend at least the first 4 days of field methods training at least one out of three years and should review protocol updates every year.
- State Leads are encouraged to attend at least the first 3 days of the training at least every other year, but it is not required.

Field training cannot fully introduce individuals to the diversity of riparian and wetland types present on BLM lands, so a local orientation to critical concepts and vegetation communities is recommended. The field orientation activity, described below, is recommended depending on BLM Project Lead and crew availability and expertise.

# **Responsible Parties**

Field training: The National AIM Team develops and leads content delivery for field methods training. State and Project Leads are recruited to host and/or serve as trainers. BLM Project Leads, contract/agreement management staff (if applicable), field crews, and other BLM and contract/agreement staff are required to attend as specified in the overview above.

Field orientation: Crew managers organize and lead the field orientation. BLM Project Leads, a BLM Botanist (or other plant specialist), and other BLM and contract/agreement staff help support the field orientation as they are available. Ideally, BLM staff experts in hydrology, soils, and wetland vegetation would be present.

#### When and Estimated Time

Field training: The field training is six days long held Monday through Saturday, not including travel. Several trainings are conducted annually in spring or early summer. Online pre-training material takes approximately 6 hours to complete.

*Field orientation:* Field orientation should occur after field training and prior to the start of data collection. Field orientation takes 0.5 – 1 days.

#### **Tools and Files**

- TR 1735-3 AIM National Aquatic Monitoring Framework: Field Protocol for Lentic Riparian and Wetland Systems
- Pre-training videos and quiz
- Riparian and Wetland AIM Gear List
- Local vegetation identification guides

#### Instructions

Field training (required)

- Watch pre-training videos and complete a video-based quiz and activities
- Attend a full six-day core methods training
- Complete one calibration exercise while at training (see Section II for Calibration Protocol)

Field orientation activity – field tour of critical concepts and protocol review (recommended)

- Tour a variety of riparian and wetland systems that represent the hydrologic, geomorphic, and vegetation diversity crews will encounter throughout the field season. Visit at least two or three different systems, the more the better!
- At each of the visited systems, conduct the following exercises:
- Work as a group to walk the plot area, review protocol Sections 3.2 and 4.0, and discuss
  whether the site meets sampling criteria and plan a plot layout. Encourage crew members
  responsible for data collection to lead these discussions. Identify:
  - Riparian or wetland boundaries
  - Ideal plot layout
  - Conduct a 10-minute species inventory to develop a species list and review the wetland status of common species at the site.
  - Walk the plot and review protocol Section 5.3 Hydrology and Surface Water Characteristics. Specifically, have the crew identify:

- Water sources
- o Surface water characteristics, if present
- o Channel characteristics, if present
- o After walking the site, complete the Plot classification and description form
- At the conclusion of the field orientation activity, review major discussion points and reiterate any protocol application clarifications or corrections. If questions or clarifications exist for the National AIM Team, capture those and identify who is reaching out to get questions answered.

# 2. Calibration Protocol

# **Overview: Why Calibrate?**

"Calibration of data gatherers is an integral component of the quality assurance process. Calibration ensures that a data gatherer collects data accurately each time and that data are collected consistently with other data gatherers..." Monitoring Manual for Grassland, Shrubland, and Savanna Ecosystems: Volume 1 2<sup>nd</sup> Edition (Herrick et. Al., 2017), page 4. Calibration ensures the defensibility and integrity of data by ensuring that the data are consistent and trustworthy.

# **Responsible Parties**

- Field crews are responsible for calibrating once during training (practice calibration), once before the first hitch, and once per month after their first hitch (specifics below).
- Crew management staff should notify State Leads each time calibration has been completed either by submitting the appropriate form or filling-in the appropriate table.
- State Leads should review the calibration data and notify the National AIM Team when all calibration data from their state is available.

# **Before Getting Started**

- Calibration can be time consuming. Please allow for adequate time for this critical step, usually a half to a full day (4-8 hours).
- Identify a riparian area or wetland having representative hydrologic, soils, and vegetative
  conditions similar to those the crew will be working in during upcoming hitches. If the crew
  is working among multiple field offices or districts, field calibration might be required more
  frequently.
- Calibration can be done at a site that will be sampled. Crews should set up 1 or 2
  calibration transects off to the side of the plot, in the same vegetation community.
  However, if space is limited, crews can also set up a calibration transect in between plot
  transects but must have at least a 5-m buffer on either side from the plot transects.
- If it is a new system that the crew is calibrating for (woody vegetation in a site and the crew has not encountered a woody site before) calibration should take place prior to sampling the plot.

#### Methods to Calibrate on:

- Line-point intercept (LPI) (required)
- Vegetation Heights (required)
- Species Inventory (required)
- Woody Structure (required)
- Annual use (recommended)
- Soil Texturing (recommended)

# When to Calibrate

- After training and field orientation, but before data collection begins.
- A month has passed since the last calibration.
- A new data collector joins the team.

- A significant change in vegetative community. For example, the first woody site of the season.
- Optional: Soil texturing calibration can be completed once per month

# **Calibration and Vegetative Communities**

Riparian and wetland vegetative communities can be significantly different across a project area. It is up to the discretion of the Project Lead or crew lead to decide whether the difference in the vegetative community is great enough to call for a calibration.

Example: A crew may have only encountered graminoid-dominated sites thus far in the season. If the next plot in hitch is shrub-dominated then a calibration is needed. If this scenario occurs and the crew returns to a graminoid-dominated plot within the same work hitch or within a month, then the crew does not need to recalibrate to collect data in that graminoid-dominated community.

#### **Calibration Tools and Materials:**

- Transect tape (Remember to take care to not trample the sample area along the transect or to move the tape)
- Chaining pins (or other anchoring tools for the transect)
- Calibration data sheets or electronic data capture device (Survey123)
- Pins for LPI (flag pins, laser, or similar. Must be consistent.)
- Multi-tool, avalanche pole, or other means of measuring vegetation heights
- Field Protocol for Lentic Riparian and Wetland Systems v. 2024
- Optional: MIM Frame for Annual Use.
- Optional: Soil samples (5 minimum) that have been lab tested and/or verified by a soils expert that represent a range of textures (e.g., sand, sandy loam, loam, clay, silt).
- Optional: Soil texture worksheet
- Optional: Spray bottle and water for texturing

#### **Calibration Instructions:**

- 1. For LPI and Woody structure calibration, establish the standard length transect for your project (usually 25-m) in a location representative of the riparian or wetland systems where AIM data will be collected. Crews can set up calibration transects off to the side of the plot, in the same vegetation community. If space is limited, crews can also set up a calibration transect in between plot transects but must have at least 5-m buffer on either side from the plot transects.
- 2. For species inventory, establish a second standard length (25-m) transect, parallel to the first transect used for LPI and Woody Structure, and separated by 5 meters. This will create a 25-m x 5 m rectangle.
  - a. Walk the rectangle following species inventory protocol outlined in the Field Protocol for Lentic Riparian and Wetland Systems v. 2024, recording the number of species found in a 10-minute search. If crew members continue to find more species within the rectangle once the 10-minute time increment is reached, add an additional 2-minute "popcorn" time and continue adding 2-minute increments until no new species are found within 2-minutes of the end time.

- 3. Conduct LPI calibration using the same method implementation as required by normal data collection. For example, if you normally collect data along a 25-meter transect with LPI pin drops each 50-cm, height measurements each 250-cm, continue with that during calibration.
- 4. Have each data collector complete LPI and Vegetation Heights, and Litter, Thatch and Water Depths along a single pass of the transect. Data collectors should select "calibration" as their line number at the beginning of the Survey123 form. At the end of their pass, each data recorder should write down the summary statistics reported on the last page of the form. Once all data collectors have completed the first pass, then each data collector should complete the Woody Structure (and optional Annual use methods) along a second pass of the transect, if woody species are present.
  - a. While doing the first pass for LPI methods, take care to protect the left side of the transect, as multiple runs through a line may change the observed environment.
  - b. If there are many observers to calibrate, set up a separate transect for each pass of the transect method (e.g., one transect for LPI, Heights, and Depths and a second transect for Woody Structure and Annual Use).
- Calculate the calibration indicators for each observer. You may do this manually with a
  calculator or using the indicator report on the last page of the Survey123 form (see
  Appendix A for specific instructions).
- 6. Compare results between observers. Verify the ranges between observers against the calibration criteria (Table 1).
- 7. If any range between observers (Table 1) is greater than the acceptable range, attempt to identify why calibration was not achieved.
- 8. All indicators for a method must meet the defined criteria for that method to be considered calibrated. The data collectors must repeat the whole method, for all indicators, if they demonstrated that they were not calibrated for one or more indicators. However, if the data collectors calibrate on one method's criteria but not another method's criteria, then they only repeat the calibration for the method that did not meet the criteria. See the examples below.
- 9. Repeat the calibration exercise on a new transect until each method is completely calibrated. If you are concerned that one transect will be insufficient sample size to achieve successful calibration, you may calibrate all methods across more than one transect, so long as the number of transects is determined prior to commencing a calibration event.

## What If the Calibration Criteria is Not Met?

- Identify the methods and indicators that exceeded the acceptable range of variation.
- Discuss possible reasons with one another and compare technique and definitions.
- Remember that an outlier value may be the correct observation value.
- Consider equipment used (e.g., Did all the collectors use the same pin?)

Example: Jack collects a litter cover of 22%, Fred collects a litter cover of 10%, and Amina collects a litter cover of 12%. The range of values is 12% (22-10=12), which is greater than the maximum permitted range of 10% and the crew must repeat the LPI calibration for all indicators. If Fred, Amina, and Jack do not meet the criteria for one or more of the LPI indicators, but do calibrate on

all Woody Structure indicators, each collector will repeat only the LPI method until collectors meet the acceptable range of variation for all LPI indicators.

# Steps to Calibrate on Soil Texture (Optional):

- 1. Select a minimum of 5 samples that have been lab tested and/or verified by a soils expert that represent a range of textures (e.g., sand, sandy loam, loam, clay, silt).
- 2. Each crew member should texture and record their classification for each sample on a soil texture worksheet.
- 3. To meet calibration criteria, each crew member must exactly match the official soil classification for 2 or more samples (40% of the sample population) and match the official classification or an adjacent classification (using the soil texture triangle) for 4 or more samples (80% of the sample population).

Example: Casey records a tested soil sample as being a sandy loam. The lab testing had determined that the soil was actually a loam. Casey cannot count this as one of their two exact matches, but loam and sandy loam polygons are adjacent on the soil texture triangle and so they can count it towards their four soils for the lower precision criterion.

# Table 1. Calibration criteria by method

| Species Inventory Indicator                        | Calibration Criteria                    |
|----------------------------------------------------|-----------------------------------------|
| Total Species Recorded Inside a 25 x 5 m rectangle | Absolute difference ≤ 4 species records |

| Line Point Intercept Cover Indicator | Calibration Criteria      |  |  |  |
|--------------------------------------|---------------------------|--|--|--|
| Foliar Cover                         | Absolute difference ≤ 10% |  |  |  |
| Bare Ground                          | Absolute difference ≤ 10% |  |  |  |
| Litter + Thatch Cover                | Absolute difference ≤ 10% |  |  |  |
| Standing Dead Cover                  | Absolute difference ≤ 10% |  |  |  |
| Water Cover                          | Absolute difference ≤ 10% |  |  |  |
| OM + Soil Cover                      | Absolute difference ≤ 10% |  |  |  |

| Height Classes and Surface Cover Depths    | Calibration Criteria                   |
|--------------------------------------------|----------------------------------------|
| Woody Plants Count: 0 to 50 cm             | Absolute difference ≤ 2 height records |
| Woody Plants Count: 51 cm to 1 m           | Absolute difference ≤ 2 height records |
| Woody Plants Count: 1.01 m to 2 m          | Absolute difference ≤ 2 height records |
| Woody Plants Count: >2m                    | Absolute difference ≤ 2 height records |
| Herbaceous Plants Count: 0 to 10 cm        | Absolute difference ≤ 2 height records |
| Herbaceous Plants Count: 11 cm to 30 cm    | Absolute difference ≤ 2 height records |
| Herbaceous Plants Count: 31 cm to 50 cm    | Absolute difference ≤ 2 height records |
| Herbaceous Plants Count: > 50 cm           | Absolute difference ≤ 2 height records |
| Litter +Thatch Depth Count: 0 to 10 cm     | Absolute difference ≤ 2 height records |
| Litter +Thatch Depth Count: 11 cm to 30 cm | Absolute difference ≤ 2 height records |
| Litter +Thatch Depth Count: 31 cm to 50 cm | Absolute difference ≤ 2 height records |
| Litter +Thatch Depth Count: > 50 cm        | Absolute difference ≤ 2 height records |
| Water Depth Count: 0 to 10 cm              | Absolute difference ≤ 2 height records |
| Water Depth Count: 11 cm to 30 cm          | Absolute difference ≤ 2 height records |
| Water Depth Count: 31 cm to 50 cm          | Absolute difference ≤ 2 height records |
| Water Depth Count: > 50 cm                 | Absolute difference ≤ 2 height records |

| Woody Structure Indicators                   | Calibration Criteria                     |
|----------------------------------------------|------------------------------------------|
| Woody Height Class 0 Count: 0 to 0.2m        | Absolute difference ≤ 2 height records   |
| Woody Height Class 1 Count: 0.21 to 0.5m     | Absolute difference ≤ 2 height records   |
| Woody Height Class 2 Count: 0.51 m to 1 m    | Absolute difference ≤ 2 height records   |
| Woody Height Class 3 Count: 1.01 m to 2 m    | Absolute difference ≤ 2 height records   |
| Woody Height Class 4 Count: 2.01 m to 4.0 m  | Absolute difference ≤ 2 height records   |
| Woody Height Class 5 Count: 4.01 m to 8.0 m  | Absolute difference ≤ 2 height records   |
| Woody Height Class 6 Count: >8.01 m          | Absolute difference ≤ 2 height records   |
| Shrub Age Class: Seedlings                   | Absolute difference ≤ 2 age records      |
| Shrub Age Class: Young                       | Absolute difference ≤ 2 age records      |
| Shrub Age Class: Mature                      | Absolute difference ≤ 2 age records      |
| Shrub Age Class: Dead                        | Absolute difference ≤ 2 records          |
| (Optional) Tree stem diameter count: 0-20cm  | Absolute difference ≤ 2 diameter records |
| (Optional) Tree stem diameter count: 20-50cm | Absolute difference ≤ 2 diameter records |
| (Optional) Tree stem diameter count: 50-80cm | Absolute difference ≤ 2 diameter records |
| (Optional) Tree stem diameter count: >80cm   | Absolute difference ≤ 2 diameter records |

| Annual Use Indicators                | Calibration Criteria                   |
|--------------------------------------|----------------------------------------|
| Woody Use Count: 0                   | Absolute difference ≤ 2 use records    |
| Woody Use Count: 10                  | Absolute difference ≤ 2 use records    |
| Woody Use Count: 30                  | Absolute difference ≤ 2 use records    |
| Woody Use Count: 50                  | Absolute difference ≤ 2 use records    |
| Woody Use Count: 70                  | Absolute difference ≤ 2 use records    |
| Woody Use Count: 90                  | Absolute difference ≤ 2 use records    |
| Stubble Height Count: 0 to 10 cm     | Absolute difference ≤ 2 height records |
| Stubble Height Count: 11 cm to 30 cm | Absolute difference ≤ 2 height records |
| Stubble Height Count: 31 cm to 50 cm | Absolute difference ≤ 2 height records |
| Stubble Height Count: > 50 cm        | Absolute difference ≤ 2 height records |
| Mean Soil Alteration                 | Absolute difference ≤ 20%              |

| Soil Texture Criteria                              | Calibration criteria    |
|----------------------------------------------------|-------------------------|
| Soils exactly matching official classification     | Sample proportion ≥ 40% |
| Soils matching official classification or adjacent | Sample proportion ≥ 80% |
| classification                                     |                         |

Table 2. Calibration calculation tables.

|      | SPECIES INVENTORY |                        |  |  |  |  |  |  |  |
|------|-------------------|------------------------|--|--|--|--|--|--|--|
| Name | Number of species | Number of species Name |  |  |  |  |  |  |  |
|      |                   |                        |  |  |  |  |  |  |  |
|      |                   |                        |  |  |  |  |  |  |  |
|      |                   |                        |  |  |  |  |  |  |  |
|      |                   |                        |  |  |  |  |  |  |  |
|      |                   |                        |  |  |  |  |  |  |  |
|      |                   |                        |  |  |  |  |  |  |  |
| Min  |                   |                        |  |  |  |  |  |  |  |
| Max  |                   |                        |  |  |  |  |  |  |  |

| LINE-POINT INTERCEPT CALIBRATION |                |              |               |               |               |  |  |  |
|----------------------------------|----------------|--------------|---------------|---------------|---------------|--|--|--|
|                                  |                |              | OPTIONAL:     |               |               |  |  |  |
| Name                             | % Foliar Cover | %Bare Ground | Spp 1 % Cover | Spp 2 % Cover | Spp 3 % Cover |  |  |  |
|                                  |                |              |               |               |               |  |  |  |
|                                  |                |              |               |               |               |  |  |  |
|                                  |                |              |               |               |               |  |  |  |
|                                  |                |              |               |               |               |  |  |  |
|                                  |                |              |               |               |               |  |  |  |
|                                  |                |              |               |               |               |  |  |  |
| Min                              |                |              |               |               |               |  |  |  |
| Max                              |                |              |               |               |               |  |  |  |

| LINE-POINT INTERCEPT CALIBRATION |                        |  |         |               |  |  |  |  |
|----------------------------------|------------------------|--|---------|---------------|--|--|--|--|
| Name                             | Name %Litter + %Thatch |  | % Water | % OM + % Soil |  |  |  |  |
|                                  |                        |  |         |               |  |  |  |  |
|                                  |                        |  |         |               |  |  |  |  |
|                                  |                        |  |         |               |  |  |  |  |
|                                  |                        |  |         |               |  |  |  |  |
|                                  |                        |  |         |               |  |  |  |  |
|                                  |                        |  |         |               |  |  |  |  |
| Min                              |                        |  |         |               |  |  |  |  |
| Max                              |                        |  |         |               |  |  |  |  |

| VEGETATION HEIGHT CALIBRATION |                             |          |          |                   |        |          |          |        |
|-------------------------------|-----------------------------|----------|----------|-------------------|--------|----------|----------|--------|
|                               | Total Litter / Thatch Depth |          |          | Total Water Depth |        |          |          |        |
| Name                          | ≤10 cm                      | 11–30 cm | 30–50 cm | >50 cm            | ≤10 cm | 11–30 cm | 30–50 cm | >50 cm |
|                               |                             |          |          |                   |        |          |          |        |
|                               |                             |          |          |                   |        |          |          |        |
|                               |                             |          |          |                   |        |          |          |        |
|                               |                             |          |          |                   |        |          |          |        |
|                               |                             |          |          |                   |        |          |          |        |
|                               |                             |          |          |                   |        |          |          |        |
| Min                           |                             |          |          |                   |        |          |          |        |
| Max                           |                             |          |          |                   |        |          |          |        |

| VEGETATION HEIGHT CALIBRATION |                             |  |   |        |                          |          |        |  |
|-------------------------------|-----------------------------|--|---|--------|--------------------------|----------|--------|--|
|                               | Total Woody Heights         |  |   |        | Total Herbaceous Heights |          |        |  |
| Name                          | ≤0.5 m >0.5–1 m >1–2 m >2 m |  |   | ≤10 cm | 11–30 cm                 | 30–50 cm | >50 cm |  |
|                               |                             |  | _ |        |                          |          |        |  |
|                               |                             |  |   |        |                          |          |        |  |
|                               |                             |  |   |        |                          |          |        |  |
|                               |                             |  |   |        |                          |          |        |  |
|                               |                             |  |   |        |                          |          |        |  |
|                               |                             |  |   |        |                          |          |        |  |
| Min                           |                             |  |   |        |                          |          |        |  |
| Max                           |                             |  |   |        |                          |          |        |  |

| WOODY STRUCTURE CALIBRATION |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
|-----------------------------|--------------------|----------------------|--|-------------------|-------------------|-------------------|-----------------|----------|-------|--------|------|
|                             |                    |                      |  |                   |                   | Shrub Age Classes |                 |          |       |        |      |
| Name                        | Class 0<br>≤ 0.2 m | Class 1<br>0.2-0.5 m |  | Class 3<br>>1–2 m | Class 4<br>>2–4 m | Class 5<br>>4–8 m | Class 6<br>>8 m | Seedling | Young | Mature | Dead |
|                             |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
|                             |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
|                             |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
|                             |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
|                             |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
| Min                         |                    |                      |  |                   |                   |                   |                 |          |       |        |      |
| Max                         |                    |                      |  |                   |                   |                   |                 |          |       |        |      |

|      | WOODY STRUCTURE CALIBRATION |         |         |       |  |  |  |
|------|-----------------------------|---------|---------|-------|--|--|--|
| Name | Tree Stem Diameter          |         |         |       |  |  |  |
|      | 0-20cm                      | 20-50cm | 50-80cm | >80cm |  |  |  |
|      |                             |         |         |       |  |  |  |
|      |                             |         |         |       |  |  |  |
|      |                             |         |         |       |  |  |  |
|      |                             |         |         |       |  |  |  |
|      |                             |         |         |       |  |  |  |
|      |                             |         |         |       |  |  |  |
| Min  |                             |         |         |       |  |  |  |
| Max  |                             |         |         |       |  |  |  |

| ANNUAL USE CALIBRATION |        |                |          |        |  |  |
|------------------------|--------|----------------|----------|--------|--|--|
|                        |        | Stubble Height |          |        |  |  |
| Name                   | ≤10 cm | 11–30 cm       | 30–50 cm | >50 cm |  |  |
|                        |        |                |          |        |  |  |
|                        |        |                |          |        |  |  |
|                        |        |                |          |        |  |  |
|                        |        |                |          |        |  |  |
|                        |        |                |          |        |  |  |
|                        |        |                |          |        |  |  |
| Min                    |        |                |          |        |  |  |
| Max                    |        |                |          |        |  |  |

|      | ANNUAL USE CALIBRATION |                   |    |    |    |    |    |                 |
|------|------------------------|-------------------|----|----|----|----|----|-----------------|
|      |                        | Woody Use Classes |    |    |    |    |    | Soil Alteration |
| Name | 0                      | 10                | 30 | 50 | 70 | 90 | NA | Mean            |
|      |                        |                   |    |    |    |    |    |                 |
|      |                        |                   |    |    |    |    |    |                 |
|      |                        |                   |    |    |    |    |    |                 |
|      |                        |                   |    |    |    |    |    |                 |
|      |                        |                   |    |    |    |    |    |                 |
|      |                        |                   |    |    |    |    |    |                 |
| Min  |                        |                   |    |    |    |    |    |                 |
| Max  |                        |                   |    |    |    |    |    |                 |

# 3. Collect, Backup, and Submit Data

#### Overview

Electronic data collection and submission is centrally managed by the Riparian and Wetland AIM Data Team and relies on two different ESRI applications. Field Maps is used for navigating to points and for recording which points were field visited. Survey123 is used to collect field data. Use of Field Maps and Survey123 are part of field training, but proficiency is only gained through consistent use. We recommend that first time users watch the Survey123 and Field Maps pretraining videos, following along with the software on a tablet, if possible, prior to field training. Detailed instructions on using Survey123 and Field Maps can be found in Appendix A: *Riparian and Wetland AIM Technology Manual*. Best data entry practices and requirements are detailed there.

The crew will need to backup both Survey123 and Field Maps data during each trip using a USBflash drive device. Backups will allow data recovery if, for example, the tablet is lost, damaged, or stolen. Crews should sync Field Maps and Survey123 data to the Office and Field Eval Webmaps as soon as they are back from their trip or are at a location where strong reliable internet access (4G or Wi-Fi) is available. Step by step instructions for data backups can be found in Appendix B.

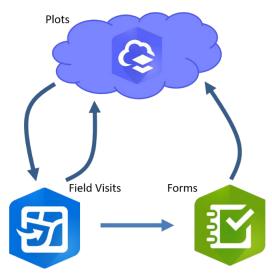



Figure 2. Diagram of relationships between Webmaps (top blue cloud), Field Maps (bottom left blue hexagon) and Survey123 (bottom right green hexagon) data.

# **Responsible Parties**

Field Crew: When and Estimated Time

Data collection should occur in riparian and wetland areas when vegetation is most identifiable, annual soil alteration or disturbance is minimal, and water levels have receded from their seasonal high level. In the Western U.S., optimal timing usually ranges from May to September, though exact timing should be confirmed with local specialists. Data collection takes 6-8 hours per plot.

Data backup preferably occurs daily after every sample plot, but it MUST occur after every two plots. Backup to USB drives should only take 1-2 minutes. Final data submission should occuronce the crew has reliable Wi-Fi immediately during or after each trip. The Photos form is much larger than the other forms and may require stronger Wi-Fi.

Note: The data review dashboard will sync instantaneously with uploaded data, but the static

EvaluationID (PlotID + Field Eval Date) used to filter data in the Review Dashboard must be generated by the Riparian and Wetland Data Team (Data Team). For this reason, data should be synced at the end of the hitch and reviewers should typically wait until the following day to begin data review after the Data Team has generated the EvaluationIDs. Crews should check with their crew manager if there is a question on EvaluationID generation.

#### **Tools and Files**

- Field Protocol for Lentic Riparian and Wetland Systems v. 2024
- Riparian and Wetland AIM Gear List
- Local vegetation identification guides
- Backup paper copies of field data collection forms
- Water quality labels
- Tablets (2 per crew)
- External USB drive
- Field Maps app
- Survey123 app

#### Instructions

The following steps outline data collection in the field. For step-by-step instructions, form-specific recommendations, and other information regarding the use of Field Maps and Survey123 and best practices for data collection, refer to the Technology Manual found in Appendix B.

- Use the Plot layer in Field Maps to navigate to a Sample Design Location. From there, launch a new Field Visit for every unique visit to a plot. This will create a unique EvaluationID (PlotID + Field Eval Date). Please launch a Field Visit for all visits to a plot, including sampling events, reconnaissance visits, and plot rejections. The Field Visit will be the data point from which all Survey123 forms will be launched.
  - a. Plots sampled over two days should maintain the Field Eval Date of the first day of sampling.
  - b. Each tablet used for data collection must launch a Field Visit. It is critical that the EvaluationID (PlotID + Field Eval Date) be identical across all Field Visits referring to the same sampling event.
- 2. Launch all Survey123 forms from your Field Visit by clicking the link provided after submitting Field Visit point.
- 3. If you experience issues using Field Maps while in the field and are unable to create a Field Visit, forms may be launched directly from Survey123. However, this strategy will not allow you to enter Plot identification information. Instead, you should clearly identify the PlotID in form comments, and the Riparian and Wetland AIM Data Team will need to correct all data submitted for these plots.
- 4. If electronic data collection is impossible (e.g., iPad breaks), record all data on paper datasheets and then enter into Survey123 and Field Maps as soon as possible, no later than 30 days. All data must be entered into Field Maps and Survey123 for the Data Team to ingest it into the National Riparian and Wetland AIM database. Additionally, photos or scans should be taken of paper datasheets and uploaded to Teams.

- 5. When you are finished with data collection, forms should be sent to the outbox using the check mark on the last page of each form. Some forms you may want to save in Drafts (Species Inventory and Unknown Plants) until the end of the hitch. Remaining forms should be submitted to the outbox immediately. Additional instructions on submitting forms can be found in Section III of Appendix A. When you return from your trip, send all forms in your outbox and sync your offline area from Field Maps.
  - a. Forms will need to be manually sent from the outbox associated with each form. There is no way tosend all forms at once.
  - b. Once the forms have been sent and you have synced your offline area, click on your Field Visits. Scroll down past the hyperlinks for launching Survey123 forms to the Form Count section. Here you will see the names of all the forms and a count of the associated records. Ensure that the appropriate numbers of forms have been submitted. See Appendix A for more details.
- 6. Update the Eval Status and Hitch fields in the online Office Eval Webmap upon returning from hitch for all plots visited during that hitch.

# 4. Data review

#### Overview

After crews return from the field and upload all their data, crew managers, Project Leads, and the Data Team will review various aspects of the data for major errors. This QC process primarily consists of two types of review: *Critical Concept Review* and *Automated QC Checks* for cross-form validity and data completeness. Prior to the end of the season, crews should work together with the Data Team and crew managers to ensure all necessary edits are made to the data before turning it over to the BLM, following the detailed QC instructions in the next section.

The data review process should also be used to verify the 'Eval Status' for all field visited plots. The 'Eval Status' in the Plots layer tracks which plots have been sampled or not. This status and the 'Rejected Reason' (if applicable) will need to be updated after a crew field visits a plot. This is an iterative step in design management throughout the field season but is also relevant for data management. Updating evaluation statuses in the Data Review Dashboard or Office Eval Webmap ensures that the crew is sampling the correct plots and that the design is being implemented and tracked properly and consistently.

#### When and Estimated Time

Review should occur within a week after each trip and takes 0.5–1.5 hours per plot, depending on the number of errors. Data review becomes more difficult, takes more time, and is more errorprone the longer the crew waits after the hitch is complete – do not wait until the end of the season to complete data review! The data review dashboard will sync instantaneously with uploaded data, but static EvaluationIDs (PlotID + Field Eval Date) used to filter data in the Review Dashboard will be generated by the Data Team after the hitch is complete and the data has been uploaded and synced. For this reason, data should be synced at the end of the hitch and reviewers should wait until the following day to begin data review. Reviewers should also consider scheduling the post-trip check-in with the crew for the day before their next trip, to go over any issues or notes from the data review.

# **Responsible Parties**

- Critical Concept Review: Crew managers and/or Project Leads, depending on terms of the contract or agreement.
- Automated QC Checks: Riparian and Wetland AIM Data Team (Data Team)

#### **Instructions: Critical Concepts Review**

Crew managers and/or Project Leads are responsible for reviewing all Critical Concept data for each sampled plot after each hitch within a week of the crew's return. At the beginning of the season, the Riparian and Wetland AIM Data Team will create a data review dashboard, compiling important fields which require manual QC. This dashboard can be used to compare data collected across forms to look for inconsistencies in the data. While much of the data will be available for review using this dashboard, it is important to note that it is not comprehensive. When errors are found, it may be important to look at data collected in the original forms using the Field Map linked on the Riparian and Wetland AIM AGOL group page. If there are fields or data you would like to see in the dashboard, contact the Riparian and Wetland AIM Data Team.

#### Data Review Dashboard

Early in the field season, the Riparian and Wetland AIM Data Team will provide instruction on dashboard use. Essential components to the dashboard include:

- Selector bar to filter Plot List and Plots showing in map.
- PlotID list used to zoom into a particular plot and filter Field Visits.
- Midseason data summary links will summarize species cover and provide initial indicator calculations for select indicators for the purpose of QC. These reports are generated weekly on Wednesdays. Map to review GPS locations of Plot Characterization, Site Evaluation, LPI, Soil Pit and Water Quality samples.
- Webmap used to update Eval Status to "Sampled Data Reviewed" after completing site review
- Critical Concept Review materials (in development) are going to be made available this
  year. Additional documentation on this will be provided once the field season has started.
- **Information widgets** stacked on the right-hand side showing important data fields from various forms. Use tabs at the bottom to toggle between forms.
- **Photo widgets** stacked on the right-hand side showing various categories of photos. Use tabs at the bottom to toggle between different types of photos.

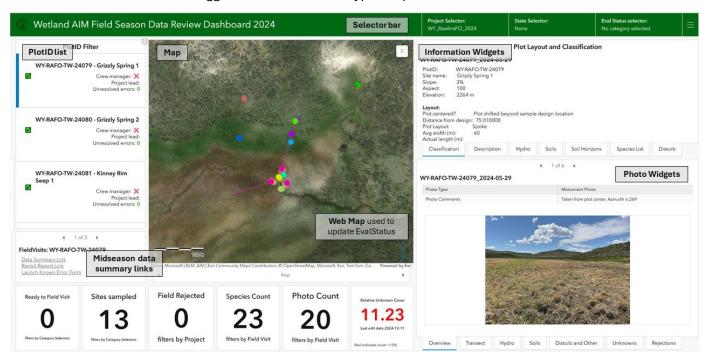



Figure 3. Screenshot of the data review dashboard used during the 2024 field season. PlotID and Field Visit lists can be used to filter data to specific sites. Once a specific field visit is selected, the map, photo, and information widgets can be used to review collected data.

#### Tips for Dashboard Use

- Map Icons
  - A full list of symbology can be toggled on using the legend icon.
  - The search icon can be used to search by PlotID.
  - o The bookmark icon can be used to zoom into preset extents.
- To enlarge any of the boxes on the dashboard, click the arrows in the upper righthand corner of the box. If using a smaller screen, photo widgets may need to be enlarged to allow clicking through photos.
- Field Visit EvaluationIDs need to be generated by the Data Team after data has been submitted. If a Field Visit is missing, contact the Data Team to resolve the issue.

#### Critical Concept Review Steps

The following is a step-by-step list of recommended data checks that require manual review. It is recommended that the comprehensive list be reviewed for each site sampled during early-season hitches (the first 6-10 sites), while crews are still learning the protocol. Reviewers should expect to spend a considerable amount of time on data review early in the season (1–1.5 hrs per site). As a crew demonstrates competency in correctly applying the protocol, reviewers may reduce the checks they perform to a short list of concepts that are especially error prone. The short list is included below the comprehensive list.

For each of the categories below, reviewers should track errors or questions in a separate document to discuss with the crew or in the Critical Concept Review form. Together, reviewers and crew members should finalize the errors or questions into a list of changes to be made and discuss how they should be implemented. To review a particular field visit, reviewers should select the appropriate PlotID in the Data Review Dashboard and complete the following steps. Comment fields should also be reviewed to ensure the correct information is indicated with an appropriate level of detail. Examples of various comment fields can be found in Appendix B.



Figure 4. Aerial imagery of a plot from the Data Review Dashboard alongside the plot drawing. The Sample Location (Green Checkbox) is directly on top of the Field Visit (blue star, hidden), with the Site Evaluation form nearby (Orange dot). The plot center (yellow dot for Plot Characterization) is roughly centered amongst the pink LPI transect starts (pink dots). Soil pit (teal) and water quality (green dot) are in locations that match those shown in the plot drawing.

## **Comprehensive Critical Concept Review**

- 1. **GPS Locations:** Check the GPS locations of each form to make sure crews are launching forms in the correct locations (see Figure 4).
  - a. Are Field Visit points (blue stars for Full Sample Visits) on top of or below the sample location?
  - b. Was Site Evaluation (orange circle) launched close to the sample location, or is there a clear explanation as to why they were not able to reach the sample location?
  - c. Was Plot Characterization (yellow circle) launched at plot center based on plot drawing and the locations of the LPI forms?
  - d. Are LPI transects (pink circle) in reasonable locations that match the plot drawing?
  - e. Do the locations of Water Quality and Soil forms make sense? Do they match the plot drawing?
    - i. Is there a Water Quality point on top of the soil pit? Should there be?
    - ii. Are all Water Quality points collected within the plot boundaries?
  - f. Click the popup for Site Evaluation to check that directions are thorough and begin from the nearest city or town.
- 2. **Plot Layout:** Consider plot and transect placement based on imagery, photos in the Overview and Transect tabs, and the Layout information contained in the Classification tab of the information window in the Data Review Dashboard.
  - a. Did they shift the plot? If so, does their justifications make sense?
    - i. Did they use a valid reason for why they shifted the plot?

- Random plots **must** be placed within 50m of the sample location and should be moved minimally.
- Targeted plots may be shifted further from the sample location, depending on the requests from the BLM office.
- ii. Did they photograph the original sample location? Does it confirm their justification for shifting the plot?
- b. What layout did they use? If they didn't use a standard spoke layout, does their justification make sense?
  - i. Plot layouts should maximize plot dimensions and be up to  $3,000 \, \text{m}^2$  wherever possible..
  - ii. Did they successfully avoid > 10% inclusions of upland, water deeper than 50 cm, and active unvegetated stream channel?
  - iii. If using a transverse, diagonal, or linear layout, does the recorded actual length of the riparian or wetland area correlate with aerial imagery?
- c. Are the transect photos appropriate and free of errors?
  - i. Do the azimuths in the LPI forms match the photos and imagery? Have they been changed from the defaults if necessary? (Transect 1: 0°, Transect 2: 120°, Transect 3: 240°)?
  - ii. Do the azimuths marked in the photos make sense? Are photos of the beginning and end of a transect given different azimuths on photo placards? Azimuths for transect ends, should be 180 degrees from transect beginnings.
  - iii. Are the photo placards legible, with beginnings and ends are marked with an A or B, respectively?
  - iv. Are the transect lines centered in the photo frame and photos taken horizontally?
  - v. Check that photos do not have crew members within the frame.
- d. Does slope and aspect look right for the plot?
  - i. Was aspect measured looking downhill?
- e. Check that the plot drawing is complete.
  - i. Make sure it includes details such as soil pit and water quality sample locations, transects, plot boundary, vegetative communities, water flow paths, and landscape features.
  - ii. Does the plot drawing make sense with the azimuths recorded in LPI? Remember field directions are **not declinated** and may be slightly off from what you see in imagery from the office.
- 3. **Species List:** Review the species list found on the Species information tab.
  - a. Check that unknown codes are being applied correctly.
  - b. Do the number of species make sense given the wetland type? Saline marshes have generally limited species lists, while sites that straddle multiple habitats tend to have extensive lists.
  - c. Do the cover classes make sense?

- i. Limited numbers of species will have a cover class of 4 (>50% cover) in a given site.
- ii. Forbs are less likely to have high cover.
- iii. Large trees, such as cottonwoods, will rarely ever have a cover class of 1, even if there is just one individual.
- 4. Soils: Look through soil photos and compare to Soil and Soil Horizons information tabs.
  - a. Do soil pictures clearly demonstrate necessary information?
    - i. Is lighting even across the profile?
    - ii. Is the photo of the soil profile in portrait orientation?
    - iii. Are the horizon breaks shown and do they make sense? Do they match the depths called in the horizon information?
    - iv. Is the measuring tape clearly visible?
    - v. Is there a photo showing the soil pit in context?
  - b. Do soil colors look roughly accurate (check for value / chroma, proper use of gley page)?
  - c. If a hydric soil indicator is noted, does it align with the horizon description information and picture?
  - d. Does depth to saturation and/or depth to water level make sense according to photos and comments (and water quality data when applicable)?
    - i. Depth to saturation should be  $\leq 0$ .
  - e. Do the majority of horizon textures match the major soil type?
    - i. If the major soil type was recorded as Sandy, the majority of the soil pit horizons should be recorded as sand or loamy sand. Keep in mind that sandy soils are uncommon in riparian and wetland environments.
- 5. **Hydrology:** Look through photos on the Hydro tab and consider whether they match the information contained in the Hydro information tab above it.
  - a. Is the dominant water source applicable given the landscape position, photos, and plot information?
    - i. Precipitation should only be used on flat wetlands in areas with high seasonal or annual precipitation.
    - ii. Pond, lake, or reservoir should only be used for wetlands on pond or lake margins tied directly to the rise and fall of the water level.
  - b. Are additional water sources used sparingly and only include water sources that sustain the plot water regime?
  - c. Does surface water extent match description and photos?
  - d. Is there a channel on the plot?
    - i. Are channel dimensions taken from a clearly defined channel, even if it does not contain water at the time of sampling?
    - ii. Are there at least 2 photos provided looking up and downstream of the channel?
  - e. Does the hydrology description include supporting information on the dominant water sources and additional data collected on the hydrology of the site, such as

alterations or disturbances to the natural hydrologic regime and/or evidence of wetter/drier historic conditions?

- 6. Water Quality: Look for Water Quality points in the map and open their pop-up windows.
  - a. Were all parameters collected?
  - b. Check for any values that may fall out of the typical range.
    - i. 5.5-8.5 for pH, 30-1500 for specific conductance
  - c. Was water quality collected in the morning to limit the impact of diurnal changes due to temp fluctuations and metabolic activity of organisms in water?
  - d. Was water depth sufficient for the collection of a grab sample?
- 7. **Natural and Human Disturbances:** Review disturbances called out in the Disturbances tab, comparing with the photos found in the "Disturb and Other" tab of the Photos widget.
  - a. Is language objective, sharing just what is being observed at the site? Inferences and judgments should not be used (e.g., "heavy grazing").
  - b. Do photos match what disturbances were marked?
  - c. Do the ratings make sense for the disturbances?
    - i. Linear features like roads and powerlines rarely effect more than 10% of the plot or landscape and are unlikely to have a scope larger than 1.
    - ii. Did they use the appropriate degree ratings? (Pay close attention to invasive species vs. noxious species and the degree rating used.)
    - iii. Are the landscape disturbances inside the 100-m envelopes as shown in georeferenced maps?
  - d. Ensure there are not any obvious disturbances not included on the site's disturbance checklist. Features like impoundments, occasional hummocks, and non-native plants can be checked through aerial imagery, transect photos, and species lists.
- 8. **Classification:** Putting all the previously reviewed data together, evaluate the classifications found in the Classification tab of the information widget.
  - a. Does the Cowardin class match the plot's vegetation community?
  - b. Does the Cowardin water regime line up with the soil pit data, site description, hydrology information, time of year (early vs. late in the growing season), and water year?
  - c. Does the HGM type match the dominant water source and landscape position?
  - d. Does the general wetland type match information in the site description, photos, soils, vegetation community, and dominant water source? Check Appendix J in the Field Protocol v. 2024 for appropriate combinations of general wetland type, Cowardin class, water regime, and HGM class.
- 9. **Plot Description**: Read the plot description found in the Description tab of the information widgets.
  - a. Is the plot description thorough (full sentences, no abbreviations, etc.)? Does the description cover the major characteristics of the plot, including: classification, landscape position, dominant vegetation (scientific names preferred over common names or USDA Plants codes), general hydrology, soil type, and any major land uses.

- b. Inform the crew of any data edits encountered in previous steps that would necessitate any updates to the plot description (this includes changes to classification, water sources, soil, etc.).
- 10. **Update EvalStatus** to "Sampled Data reviewed" using the Webmap on the second tab of the map widget.

Once a crew demonstrates competency in correctly applying the protocol, reviewers may reduce the checks they perform to the following abbreviated list of concepts that are especially error prone. The abbreviated review may still take 20-30 minutes per plot.

# **Short List for Critical Concept Review**

#### 1. Plot Layout

a. What layout did they use? Does their choice and justification make sense?

#### 2. Soils

- a. If a hydric soil indicator is noted, does it align with the horizon description information and picture?
- b. Do most horizon textures match the major soil type?

#### 3. Hydrology

a. Is the dominant water source applicable given the landscape position, photos, and plot information?

## 4. Water Quality (if collected):

a. Check for any values that may fall out of the typical range: 5.5-8.5 for pH, 30-1500 for specific conductance

#### 5. Natural and Human Disturbances

a. Is language objective, sharing just what is being observed at the site?

## 6. Classification

- a. Does the Cowardin class match the plot's vegetation community?
- b. Does the Cowardin water regime line up with the soil pit data, site description, hydrology information, time of year (early vs. late in the growing season), and water year?
- c. Does the HGM type match the dominant water source and landscape position?
- d. Does the general wetland type match information in the site description, photos, soils, vegetation community, and dominant water source? Check Appendix J of the Field Protocol v 2024 for appropriate combinations of general wetland type, Cowardin class, water regime, and HGM class.

#### 7. Plot Description

- a. Check that plot description includes classification, landscape position, dominant vegetation, general hydrology, soil type, and any major land uses.
- b. Do any previous data edits necessitate updates to the plot description?
- 8. **Update EvalStatus** to "Sampled Data Reviewed"

# **Instructions: Automated QC Checks**

After every hitch, the Riparian and Wetland AIM Data Team will run a Python script to look for common errors in the data. This will automatically produce form entries in the Known Error form which can be viewed and discussed using features in the Error Review Dashboard alongside other errors flagged by the crew during sampling.

Common errors cataloged by this QC script primarily consist of the following types:

- Missing or incorrect fields in Plots or Field Visits layers based on the sites having been sampled.
- Missing or duplicate forms for Field Visits designated as "Full Sample Visits"
- Unexpected GPS locations in Site Evaluation, LPI and Soil Pits.
- Missing ID's and Keys (i.e. EvaluationIDs or LineKeys representing the unique combination of EvaluationID and Transect Number).
- Mismatches between Species and Unknown Codes used and the full Species Inventory or Unknown Plants lists for that Field Visit.

As described further below, errors should be resolved after each hitch before heading out on the next hitch, and at the least, monthly. Resolving data errors becomes more difficult, takes more time, and is more error-prone the longer the crew waits after the hitch is complete – do not wait until the end of the season to resolve data errors!

Some issues may have multiple explanations and their solutions can depend on why the error occurred. For this reason, the responsibility for tracking down and resolving errors is shared by both the crew and the Data Team, depending on the issue at hand (Table 3). When reviewing the error log, crews and crew managers should use Table 3 to assess how best to address issues. Once a data issue has been resolved, the crew will need to manually change the Error Status using the Error Review Dashboard. See Section V for instructions on viewing and resolving these errors.

Table 3. Explanation of possible warning messages from the Automated QC error log, including likely explanations and solutions to the issue. If crews are initially responsible, they should consider where the problem comes from and fix it if possible. If Data Team is responsible, they will take care of the issue, but crews should note that the problem occurred and avoid repeating the mistake. For more complicated data issues, more detailed directions on recommended solutions are described below.

| Error Reason or Initial Explanation Responsibility                                                                       |           | Likely Explanations                                                                                                                                                                                     | Potential Solutions                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| "Project is not specified in Field Visit."                                                                               | Crew      | Crew forgot to add project information when Field Visit point was added.                                                                                                                                | Crew edit Field Visit point in Field Maps app.                                                                                                                 |  |  |
| "This plot has a full sample visit but is not shown as sampled in Plots. Update Eval Status or change Field Visit Type." | Crew      | Field Lead/Crew forgot to update this field in Office Webmap after returning from hitch.                                                                                                                | Crew edit Plots layer in Office Eval Webmap on browser.                                                                                                        |  |  |
| "Field visit type was permanently rejected but Eval Status is"/ "Location status () does not match Field Visit Type"     | Crew      | Crew forgot to update eval status in the Office Webmap. There's a mismatch between the status indicated by the Eval Status in Plots, VisitType in Field Visits, and Location Status in Site Evaluation. | Crew edit Plots layer in Office Eval Webmap on browser, the Field Visit VisitType in their Field Maps app, or the Location Status in the Site Evaluation form. |  |  |
| "Multiple field visits with different EvaluationIDs exist for"                                                           | Data Team | Crew used different dates for the same sampling event. A field visit used for a calibration or rejection visit was classified as a full sample visit                                                    | Data team conforms all forms to a single EvaluationID for a given visit.                                                                                       |  |  |
| "Has 0/2 forms"                                                                                                          | Crew      | -Crew used the incorrect EvaluationID when submitting the formCrew accidentally submitted duplicates of a formOdd issue where duplicate forms submitted. Unknown causeCrew forgot to submit form.       | -Crew submit known error with information on which duplicate needs to be deletedSee below.                                                                     |  |  |
| "Has LPIDetail points for line"                                                                                          | Data Team | Crew changed transect field after LPI pin drops began.                                                                                                                                                  | Select all EvaluationID RecKeys in ArcPro and recalculate field with correct LineKey information.                                                              |  |  |
| "Has bad Line numbers – line<br>numbers found are"                                                                       | Crew      | Missing form for one transect Multiple forms submitted for one transect (one transect labeled incorrectly).                                                                                             | Assess where the issue occurred. Submit known errors as necessary and communicate with the Data Team.                                                          |  |  |

| "Has bad Latitude" / "Has bad<br>Longitude" / "Has bad<br>Latitude Start or End for line                                                                                    | Crew      | Form indicated was opened or updated to a GPS location outside of Western US. May also result from crew accidentally deleting GPS info.                                                                  | Crew update form with correct GPS coordinates in indicated form. <u>See below.</u>                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Multiple soil pits at this plot<br>with the same pit key<br>number"                                                                                                        | Crew      | Crew used the same soil pit number for multiple pits.                                                                                                                                                    | Crew update forms so that the pits at the same plot have different numbers.                                                                                                                    |
| "Is too far from Plot Design OR<br>GPS override –<br>DistanceFromDesign is"                                                                                                 | Crew      | Site Evaluation opened/GPS updated more than 10 m from Original Sample Location or GPS override used. Site Evaluation should be opened as close to original design as crew was able to physically reach. | If crew was unable to reach sample location, no action is required. Data is correct. If they were able, GPS should be updated to correct location in the form. See below.                      |
| "Found a Blank EvaluationID in FieldVisits"                                                                                                                                 | Data Team | Not sure why/how this would happen. Perhaps blank line added during data editing.                                                                                                                        | Assess issue and go from there.                                                                                                                                                                |
| "Orphan LPIDetail record" / "has no Line Number or no RecKey for LPIDetail record"                                                                                          | Data Team | -Form opened from Survey123 instead of Field<br>Maps app.<br>-Transect selected after LPI pin drops started.                                                                                             | Select all EvaluationID RecKeys in ArcPro and recalculate field with correct RecKey information.  May also need to do for Unknown Code Keys if EvaluationID skipped altogether.                |
| "ErrorEvaluationID is Null or<br>blank"                                                                                                                                     | Data Team | -Form opened from Survey123 instead of Field<br>Maps app.<br>-Glitches from S123, not totally understood.                                                                                                | Select all EvaluationID RecKeys in ArcPro and recalculate field with correct RecKey information. May also need to do for Unknown Code Keys if EvaluationID skipped altogether in species form. |
| "Unknown Code was not found in Unknown Plants form. Code used in Species Inventory/LPI/Annual Use. Add to Unknown Plants or indicate what code it should be replaced with." | Crew      | -Forgot to add UnknownCode to Unknown<br>Plants form.<br>-Accidentally used the wrong UnknownCode<br>during data entry.                                                                                  | -Add unknown code to Unknown Plants formSubmit known error form changing code to correct codeSee below for more.                                                                               |
| " is in LPI or Woody but<br>not Species Inventory"                                                                                                                          | Crew      | -Forgot to add species to Species Inventory<br>-Accidentally hit the wrong plant species during<br>data entry (ex. POTR3 instead of POTR5).                                                              | -Add species to Species Inventory -Submit known error form changing code to correct codeSee below for more.                                                                                    |
| "Corrected Species code<br>from Known Errors is not in<br>Species Inventory"/                                                                                               | Crew      | -Crew requested a code change in LPI and/or<br>Woody Structure, but did not add the correct<br>code to Species Inventory or Unknown Plants                                                               | -Crew add correct species to the end of Species Inventory or Unknown Plants and resubmitSee below for more.                                                                                    |

| "Corrected Unknown Code Key from Known Errors does not have an Unknown Plants form"                        |                                                                                            |                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| " has requested changes in Crew LPI or Woody Structure Annual Use but still appears in Species Inventory." | -Crew did not indicate species whether species needed to be deleted from Species Inventory | <ul> <li>-All deletions from Species Inventory must be taken care of by the Data Team.</li> <li>-Crew comment in error log whether species needs to be deleted.</li> </ul> |

# 5. Resolve Errors

#### Overview

After data has been reviewed, there may be a list of required corrections that develop between the suggestions of crew managers and Project Leads as well as errors logged by scripted data checks. Making it clear who is responsible for enacting data edits and where they should make those edits is crucial to ensuring high data quality. This section will cover recommended solutions to common form errors.

In general, Survey123 forms on crew tablets can be edited and resubmitted. For many reasons, directly editing forms on iPads may be the best method to implementing data edits:

- Forms on tablets will always override edits made to the data uploaded to the ArcGIS Online feature service, meaning edits made to the Webmap will disappear for a particular form if the crew edits that form on their tablets and resubmits.
- Survey123 forms incorporate many quality assurance checks that limit the ways data can be entered. These same QA checks are not enacted when edits are made to online data.
- While Project Leads and/or crew managers may have a wealth of experience and knowledge, no one knows the data for a particular site better than the crew that was there collecting the data.
- Crews often learn and improve their data collection when they correct their own mistakes.

However, while there are many reasons that edits are best made through the originally submitted forms, some forms are limited in the kinds of edits that can be made after submission to ArcGIS Online. Others are tedious to edit in Survey123.

Table 4 should be used by crews, crew managers, Project Leads, and the Data Team to assess how and where data errors should be addressed. While not explicitly included in this table, crew managers and Project Leads may also wish to play a direct role in the editing process and may do so using the Field Webmap on ArcGIS Online; however, for the reasons mentioned above, **they should discuss edits with the Riparian and Wetland AIM Data Team prior to attempting them to ensure they understand the risks associated with editing live season data.** Further descriptions of how to fix common errors are outlined below in the <u>Common Errors and Recommended Solutions</u> section.

#### **Responsible Parties**

Everyone – see Table 4.

#### When and Estimated Time

Errors should be resolved after each hitch, before heading out on the next hitch, and at least monthly. The more time that passes between errors being recorded and being resolved, the more likely that the crew will not remember the plot and be able to answer questions that arise. The first few hitches often have many comments/errors that may take 3+ hours to investigate, but time should decrease as the season goes on. If issues persist, we recommend having a crew manager meet up with the crew and conduct additional field orientation/calibration.

Table 4. Editing responsibilities by form.

| Form Common Errors                |                                                                                                 | Editor                | Crew Action                                                                                                                                                    |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Characterization Forms            |                                                                                                 |                       |                                                                                                                                                                |  |
| Site Evaluation                   | Not launched from Sample Location.                                                              | Crew                  |                                                                                                                                                                |  |
| Plot Characterization             | Aspect in wrong direction. Revision of plot classification.                                     |                       | Crews edit directly in the previously submitted forms.                                                                                                         |  |
| Hydrology                         | Revision of Water Sources.                                                                      |                       | Submitted forms.                                                                                                                                               |  |
| Soils                             | Incorrect Hydric Soil Indicators used.                                                          |                       |                                                                                                                                                                |  |
| Transect-Based Forms              |                                                                                                 |                       |                                                                                                                                                                |  |
| LPI                               | Species Errors, mix up Dead vs Alive for annuals                                                |                       |                                                                                                                                                                |  |
| Woody Structure and<br>Annual Use | Identifying Rhizomatous species                                                                 | Data Team             | Crews submit known errors for each individual issue occurring on Transect-based data forms.                                                                    |  |
| Hummocks                          | Missing transects                                                                               |                       |                                                                                                                                                                |  |
| Other Repeat-Format Fo            | rms                                                                                             | •                     |                                                                                                                                                                |  |
| Species Richness                  | Species missing that was seen on LPI.                                                           |                       | Crew can add and edit species but cannot delete what has already been submitted. See below for more.                                                           |  |
| Unknown Plants                    | Missing Unknown Code from other species forms. Species identified after submission.             | Crews add-<br>or edit | Crew can edit submitted entries and add additional entries. See below for more.                                                                                |  |
| Water Quality                     | WQ samples taken outside plot. Grab sample taken without YSI. Bad YSI data needs to be deleted. | correct<br>entries.   | Crews can edit submitted entries if not against form logic. Most edits should be addressed by submitting known errors to the Data Team.                        |  |
| Natural and Human<br>Disturbances | Natural and Human Scope and/or severity rated                                                   |                       | Crews can edit submitted entries and add additional entries, but cannot delete what has already been submitted. Submit known error for stressor to be removed. |  |
| Photos                            | Missing photos. Updating/correcting photos.                                                     |                       | Crews can <b>add photos, but cannot edit or delete</b> what has already been submitted. <u>See below.</u>                                                      |  |

# Addressing errors using the Error Review Dashboard

The Error Review Dashboard is a place where crews and the Riparian and Wetland AIM Data Team (Data Team) can communicate about errors that cannot be fixed by the crews, including errors documented by the crew and errors found by the automated QC script. The benefit of the dashboard is that it allows for centralized and carefully documented error tracking. It also allows crew members to respond directly to issues found by the QC script by either indicating an issue has been resolved or by requesting edits by the Data Team. However, a crew with messy data management may find resolving the first round of errors to be overwhelming, as simple mistakes can cause cascading data issues, particularly if the script is run before all data for a site has been submitted. For example, if a crew forgets to submit their Survey123 forms prior to the running of the QC script, a series of errors will be identified for every form that is currently missing. For this reason, crews should be careful to ensure that all data for a site is submitted promptly, at one time, prior to the script being run.

To make responding to scripted errors more straightforward, crews should understand a couple of things about how the automated QC script works. First, the time the script was last run will be important to consider, as any data submitted or edited after that time **will not** be reflected in the errors shown. Crews can always find the time of the last run using the "Last Run Date" widget of the dashboard. The script also runs on a project basis, so only the most recent run for your project should be considered. Second, the script flags errors that it currently finds in the data, including changing the error status of 'Resolved' errors back to 'Review required' if the issue still exists in the data. The last time a script found or edited an error can be found in the 'LastErrorReviewFlag' field. For most errors, a response is required even if the error is fixed to explain why the issue happened in the first place. For this reason, most errors will need to be marked "Resolved" manually by dashboard users before the error will move to the Resolved Errors list. A handful of form count errors may be "silently resolved" meaning the script will acknowledge and resolve them if they are no longer found in the data. This will not happen for species-related errors.

## **Steps to using the Error Review Dashboard:**

- 1. Access the dashboard using links on the main group page on ArcGIS Online.
- 2. Filter errors to those you want to address.
  - a. Category filters at the top of the dashboard will filter the Plots lists by project and the error list and error counts by project, issue type, and who they are currently assigned to.
  - b. Plot and Field Visit lists on the right side of the page can be used to filter errors to particular sampling events. It's recommended that crew members start begin reviewing errors site-by-site so as to holistically review issues flagged at that site.
- 3. Note the time the last script was run. Data submitted since then will not be accounted for in the documented errors. If the script needs to be run again, contact the Data Team with the project of the data you want QC'd.
- 4. Review responses to errors by selecting an error from the error list.
  - a. The error log will display the explanation provided when the error was originally submitted, along with any logged comments that have been submitted since.
- 5. Once you know how to respond to a particular error, switch the map widget pane over to the known error form using the tabs at the bottom and edit directly in the form.

- a. Do NOT edit fields from the Observer field or the Initial Error Documentation section or from previous responses. These should document the original problem documented by the QC script.
- b. Instead, scroll down to where the form says "Respond to issue" and click Yes to log a response. Up to three responses are allowed in this section.
- c. Once you've logged your comment on the error, change the error assignment and error status at the bottom of the form to send the error on to the next person or resolve the error it identifies.
- d. If an error is marked as resolved, but the script finds the error still exists in the data, it will change the Error Status back to "Review required" and log a new time in the 'LastErrorReviewFlag' field.

# **Common Errors and Recommended Solutions**

Missing or duplicate forms

- 1. Missing forms must be created by field crews by launching the form from the original Field Visit point in Field Maps.
  - a. This most commonly occurs when the feature to be measured is missing (e.g., forgetting to submit hummocks forms on sites without hummocks). For forms like these, opening and submitting forms after the fact should not be a problem. If you are confident that no hummocks were on the site, the form can be submitted from the office.
    - i. GPS information will need to entered manually, following the directions found below under *Incorrect GPS Location*.
    - ii. It is good practice to add in the form comments that the form was submitted away from the Plot.
      - 1. Ex: "Form submitted from the office, but crew is confident that no hummocks were observed on plot at the time of sampling."
  - b. If this occurs on forms for which data will be needed (e.g., Hydrology), then submitting afterwards becomes more difficult. In most cases, some fields may be able to be filled out from the office, while others would be inaccurate to do so. Crews should discuss the issue with crew manager and Data Team to decide what should be done. This will likely be one of two options:
    - Submitting a known error form documenting the issue. If you were unable to complete LPI on a third transect due to weather concerns, there's nothing that can be done except documenting the known error.
    - ii. Submitting the form filled out with your best guesses. Notes should also be made in the form itself to indicate data was submitted after returning from the field.
- 2. Duplicate forms occur due to technology or communication issues in the field.
  - a. For transect data, "bad form counts" indicate multiple transects have been submitted with the same transect number, requiring one of them to be edited to resolve the error. In this case, crews should indicate which transect needs to be

- changed by responding to the initial error in the Error Review Dashboard. These edits will need to be made by the Data Team.
- b. Duplicate form counts may also happen due to crew communication issues resulting in two forms being filled out and submitted. Crews should check for duplicates on their tablets and, if found, assess which form should be retained. To get the bad form deleted, crews should add to the comments of the bad form, then respond to the known error indicating how the Data Team can find and delete the bad form. Deleting the form from the iPad will NOT delete the form from AGOL. Only the Data Team can delete submitted forms
- c. In some cases, the same copy of the form may have been submitted twice due to a technological issue. If the crew has searched their tablets and cannot find the duplicate forms, they should respond to the known error that no duplicate forms were found and pass it on to the Data Team. The Data Team will then compare the data from the two forms to verify that they are identical before choosing one to delete.
- 3. The error log script looks for errors in all plots with related field visits indicating a plot had a "Full Sample Visit". Therefore, a plot with a lot of missing forms may have the wrong Visit Type indicated in its field visit. If a Plot was temporarily or permanently rejected, "Full Sample Visit" is not the correct visit type. Changing this Field Visit to a temporary or permanent rejection can fix flagged missing forms, but the crew will need to manually mark original errors as "Resolved" before they will disappear from the dashboard.

#### Incorrect GPS Location

- GPS issues can be flagged either through critical concept review or from the error script. In general, GPS data should only be updated if issues with the location are due to a misunderstanding of where the forms should be located and not when GPS accuracy of tablets effected the location.
- 2. Crews should update GPS points by manually editing the data in their forms.
  - a. First, they should use Google maps or Field Maps to get a correct latitude and longitude for the location of the form.
  - b. Next, open the form from Survey123 to edit and resubmit the form.
  - c. Navigate to the page with GPS and click open the GPS window. This will only work if tablet is connected to the internet.
  - d. Type GPS coordinates into the search bar at the top. Switching the basemap to imagery using the widget on the right-hand side can help to more precisely place the form location.
  - e. When the blue flag is in the correct location, click the check mark in the lower right-hand corner, then resubmit the form to AGOL.
- 3. At the beginning of the season, systematic GPS errors may occur, making individual updates tedious. In this case, crew managers should consult with the Data Team to consider editing GPS in the Webmap rather than in the tablet. There are a couple of important notes for edits in the Webmap:

- a. While forms in Survey123 provide many QA checks on entered data, the Webmap does not require data to follow the same checks. For this reason, all editing to the data itself should be completed by crew members on tablets or by the Data Team. When editing location data be VERY careful to exit out of editing mode as soon as you are happy with the location of the data.
- b. Forms existing on crew tablets will always trump data edited in the Webmap. For example, if a crew manager modifies the location of Plot Characterization in the Webmap, then the crew edits plot classification data and resubmits, the GPS in the Survey123 form from the crew will write over edits to the Webmap. Any data modification to the Webmap should only occur when the plot data has been reviewed and the crew has completed all necessary edits.

#### Changing photos in photos form

- 1. In general, you will always be able to add photos to the form after submitting to AGOL, but you won't be able to delete them.
- 2. **If you want to delete a photo**, you'll have to submit a known error indicating which one(s) needs to be deleted. It can be helpful if you're updating a photo (i.e., adding a new one and requesting another be deleted) that you add to the photo comments of the old photo something like "Old copy of overview photo. Can be deleted". This makes it easier to find the one that should be removed.

#### Species Errors

- 1. Most species errors will be identified through the error log, which performs the following checks:
  - a. All unknown codes used in Species Inventory, LPI, Woody Structure and Annual Use have a matching unknown code entry.
  - b. All species and unknown codes used in LPI and Woody Structure and Annual Use have a matching entry in Species Inventory.
  - c. No duplicates are included in the Unknown Plant form.
- 2. The final species determination (i.e., a keyed-out species) for an unknown code is documented in the Unknown Plants form *only*. Do not use a Known Error form to specify a final species determination.
  - a. It is OK and common for both the final determination species code AND the unknown code to be present in the Species Inventory form – this is handled at the end of the season by the R&W Data Team and is not a concern.
- 3. Species errors generally have two potential explanations:
  - a. A code was accidentally used in a form and needs to be changed to something else.
  - b. A code was *intentionally* used in a form, but the crew forgot to add it to Species Inventory or Unknown Plants.
- 4. These errors require evaluation by the crew to assess why the issue is occurring. Three main options are available to the crew for correcting all species issues:

- a. The crew may be able to resolve the error themselves by adding or editing a code in either Species Inventory or Unknown Plants. In this case, the crew should mark "Crew resolved issue" then change the Error Status to "Resolved".
- The crew may find that a code in Species Inventory needs to be deleted. In this case they should mark "Delete species code from Species Inventory or Unknown Plants",
  - i. A field will then come up in which to enter the code that needs to be deleted.
  - ii. Once a crew has indicated the incorrect species, they should log a response to the error, assign the issue to the Data Team, then mark the Error Status to Edits required.
- c. A code may need to be replaced everywhere it occurs in the transect forms. In this case, crews should mark, "Switch species code to new code...". This option applies exclusively to transect-based forms. Note: Do NOT use this option to specify the replacement of an Unknown Code with its Final Determination. Final Determinations are specified in the Unknown Plants form.
  - i. Fields will then come up in which to enter the incorrect code and the code it should be replaced with.
  - ii. Once a crew has indicated the codes to switch, they should log a response to the error, assign the issue to the Data Team, then mark the Error Status to "Edits required".
  - iii. Code switches will follow a "search and replace" method for all three LPI and Woody Structure and Annual Use forms for that field visit.
- d. If any hybrid of the above options or more careful editing is needed by the Data Team, then the "Other" option should be used with a thorough explanation of what is needed. The Data Team will review these edits individually.
  - i. An example might be if the crew wants a code replaced on transect 1, but not on the other transects if it occurs.
- e. The following table shows an example of potential errors that might come up if PG\_01 was accidentally used during LPI and species inventory in place of AG\_01.

Table 5. Examples of unknown plant code errors, flags, and crew response actions.

| Error Log Flag:                     | Crew Action                  | Known Error Comment            |
|-------------------------------------|------------------------------|--------------------------------|
| "Unknown Code CA-CDD-TW-            | Change PG_01 in Species      | "PG_01 used by accident        |
| 21034_2021-07-20_PG_01 was not      | Inventory to AG_01.          | instead of AG_01 in LPI. Fixed |
| found in Unknown Plants forms.      |                              | in Species inventory, edits    |
| Code used in Species Inventory,     | Indicate in Known Error to   | needed from Data Team in       |
| LPI"                                | switch all PG_01 occurences  | LPI."                          |
|                                     | to AG_01.                    |                                |
| "CA-CDD-TW-21034_2021-07-           | Indicate in Known Error that | "PG_01 used by accident in     |
| 20_AG_01 was not found in Species   | crew resolved the error      | Species Inventory originally.  |
| Inventory. Code used in Annual Use" | themselves by adding AG_01   | Crew successfully corrected    |
|                                     | to species inventory.        | form."                         |

- f. To add or edit an entry in Unknown Plants:
  - i. Open and edit unknown plants form.
  - ii. Unknown Codes already submitted can be edited, including changes to identification status, codes, and characteristics, but cannot be deleted. If an entry must be deleted, add that information to the plant description and resend the form. Then, indicate in the known error form that a species needs to be deleted.
- g. To add or edit a code to Species Inventory:
  - i. Open and edit Species Inventory.
  - ii. You cannot delete entries after you've submitted the form for the first time, but you can edit previous entries.
  - iii. Once the correct entry has been added, crew should add a response to the known error form and mark the error as resolved.
  - iv. If the crew cannot add a species to the Species Inventory, create a known error form and **make sure to include abundance.**

# 6. Early-Season and End-of-Season Meetings

#### Overview

#### Early-season meeting

An early-season check-in meeting should be held one month into the field season with the crew, crew manager, Project Lead, State Lead/monitoring coordinator, and the National Riparian and Wetland AIM Team to make sure data management and data quality steps are being completed and that there is good communication among team members. During this meeting, the early-season checklist and agenda topics can provide a starting point of questions to address protocol questions, app and tablet quirks, or logistical/gear issues such as YSIs malfunctioning. The State Leads or monitoring coordinators should schedule and lead this meeting and all other parties should come prepared to discuss issues that have arisen thus far throughout the season. If the State Lead/monitoring coordinator is not able to schedule and lead these meetings, they should coordinate with the Project Leads to ensure these meetings occur.

#### End-of-season meeting

The end-of-season meeting should be scheduled by the State Lead/monitoring coordinator before any crew members leave in the fall and crew supervisors are still available to clear up any data questions that may arise. The end-of-season check list below should serve as a comprehensive list for closing out the project. In summary, all final data should be submitted and the evaluation statuses in the Point and Field Visits layers should be finalized. Project Leads or crew managers should send/deliver all water quality samples to the designated lab following the Water Quality Submission Protocol.

# **Responsible Parties**

Everyone.

#### When and Estimated Time

Early-season meeting: approximately one month into data collection. Meeting lasts 1-2 hours.

End-of-season meeting: At the end of the season while the crew is still working. The meeting should occur no sooner than one week after the crew's last field day and no later than 4 weeks after. Crews may need an additional week to finalize and submit data to the NOC prior to the end of their seasonal employment period. Meeting lasts 1-2 hours.

#### **Tools and Files**

- Checklists (below)
- Crews must have access to the internet so that they can join online and view dashboards.
- Microsoft Teams
- Data Review Dashboard
- Webmaps
- Water Quality Submission Protocol.

# Early-season checklist and agenda topics

The purpose of the early-season meeting is to discuss data quality processes for design management, data collection, and data submission to date with the goal of resolving any questions or issues so they don't propagate throughout the field season.

| Pre | e-meeting checklist:                                                                      |
|-----|-------------------------------------------------------------------------------------------|
|     | The State Lead (or Project Lead) has prepared a summary of number of points sampled by    |
|     | project so far.                                                                           |
|     | The crews completed field orientation, Date:                                              |
|     | The crews completed calibration, Dates:                                                   |
|     | The crew has submitted ~1 month worth of data 1 week prior to this meeting.               |
|     | The crew has selected plot overview, soil pit, and hydrology photos from 2 plots and sent |
|     | their PlotIDs to all meeting attendees prior to the call for discussion. Photos should    |
|     | include: 1) one typical or easy/straight forward plot and 2) one challenging plot. All    |
|     | attendees should reference photos in the Data Review Dashboard.                           |
|     | All parties involved have prepared a list of protocol questions and clarifications, and   |
|     | potentially some photos to facilitate discussion.                                         |
|     | All parties involved have prepared a list of design management and data questions to      |
|     | discuss during the meeting. Ensure that all parties are staying up to date on Data Review |
|     | and are actively resolving errors.                                                        |
|     | The National Riparian & Wetland AIM Team has prepared a list of questions regarding any   |
|     | submitted data to discuss during the meeting.                                             |

Discussion topics and questions:

| Design management                                                                                                                                                  | Action Items and Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Are eval statuses getting finalized so that designs can be managed? Any questions related to eval statuses?                                                        |                        |
| Are the trip planners managing the design iteratively according to guidance in the design management protocol? Is the Plots layer being properly updated?          |                        |
| Sampling Time                                                                                                                                                      | Action Items and Notes |
| What's the average time to complete a single plot?? What can we do to help improve efficiency?                                                                     |                        |
| Does the crew have adequate office evaluation information to get to point coordinates? Are trip plans feasible and organized? If not, suggestions for improvement? |                        |
| On track to meet the project's total sample size by the end of the summer?                                                                                         |                        |
| Is it clear to the crew who to call for protocol questions, access issues, trip schedules, etc.?                                                                   |                        |
| Field orientation and calibration:                                                                                                                                 | Action Items and Notes |
| Where was the local field orientation held and who attended? How many and what types of sites were visited?                                                        |                        |

| Did this help the crew's understanding of critical concepts such as site classification and water sources? And help with understanding local issues?                                                                                                                                                                                             |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Which methods have inspired discussion?                                                                                                                                                                                                                                                                                                          |                        |
| Did the crew submit their calibration data and notify the State Leads when complete?                                                                                                                                                                                                                                                             |                        |
| Monumenting                                                                                                                                                                                                                                                                                                                                      |                        |
| New guidance to document monumenting of sites. Spreadsheet located in MS Teams under state channel: [add document here] In the future, this will be in Plot Characterization form but for now please ensure you track monumenting in the spreadsheet.                                                                                            |                        |
| Plot and Photo review (Use Data Review Dashboard):                                                                                                                                                                                                                                                                                               | Action Items and Notes |
| The crew selects two plots to show plot overview, soil pit, and hydrology photos for discussion. Use Data Review Dashboard to reference photos. : 1) a typical plot, and 2) a challenging plot. Does everyone agree on the critical concepts? Is the crew confident identifying critical concepts across a diversity of plots? Other discussion? |                        |
| Does anyone else have photos or specific methods they want to discuss?                                                                                                                                                                                                                                                                           |                        |
| Has the crew encountered any of the below challenging situations yet this field season, and how did they go? What methods were difficult in these systems?                                                                                                                                                                                       | Action Items and Notes |
| Edges of the target population (e.g., dry floodplains, aspen stands with dry understory)                                                                                                                                                                                                                                                         |                        |
| Classification questions (e.g., slope wetlands along streams)                                                                                                                                                                                                                                                                                    |                        |
| Ambiguous channels or multiple channels, no clear dominant                                                                                                                                                                                                                                                                                       |                        |
| Mixed plot layouts                                                                                                                                                                                                                                                                                                                               |                        |
| Water quality sample locations (e.g., challenging collection sites in shallow surface water)                                                                                                                                                                                                                                                     |                        |
| Shifting sample locations, shifting plots                                                                                                                                                                                                                                                                                                        |                        |
| Targeted sites with special considerations (e.g., plot layouts, exceptions)                                                                                                                                                                                                                                                                      |                        |
| Field Methods and Supplemental Indicators                                                                                                                                                                                                                                                                                                        |                        |
| Core and covariate indicator questions?                                                                                                                                                                                                                                                                                                          |                        |
| Contingent indicator questions?                                                                                                                                                                                                                                                                                                                  |                        |
| Water Quality                                                                                                                                                                                                                                                                                                                                    | Action Items and Notes |
| Is everyone aware of the WQ Submission requirements highlighted in Water Quality Submission Protocol?                                                                                                                                                                                                                                            |                        |
| How many plots has the crew collected duplicates and blanks for so far? The crew should be collecting duplicate and blank WQ samples for total nitrogen and phosphorus at 10% of sites with surface water and labeling these samples appropriately.                                                                                              |                        |
|                                                                                                                                                                                                                                                                                                                                                  |                        |

| Survey123 and QAQC                                                                                                                  | Action Items and Notes |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Has the crew found any Survey123 glitches preventing efficient data collection, QAQC, backup, and submission?                       |                        |
| Is the crew backing up data after at least every two plots?                                                                         |                        |
| Are there reoccurring themes or issues being discussed at the weekly QAQC meetings? Who is attending? How can we improve?           |                        |
| Do crews know how to make edits to their data? Do they understand the process for resolving the errors flagged in their error logs? |                        |
| Is the Project Lead reviewing data and do they have questions?                                                                      |                        |
| Does the National AIM Team have questions for the crew about data?                                                                  |                        |

# Example email from State Leads to project leads and crews:

Hello Project Leads and R&W AIM crews,

We will be conducting two meetings with the crews this season 1) an early-season check-in and 2) an end-ofseason meeting. These meetings are to discuss sampling efforts accomplished and how the field season is going in general. You can find more information on the meeting agenda and format in the Riparian & Wetland Data Management Protocol on Teams (Teams/General/R&W\_AIM\_Protocols) beginning on page 40. You'll notice there is a pre-meeting preparation checklist on page 41, which is pasted below. One of the tasks for each crew is to select 2 plots to present: 1. a typical plot and 2. a challenging plot. Once you've identified these plots as a crew, please email the Plot IDs to me and I will pass them along to all meeting participants.

Our first meeting, the Early-Season Check-In will be on [DATE/TIME].

| Pre-meeting checkl | ist: |
|--------------------|------|
|--------------------|------|

| Pre-meeting checklist:                        |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                               | I (State Lead) will prepare a quick assessment of points sampled and crew productivity so far.                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                               | The crew has submitted ~1 month worth of data 1 week prior to this meeting.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                               | The crew has selected plot overview, soil pit, and hydrology photos from at least 3 plots and sent their PlotIDs to all meeting attendees prior to the call for discussion. Photos should include: 1) a typical plot, 2) the most challenging plot visited to date, and 3) something in between or that warrants discussion. All attendees should reference photos in the Data Review Dashboard. |  |  |  |  |
|                                               | Crews have prepared a list of protocol questions and clarifications and potentially some photos to facilitate discussion.                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                               | Project leads and crews have prepared a list of design management and data questions to discuss during the meeting. Ensure that all parties are staying up to date on Data Review and are actively resolving errors.                                                                                                                                                                             |  |  |  |  |
|                                               | The National Riparian and Wetland AIM Team has prepared a list of questions regarding any data to discuss during the meeting.                                                                                                                                                                                                                                                                    |  |  |  |  |
| Please let me know if you have any questions! |                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| -State Lea                                    | d                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

# **End-of-season check list and agenda topics**

The purpose of the end-of-season meeting is to ensure all that all data questions have been resolved, all design and field data have been finalized, and no more information or tasks are required prior to the end of the field season. The End-of-season check-in must occur no sooner than one week after the crew's last field day and no later than 4 weeks after. Crews will then need one week minimum to finalize and submit data to the NOC prior to the end of their employment period.

| Pre | Pre-meeting checklist:                                                                                                                                                                                                     |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | Crews have submitted all final data.                                                                                                                                                                                       |  |  |  |  |
|     | Project Lead has reviewed all data and will come to the meeting with anyquestions. All attendees should reference the Data Review Dashboard                                                                                |  |  |  |  |
|     | National AIM team has reviewed submitted data and will come to the meeting with any questions.                                                                                                                             |  |  |  |  |
|     | All questions in the Error Review Check lists have been resolved or will be resolved during the meeting.                                                                                                                   |  |  |  |  |
|     | The Riparian and Wetland AIM Data Team has reviewed the finalized Evaluation Statuses in the Webmap and will come to the meeting with any questions. All attendees should reference the Webmap for their official numbers. |  |  |  |  |
|     | Crews select 1-2 plots that were highlights/challenging this season. Come prepared to the meeting with the Plot IDs.                                                                                                       |  |  |  |  |
|     | Crews have submitted water quality samples following the Water Quality Submission Protocol.                                                                                                                                |  |  |  |  |
|     | State Lead/Coordinator organizes meeting with National AIM Team, Project Leads, crew managers, and crews. Keeps notes in the End-of-season agendas.                                                                        |  |  |  |  |

Pre-meeting table to be completed by Project Lead:

| General Project Info                                                    |                                 |                                                                |                                         |                            |                                                            |                                                |                                             |
|-------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|-----------------------------------------|----------------------------|------------------------------------------------------------|------------------------------------------------|---------------------------------------------|
| Crew Manager/Project Lead Name                                          |                                 |                                                                |                                         |                            |                                                            |                                                |                                             |
| Agreement/C                                                             | ontract                         |                                                                |                                         |                            |                                                            |                                                |                                             |
| Data Collecti                                                           | on partner                      |                                                                |                                         |                            |                                                            |                                                |                                             |
| Field Season                                                            | Start and E                     | nd Dates                                                       |                                         |                            |                                                            |                                                |                                             |
| Project<br>Name                                                         | Design<br>Type                  | Design<br>Year                                                 | Random<br>Points                        | Target Points              | Total<br>Points                                            | Field Methods                                  | Supplementals                               |
| Pull in table<br>from Project<br>Kickoff<br>agenda<br>[Project<br>Name] | [Random,<br>Target, or<br>Both] | [year of<br>random<br>design;<br>N/A for<br>target<br>designs] | [# of<br>random<br>points in<br>design] | [# of<br>target<br>points] | [total points in TO or agreement – not reflecting actuals] | [List all field<br>methods being<br>collected] | [List any supplementals<br>being collected] |
| Tot                                                                     |                                 |                                                                |                                         | al Points                  |                                                            |                                                |                                             |

| Design Overview                                           | Random  | Targeted       |
|-----------------------------------------------------------|---------|----------------|
| Number of sites in design                                 |         |                |
| Number of plots sampled                                   |         |                |
| Number of permanent rejections (office or field)          |         |                |
| Number of temporary rejections (field)                    |         |                |
| Number of sites that were not visited                     |         |                |
| Any priority targeted sites need to be sampled next year? | Yes / N | o (What ones?) |
| Any preliminary notes about the design, if any?           |         |                |

Discussion topics/questions, and final checks (minimum):

# **Design Management**

- Are there any disagreements on "Eval Status" in the Plots Layer (Office Webmap)?
- List all rejected sites and the reason. What are the implications of those rejections (if any)?
- Are there any other questions regarding the Plots or Field Visits Layers (Office Webmap)?
- Any other follow-up needed on plots that should be revisited in future years?

#### **Plot and Photo Review**

- Select one or two challenging/interesting plots with plot overview, soil pit, and hydrology photos for discussion. Use Data Review Dashboard to reference photos.
- Are there any remaining problem plots, photos, or indicators that need to be discussed or that crews have questions on? (E.g., Questions regarding target population, plot layouts, shifting sample locations, classification, hydrology/channels, disturbances, WQ locations, etc.)

#### Field Methods and Supplemental Indicators

- Are there any final questions regarding field methods, protocol implementation, or supplemental indicators? Please list below.
- Field Methods
- Water Quality (if applicable)
- Have all WQ samples been submitted using the Water Quality Submission Protocol and webmap tool? If not, what is the plan?
- Supplemental Methods

#### **Data Management**

- Data collectors must complete field season QC within 2 weeks of the last date of the last hitch, or Nov 1<sup>st</sup> at the latest, in order for indicators to be calculated and data from your state to be ingested into the data portal.
- What is the status of the Error Review Dashboard? Are there any questions or outstanding errors?
- Have the Project Leads reviewed their data in the dashboard for their FO/DO?
- Are there any other unresolved data issues?
- Have all electronic data, photos, etc. been sent to the R&W AIM Data Team? If not, discuss...

# **Questions/Action Items**

Any final questions for the crew?

Below is an example email from State Leads to project leads and crews. This text may be copied or modified by State Leads to help them draft an email to set up the end-of-season meeting.

Hello Project Leads and R&W AIM crews,

Pre-meeting checklist:

It is time to hold our end-of-season meeting with the crew(s). You can find detailed info on the meeting agenda and format in the Riparian & Wetland Data Management Protocol on Teams (Teams > General > R&W\_AIM\_Protocols) beginning on page 44. You'll notice there is a pre-meeting preparation checklist, which is pasted below. One of the tasks for each crew is to select 1-2 plots that were highlights or especially challenging this season. Please have the plot IDs for these selected plots ready for the meeting.

Our End-of-season meeting will be on [DATE/TIME].

| П | Crews have submitted all final data.                                                            |
|---|-------------------------------------------------------------------------------------------------|
|   | Project Lead has reviewed data and come to the meeting with any questions. All attendees should |
|   | reference the Data Review Dashboard                                                             |
|   | National AIM team has reviewed submitted data and will come to the meeting with any questions.  |
|   | All questions in the Error Review Check lists have been resolved or will be resolved during the |
|   | meeting.                                                                                        |
|   | The Riparian and Wetland AIM Data Team has reviewed the finalized Evaluation Statuses in the    |
|   | Webmap and will come to the meeting with any questions. All attendees should reference the      |

□ Crews select 1-2 plots that were highlights/challenging this season. Come prepared to the meeting with the Plot IDs.

☐ Crews have submitted water quality samples following the Water Quality Submission Protocol.

Please let me know if you have any questions!

Webmap for their official numbers.

-State Lead

# APPENDIX A. RIPARIAN AND WETLAND AIM TECHNOLOGY MANUAL

# **CONTENTS**

| APPEN | IDIX A. RIPARIAN AND WETLAND AIM TECHNOLOGY MANUAL | 48 |
|-------|----------------------------------------------------|----|
| 1.    | Setting up your iPad                               | 49 |
| 2.    | Preparing for Field Visits                         | 57 |
| 3.    | Survey123 and field data collection                | 70 |
| 4.    | Returning from a hitch: Data review and submission | 88 |

# 1. Setting up your iPad

#### Overview

The recommendations found in this section only need to be completed once at the beginning of the season. They include downloading apps, signing in, and changing settings to ensure your iPad and apps function as they need to for field sampling. While crew leads may be the only ones to complete these setting changes, it is essential that all crew members understand the necessary settings so they do not get changed accidentally.

Note that while this guidance is for setting up an Apple iPad, it's possible to use most GPS capable tablets for Riparian and Wetland AIM data collection. However, we cannot provide comprehensive instructions and support for all makes of tablets, so we've focused on the very common and capable iPad.

# Review iPad setup and settings

- Ensure you have iOS of 18.1 or more current. If not, go to settings, "General" and then "Software Update" to update your iOS.
  - To find your current iOS, in "General" select "About" and look at the "Software Version".
  - o If debating between models, note that the more updated models are going to function better using Survey123 than older ones.
- Ensure your iPad has a data plan and is cellularly enabled. You will not be able to take GPS coordinates otherwise.
- A waterproof case for your iPad is recommended but not required for Riparian and Wetland sampling.
- The iPad battery lasts for approximately one plot worth of data collection and iPads will
  overheat if the temperature gets above 95 degrees. Therefore, care should be taken to
  maximize battery life and keep iPads out of direct sunlight. When not collecting data,
  remember to put the tablet to sleep.
- Review your settings:
  - Ensure you know how to save battery life by adjusting screen brightness, setting airplane mode on, and turning off Bluetooth.
- Crews may want to bring portable backup batteries into the field to use if their iPad runs out
  of battery in the middle of data collection.

# Download necessary apps for data collection and file sharing

From the Apple App Store, download the following applications:

- ArcGIS Field Maps
- ArcGIS
- Survey123
- Microsoft Teams
- OneDrive (optional, if your organization has it)
- Paper Maps
- Recommended but not necessary:

- o Email application
- o Excel app
- Other maps applications
  - Avenza Maps
  - Google Maps
  - Google Earth
  - OnX (subscription required)
- Field Safety apps
  - Fires Wildfire Maps and Info
  - SpotX
  - AirNow
- o Plant ID apps:
  - Seek from iNaturalist
  - Colorado Wetlands app with offline plant data downloaded
    - A botanical resource for wetland plants. While it is specific to Colorado, many Colorado plants can be found in wetlands across the West.
  - State-specific botanical resources
  - Many state heritage programs have created their own botanical applications to be used in the field. At the beginning of the season, it may be worth spending a little time to look for one of these applications.

Once you have all applications downloaded, it can be helpful to organize your two iPad home screens the same way, so you always know where to find the apps on the screen.

#### Get access to AIM R&W Field Work Team on Microsoft Teams

Microsoft Teams will be used throughout the field season to share files and communicate with team members. The chat feature can be used to send messages to anyone within a given state or to anyone on the National AIM Team. This means that State leads, project leads, contract/agreement leads, crew managers, and crew members will all need to have access to Teams.

- You must request access by emailing the Riparian and Wetland AIM Implementation coordinator (Michelle Stropky mstropky@blm.gov)
- 2. Note that Crew leads should sign into their Microsoft teams account on all the field iPads.

# Logging into ArcGIS Online (AGOL)

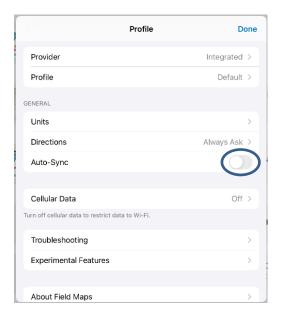
- 1. BLM staff should sign on to devices using their BLM account, they will need to <u>use</u> authenticator on a separate device either a BLM or a personal device.
- 2. If you are a contractor or science partner, you'll need a geoplatform account to access the AGOL Webmaps and associated forms.
  - Follow <u>these instructions</u> to create a Login.gov account and a Geoplatform account and associate them for Geoplatform access
  - Once you've established a Geoplatform account and gained access to the AIM R&W
    Field Work Microsoft Teams Team, you can request access to the Riparian and
    Wetland AGOL group by submitting this form. At the end of this form, you'll need to

sign the provided Information Security Rules of Behavior (ROB) User Agreement. If you have any questions, please contact Kyle Martin kmartin@blm.gov .

3. If you are a BLM employee, email the Data Team (Kevin Kovacs <u>kkovacs@blm.gov</u>) to get your BLM mobile account added to the BLM AIM Riparian and Wetland group on AGOL.

# Log-in to other applications

Crew members should use their login information for Microsoft and Esri applications, one crew member on each tablet.


- 1. Esri-based applications: Field Maps, Survey123
  - a. Create a Geoplatform account using the instructions found above.
  - b. For all Esri applications, signing in with Geoplatform requires a couple extra steps.
    - i. Continue below for app-specific instructions on navigating to the login page.
    - ii. When you get to the Esri sign in page, below the ArcGIS login open the "Your ArcGIS organization's URL" banner.
    - iii. In the box provided, type in "geoplatform" in the text field so that the entire bar says "geoplatform.maps.arcgis.com". Check the box that says remember this URL, then hit continue.
    - iv. Hit the button that says "GeoPlatform Login.gov Account"
    - v. This will direct you to the lovin.gov sign in page, complete with an authentication method.
    - vi. If, when you log in, the application doesn't seem like you've logged in or flashes an error message, you may have to do this process a couple times before the app registers your username. Typically, the next time you attempt to login, it will work.
  - c. **To navigate to the login page in Survey123**, hit the three lines symbol next to the satellite symbol at the top right of the page, then "Sign in"
  - d. **To navigate to the login page in Field Maps**, hit "Sign in with ArcGIS Online" then continue as above.

# Change important settings for the field season

#### Disable Field Maps Auto Sync

The first time users open Field Maps they should disable auto-sync. Auto-Sync is a feature in Field Maps that tries to automatically sync maps and data continuously. This works great if you are in an urban environment; however, it presents issues when you are working in the backcountry. When you do come across cell service you do not want your data/map sync to fail or data to become corrupted due to poor internet connectivity. Syncing is covered later in this document; however, it should be noted that syncing should only occur when the user has a strong, stable, reliable internet connection.

- 1. On the main screen of Field Maps, locate the "Account" icon in the upper left-hand corner.
- 2. In the pop-up, scroll down until you locate "Auto-Sync". Click the slider button to turn off.



3. While on this page, you may also want to turn on "Cellular Data" if you intend on syncing data using your cellular provider. Note if this is turned off, you will be forced to only sync data with a WiFi internet connection.

#### Setting tablet GPS Accuracy

Field Maps allows users to specify GPS accuracy thresholds that the user must meet for the application to allow them to collect data. By default, the app is set at 30 ft accuracy (9.144m). For most users, this should be fine, however this can cause problems if you are in a confined valley with limited view of the sky. To avoid any potential hiccups during your trip, we recommend that users change this setting so that it is extremely high. Essentially, we want to tell the device to allow you to collect data regardless of how poor your GPS accuracy is.

- 1. On the main screen of Field Maps, locate the "Account" icon in the upper left-hand corner.
- 2. In the pop-up, choose the second option "Collection Settings". On the following page select the first option "Accuracy."
- 3. Click where it says "Distance (feet)", delete the default value of 30, and type in 1000.

# Disabling Survey123 Auto-update

Disabling the Survey123 app store auto update feature is CRITICAL for successful data collection throughout the field season. Esri periodically releases new versions of the Survey123 application throughout the year. By default, your device will try to automatically update your app to this latest version like any other app. Our forms have been created and tested for the version of Survey123 that is available to the public at the time of training. Updating this version could change how the app works and break our forms completely preventing any data collection. If this occurs, DO NOT count on the Riparian and Wetland AIM Data Team to fix this problem overnight. Users are UNABLE to download older versions of Survey123 than what is available in the app store so there is

no going back. This is a BIG DEAL and should not be taken lightly. If a crew accidentally updates their app, they risk being sidelined for a week while we rebuild the entire project from scratch. The Data Team will send out a message to all users on Teams if and when users should update their version of Survey123.

It is essential that that individual setting up the iPads for their crews knows to change this setting. It is also very important that all crew members are aware of this as well, so they know not to tinker with these settings.

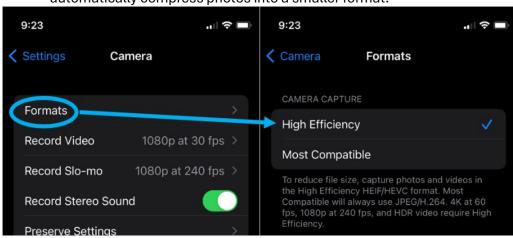
#### To disable Automatic Updates:

- 1. Go to your iPads Settings
- 2. On the left side of your screen, locate "App Store"
- 3. "Automatic Downloads" should be the first option you see. Below that, ensure that "App Updates" is disabled.



In order to update other applications on your device, you will need to manually choose to update it in the app store. As a reminder, you should never update your version of Survey123 unless advised by the Data Team, however, devices that were used in the past year, may need to update Survey123 at the beginning of the season.

#### To update apps:


- 1. Go to the Apple App Store on your iPad
- 2. Locate the "profile" icon in the upper right corner. It may have a red number on it. Click this.

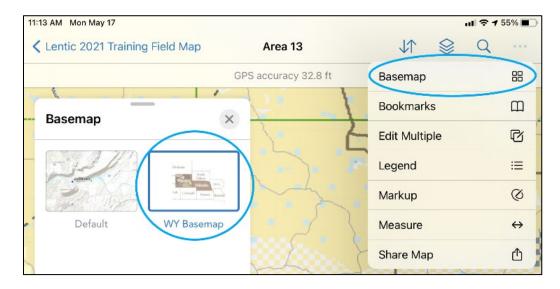
- 3. Locate the "Available Updates" section. DO NOT HIT the "Update All" button.
- 4. Any apps with available updates can be manually updated by hitting the "Manual" button next to each item.

Change photo settings to take and store photos as jpegs

For the purpose of the Riparian and Wetland AIM program, photos are best taken without the live photo function. Generally live photo formats are more difficult store and transfer to different devices. At the beginning of the season, it is recommended that this function is turned off and photos are uploaded in their most efficient format (i.e. HEIC), not their most compatible.

- 1. In your camera app, click the live button so that it shows a slash through it.
- 2. In Settings > Camera, go into Preserve Settings and make sure Live Photo is turned on so that your photos app will always have live photos turned off.
- 3. Under Settings > Camera > Format, select "High Efficiency". This will automatically compress photos into a smaller format.






# Download basemaps to the Field Maps App

For most states, a basemap is available in your state folder of Teams. If imported to the Field Maps app, this can provide road and land ownership information for the state without requiring additional offline area download. At the beginning of the field season, downloading basemaps should only need to be done once.

- 1. To use basemaps, you need to copy the basemaps into the files app on your iPads.
- 2. First you'll want to download the basemap for offline use. These files are large—often between 1 and 2 GB of data, but they provide a wealth of information.
- 3. In Teams, navigate to the basemap folder in your state's folder.
  - a. In this folder, there should be one large statewide map, though there may also be additional basemaps available for download. Click the three dots next to the file you want to download and select "Make Available Offline".
- 4. After this has finished downloading to your iPad, open your Files app and click the "< Files" button in the upper left hand corner.

- a. From the list of files, select OneDrive, then navigate to the folder in which you just downloaded the tile pack.
- b. Tap and hold that document until a dropdown menu appears and select "Copy"
- 5. Use the folder button in the upper left-hand corner to get back to the list of file folders until it shows the side panel, and switch over to the "On My iPad" folder.
  - a. Open the Field Maps folder and tap and hold anywhere in the folder to paste your copied file.
- 6. Within the Field Maps app, your basemap should now be available for use offline.
  - a. Open any offline map.
  - b. Select the three dots in the upper righthand corner, then select "Basemap"



c. When the basemap panel opens, you should see the basemap you just downloaded as one of the options. Change your basemap to this option to use this basemap with any offline area.

#### Download documents for offline use

It is advisable at the beginning of the season to download helpful documents to the iPad for offline use. All files on the Teams site will also be available for download in the Teams app. While there is an option to make available offline, any download in Teams that is unused for 14 days will automatically be deleted from your device. For this reason, it is advisable to download all files you want to keep available to an app specific for file storage, such as the files app or OneDrive, if your organization has a OneDrive subscription.

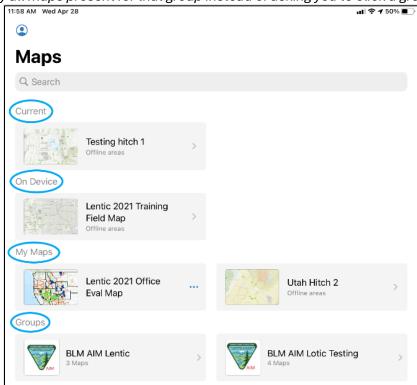
- 1. Within the teams page of the Teams app, you should see a list of all Teams you've been added to along the left hand side.
- 2. Select the AIM Riparian & Wetland Team.
- 3. The General channel will have universally applicable files, such as all field season protocols and wetland soils resources. Your state channel may have some additional files that pertain just to your state.

4. For any document you want to download for offline use, select the three dots next to the document, then "Send a copy." This will download a copy that you can then place in your preferred application.

#### Recommended documents to download for offline use include:

- Riparian and Wetland AIM Resources:
  - Technical Reference 1735-3: AIM National Aquatic Monitoring Framework: Field Protocol for Lentic Riparian and Wetland Systems.
  - o 2025 Riparian and Wetland AIM Data Management Protocol
  - Plot Checklist
  - Gear List
- Technical Resources
  - Classification resources
  - o Field Indicators for Hydric Soils in the United States
  - o Necessary regional supplements from the US Army Corps of Engineers
- Safety Documents
  - o Tech contact list
  - Emergency contact list for crew
  - o Safety plan

# 2. Preparing for Field Visits


#### Overview

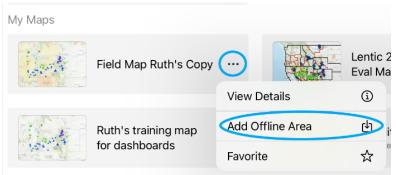
Prior to leaving Wi-Fi, field crews should make sure you have all necessary files downloaded and available offline. During field visits, field crews will use the Field Maps application to track field visits as well as to launch field forms with important identifying information. In this section, we'll specifically outline the steps to download offline areas in Field Maps. This step is essential before every hitch, otherwise you may be unable to see your specific sites in Field Maps. This may include maps for specific sites from BLM Project Leads, digital copies of this and other protocols, as well as the maps required to navigate and collect data in Field Maps.

# **Navigating the Field Maps application**

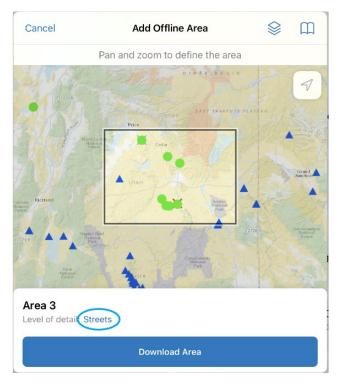
Below is a screenshot of the main screen of Field Maps once you are signed-in. There are four categories of maps shown.

- Current: This displays the last map that you opened in Field Maps.
- On Device: This is a list of all maps that you have downloaded onto your device to take offline.
- My Maps: This is a list of maps that you have saved to your Geoplatform User Account.
   Examples of this include maps filtered by trip and saved so that only a subset of Plots are displayed on the map within Field Maps.
- **Groups:** This is a list of all AGOL Groups that your profile belongs to. Clicking a group, for instance BLM AIM Riparian and Wetland, you will see all maps that are part of the group. Note that only Field Eval maps are set to be taken offline. If you are only in one group, it will just display all maps present for that group instead of asking you to click a group to open.




# Download maps for offline use in Field Maps

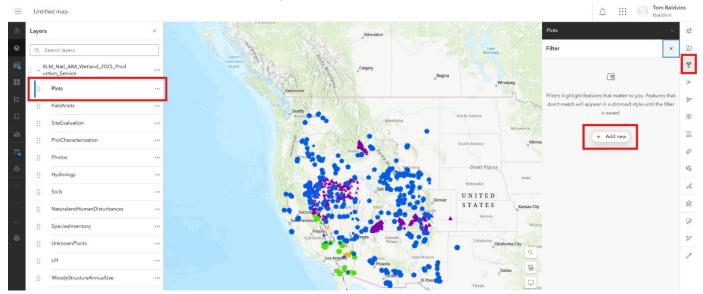
In order to use maps in Field Maps offline, an area needs to be downloaded for offline use. This can be completed using two methods. The first is more straightforward but does not allow for any customization. If crews want to filter their points or add additional layers, they'll need to follow the method two to create their own map on ArcGIS online before downloading that map to their tablet.


- 1. Offline areas should be refreshed and redownloaded before every hitch. If you are creating your own map, before every hitch, you should re-create a new map from the original copy on the Riparian and Wetland AIM Group page, as any updates that may have occurred will not transfer to your map. These edits are more important than edits which happen to the Office Eval Webmap, and may impact the function of Survey123 forms and data QC checks. This is particularly important at the beginning of the season, when the map and forms are being fine-tuned due to early in the season testing.
- 2. Before leaving service or taking your device offline, **double check that your download has completely finished** before taking your device offline. This process can take a long time and may abort itself if you try to do other things on your iPad at the same time.
- 3. If the download is taking too long, consider reducing the level of detail of the area you are downloading, reducing the size of map, or breaking up your sample area into multiple, smaller offline areas. Proceeding all the way to the third method for download can also help with download speeds.
- 4. Note that offline areas will automatically become obsolete after two months of inactivity.

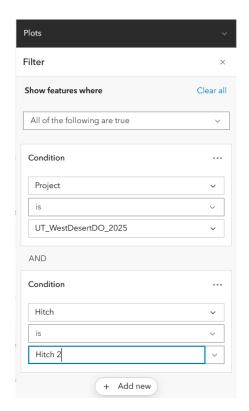
**Method 1:** Download an offline area from the Wetland Field Map in the BLM AIM Riparian and Wetland Group

1. To download an offline area for a given map, select the three dots on the right side of the maps ribbon. Then select "Add Offline Area".

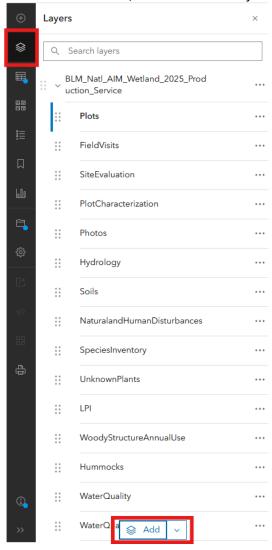



a. This will open a window to adjust the frame and level of detail you want in your downloaded map. The higher the level of detail, the smaller the area you can download, as indicated by the black box that will appear on the map.

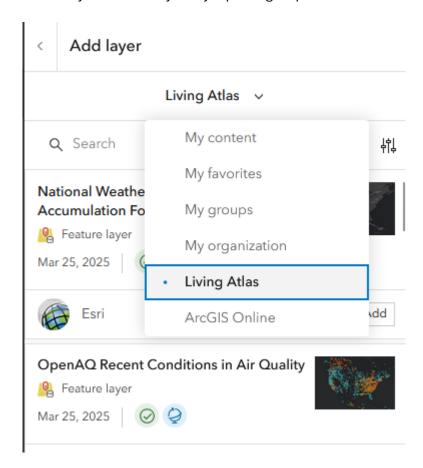



- b. Hit the "Room" level of detail to adjust to a lower level. "Streets" or "Neighborhood" is usually fine enough detail for Field Maps purposes.
- c. Pan and zoom the map so that the black box includes all points up for sampling during your next hitch, then select download area.
- d. This will begin the download process, but make sure the offline area has fully downloaded before leaving WiFi. This can take a long time, so try and do this before other preparation tasks so you can let it download while you do other things.
- 2. If you plan to visit multiple areas during one hitch that would be better downloaded as separate map areas, you can download an additional offline area by selecting the map you want from the main menu, then select the three dots in the upper right-hand corner of the screen. The dropdown menu should show the same options as before including "Add Offline Area".

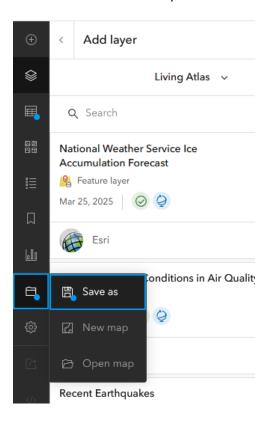
Method 2: Create your own copy of the Field Map in AGOL, then download an offline area.


- 1. In AGOL:
  - a. Open the Wetland Field Map, select the "Plots" layer on the left side and select the "filter" option on the right pane, "add new".

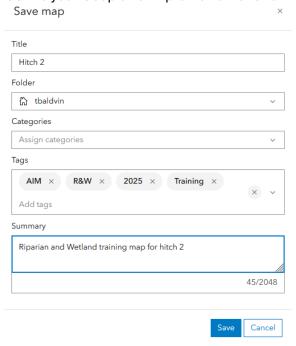



b. Filter the Plots layer by Project and Hitch fields, then zoom to the layer.




- c. Add any layers you want to show in the field.
  - i. Note you should only add layers that are offline enabled. If you add a layer that is not enabled for offline use, the option to download offline areas will not be available in Field Maps.
  - ii. Select the "+ Add" button, then search for layers.




- iii. Use the dropdown to search in the appropriate location for necessary layers. Most public layers from the BLM will be found in ArcGIS Online, while Esri-supported layers will be in the Living Atlas.
- iv. Search using exact matches. Once you found the layer you want, click the small "add" button in the lower right-hand corner of the description to add it to the map.
- v. Add any additional layers by repeating steps i iv above.



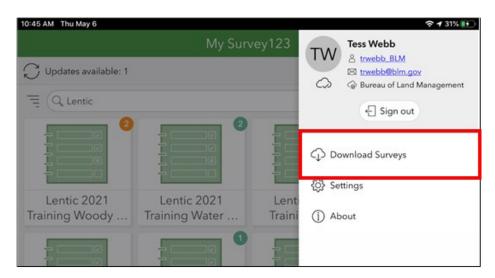
d. Once you are happy with your map, click "Save" on the toolbar to the right of the map, then select "Save As" from the dropdown menu.



e. Name the filtered map something meaningful like "Hitch 2", then make sure the "Save In Folder" is your Geoplatform profile name. Click "Save Map".



#### 2. On tablet:

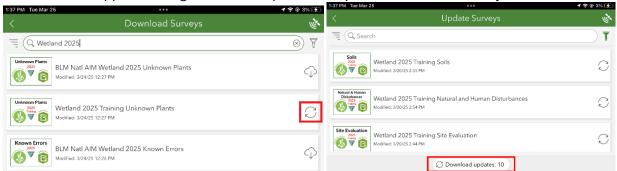

- a. Once you have saved a map in AGOL, you should be able to download an offline area of your newly created map on your tablet in Field Maps following the instructions in Method 1 above. If you do not see this option in Field Maps, you may have added a layer that is not enabled for offline use. Try removing unnecessary layers, save your map, and try again.
- Make sure the download progress has finished before taking your device offline.
   Your map area should show under "On Device" after it has finished downloading.

# Download, update, or delete Survey123 forms

Before leaving on a trip, the crew will need to download each Survey123 form using the Survey123 application. In an ideal world, crews would download each form at the start of the season and never have to update them. Unfortunately, situations may arise where crews need to update forms or download new ones. The Riparian and Wetland AIM Team will utilize Teams to broadcast announcements to all users when updates are required.

#### Downloading Survey123 Forms

- 1. Once you have successfully logged into Survey123 on both devices, click the 'Download Surveys' button at the bottom of the window. This button will only appear here if you do not have any downloaded surveys.
  - a. You can also download surveys at any time by clicking your profile icon in the upper right hand corner and selecting "Download Surveys".




- 2. On the next page type "BLM Natl AIM Wetland 2025" into the search bar. You should now see 13 forms for Wetland 2025 (see list below). Download the 13 forms on each device by clicking on the cloud icon on the right side of each form. NOTE: once the form has been downloaded the icon changes from a cloud to a refresh icon.
  - a. Wetland AIM Forms
    - i. Site Evaluation
    - ii. Plot Characterization
    - iii. Photos
    - iv. Hydrology
    - v. Soils
    - vi. Natural and Human Disturbances
    - vii. Species Inventory
    - viii. Unknown Plants
    - ix. LPI
    - x. Woody Structure and Annual Use
    - xi. Hummocks
    - xii. Water Chemistry
    - xiii. Known Errors

#### **Updating Survey123 Forms**

Periodically, small glitches may appear in the forms, or dropdown lists, causing everyone to need to update their form. These will update your existing form and do not require you to delete and redownload anything. It is important that you check for updates to forms before leaving on each trip to the field.

- 1. In Survey123, click on the circle with the profile icon in the upper right corner of the screen.
- 2. Click "Download Surveys" and navigate to the forms you would like to update.
- 3. Once you have found the correct forms, click the refresh icon to the right of the form. Alternatively, on the "Download Surveys" page at the bottom of the screen, you will see a button appear stating "Download updates" if updates are available for your forms.

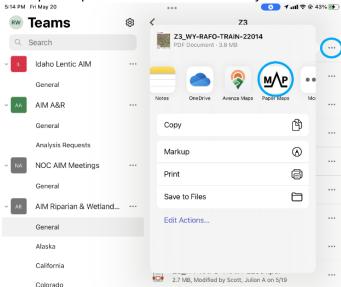


- 4. Occasionally this method can cause the update process to freeze. If a download takes more than a couple minutes, force close the Survey123 app. Relaunch it and either download the updated forms manually or give the "Download updates" button another try.
- 5. Sometimes you will see a notification at the top of the main survey screen letting you know there are updates available, click this notification to see all forms that have updates

available. We will send notifications via email and Teams chat to ensure everyone sees that updates are available.

#### Deleting Survey123 forms

- Rarely, it may be necessary to delete forms. NEVER delete forms unless instructed by the
  Data Team that it is ok to do so. The one exception is at the beginning of the season when
  you'll want to delete all Training forms.
- 2. To delete a Survey123 form, select the form you want to delete from the form menu.
- 3. From the form page, click the menu icon in the upper right corner.
- 4. Click "Delete Survey".
- 5. In the following pop-up, select Delete. Note that deleting a form will delete all associated data, so ensure everything has been backed up before proceeding.

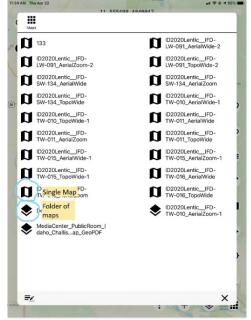

#### Deleting sent Survey123 forms and drafts

It is highly recommended that users try to keep all of their sent and draft forms in Survey123 throughout the entire season, in case any forms need to be edited. Realistically however, some users may start to notice that they are running short on storage space on their device later in the season. If this is the case, users can delete sent forms to clean up Survey123. **Note that users should ensure that all data has been sent and backed up on their USB device prior to deleting any sent forms**. Photos should never be deleted. If you have unsent drafts, ensure that they are junk data and not something outstanding that you forgot about before deleting.

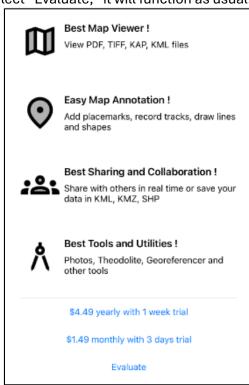
- 1. On the My Surveys page, click the form you want to delete.
- 2. From the form page, click either "Outbox" or "Drafts".
- 3. Once you have found the correct form, click the trashcan icon to the right of the form.
- 4. On the warning page, click "Yes" to permanently delete the form.
- 5. Deleting a form will delete all associated data as well, be sure you have submitted/sent everything associated with that form before deleting it.

# Downloading georeferenced maps to Paper Maps app

- 1. Organize your files.
  - a. All Georeferenced maps will be found in your state's folder on Teams: [State] -> Georeferenced Maps. After assembling a hitch plan and a list of all sites you may visit during that hitch, create a hitch folder within this folder.
  - b. Add a copy of all georeferenced maps for the sites you are likely visit during your next hitch to the folder you created. For every site, there should be three different maps labeled "Aerial Wide", "Aerial Zoom" and "Topo Wide".
- 2. Open each pdf you wish to be available in Paper Maps in the field in Teams apps, then launch in Paper Maps.
  - a. In Teams, click the three dots next to the map file you want to upload to Paper Maps. Then click the "send a copy" button in the upper righthand corner. An option to open in Paper Maps should show immediately.




b. Open each of the pdf's in Paper Maps prior to leaving WiFi. This will automatically preserve those maps for offline use.


3. Once you have imported your map into the Paper Maps App, it should be visible and available offline in the maps folder of the app:



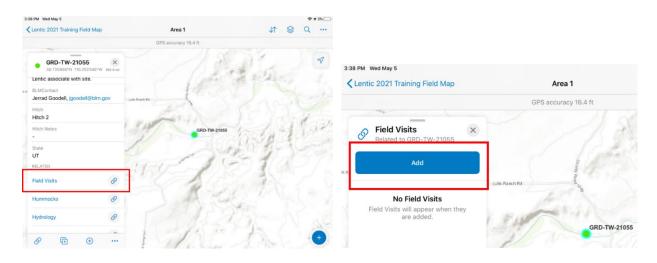
a. Occasionally, maps place themselves in folders within your maps, so if you know you've imported a map but don't see it in the immediate folder, look for labels that are folders of maps rather than the maps themselves.



- b. From here, Paper Maps should automatically follow your location. Once you located inside the map boundaries, you should see a dot representing your current location.
- c. Your GPS accuracy within the Paper Maps app is generally lower than in Field Maps. Additionally, the accuracy seems to vary with the scale of the map, so that smaller scale maps of a whole district appear to be less precise than the Aerial Zoom maps. For this reason, technicians should use the Field Maps app once you get to within 20m of the point to get you more accurately to the Sample Location.
  - i. Occasionally, Paper Maps will come up with an error about an annual fee. If you select "Evaluate," it will function as usual.

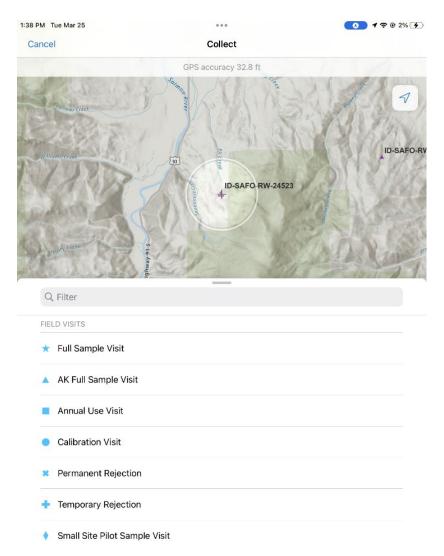


# 3. Survey123 and field data collection

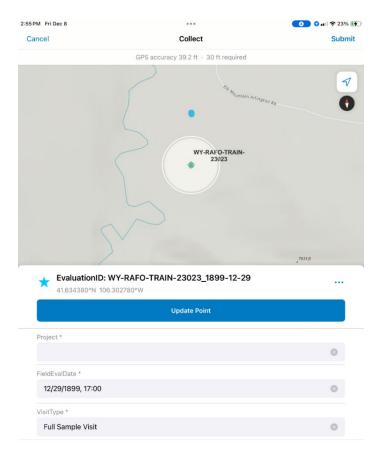

#### Overview

All data collection for this field season will be completed by first creating a Field Visit point in Field Maps, then launching all forms from that Field Visit point in Field Maps to Survey123. It is absolutely critical that this process is followed during data collection, as forms have been created to automatically control certain fields based on information in Field Maps. While Survey123 forms have been created to limit potential errors, it is essential that all field members take ownership of double checking that their data collection procedures are in line with AIM protocols. Follow below for detailed instructions on required data collection workflows.

# **Creating a Field Visit**

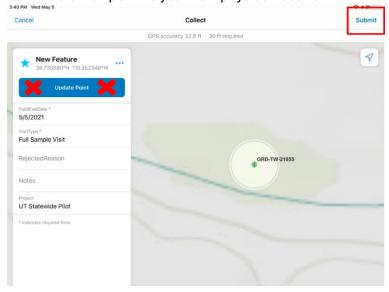

At the plot, use the Plot layer in Field Maps to navigate to the Sample Design Location. From there, launch a new Field Visit for every unique sampling event with its own unique EvaluationID, a combination of the PlotID and Field Visit Date. This will be the field visit from which all Survey123 forms will be launched. Plots that take multiple days to sample should maintain the Field Eval Date of the start of sampling. While multiple Field Visits may be submitted if a crew is using multiple iPads, it is critical that the EvaluationID (PlotID + Field Eval Date) be identical across all field visits referring to the same sampling event.

1. After arriving on plot, in Field Maps, click the associated point on the map from the Plots layer. Scroll down and select the "Field Visits" button.




2. Next hit "Add".

- 3. Choose a Field Visit Type from the available options.
  - a. **Full Sample Visit** will be the most common visit type. This type should be used for sampling events during which all Core methods will be completed.
  - b. **Permanent Rejection** should be used for non-target or inaccessible sites which will never be able to be sampled.
  - c. **Temporary Rejection** should be used for reconnaissance visits or temporary access issues that prevent full sampling.
  - d. **Annual Use Visit** should be used for sampling events during which only annual use data will be collected.
  - e. Calibration Visit should be used to launch all forms used for calibration.
  - f. **AK Full Sample Visit** should be used by crews in Alaska. Because these field visits have different form requirements, we've separated theses field visits out during QC.
  - g. Small Site Pilot Sample Visit should be used for small site pilot visits.




4. After selecting a visit type, a point will show on the map with your current location. This point should be launched as close as possible to the Original Sample Design Location. If you were not able to reach the Sample Design Location due to access issues, you should move the crosshairs manually back over to the Original Sample Design Location and click the blue Update Point button. This button will update the location of the Field Visit point to the location of the crosshairs.



- 5. Fill out all the required information to document your field visit.
  - a. The project must be entered manually. If you are unsure which project you are sampling in, that information can always be found in the attributes from the original Plot layer.

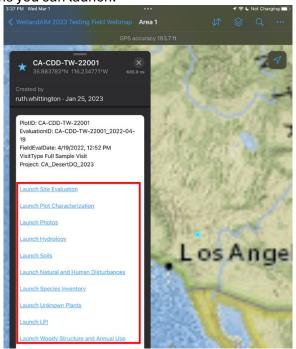
6. The blue Update Point button should only be used if you intentionally changed your physical location or manually changed the location of the point and would like to update the location of the field visit with that new location. If you move away from the Original Sample Location after opening a new Field Visit, using the update point button will change the location of the field visit point to your new physical location.



- 7. Once you have finished recording your field visit, hit the "Submit" button in the upper righthand corner of the screen.
- 8. **Repeat these steps** to create a field visit on the second device. Ensure the field visit type, Field Eval Date and Project matches the field visit on the other device.
  - a. We recommend you launch the field visit points at the same time on the two devices with the two iPads lined up next to each other to make sure the information entered is identical.
  - b. If you are rejecting a sample location, you will only need to launch one field visit point, since you will only need to collect one form.

# **Editing a Field Visit in Field Maps**

You may need to edit a field visit. For example, you may have selected the wrong project from the dropdown when it was created, or you selected a permanent rejection instead of a temporary rejection.


- 1. Launch the map containing the Plot you visited. Click the point and scroll down to the bottom of the attribute list and click "Field Visits".
- 2. Click the recorded Field Visit. Scroll to the bottom of the attribute list and locate the 'Edit' button.
- 3. Click the 'Edit' button and make the edit. When you are finished hit 'Submit'. If this is in an offline map, be sure to sync changes to push them to the Webmap.

# **Collecting data using Survey123**

Survey123 is a form-based data collection application developed by Esri that is fully integrated with their enterprise suite of software products. Data collected in the Survey123 application is then synced to ArcGIS Online and can be viewed in our Webmaps. The following sections walk new users through the general use of Survey123, form layouts, and form specific notes

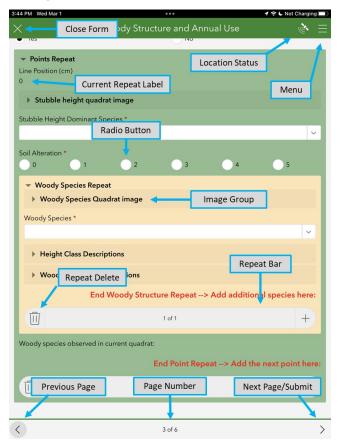
# Launching Survey123 Forms from Field Maps

- Once you have created and submitted a Field Visit using Field Maps, you can begin launching forms. <u>ALWAYS LAUNCH FORMS FROM Field Maps and NOT Survey123.</u>
- 2. To launch a form, click on the Field Visits on the map you want to open, in the pop-up there will be a list of forms you can launch.



- 3. Click on the form you want to launch. The form will automatically open in Survey123 and populate the PlotID, EvaluationID, and other information needed.
- 4. Certain forms are expected to be launched from specific locations and should be submitted at certain times. See the table below for form guidance on these topics.

Table 6. List of Riparian & Wetland Survey123 forms, where to launch each one, and when to submit each one.


| Survey123 Form                 | Where to launch?                                                                                                                             | When to submit?                                                                                                                                             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transect-based Forms           |                                                                                                                                              |                                                                                                                                                             |
| LPI and Heights                |                                                                                                                                              |                                                                                                                                                             |
| Woody Structure and Annual Use | Start and end of transects                                                                                                                   | Submit to Outbox as soon as you complete the form.                                                                                                          |
| Hummocks                       |                                                                                                                                              |                                                                                                                                                             |
| Whole-Plot Forms               |                                                                                                                                              |                                                                                                                                                             |
| Site Evaluation                | Original sample location                                                                                                                     | Save in draft when on plot. Review and submit to Outbox before you leave the plot.                                                                          |
| Plot Characteristics           | Plot center                                                                                                                                  |                                                                                                                                                             |
| Soils                          | Soil pit                                                                                                                                     |                                                                                                                                                             |
| Water Quality                  | Water quality locations                                                                                                                      |                                                                                                                                                             |
| Hydrology                      | On plot                                                                                                                                      |                                                                                                                                                             |
| Disturbances                   |                                                                                                                                              |                                                                                                                                                             |
| Photos                         |                                                                                                                                              |                                                                                                                                                             |
| Species Forms                  |                                                                                                                                              |                                                                                                                                                             |
| Species Inventory              |                                                                                                                                              | Save in draft for the entire hitch. Review and submit to Outbox at the end of the hitch after all species have been accounted for. Submit at the end of the |
| Unknown Species                |                                                                                                                                              | hitch regardless of whether all unknowns have been identified.                                                                                              |
| Known Errors Form              |                                                                                                                                              |                                                                                                                                                             |
| Known Errors                   | This form can be launched whenever an error is discovered. That may be on the plot or back in the office. The coordinates are not important. | Submit to Outbox as soon as you fill out the form.                                                                                                          |

- 5. The first page of every form is the Plot ID and Coordinates Setup page. This page is where PlotID is recorded and where the user can set up certain parameters that dictate how the data collection section of the form is configured (e.g. Selecting transect line number). Many of these fields will be pre-populated based off the Field Visit that you launched the form from. Ensure that everything is correctly populated. If a read-only field is incorrect, you may have an issue with your field visit. Return to the field visit in Field Maps, and verify that the information is correctly entered.
- 6. While on the first page of the form, check that your location is correct and update your GPS if needed.
  - a. To update your GPS, click the target like symbol to the left of the coordinates.
  - b. To ensure your GPS is working properly and to check accuracy, click the Location Status button in the upper right.
- 7. Before moving on to the next form, be careful to either save your current form in drafts or submit it to the outbox. During sampling, we recommend that you save all plot-based forms in draft until you complete sampling. Then, **before leaving the site** make sure you have completed the correct number of all forms before submitting to the outbox.

- a. Many forms have checks that only occur upon submitting them, so it is essential that you submit most forms to your outbox before you leave a plot to make sure you can correct any errors that come up.
- b. For transect-based forms such as LPI and Woody Structure and Annual Use, we recommend you submit to the outbox as soon as you have completed them. You are unlikely to edit these forms, so it's better to just submit straight to the outbox when you are done.
- c. Species Inventory and Unknown Plants likely need to be edited after leaving a plot. For this reason, make sure to open the forms on site, but save in drafts until you are happy with them. These must be submitted by the time a crew goes on break to ensure they are included in QC data checks.
- 8. Once started, an individual form must be completed on the same device. You cannot split data across multiple devices for the same form. However, you can collect any transect specific forms (LPI, woody structure, etc.) on two separate devices so long as the line numbers are different. However, in order to keep track of data collected, we suggest designating each device with a relatively consistent set of forms. We suggest designating a 'Plot' Tablet and a 'Transect' Tablet:
  - a. Plot Tablet: Site Evaluation, Plot Characteristics, Soils, Hydrology, Photos, Disturbances, Water Quality, Species Inventory, Unknown Plants, Known Errors
  - b. Transect Tablet:
    - i. Begin collecting transect data on this iPad: LPI, Woody structure, Hummocks.
    - ii. The realities of field sampling may dictate that all transect data is not collected on one device, but consistently starting transect data on the designated tablet will generally keep most other forms on the Plot Tablet.

# Layout and Form Elements

The following screenshot highlights commonly referred to terms and sections of forms that users should be aware of while using Survey123.



# Data checks and warnings

The forms have been built with various data checks and warnings to catch errors in the data before submitting. Types of checks and when they are run:

- Warning/note: Warning and Note checks run immediately if an entered value does not meet certain criteria. For example, pH is typically between 5.5-8.5, if you entered a 9, you will receive a note right away alerting you that your value is high.
- Constraints: If a check is a constraint, it will alert you of a data error when you try to <u>add</u> another repeat or try to save the form to the outbox or send the form. For example, hummocks must be less than 200 cm wide. If your value does not match the constraint, you will be alerted and returned to this question until it falls within the allowed range.
  - You will NOT get an error message by going to the next page or saving your form to drafts.
  - Errors are run one at a time. The first error will be flagged until it is fixed. To move on, you need to fix that error, then try to move on/submit again. Then the next error will be flagged. The form will continue to flag errors until all errors are fixed.

# Types of value checks:

- Legal values: Certain values have a specific range of allowed values. For example, pH values must be between 0 and 14. These values will be flagged until they are fixed. You cannot submit a form if a value is different than what you expect.
- **Typical values:** Certain fields have ranges that are possible, but not typical. These values will come up with a warning note. While you can submit a form with a warning, it is best practice to make a comment justifying your value. For example, while a conductivity of 1500 µs is possible, it's a little unusual. If I took this value in a salt marsh, I'd add a comment on the last page of the form such as, "High conductivity values are expected based on salt crusts on bare soil patches and location on salt marsh."
- Logical values: Certain fields have logical data checks based on the values entered into other fields. For example, water depth in a soil pit should be greater than or equal to 0 if surface water was observed at the soil pit, while groundwater should be less than 0. These may have either an associated warning message, a constraint, or both. In most cases, you will not be able to submit the forms until these issues are fixed.
- **Required fields:** Required fields are denoted by a red asterisk in the form. If you see this next to a question, you will not be able to proceed to the next repeat or submit the form until you answer it.
  - o In some cases, fields will only be required after another question is answered. For example, channel depth questions will only be required after you have selected that there is a channel in your plot. Be careful, if you entered depth questions, then accidentally changed the channel present question to no, your data will be cleared.

## Summary pages

Many of the complex forms have summary pages on the last page of the form. These pages can help pull together data in ways that Users can navigate to this page at any time during data collection and review the summary data for what they have been able to accomplish. For some forms, this summary page can be used to check data as they enter it. For example, the list of required and submitted photos can be used to check which photos still need to be added to the form. Other summary pages should be checked at the end of the form to ensure values entered seem reasonable before submitting the data.

Forms will also complete all calculations necessary for calibration on a summary page of the given form. During a calibration event, each technician will need to write the values from their calibration even on the calibration tables included in Section II of this protocol.

# Saving forms in your Outbox

If you are completely done with the form, review the summary page if it occurs, and make sure that everything is filled out and well documented. Then locate the check mark in the bottom right corner. If all form checks are cleared, clicking this check will bring up an option window:



From here you can select "Save in Outbox" to submit the form.

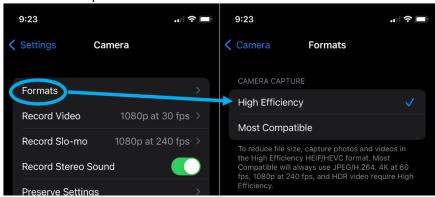
It is recommended that LPI and Woody Structure and Annual Use forms are submitted directly to the outbox upon completion. This saves a copy that is more difficult to delete from your iPad than forms submitted as drafts. Because these forms require a lot of time to complete and are unlikely to be edited after they are completed, it is better to submit them to your outbox rather than to drafts.

# Saving forms in Drafts

Alternatively, if you need to move to another form before you have finished your current form, you can exit the form using the "X" in the upper left-hand corner. Always be very careful when exiting a form, as clicking the "close and lose changes" button will completely delete an unsaved form and erase any changes you've made to an edited draft form. To save this form in drafts, click the "Save in Drafts" button.



All forms besides LPI and Woody Structure and Annual Use forms can be saved in drafts until you finish a site. Before leaving a site, it is recommended that all forms besides Species Inventory and Unknown Plants are submitted into the outbox. This ensures that all QC checks will be completed on the forms before you leave and any issues that come up can be addressed immediately. Species Inventory and Unknown Plants forms are frequently edited further over the course of the hitch and they become more difficult to edit after they have been sent to the outbox. Additionally, data contained in these forms are backed up on paper, since Species Inventory is generally completed on paper during site sampling. These forms should only be submitted to the outbox at the end of the hitch when data is finalized.


## Form-specific recommendations

## Plot Characterization

- The third page of this form can be used to assist in deciding plot layout. These fields follow the directions found in Section 4.0 in the field protocol.
- During plot characterization, technicians should also complete a plot drawing on paper.
   While an image of this drawing should be uploaded to the photo form, there is a question on the Plot Characterization form to ensure the drawing is complete before you can submit the Plot Characterization form.

## **Photos**

- The structure of this form will allow technicians to submit as many photos as they want. 20 photos is not unusual, but many photos beyond that should be avoided to reduce the storage required on the backend.
- There are two ways to add photos to this form. Which method we recommend depends on the settings available on your iPad. Under settings for the camera app, most iPads will have format options. Here you should see an option to store photos in High Efficiency format, rather than most compatible.



- o If your iPad has this option, we recommend taking photos in the camera app, then uploading to the Photos form once you've taken your best photos. This offers the best option for uploading photos with the highest compression while also being able to view photos in your photos app later.
- o If your iPad does not have this option, your iPad will not compress photos as they are taken. In this case we request you take photos directly in the Survey123 app, where Survey123 will automatically compress the photos taken.
- Photos taken directly in Survey123 can be viewed later by going to you files app, then navigating to: On my iPad>Survey123>ArcGIS>My Survey Attachments. These photos can also be saved and viewed in the photos app.
- It can also be good to consolidate photos onto one (non-transect) iPad following each site to reduce the amount of iPad juggling.
  - While offline in the field, this can be accomplished by using the AirDrop feature. To
    use this feature, Bluetooth will need to be enabled on both iPads. Settings may also
    need to be adjusted (Settings>General>AirDrop) so that receiving is turned on for
    Everyone.

- If some photos were taken directly on the camera, it is also possible to upload files from your photos app into Survey123.
- The final page of this form includes both a list of all required photos and which photos have been submitted. Use this page while putting together all the photos to remind you of which photos have already been added.
- After this form has been submitted to the outbox, you will no longer be able to edit photos
  that have already been added. Make sure you are happy with the form before submitting it
  to the outbox. If you need to switch out a photo later, add to the comments of the photo you
  want deleted, add the photo you want to replace it with, and submit a known errors form
  requesting the Data Team delete a photo.

# Soils

- Technicians may prefer to write data down on paper first, then transfer the data into the form after filling in the soil pit. If you do this, make sure to launch the form at the soil pit, as the location of the form should indicate the location of the soil pit.
- Hydric soil indicators are filtered based on LRR and Major soil type. Before entering hydric soil indicators, ensure both fields are populated correctly.

## Natural and Human Disturbances

- Technicians should always refer to 'Table 9. Narrative descriptions for degree ratings' in their field protocol while completing this form for detailed descriptions of ratings for each disturbance. Many disturbances have standard impact scores that can assist technicians with properly rating a given disturbance.
- Some disturbances should only be rated on either the monitoring plot or the surrounding landscape. When selecting one of these disturbances, the scope and degree fields will only show for the appropriate area.
- After submitting the form the first time, Disturbances can be added and edited, but they cannot be deleted. Crews should submit known error forms for any Disturbances they want deleted after submitting the form.

## Species Inventory

- Species inventory will show a wetland indicator status based on the Wetland Indicator Region of the plot. This can be helpful before deciding whether a plot falls within the target population to assess whether there is a dominance of hydrophytic species.
- Species Inventory forms should be completed after finishing a site by transferring data from a paper datasheet into the form and should only be sent to the outbox when a crew is confident that no more edits will be made or on the final day of a hitch.
- A list of all species entered into the form can be seen on the final page of the form. This can
  be used to check that your list is complete without needing to flip through all of the species
  repeats. It can also be used to check where in the list of repeats a particular species
  occurs.
- After submitting this form to ArcGIS online, you will be able to add species and edit species, but deleting entries will no longer be possible. Follow the recommendations found in Section 5 of the Data Management Protocol on resolving species errors.

## Unknown Plants

- Unknown Plants forms should be completed after finishing a site by transferring data from a paper datasheet into the form. This form should only be sent to the outbox when a crew is confident that no more Unknown Code edits will be made or on the final day of a hitch.
- On the final page of this form, there is a list of all unknown plants entered into the form. This
  list should be used to double check that unknown plants have been entered correctly. It
  should also be used to double check that no duplicate species have been entered. This
  form does not have a QA check on duplicates, so crew members are responsible for
  double checking this list before sending the form.
- For each unknown species, Family, and Genus fields should only be used with high confidence.
  - For plants never identified to species, Family and Genus fields will be used after the field season to provide additional information about that plant.
  - For example, if FABACEAE\_01 is identified to the genus Trifolium, it will be counted as a non-native species since all Trifolium species are considered nonnative.
     Likewise if SH\_02 is identified as a Ribes, it will be counted as a shrub. If you are not confident of family or genus, you can select "Unknown" for these fields.
- After this form has been submitted, crews will still be able to add additional species and edit old entries, but they will not be able to delete an entry. Follow the recommendations found in Section 5 of the Data Management Protocol for more information on resolving species errors.

LPI

- This form can be used either going from transect start to end (0 25 m) or end to start (25 0 m) using the 'Direction' field found on the fourth page.
  - o If a transect is being sampled backwards, crew members will need to flip to the fifth page to update the transect data for the end of transect before starting the form. After LPI is finished, they will then need to flip back to the second page at the start of the transect to update the start of transect GPS data.
  - After the first repeat is added to the form, the direction of sampling cannot be changed. If you wish to change this before you start dropping pins, the form will need to be deleted and reopened.
- Default values can be entered for Top Canopy, Lower1, and Soil Surface on the third page of the form. A question in the point repeats will allow you to automatically push these values into a point.
  - These values can be changed mid transect. If values are changed, the new defaults will be applied to point repeats going forward, but they will not change previous points which used the old default.
  - It is also possible to partially change a default. This can be useful in cases where the Top Canopy is different from the default, but the Lower1 and Soil Surface codes are the same. The form should correctly update fields appropriately.
- No QA checks will verify that lower hit codes are used in the correct order. For example, if you skip Lower 1 and enter values for Lower 2, the form will not correct you. For this reason, it is essential that technicians ensure these fields are used correctly.

# Woody Structure and Annual Use

- This form is created for three different potential sampling approaches:
  - Full sample visit with annual use methods visits when you are collecting both
     Woody Structure and Annual Use methods.
  - Full sample visit without annual use methods visits for which project leads have not requested Annual Use data.
  - o Annual Use visit visits when you are only collecting annual use metrics.
- These options are determined based on the visit type used in Field Visits and the 'CollectAnnualUse' field in Plots, which will default questions in the form and control which questions show up in the form:
  - Answers to these two questions will filter which questions appear in the rest of the form. While these fields will be defaulted based on information from the Field Visit, if there are missing fields you expected to see, these may be the cause.

| Will annual use be collected? *                                   |    |  |
|-------------------------------------------------------------------|----|--|
| Yes                                                               | No |  |
| Will woody structure (stem size and height class) be collected? * |    |  |
| Select no if this visit is for collecting annual use only.        |    |  |
| Yes                                                               | No |  |

- Additionally, we've provided a way to submit the form more quickly in the event of a site with no woody species present.
  - In this case, you are intending to collect a method on woody species, so "yes" should be answered to the appropriate question above to indicate you will be collecting that method.
  - On the third page of the form, a question at the top can be used to skip woody species measurements on that transect, rather than filling in "N" for every quadrat.

| Are there woody species present on this transect?        |    |  |
|----------------------------------------------------------|----|--|
| Be sure to walk the entire transect before selecting no. |    |  |
| Yes                                                      | No |  |

- If a transect does have woody species, but some quadrats do not, you should fill in "N" for quadrats that do not have any woody species. Do not delete the repeat of woody species information.
- If there are no woody species on the transect and you are not collecting annual use, you will want to submit the form with no points added

## Hummocks

- This method is a contingent method. It is only required if the 'CollectHummocks' field in the Plots layer of field maps says "Yes". Make sure to check whether Hummocks is expected at the site before launching this form.
- If Hummocks are expected but there are no hummocks on the plot, a question in the form allows you to complete the form without entering any hummocks.

# Water Quality

- This method is a contingent method. It is only required if the 'CollectWQ' field in the Plots layer of field maps says "Yes". Make sure to check whether Water Quality is expected at the site before launching this form.
- If this method is expected for the current plot and there is enough surface or groundwater at a site, technicians are required to record one or more measurements of water quality.

## Known Errors

- Known errors forms should be used by technicians for two different reasons:
  - 1. To correct errors in your forms that you cannot fix yourself. Examples include:
    - Deleting any repeats from already submitted forms.
    - Corrections to species in LPI that will not be fixed by the Unknown Plants forms
      - This includes changing an unknown code to a different species or unknown plant or changing a species code to an alternate code.
      - This does not include changing an unknown plant to what it was identified as. This is not an error and should be addressed using the Unknown Plant form.
    - Changing the PlotID or EvaluationID and any other fields that are read only in the forms.
    - Logging forms you forgot to collect and can no longer fill out outside of the field
      - This does not include forms like Hummocks, Woody Structure and Annual Use, Water Quality, or Soils which were not collected because they were not observed. These forms have alternate ways to submit them without collecting any data.
  - 2. To submit issues or suggestions for improving the functionality of technology.
    - Take a screenshot of any warnings that come up that pose a problem. This will help us diagnose where the problem is coming from.
    - Issues that need a more immediate resolution should be communicated directly with the Riparian and Wetland AIM Data Team. This will allow them to troubleshoot and consider ways to avoid the same issue occur in the future.
    - If you find a QA check in the form prevents you from entering what you see, first check your protocol to make sure the measured value is possible based on the method details.
    - Be sure to indicate whether a technology issue prevented you from entering data as it was measured.
  - General issues that continue to come up do not need to be submitted for every plot unless a value needs to be changed in every plot. For example, if you wish a field were in a different place of the form, submit this as a known error the first time you observe it, rather than every time you use that form. For the Riparian and Wetland AIM Data Team to log any errors we find using a QC python script. These errors will be logged using the Issue Type of "Scripted Error Check". Technicians should not

use this issue type, but will use the Error Review Dashboard to review and resolve them after returning from the field.

- When logging an error for the first time, all information about the initial problem should be
  logged in the "Initial Error Documentation" section of the form. For most errors, the
  'Respond to Issue' group, should only be used in a browser after the issue has been
  submitted the first time. Additional information explaining this functionality will be provided
  in the future.
- If you are requesting an edit by the Data Team, include all information in the comments that we would need to locate and fix the issue.
- **Species errors** are a special kind of issue that require careful documentation to correct. If entering information on a species error, you'll also have to provide information on how best to resolve the issue.
  - If submitting problems from the field, an extra 'Form' will become available for species code issues, indicating the problem occurred on "All Transect Forms". This will allow you to avoid submitting two errors for the same problem. These errors and associated resolutions will be recognized by the QC script, avoiding error duplication in the dashboard.
  - Most often species errors will be found during the QC process after all data has been submitted. In these cases, crews will more often be responding to species issues, rather than submitting new issues.
  - Under the respond to issue category, you'll find a few options of ways to resolve the errors you are documenting.
    - "Crew added species code..." will only be used if the Data Team documents an error that the crew can easily resolve themselves. In this case, a crew may respond by fixing the issue in their forms.
    - "Delete species code..." should only be used to remove species from Unknown Plants or Species Inventory. Entries cannot be deleted from these forms by crews, so this field will indicate to the Data Team that edits are needed from them.
    - "Switch species code..." should only be used for transect based forms and not species inventory or unknown plants.
      - For all code replacements on transect forms, use the 'Line number' field to indicate which transect a species occurs on. We will use the Incorrect Species field to search and replace codes on either the whole plot or a specific transect for all occurrences of a species.
    - "Other" should be used when the Data Team needs to complete more manual editing not covered by one of the other options. For example, if I need all POPR hits occurring after 1800 m to be replaced with POSE, but not those occurring before 1800 m, I'll need to use the other category to specify these edits.

# **Data Backup**

## Survey123 Data

All sampling data is contained within the Survey123 app until it is submitted to AGOL at the end of the hitch. This data should be backed up after every two plots at a minimum.

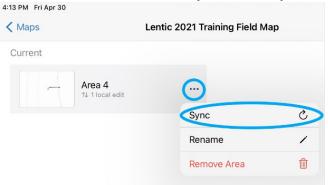
- 1. Open your Files app and navigate to the Survey123 data folder (On My iPad > Survey123).
- 2. Tap and hold the ArcGIS folder until the pop-up appears with more options. Tap Compress. This will create a zipped copy of this folder directory.
- 3. Tap and hold the .zip file you created and give the file a more logical name with the date.
- 4. Next, using your USB drive, transfer your zipped file to your external storage device. Users can keep replacing zipped files from the previous backups so there is only one backup file on their USB.

## Field Maps Data

Field visit data is recorded in Field Maps and should be backed up at the same time as Survey123 data. Plots and Field Visits are stored in a geodatabase within a Field Maps folder under your iPads files. This is the file that you backup to your USB drive, but it can be tricky to navigate to.

- 1. First ensure that the USB Drive is connected to your iPad. Next open the "Files" app on your iPad and open the "Field Maps" folder.
- 2. Select the folder starting with your geoplatform account username, then select the mapareas folder.
- 3. Inside this folder, you will see folders named with alpha numeric codes. You will have one folder here for each Offline Area you make in Field Maps. There is no easy way to identify which folder contains which map. If you are looking for one in particular, you can open each folder and see the thumbnail jpg that is stored and displayed in Field Maps.
- 4. Within each of the "Offline Areas" folders along with the jpg thumbnails, there is another folder with an alpha numeric UID name. Open this. Next, locate the file called "p13" and open it.
- 5. Within the folder called "p13" you will notice a few files. As you can see, the largest file in this folder is likely the .tpk base map. We do not want this file. The only file that we want to backup is the file that ends with a ".geodatabase" extension
- 6. Tap and hold the file with the ".geodatabase" extension and then select "Compress". This will create a .zip file of your selection in the same folder. Now select the zip file you just created and tap and hold it. From the dropdown list, select "Share".
- 7. In the "Share" pop-up, where it shows the list of apps on the device, scroll to the right until you see the three dots that say "More". Tap this. In the next window, scroll down until you see the name of your USB drive and select it. Note that some iOS users may need to download a separate app for their USB drive to be registered by the device (Sandisk needs iXpand drive to be downloaded to iOS devices).
- 8. This will launch the app and it will ask where you want to save the file. Tap the "Create New Folder" button and create a folder to store all Field Maps Backups. Once you determine where to save this file, hit "Save Here" at the bottom of the screen.

- 9. You have now backed up a geodatabase containing the Points and Field Visit features that you took offline in your map. If your device dies or you accidentally delete something, you can send this zipped geodatabase export to the Riparian and Wetland AIM Data Team.
- a. Note that it is also recommended that users go back into the Files app and delete the zip file that you created.
- b. Feel free to rename the zipped folder to something you can remember more easily. It may be further advantageous to create a categorical folder structure where you move the zipped files to organize things by trip.


# 4. Returning from a hitch: Data review and submission

## Overview

Upon returning from the field, all data needs to be synced and submitted to ArcGIS Online. From there, the Data Team, Project Leads and/or crew managers will review data following the guidance found in Section 4 of this protocol. All these steps expect that your iPad is connected either to cell service or WiFi.

# Syncing Field Maps back to ArcGIS Online

- 1. Once your iPad is connected to a strong, reliable WiFi connection, you can either submit from a Map offline area menu or from the map itself.
- 2. To submit from the main menu, select the Field Map from the list of maps.
  - a. Any maps with local edits will show the edits beneath their titles in the main menu.
  - b. Select the three dots on the offline area you want to sync, then select Sync.



3. Alternatively, you can sync edits from the map itself by selecting the sync button on the top bar of the map screen.



# Submitting forms from Survey123 to ArcGIS Online

- 1. After every hitch, make sure all forms have been submitted to online.
  - a. You can check whether this has been done by opening the Survey123 app and looking at all your downloaded forms.
  - b. All forms in drafts will show up as an orange number in the upper left corner of its form. All forms in the Outbox will show as a green circle in the same place.
- 2. For any forms in your outbox, select the form with a green circle, then select the "Outbox" ribbon at the bottom of the screen.

a. If all forms in your outbox are ready, click the "Send" button at the lower right corner of the screen.



- b. All Outbox forms from one form type will be submitted at the same time.
- 3. For any forms in drafts, select the form with an orange circle, then select the "Drafts" ribbon at the bottom of the screen.
  - a. Each form in draft will have to be opened and clicked through in order to send.
  - b. Be careful not to accidentally change any data as you are reviewing forms.
  - c. Some QA checks in Survey123 only occur when the form is submitted. For this reason, it is recommended that all forms aside from Unknown Species and Species Inventory are submitted to the outbox prior to leaving a site. This way, any errors that come up can be corrected on site.
- 4. At this point, after Field Maps have been synced and Survey123 forms submitted, your field visit point will show how many of each of the forms have been submitted.
  - a. In Field Maps, select one of the field visit points for a specific site.
    - i. After syncing all iPads, you will have two Field Visit points per sampled point, as each iPad will have created its own point with identical information. This will be fixed after the field season by the Data Team.
  - b. In the pop-up, scroll down to the last section of the pop-up listing all the field forms. Check that all form counts are what you expect.
    - For Full Sample visits, you should see at least 1 form submitted for all forms except for Known Errors, and 3 forms for LPI, Woody Structure and Annual Use.



ii. For Temporary and Permanent Rejections, only a Site Evaluation form should show up.

iii. For Annual Use Visits, only 3 Woody Structure and Annual Use forms should be submitted, as well as a Species Inventory, Unknown Species, and Photos form as needed.

# **Updating sampled sites in Office Eval Webmap**

- 1. After returning from a hitch, crew leads should update information in the Plots layer of the Office Eval Webmap to reflect information gained during field sampling.
- 2. Go to ArcGIS Online using this link: <a href="https://www.arcgis.com/index.html">https://www.arcgis.com/index.html</a>
  - a. Login using your geoplatform account
  - b. Navigate to the BLM AIM Riparian and Wetland group in Groups, then select the link in the description to the Office Eval Webmap.
- 3. Update information for sites you visited during your most recent hitch.
  - a. It may help to filter the map to only the points in Hitch 1 of your Webmap.
  - b. For sampled sites:
    - i. Update OfficeEvalStatus to "Sampled Waiting for Data Review"
    - ii. Update Plot Layout comments field with how you actually ended up laying out the plot.
    - iii. Update Access Instructions to reflect any changes in directions that occurred in the field that may help future crews navigate to the site.
    - iv. Update Hitch Notes with comments about how sampling actually went, including difficulties in access, unexpected challenges, and any other information that may help future crews know what to expect at the site.
  - c. For Rejected sites:
    - i. Update OfficeEvalStatus to either "Rejected Waiting for Project Manager approval" or "Reattempted This season at another date" as appropriate.
    - ii. Update RejectedReason to the appropriate option. This should match the rejected reason found in your Field Visit point and the Site Evaluation Form.
    - iii. Update the RejectedReason1 and 2 with information that led to rejection.Your field visit may be one of the two lines of evidence used for the rejection.

# APPENDIX B. EXAMPLE TEXT FOR COMMENT FIELDS

# **Overview**

Throughout all Survey123 forms, comment fields are provided for crews to add additional information that is important for understanding the context of site sampling. These can be good places to put more thorough observations or issues that came up during sampling that may explain measurement values. To understand the format these comments should take, below are examples of comments submitted to various comment fields. While the following is not an exhaustive list of potential information to include in each field, they should be used to understand the level of detail recommended for these fields. Not all comment fields are required, and crews should only use optional comment fields to add context to submitted data. In all cases, crews should be careful to ensure comments are clear and free of spelling errors.

## **Site Evaluation**

Sample Location Status Comments

This field should only be used for rejections or sites on the borderline of the target population.

- Site was dominated by UPL and FACU plant species. Pascopyrum smithii was the dominant plant species with Artemisia ludoviciana beginning to encroach. There was no possible riparian or wetland area within 50 m where we could locate the plot.
- Could not access due to flooded roads.
- Small wetland area at sample design location with dominant species of IVAX, JUARL, and Epilobium species. The area was around 15m by 20m and too small to accommodate three transects.

# Detailed directions and access comments

These can often be copied directly from access comments written in the plots layer of the Field Eval Webmap in Field Maps. Directions should start with a specific location or landmark (such as a town or mile marker on a highway) and describe all turns and mileage required to access the site location.

- From Dillon drive south on Interstate 15 for 41 miles. Take exit 23 for Dell. Turn left to Main St, left again on Red Rock Rd N for 0.4 miles then E (right) onto Sage Creek gravel road for 17 miles. Turn NE (right) for 0.6 miles up 2 track, then right again down the drainage 500 yards. Pull over before crossing the creek and hike S 400 Meters.
- Take Hwy 50 west from Gunnison to Co Rd 867/Alpine Plateau Rd. Take Alpine Plateau Rd south off of 50. Continue south to Co Rd 65, at 38.245740°N 107.368835°W. Turn right. Continue on Co Rd 65 for 5.3 mi and park at the end of BLM Rd 3006c. From there, hike the ATV road north until you hit a road that switch backs down into the valley (about 1.5 mi). Once in the valley follow the road 1.3 miles north to the point. Right before the road crosses the creek, stay on the right side of the creek and continue through the willows to the plot. This hike is about 3 miles total, but mostly all on roads.

• Head S out of Cannonville, UT on Kodachrome Basin Rd for 2.7 miles to Skutumpah Rd (signed Bull Valley Gorge). Follow Skutumpah Rd for about 2.65 miles. The site will be on the right/ to the W of the road. Skutumpah Rd becomes impassable after heavy rainfall.

## **Plot Characterization**

Comments on why the plot was shifted

- Sample Location could accommodate a spoke layout by moving a little N.
- Plot was moved to avoid non target vegetation.
- Shifted out of deep water and to maximize plot dimensions. Targeted site allowed for shifting >50m.

# Plot Layout Justification

- The Riparian or Wetland area is a narrow v-shape which does not provide enough area for a spoke layout. The wedge of upland vegetation in the middle of the v-shape also does not provide enough hydric vegetation to sample for a transverse layout.
- Site was too narrow for a spoke, constricted by upland vegetation on both sides of the meadow.
- The dominant OBL and FACW vegetation was only within a 15 by 32 meter area. Using the diagonal plot layout design was our only option for setting up a plot given the size of the wetland.

## Classification comments

Classification comments should be used in sites which were difficult to classify or had multiple categories that applied.

- Topographic maps classify water regime as 'C' but due to the amount of water present and nature of the system (cattails, well shaded), water regime 'F' seemed the best overall fit.
- Wet meadow was dominant wetland type, but pockets of wetter marshy vegetation were also on plot.
- We considered Riverine as the HGM type, but the plot also receives significant input from regional groundwater.

## General Plot Description

This should be a short paragraph describing various aspects of the plot. Start by briefly describing the wetland type, landscape position, dominant vegetation, general hydrology, soil type, and major land uses observed during sampling. Crews should do their best to make this description flow well, avoiding abbreviations and editing for grammar and spelling.

The plot is a seasonally saturated meadow that sits at the toe of a slope near the head of a
valley, and is surrounded on 3 sides by forest. Vegetation is dominated by Veratrum
tenuipetalum, Calamagrostis canadensis, and Caltha leptosepala. Outside the plot,
meadows with varying hydrology continue linearly in a forested corridor down to Oso Creek.
There is a small dry depression/pond about 10ft across at the SW edge of the plot. The soil
pit had a narrow fibric surface layer subtended by very dark clay layers with redox soft

- masses and concretions, meeting hydric soil indicator F6 (redox dark surface). There are cow pies present in and around the plot, indicating at least some use by cattle.
- This spring site is located in a drainage valley between two hills. It has a dominance of Salix boothii and Salix geyeriana with an understory of various forbs, graminoids (Poa pratensis, Glyceria striata, Carex pachystachya, Carex nebraskensis), and shrubs (Actaea rubra, Ribes sp.). The main hydrological features are springs and a seep located on the southern part of the plot, flowing northwest. The soil had four horizons: a shallow organic horizon sat upon clay and alluvial horizons with small, varied redox features. There is some evidence cattle grazing based on obvious signs of herbivory on Salix and various graminoids as well as hummocking and soil alteration throughout the plot.
- The sample plot is located in an emergent riparian zone adjacent to and including parts of Short Creek. The plot appears to be dominated by local floodplain groundwater, with some parts of the plot likely experiencing some overbank flooding in wetter years. Short Creek was dry at the time of sampling. The plot was dominated by Poa pratensis and Salix boothii. The soils were fine textured and exhibited no hydric soil indicators. A sign was located at the edge of the road indicating that this is a wilderness study area so the major land use for the area appears to be preservation.

## **Photos**

## Photo comments

Photo comments will be used as captions for submitted photos. Comments are recommended especially for photo types that may include many different kinds of photos, such as Disturbance and Hydrology.

- Spring-fed pond NW of plot center.
- Headcut 10 m north of plot center demonstrating channel erosion of Spring Creek.
- Overview taken north of Transect 3 facing SW.

# **Hydrology**

Hydrology description

- Predominant inflow is seepage from the impoundment. It forms a wet meadow at the base
  of impoundment and continues to flow downstream. Appears that there is also seepage
  coming from northern slope. The site currently has standing water in depressions and it
  seems to be there for most of the year based on aquatic vegetation.
- Pond fed by inlets and regional groundwater. Two small inlet channels feeding into NW corner of pond. One small outlet channel on SE side of pond. Soil on edge of lake smells like sulphur. Sporadic saturated soil throughout plot. Dry channel, vegetated with Carex utriculata and lined with thatch, feeding into pond across plot between T1 and T2. Evidence of some erosion upslope at start of dry channel, but no head cut exists.
- Overland flow moves from uplands into closed depression on landscape. Soil pit had gleyed horizons with redox above gleyed layers which might indicate longer periods of saturation in lower soil horizons as a result of high groundwater.

## Channel comments

• In addition to the dominant channel, an additional side channel was observed on the west side of the plot, approximately 10 m in length, with about 5 cm of water depth.

## Soils

## Horizon Comments

- High density of roots made texturing difficult.
- Redox features showed as root nodules and soft masses.

## Comments

- Pungent hydrogen sulfide odors were an obvious hydric soil indicator for this site, as well as
  qualification for Black Histic (A3) from the deep fibric and hemic layers observed. This soil
  may also qualify for A2, histic epipedon, but we did have the definition for "aquic
  conditions" provided in the Keys to Soil Taxonomy.
- Distinct horizonation consistent with pit location adjacent to stream channel.
- Second pit dug 20m north of plot center in spongy area revealed a histic epipedon, but full profile description not completed.

## **Natural and Human Disturbances**

## Disturbance Comment

Be careful to avoid subjective or value-laden language.

- Road adjacent to wetland area that stretches throughout the private and BLM lands. Well maintained and gravel.
- There's an old, abandoned car about 100 m from the plot and a few pieces of trash were found on the plot.
- Invasives Bromus tectorum and Cirsium arvense observed on plot.
- Multiple cattle trails cross the site and there are many patches of fresh cow pies.

# **Unknown Plants**

Additional description of Unknown Species

- Multiple florets per spikelet. Hairy ligule. Rhizomatous.
- Very densely woolly hairs, alternate leaves, tap root. No flowers observed.
- Identified as Plantago major, but species missing from state species list.

# LPI

## Transect Notes

- Transect bent at 13.34 m and azimuth changed to 256 degrees.
- Points at 24-25 meters were estimated due to extremely dense willow patch.

# **Water Quality**

Water chemistry comments

- Conductivity read consistently above 1700 us, but values make sense given salt crusts and salt-loving plant species observed on plot.
- YSI measurement 2 taken adjacent to hotspring, explaining the high water temperature.

# **Known Errors**

# Reason or Explanation

- Incorrect photo submitted for overview with markup. Correct photo added. Delete original overview uploaded.
- Incorrect subspecies selected. Delete JUAR2 from species inventory. Has been replaces with JUARL.
- Change CIAR2 at 2250 on transect 1 to dead.