Chart 3-1. Linear Regression-Hg

The chart shows a linear regression analysis between laboratory (Lab) and field (XRF) XRF mercury levels. The regression line is given by the equation:

\[y = 0.6169x + 11.091 \]

with an \(R^2 = 0.9209 \). The data points are plotted on a scatter plot with the X-axis representing LabTotal Hg (mg/kg) and the Y-axis representing XRF Hg (ppm). The points are connected by a line indicating the linear relationship. The R-squared value indicates a strong correlation between the two measurements.
Chart 3-2. Linear Regression-As

- **Equation:** $y = 0.8879x - 0.827$
- **R^2:** 0.9013

Graph Description:
- X-axis: Lab Total As (mg/kg)
- Y-axis: XRF As (ppm)
- Data points represent arsenic concentrations in lab and field XRF analyses.
- Linear regression line with equation $y = 0.8879x - 0.827$.
- Coefficient of determination $R^2 = 0.9013$.

Legend:
- Blue diamonds: Arsenic
- Black line: Linear (Arsenic)
Lab vs Field XRF Antimony

\[y = 1.1127x + 928.68 \]
\[R^2 = 0.9072 \]

Chart 3-3. Linear Regression-Sb
Red Devil Mine
Surface Soil Samples
Mercury Fractions vs. Total Mercury vs. Sample Location

Chart 3-4. Mercury Fractions vs. Total Mercury vs. Sample Location
Chart 3-5. Arsenic Total vs. TCLP

- **Linear (Tailings/WR East):**
 - Equation: $y = 0.0014x$
 - $R^2 = -0.1167$

- **Linear (Tailings/WR West):**
 - Equation: $y = 0.001x - 0.6676$
 - $R^2 = 0.9194$

- **Linear (Tailings Settling Ponds):**
 - Equation: $y = 0.0005x - 3.0613$
 - $R^2 = 0.7243$

Legend:
- **Tailings/WR East**
- **Tailings/WR West**
- **Tailings Settling Ponds**
- **Red Calcines**

Axes:
- **X-axis:** Total As mg/kg
- **Y-axis:** TCLP As mg/L

Ranges:
- Total As mg/kg: 0 to 12000
- TCLP As mg/L: 0 to 35
Chart 3-6. Arsenic Total vs. SPLP

- **Arsenic Total vs SPLP**

 - Linear equation for Tailings/WR East:
 \[y = 0.0006x - 0.1359 \]
 \[R^2 = 0.8317 \]

 - Linear equation for Tailings/WR West:
 \[y = 0.0004x - 1.7347 \]
 \[R^2 = 0.5092 \]

 - Linear equation for Tailings Settling Ponds:
 \[y = 0.0004x + 1.9183 \]
 \[R^2 = 0.0773 \]