

2012 Red Devil Baseline Monitoring De **Monitoring Report**

Please note: Appendix A, Laboratory Data Quality Assurance Review Memoranda, of this Appendix was provided by a third party lab, as a scanned document. It is not fully accessible. If you need assistance with this appendix, please contact the BLM Alaska Public Information Center 907-271-5960, BLM_AK_AKSO_Public_Room@blm.gov

Final 2012 Baseline Monitoring Report Red Devil Mine, Alaska

December 2013

Prepared for:

U.S. DEPARTMENT OF INTERIOR BUREAU OF LAND MANAGEMENT Anchorage Field Office 4700 BLM Road Anchorage, Alaska 99507

Prepared by:

ECOLOGY AND ENVIRONMENT, INC.

720 3rd Avenue Seattle, Washington 98104-1816

Table of Contents

Section		Page
1	Introduction	1-1
	1.1 Purpose and Objectives	
	1.2 Project Location and Setting	1-1
2	Field Activities and Procedures	2-1
	2.1 Spring 2012 Baseline Monitoring	2-1
	2.1.1 Groundwater Monitoring	2-1
	2.1.2 Red Devil Creek Surface Water Monitoring	
	2.1.3 Sample Handling	
	2.1.4 Quality Control Samples	2-4
	2.1.5 Investigation-Derived Waste Management	2-4
	2.2 Fall 2012 Baseline Monitoring	2-4
	2.2.1 Groundwater Monitoring	2-4
	2.2.2 Red Devil Creek Surface Water Monitoring	2-5
	2.2.3 Sample Handling	2-6
	2.2.4 Quality Control Samples	
	2.2.5 Investigation-Derived Waste Management	2-6
3	Baseline Monitoring Results	3-1
	3.1 Groundwater Elevation and Surface Water Discharge Monitoring	
	3.1.1 Spring 2012	
	3.1.2 Fall 2012	
	3.1.3 Groundwater Elevation and Surface Water Discharge Trends	3-2
	3.2 Spring 2012 Groundwater and Surface Water Sampling	
	3.2.1 Groundwater	
	3.2.2 Surface Water	3-4
	3.3 Fall 2012 Groundwater and Surface Water Sampling	3-4
	3.3.1 Groundwater	3-4
	3.3.2 Surface Water	3-4
	3.4 Groundwater and Surface Water Contaminant Concentration and	
	Loading Trends	3-4
	3.4.1 Groundwater	
	3.4.2 Surface Water	3-5
4	References	4-1
-		
Α	Laboratory Data Quality Assurance Review Memoranda	A-1

This page intentionally left blank.

List of Tables

Table		Page
Table 2-1	Summary of Groundwater Samples, Spring 2012 Baseline Monitoring	2-9
Table 2-2	Summary of Surface Water Samples, Spring 2012 Baseline Monitoring	2-10
Table 2-3	Summary of Groundwater Samples, Fall 2012 Baseline Monitoring	2-11
Table 2-4	Summary of Surface Water Samples, Fall 2012 Baseline Monitoring	2-12
Table 3-1	Well Construction and Groundwater Depth Information	3-7
Table 3-2	Red Devil Creek Discharge	3-13
Table 3-3	Groundwater Baseline Sample Results, Spring 2012	3-14
Table 3-4	Surface Water Baseline Sample Results, Spring 2012	3-17
Table 3-5	Groundwater Baseline Sample Results, Fall 2012	3-19
Table 3-6	Surface Water Baseline Sample Results, Fall 2012.	3-23
Table 3-7	Red Devil Creek Surface Water Loading, May 2012 – Antimony, Arsenic, Mercury, and Methylmercury (kg/day)	3-25
Table 3-8	Red Devil Creek Surface Water Loading, September 2012 – Antimony, Arsenic, Mercury, and Methylmercury (kg/day	3-25

This page intentionally left blank.

ist of Figures

Figure		Page
Figure 2-1	Groundwater Baseline Monitoring Locations Spring and Fall 2012	2-13
Figure 2-2	Surface Water Baseline Monitoring Locations Spring and Fall 2012	2-14
Figure 3-1	Groundwater Potentiometric Surface and Surface Water Discharge Map, Spring 2012	3-27
Figure 3-2	Groundwater Potentiometric Surface and Surface Water Discharge Map, Fall 2012	3-28
Figure 3-3	Groundwater and Surface Water Sample Results, Spring 2012, Total Antimony	3-29
Figure 3-4	Groundwater and Surface Water Sample Results, Spring 2012, Total Arsenic	3-30
Figure 3-5	Groundwater and Surface Water Sample Results, Spring 2012, Total Mercury	3-31
Figure 3-6	Groundwater and Surface Water Sample Results, Spring 2012, Dissolved Antimony	3-32
Figure 3-7	Groundwater and Surface Water Sample Results, Spring 2012, Dissolved Arsenic	3-33
Figure 3-8	Groundwater and Surface Water Sample Results, Spring 2012, Dissolved Mercury	3-34
Figure 3-9	Groundwater and Surface Water Sample Results, Fall 2012, Total Antimony	3-35
Figure 3-10	Groundwater and Surface Water Sample Results, Fall 2012, Total Arsenic.	3-36
Figure 3-11	Groundwater and Surface Water Sample Results, Fall 2012, Total Mercury	3-37
Figure 3-12	Groundwater and Surface Water Sample Results, Fall 2012, Dissolved Antimony	3-38

List of Figures (cont.)

Figure		Page
Figure 3-13	Groundwater and Surface Water Sample Results, Fall 2012, Dissolved Arsenic	3-39
Figure 3-14	Groundwater and Surface Water Sample Results, Fall 2012, Dissolved Mercury	3-40
Figure 3-15	Concentration Versus Distance, Red Devil Creek and Seep Surface Water, May 2012, Total Arsenic, Antimony, Mercury, Methylmercury, and Sulfate	3-41
Figure 3-16	Concentration Versus Distance, Red Devil Creek and Seep Surface Water, May 2012, Dissolved Arsenic, Antimony, Mercury, Methylmercury, and Sulfate	3-42
Figure 3-17	Concentration Versus Distance, Red Devil Creek and Seep Surface Water, September 2012, Total Arsenic, Antimony, Mercury, Methylmercury, and Sulfate	3-43
Figure 3-18	Concentration Versus Distance, Red Devil Creek and Seep Surface Water, September 2012, Dissolved Arsenic, Antimony, Mercury, Methylmercury, and Sulfate	3-44

 $_{
m RDM\,FSP}$ $_{
m V\dot{1}}$

Tist of Abbreviations and Acronyms

BLM U.S. Department of the Interior Bureau of Land Management

BTEX benzene, toluene, ethylbenzene, and xylenes

COPC contaminant of potential concern

DRO diesel range organics

E & E Ecology and Environment, Inc.

GPS global positioning system
GRO gasoline range organics

IDW investigation-derived waste

QC quality control RDM Red Devil Mine

RI Remedial Investigation RRO residual range organics

SVOC semi-volatile organic compound

TAL target analyte list

TDS total dissolved solids

TSS total suspended solids

This page intentionally left blank.

1

Introduction

This report presents the results of the spring and fall 2012 baseline groundwater and surface water monitoring effort at the Red Devil Mine (RDM) site. The RDM consists of an abandoned mercury mine and ore processing facility located on public lands managed by the U.S. Department of the Interior Bureau of Land Management (BLM) in the state of Alaska. Historical mining activities included underground and surface mining. Ore processing included crushing, retorting/furnacing, milling, and flotation. Ecology and Environment, Inc. (E & E) prepared this baseline monitoring report on behalf of the BLM under Delivery Order Number L09PD02160 and General Services Administration Contract Number GS-10F-0160J

1.1 Purpose and Objectives

The purpose of the baseline monitoring is to augment the Remedial Investigation (RI) results and identify seasonal trends in groundwater and surface water flow. Specific objectives of the baseline monitoring are to:

- Characterize the seasonal variability in groundwater and surface water hydrology and chemistry;
- Characterize the long-term (multiple year) variability in groundwater and surface water hydrology and chemistry; and
- Characterize trends that are present in groundwater and surface water chemistry.

1.2 Project Location and Setting

The RDM site is located approximately 250 air miles west and 1,500 marine/river barge miles from Anchorage, Alaska. Located on the southwest bank of the Kuskokwim River, approximately 2 miles southeast of the village of Red Devil, the site is 75 air miles northeast of Aniak, the largest village in the region, and approximately 8 miles northwest of the village of Sleetmute. Approximately 15 villages are located downstream of Red Devil on the Kuskokwim River. The legal description for the RDM site is Township 19 North, Range 44 West, Southeast Quarter of Section 6, Sleetmute D-4 Quadrangle, Seward Meridian. The RDM site's approximate coordinates are 61° 45' 38.1" north latitude and 157° 18' 42.7" west longitude (North American Datum 1927).

1 Introduction

The RDM site is in a remote location, and access to the site is available by boat or barge on the Kuskokwim River or by means of an airstrip at the nearby village of Red Devil. An unimproved road leads from the airstrip through the village of Red Devil and to the site.

Features of the RDM identified in this report are defined in the Red Devil Mine RI Report (E & E 2013).

2

Field Activities and Procedures

Field sampling occurred during two events in 2012. The events were designed to capture the hydrologic conditions present during the spring and fall seasons at the site. The spring 2012 baseline monitoring event was targeted for the period shortly after the breakup of ice on the Kuskokwim River. The spring 2012 event was conducted from May 24 to May 31, 2012. The fall event was conducted from September 8 to 11, 2012. Unusually high precipitation levels occurred during the fall event, resulting in higher water levels than anticipated.

E & E collected surface water samples at stream and spring locations, and groundwater at monitoring wells. Stream and spring flow rates and depth-to-groundwater measurements were measured at sampling locations.

A field logbook was maintained throughout each sampling event. Pertinent information about the sampling locations and notes regarding flow measurements were recorded in the field logbook. Additionally, field data sheets were completed for each sample collected. A resource-grade global positioning system (GPS) device was used to survey lateral sample location information. These locations were recorded in the field logbook in addition to the GPS data logger.

Field activities were performed in accordance with the Baseline Monitoring Work Plan (E & E 2012), which is generally consistent with the Red Devil Mine Remedial Investigation/Feasibility Study Work Plan (E & E 2011), except as noted below.

2.1 Spring 2012 Baseline Monitoring

2.1.1 Groundwater Monitoring

Groundwater sampling was completed at 21 existing monitoring wells during the spring 2012 baseline monitoring event. Water level measurement was performed at 31 monitoring wells. Table 2-1 provides a summary of the samples collected. Monitoring well locations are illustrated in Figure 2-1.

Groundwater samples were collected for laboratory analysis of the following:

- Total target analyte list (TAL) inorganic elements
- Total low-level mercury

- Dissolved low-level mercury
- Inorganic ions
- Nitrate/nitrite
- Carbonate/bicarbonate
- Total dissolved solids (TDS)
- Total suspended solids (TSS).

In addition, samples were collected for dissolved TAL inorganic elements plus mercury from wells MW01, MW04, MW13, MW14, MW28, and MW29. These aliquots were collected because it was not possible to achieve field turbidity values below 10 nephelometric turbidity units at the time of groundwater sample collection.

A sample collected from monitoring well MW-19 was also analyzed for semi-volatile organic compounds (SVOCs), diesel range organics (DRO), residual range organics (RRO), gasoline range organics (GRO), and benzene, toluene, ethylbenzene, and xylenes (BTEX).

Field measurements for pH, temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, and turbidity were collected during purging at each monitoring well prior to sample collection.

Groundwater samples were collected using a low-flow sampling technique, except for well MW29. It was not possible to use a low flow purging/sampling technique at well MW29 because the water quality meter was not functioning. A submersible pump was used to purge this well and collect the sample. Specific sampling methodologies are described in the Baseline Monitoring Work Plan (E & E 2012).

Monitoring wells MW09, MW-11, and MW-30 were not sampled during the RI because there was insufficient water to develop the wells at that time. During the spring 2012 baseline monitoring event, well development activities were performed over multiple days at wells MW-09, MW-11, and MW-30 using a combination of mechanical surging and bailing, as described in the Baseline Monitoring Work Plan (E & E 2012). During development of monitoring wells MW11 and MW30, the top caps of the bailers broke. The remaining portions of the bailers were left stranded in the wells until the fall 2012 baseline monitoring event, when suitable equipment was available and used to remove the bailer pieces (see Section 2.2.1, below). Repeated attempts were made on multiple days to develop MW09. Multiple attempts to develop this well were necessary because the well recharged slowly. Development of well MW09 was completed on the final day of the fall 2012 field event. Because of insufficient remaining time following completion of development, the well was not sampled during the spring 2012 monitoring event.

2.1.2 Red Devil Creek Surface Water Monitoring

During baseline monitoring, surface water monitoring was conducted at seven locations along Red Devil Creek between the creek's mouth at the Kuskokwim River and the reservoir south of the Main Processing Area. The surface water samples include one sample from the seep at location RD05. Surface water monitoring locations are illustrated on Figure 2-2. Table 2-2 provides a summary of the samples collected.

For the baseline monitoring, new surface water monitoring station RD13 was established at a position approximately 50 feet upstream of seep location RD05 in order to better understand gaining/losing conditions and contaminant concentration trends in the stream independent of the seep. Water quality sampling and stream gaging were performed at station RD13 as part of the spring baseline monitoring, but not at station RD12.

Red Devil Creek surface water samples were collected for laboratory analysis of:

- Total TAL inorganic elements
- Dissolved TAL inorganic elements
- Total mercury
- Dissolved mercury
- Methylmercury
- Arsenic speciation
- Inorganic ions
- Nitrate/nitrite
- Carbonate/bicarbonate
- TDS
- TSS

Field measurements for pH, temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, and turbidity were collected at each sample station.

Surface water samples were collected using a battery-operated peristaltic pump outfitted with dedicated silicone tubing or by hand-dipping the sample container directly into the creek water following sampling methodologies described in the Baseline Monitoring Work Plan (E & E 2012).

Surface water discharge was measured using the mid-section method at each monitoring location following methodologies described in the Baseline Monitoring Work Plan (E & E 2012).

2.1.3 Sample Handling

Sample handling (chain-of-custody, field documentation, etc.) during the spring 2012 baseline monitoring event was conducted as described in the Baseline Monitoring Work Plan (E & E 2012), except for station RD13. Documentation associated with monitoring and sampling (including field notes, chain-of-custody records, and laboratory results) at RD13 inadvertently identified the station as RD12 rather than RD13. The correct station identification of RD13 is used in this report.

2.1.4 Quality Control Samples

Field quality control (QC) samples were collected for all media and analytes following the requirements specified in the Baseline Monitoring Work Plan (E & E 2012).

2.1.5 Investigation-Derived Waste Management

Investigation-derived waste (IDW) generated during the spring 2012 baseline monitoring included the following:

- Monitoring well development and purge water;
- Used disposable sampling equipment, personal protective equipment, and paper towels; and
- Decontamination fluids generated during groundwater sampling.

IDW was managed in accordance with the Baseline Monitoring Work Plan (E & E 2012).

2.2 Fall 2012 Baseline Monitoring

2.2.1 Groundwater Monitoring

Groundwater sampling was completed at 17 existing monitoring wells during the fall 2012 baseline monitoring event. Water level measurement was performed at 31 monitoring wells. Table 2-3 provides a summary of the samples collected. Monitoring well locations are illustrated on Figure 2-1.

Groundwater samples were collected for laboratory analysis of:

- Total TAL inorganic elements
- Total mercury
- Dissolved mercury
- Inorganic ions
- Nitrate/nitrite
- Carbonate/bicarbonate

- TDS
- TSS

Field measurements for pH, temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, and turbidity were collected during purging at each monitoring well prior to sample collection.

Groundwater samples were collected using a low-flow sampling technique. Specific sampling methodologies are described in the Baseline Monitoring Work Plan (E & E 2012).

The broken bailers stranded in monitoring wells MW11 and MW30 during the spring 2012 baseline monitoring event were successfully recovered during the fall 2012 monitoring event. Once the bailer pieces were removed, these wells were partially developed using a combination of mechanical surging and bailing, as described in the Baseline Monitoring Work Plan (E & E 2012). There was insufficient water in wells MW11 and MW30 to completely develop these wells. Neither of the wells was sampled.

2.2.2 Red Devil Creek Surface Water Monitoring

During baseline monitoring, surface water monitoring was conducted at seven locations along Red Devil Creek between the creek's mouth at the Kuskokwim River and the reservoir south of the Main Processing Area. The surface water samples include one sample from the seep at location RD05. Surface water monitoring locations are illustrated on Figure 2-2. Table 2-4 provides a summary of the samples collected. As noted in Section 2.1.2, surface water monitoring station RD13 was established for baseline monitoring at a position between the seep (RD05) and existing station RD04,. Water quality samples were collected at station RD13 as part of fall 2012 baseline monitoring, but not at station RD12.

Red Devil Creek surface water samples were collected for laboratory analysis of:

- Total TAL inorganic elements
- Dissolved TAL inorganic elements
- Total mercury
- Dissolved mercury
- Methylmercury
- Arsenic speciation
- Inorganic ions
- Nitrate/nitrite
- Carbonate/bicarbonate
- TDS

TSS

Field measurements for pH, temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, and turbidity were collected at each sample station.

Surface water samples were collected using a battery-operated peristaltic pump outfitted with dedicated silicone tubing or by hand-dipping the sample container directly into the creek water. Specific sampling methodologies are described in the Baseline Monitoring Work Plan (E & E 2012).

Surface water discharge was measured using the mid-section method at each monitoring location. Specific methodologies are described in the Baseline Monitoring Work Plan (E & E 2012).

2.2.3 Sample Handling

Sample handling (chain-of-custody, field documentation, etc.) during the fall 2012 baseline monitoring event was conducted as described in the Baseline Monitoring Work Plan (E & E 2012), except as noted below.

Documentation associated with monitoring and sampling (including field notes, chain-of-custody records, and laboratory results) at RD13 inadvertently identified the station as RD12 rather than RD13. The correct station identification of RD13 is used in this report.

During the field event, fall 2012 baseline samples were not maintained under chain-of-custody as specified in the Baseline Monitoring Work Plan (E & E 2012). During the first part of field event, sample containers were maintained in coolers stored inside a walled sample processing tent. After the tent was destroyed in a windstorm on September 16, 2012, the sample coolers were maintained in a storage area within the Red Devil Lodge building. The coolers were not custody-sealed during storage. In addition, the chain-of-custody forms for these samples did not have relinquishing signatures from the E & E staff involved with shipping the samples to the laboratory. The BLM, U.S. Environmental Protection Agency, and Alaska Department of Environmental Conservation Remedial Project Managers reviewed a summary of how fall 2012 samples were handled and concurred that the resulting data are usable for the purpose of baseline monitoring.

2.2.4 Quality Control Samples

Field QC samples were collected for all matrices and analytes following the requirements specified in the Baseline Monitoring Work Plan (E & E 2012).

2.2.5 Investigation-Derived Waste Management

IDW generated during the fall 2012 baseline monitoring event includes the following:

2 Field Activities and Procedures

- Monitoring well development and purge water;
- Used dedicated sampling equipment, personal protective equipment, and paper towels; and
- Decontamination fluids generated during groundwater sampling.

IDW was managed in accordance with the Baseline Monitoring Work Plan (E & E 2012).

2 Field Activities and Procedures

This page intentionally left blank.

Table 2-1 Summary of Groundwater Samples, Spring 2012 Baseline Monitoring

			Analyses											
Location ID	Sampling Method	Comment	Total TAL Metals	Dissolved TAL Metals	Total Mercury	Dissolved Low Level Mercury	Inorganic lons (Cl, F, SO ₄)	Total Dissolved Solids	Total Suspended Solids	Nitrate/ Nitrite	Carbonate, Bicarbonate	SVOCs	DRO/RRO	GRO/BTEX
MW01	Low flow (submersible pump)		Х	Х	Χ	Х	Х	Х	Х	Х	Х			
MW04	Low flow (submersible pump)		Х	Х	Х	Х	Χ	Х	Х	Х	Х			
MW06	Low flow (peristaltic pump)		Х		Х	Х	Х	Х	Х	Х	Х			
MW08	Low flow (peristaltic pump)		Х		Χ	Х	Χ	Х	Х	Χ	Х			
MW09	Not sampled	Attempted to develop well. Not successful due to poor recovery.												
MW10	Low flow (submersible pump)		Х		Х	Х	Χ	Х	Х	Х	Х			
MW11	Not sampled	Attempted to develop well. Abandoned effort after bailer broke in well.												
MW12	Low flow (peristaltic pump)		Х		Х	Х	Х	Х	Х	Х	Х			
MW13	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х	Х			
MW14	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х	Х			
MW15	Low flow (submersible pump)		Х		Х	Х	Х	Х	Х	Х	Х			
MW16	Low flow (peristaltic pump)		Х		Х	Х	Χ	Х	Х	Х	Х			
MW17	Low flow (peristaltic pump)		Х		Χ	Х	Χ	Х	Х	Χ	Х			
MW19	Low flow (peristaltic pump)		Х		Χ	Х	Χ	Х	Х	Χ	Х	Χ	Х	Х
MW20	Low flow (peristaltic pump)		Х		Χ	Х	Χ	Х	Х	Χ	Х			
MW21	Low flow (peristaltic pump)		Х		Χ	Х	Χ	Х	Х	Χ	Х			
MW24	Low flow (peristaltic pump)		Х		Χ	Х	Χ	Х	X	Χ	Х			
MW25	Low flow (submersible pump)		Х		Χ	Х	Χ	Х	X	Χ	Х			
MW27	Low flow (submersible pump)		Х		Χ	Х	Χ	Х	Х	Х	X			
MW28	Low flow (submersible pump)	Water quality parameters did not stablize. Sampled after purging 1.5 hours.	Х	х	Х	х	X	х	Х	Х	х			
MW29	Submersible pump	Water quality meter not functioning. Collected sample after purging 3 well volumes.	Х	Х	Х	Х	Х	Х	Х	Х	х			
MW30	Not sampled	Attempted to develop well. Abandoned effort after bailer broke in well.												
MW32	Low flow (submersible pump)		Х		Χ	Х	Χ	Х	Х	Χ	Х			
MW33	Low flow (peristaltic pump)		Х		Χ	Х	Х	Х	Х	Χ	Х			

Key:

BTEX = benzene, toluene, ethylbenzene, and xylenes

Cl = chloride

DRO = diesel range organics

F = fluoride

GRO = gasoline range organics

PCBs = polychlorinated biphenyls

RRO = residual range organics

 SO_4 = sulfate

SVOC = semivolatile organic compound

Table 2-2 Summary of Surface Water Samples, Spring 2012 Baseline Monitoring

Tubic E E Juiiii	, or our r		mpiec, epin	.8 ==== = ===											
		Analyses Analyses													
Location ID	Total TAL Metals	Dissolved TAL Metals	Total Mercury	Dissolved Mercury	Methylmercury	Arsenic Speciation	Inorganic Ions (CI, F, SO ₄)	Total Dissolved Solids	Total Suspended Solids	Nitrate/ Nitrite	Carbonate, Bicarbonate	Total Organic Carbon			
RD04	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
RD05	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
RD06	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
RD08	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х			
RD09	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
RD10	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х			
RD13	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			

Key:

Cl = chloride

F = fluoride

 SO_4 = sulfate

Table 2-3 Summary of Groundwater Samples, Fall 2012 Baseline Monitoring

	or Groundwater Jampies, re						Analyses			
Location ID	Sampling Method	Comment	Total TAL Metals	Total Mercury	Dissolved Mercury	Inorganic Ions (CI, F, SO ₄)	Total Dissolved Solids	Total Suspended Solids	Nitrate/ Nitrite	Carbonate, Bicarbonate
MW04	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW06	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW09	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW10	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW11	Not sampled	Removed broken bailer. Attempted to develop well. Not successful due to poor recovery.								
MW14	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW15	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW16	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW17	Low flow (peristaltic pump)		Х	Χ	Х	Х	Х	Х	Х	Х
MW20	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW21	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW24	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW25	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW27	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW28	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Χ	Х
MW29	Low flow (submersible pump)		Х	Х	Х	Х	Х	Х	Χ	Х
MW30	Not sampled	Removed broken bailer. Attempted to develop well. Not successful due to poor recovery.								
MW32	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х
MW33	Low flow (peristaltic pump)		Х	Х	Х	Х	Х	Х	Х	Х

Key:

BTEX = benzene, toluene, ethylbenzene, and xylenes

Cl = chloride

DRO = diesel range organics

F = fluoride

GRO = gasoline range organics

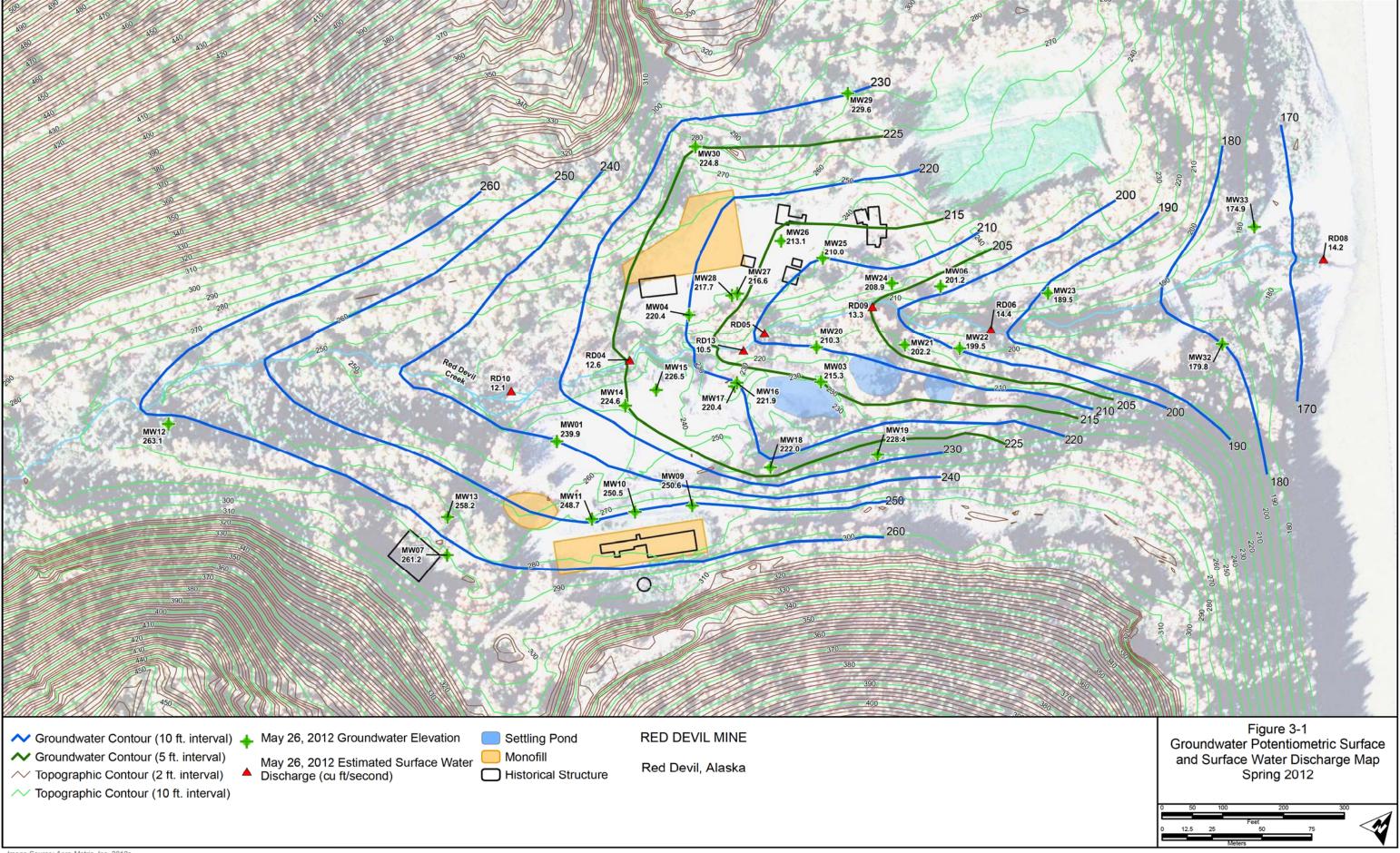
PCBs = polychlorinated biphenyls

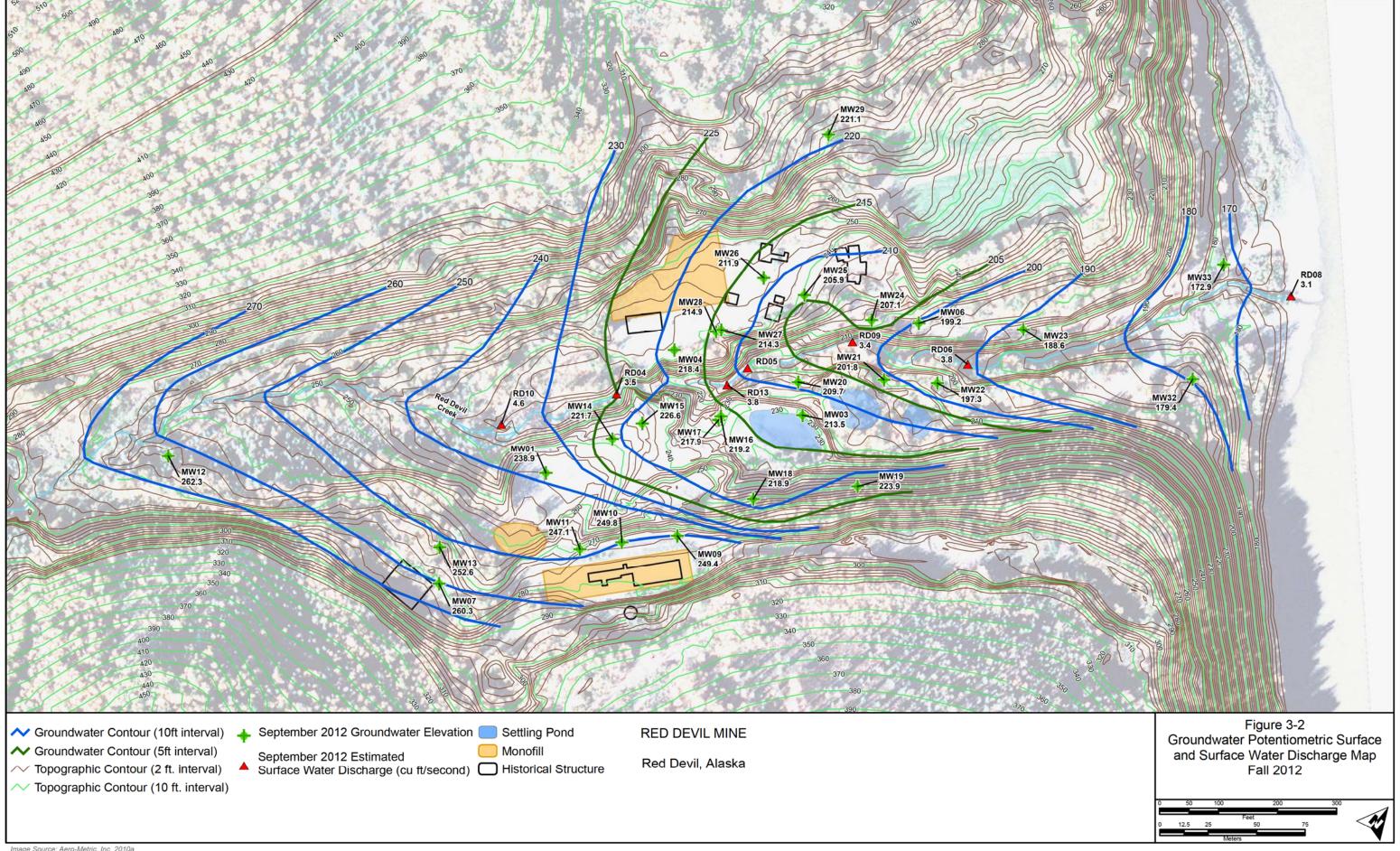
RRO = residual range organics

 $SO_4 = sulfate$

SVOC = semivolatile organic compound

Table 2-4 Summary of Surface Water Samples, Fall 2012 Baseline Monitoring


					Ŭ		Analyses					
Location ID	Total TAL Metals	Dissolved TAL Metals	Total Mercury	Dissolved Mercury	Methylmercury	Arsenic Speciation	Inorganic Ions (CI, F, SO ₄)	Total Dissolved Solids	Total Suspended Solids	Nitrate/Nitrite	Carbonate, Bicarbonate	Total Organic Carbon
RD04	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х
RD05	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RD06	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RD08	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RD09	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х
RD10	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
RD13	Х	X	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х


Key:

Cl = chloride

F = fluoride

 SO_4 = sulfate

3

Baseline Monitoring Results

This section presents results of the spring and fall 2012 baseline groundwater and surface water monitoring events.

3.1 Groundwater Elevation and Surface Water Discharge Monitoring

3.1.1 Spring 2012

Depth to groundwater measurements and calculated groundwater elevations for wells monitored during the spring 2012 baseline monitoring event are presented in Table 3-1 and illustrated in Figure 3-1. For comparison, data collected previously and during the fall 2012 monitoring event also are presented in the table.

Estimated surface water discharge calculations for Red Devil Creek surface water stations monitored during the spring 2012 baseline monitoring event are presented in Table 3-2 and Figure 3-1. For comparison, stream gaging data collected previously and during the fall 2012 monitoring event also are presented in Table 3-2. Estimated Red Devil Creek surface water discharge ranged from 10.5 to 14.5 cubic feet per second.

Based on static water elevations, stream elevations, and discharge measurements along Red Devil Creek, a groundwater potentiometric surface and surface water discharge map for the spring 2012 baseline monitoring was generated and is presented as Figure 3-1.

During the spring 2012 baseline monitoring event, as observed during the RI monitoring events, groundwater at the site generally flowed toward Red Devil Creek, with groundwater elevations generally mimicking topography (E & E 2013). Groundwater in the Main Processing Area and much of the area downstream of the Main Processing Area emerges into Red Devil Creek and enters the Kuskokwim River as surface water rather than as groundwater.

Based on the groundwater elevations in monitoring wells, elevations of Red Devil Creek, and stream flow gauging, Red Devil Creek is gaining over most of its length below the reservoir dam, but exhibits losing conditions locally. As noted for the late August–early September 2011 monitoring (E & E 2013), Red Devil

3 Baseline Monitoring Results

Creek was a losing stream during the spring 2012 in the reach of the stream that extends approximately from a point a short distance upstream of station RD04 down to a location upstream of seep location RD05. The lowermost section of Red Devil Creek at the delta also exhibited losing conditions at that time (see Figure 3-1).

3.1.2 Fall 2012

Depth to groundwater measurements and calculated groundwater elevations for wells monitored during the fall 2012 baseline monitoring event are presented in Table 3-1 and illustrated in Figure 3-2. For comparison, data collected previously also are presented in the table.

Estimated surface water discharge calculations for Red Devil Creek surface water stations monitored during the fall 2012 baseline monitoring event are presented in Table 3-2 and Figure 3-1. For comparison, stream gaging data collected previously also are presented in Table 3-2. Estimated Red Devil Creek surface water discharge ranged from 3.1 to 4.6 cubic feet per second.

Based on static water elevations, stream elevations, and discharge measurements along Red Devil Creek, a groundwater potentiometric surface and surface water discharge map for the fall 2012 baseline monitoring was generated and is presented as Figure 3-2.

During the fall 2012 baseline monitoring event, as observed during the RI (E & E 2013) and spring 2012 monitoring events, groundwater at the site generally flowed toward Red Devil Creek, with groundwater elevations generally mimicking topography. Groundwater in the Main Processing Area and much of the area downstream of the Main Processing Area emerges into Red Devil Creek and enters the Kuskokwim River as surface water rather than as groundwater.

Based on the groundwater elevations in monitoring wells, elevations of Red Devil Creek, and stream flow gauging, Red Devil Creek is gaining over most of its length below the reservoir dam, but exhibits losing conditions locally. As noted for the late August–early September 2011 monitoring (E & E 2013) and the spring 2012 monitoring event, Red Devil Creek was a losing stream during the spring 2012 in the reach of the stream that extends approximately from a point a short distance upstream of station RD04 down to a location upstream of seep location RD05. The lowermost section of Red Devil Creek at the delta also exhibited losing conditions at that time (see Figure 3-2).

3.1.3 Groundwater Elevation and Surface Water Discharge Trends

Groundwater elevations during the May 2012 baseline monitoring event were higher (by 0.29 to 11.29 feet) in all monitoring wells than in September 2011, and were on average 3.9 feet higher across the site. Groundwater elevations during the May 2012 baseline monitoring event were higher (by up to 8.55 feet) in all but

3 Baseline Monitoring Results

one well (MW15) than during the September 2012 baseline monitoring event, and were on average 2.2 feet higher across the site. During the September 2012 baseline monitoring event, groundwater elevations were higher (by up to 6.02 feet) in all but two monitoring wells (MW07 and MW25) than in September 2011, and were on average 1.8 feet higher across the site. The largest differences in groundwater elevations between monitoring events are generally seen in the wells that are screened in bedrock. Notable exceptions are wells MW16 and MW14, both of which are screened in unconsolidated materials in the Post-1955 Main Processing Area near Red Devil Creek, and in which the differences in water levels ranged as high as 8.73 and 5.61 feet (between May 2012 and September 2011).

Water levels measured in the following paired shallow and deep wells were evaluated to assess vertical hydraulic gradient:

- MW16 (shallow, screened in native/disturbed native soil) / MW17 (deep, screened in bedrock)
- MW27 (shallow, screened in native/disturbed native soil and weathered bedrock) / MW28 (deep, screened in bedrock and suspected mine workings cavity)

During the September 2011 RI monitoring, there was an upward gradient in both the MW27/MW28 well pair and the MW16/MW17 well pair (E & E 2013). During the May 2012 and September 2012 monitoring events, there was an upward gradient in the MW27/MW28 well pair and a downward gradient in the MW16/MW17 well pair. The interpretation of vertical gradient in the MW16/MW17 well pair is complicated by possible hydraulic segregation and local losing conditions in Red Devil Creek.

Measured stream discharge rates during September 2012 were between 20 and 60 percent lower than observed in August 2011 depending on monitoring location, but generally exhibited trends of gain and loss along the length of Red Devil Creek similar to those in August 2011. In May 2012, measured discharge values were between 2 and 2.2 times those observed during August 2011, and between 2.6 and 4.6 times as high as those measured in September 2012. The May 2012 discharge was measured a short time after the beginning of breakup and thus likely approximates high flow conditions for the creek.

3.2 Spring 2012 Groundwater and Surface Water Sampling

3.2.1 Groundwater

Laboratory results of groundwater sampling conducted during the spring 2012 baseline monitoring event are presented in Table 3-3. Data quality assurance review memoranda are provided in Appendix A. Results of key constituents, total antimony, total arsenic, total mercury, dissolved antimony, dissolved arsenic, and dissolved mercury are presented as Figures 3-3 through 3-8.

3.2.2 Surface Water

Laboratory results of surface water sampling conducted during the spring 2012 baseline monitoring event are presented in Table 3-4. Data quality assurance review memoranda are provided in Appendix A. Results of key constituents, total antimony, total arsenic, total mercury, dissolved antimony, dissolved arsenic, and dissolved mercury are presented as Figures 3-3 through 3-8.

3.3 Fall 2012 Groundwater and Surface Water Sampling

3.3.1 Groundwater

Laboratory results of groundwater sampling conducted during the fall 2012 baseline monitoring event are presented in Table 3-5. Data quality assurance review memoranda are provided in Appendix A. Results of key constituents, total antimony, total arsenic, total mercury, dissolved antimony, dissolved arsenic, and dissolved mercury are presented as Figures 3-9 through 3-14.

3.3.2 Surface Water

Laboratory results of surface water sampling conducted during the fall 2012 baseline monitoring event are presented in Table 3-6. Data quality assurance review memoranda are provided in Appendix A. Results of key constituents, total antimony, total arsenic, total mercury, dissolved antimony, dissolved arsenic, and dissolved mercury are presented as Figures 3-9 through 3-14.

3.4 Groundwater and Surface Water Contaminant Concentration and Loading Trends

3.4.1 Groundwater

For those well sampled in the spring and fall baseline monitoring events the following trends were observed:

Spring 2012

Antimony and arsenic concentrations were higher in the spring 2012 samples than the fall 2011 samples in most wells. Notable exceptions were seen in samples from wells MW15 and MW16; these two wells exhibited relatively high antimony and arsenic concentrations in the fall 2011 samples.

Mercury concentrations were lower in the spring 2012 samples than the fall 2011 samples in most wells. Many of the wells showing relatively greater decreases are screened in bedrock, including MW17, MW19, MW24, MW25, MW29, and well MW28, which is screened in bedrock and a cavity apparently associated with the mine workings. These wells generally exhibited relatively higher total mercury concentrations in the fall 2011 samples.

Fall 2012

Antimony and arsenic concentrations were higher in the fall 2012 samples than the fall 2011 samples in most wells. Mercury concentrations were lower in the fall

3 Baseline Monitoring Results

2012 samples than the fall 2011 samples in most wells. Many of the wells showing greater decreases are screened in bedrock, including MW17, MW24, and MW29, and well MW28, which is screened in bedrock and a cavity apparently associated with the mine workings. As noted above, these wells generally showed relatively higher total mercury concentrations in the fall 2011 samples.

As noted in the RI, the greatest impacts on groundwater antimony and arsenic concentrations from tailings/waste and, to a lesser extent, flotation tailings and contaminated soils, were observed where the materials are saturated at least some of the time. Where the water table elevation fluctuates, such waste materials would likely be subjected to repeated wetting/ drying cycles, likely promoting mobilization of contaminants. Where the waste materials are above the water table, contaminants mobilized from these sources migrate downward toward groundwater (E & E 2013). The overall trend of comparatively higher groundwater antimony and arsenic concentrations during the spring 2012 and fall 2012 sampling events is likely due to increased infiltration of precipitation and higher groundwater elevations during those periods.

3.4.2 Surface Water

Baseline surface water results for spring and fall 2012 sampling indicate generally increasing total and dissolved antimony, arsenic, mercury, and methylmercury concentrations along Red Devil Creek moving downstream of the Main Processing Area (beginning approximately at station RD10). Concentration profiles along Red Devil Creek for the total and dissolved antimony, arsenic, mercury, and methylmercury for the spring 2012 and fall 2012 monitoring events are shown in Figures 3-15 through 3-18. Overall, the increases in concentrations along Red Devil Creek in spring and fall 2012 surface water samples are similar to those documented in 2010 and 2011 in the RI (E & E 2013). Specific concentrations trends are discussed below.

Total concentrations of antimony and arsenic in Red Devil Creek were generally higher in the spring 2012 samples than for the fall 2012 samples, which were in turn generally slightly higher than for the 2011 RI samples (E & E 2013).

Dissolved antimony concentrations were generally slightly higher in the spring 2012 samples than for the fall 2011 RI samples, and were similar to those in the fall 2012 samples. Dissolved arsenic concentrations in the spring 2012 samples were similar to those in the fall 2012 and fall 2011 RI samples.

Total and dissolved mercury concentrations in the spring 2012 samples were generally higher than in both the fall 2012 and fall 2011 RI samples. Results of the fall 2012 samples were generally lower than in the 2011 RI samples.

Based on contaminant concentrations in surface water samples and measured stream discharge rates, contaminant loading in Red Devil Creek surface water was estimated. Results for the spring and fall monitoring are presented in Tables 3-7 and 3-8, respectively.

3 Baseline Monitoring Results

This page intentionally left blank.

Table 3-1 Well Construction and Groundwater Depth Information

							Static \	Water Level		
Monitoring Well ID	Soil Boring ID	Total Well Depth (feet below TOC)	Screened Interval (feet bgs)	Ground Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	GW Encountrered During Drilling (feet bgs)	Depth (feet below TOC)	Date	Time	Ground Water Elevation (feet NAVD88)
							18.62	9/9/2012	17:05	238.89
							17.56	5/26/2012	14:32	239.95
	MW01 N/A 29.70					19.55	9/1/2011	16:03	237.96	
						19.46	8/24/2011	16:38	238.05	
NANA/01		19.0 - 29.0	254.51	257.51	17.8 - TD	20.04	9/20/2010	18:18	237.47	
IVIVVOI		19.0 - 29.0	234.31	237.31	17.6 - 10	22.27	10/6/2009	17:30	235.24	
							19.62	6/19/2009	NR	237.89
							22.16	9/18/2008	13:28	235.35
							19.87	9/5/2007	13:15	237.64
							21.72	8/14/2000	NR	235.79
							17.24	9/9/2012	17:10	213.53
							15.47	5/26/2012	15:17	215.30
							19.96	9/1/2011	15:41	210.81
				228.37		19.96 9/1/2011 15 19.44 8/26/2011 10 20.95 9/20/2010 19 23.01 10/7/2009 13	10:18	211.33		
MW03	N/A	27.73	14.5 - 25.5		230.77		20.95	9/20/2010	19:50	209.82
WWOS	IN/A	27.73	14.5 - 25.5		230.77		23.01	10/7/2009	13:20	207.76
							19.51	6/19/2009	NR	211.26
							22.57	9/18/2008	14:11	208.20
							20.68	9/5/2007	14:40	210.09
							22.28	8/14/2000	NR	208.49
							23.72	9/10/2012	14:15	218.40
							21.72	5/26/2012	16:47	220.40
							25.99	9/1/2011	15:00	216.13
							25.24	8/22/2011	16:02	216.88
MW04	N/A	32.9	20.0 - 30.0	239.92	242.12	25.3 - TD	26.79	9/20/2010	16:09	215.33
101000-7	14/7	32.3	20.0 30.0	233.32	272.12	25.5 10	27.77	10/6/2009	18:55	214.35
							25.43	6/19/2009	NR	216.69
							26.82	9/18/2008	12:32	215.30
							26.78	9/5/2007	12:25	215.34
							27.77	8/14/2000	NR	214.35

Table 3-1 Well Construction and Groundwater Depth Information

Tuble 5 I W		on and Groundwate					Static \	Water Level			
Monitoring Well ID	Soil Boring ID	Total Well Depth (feet below TOC)	Screened Interval (feet bgs)	Ground Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	GW Encountrered During Drilling (feet bgs)	Depth (feet below TOC)	Date	Time	Ground Water Elevation (feet NAVD88)	
							18.29	9/9/2012	11:45	199.20	
							16.25	5/26/2012	16:02	201.24	
							18.70	9/1/2011	15:09	198.79	
							18.78	8/24/2011	14:56	198.71	
MW06	N1/A	26.14	13.0 - 23.0	214.99	217.40	20.0 - TD	19.03	9/20/2010	13:22	198.46	
IVIVVU6	N/A	26.14	13.0 - 23.0	214.99	217.49	20.0 - 10	19.29	10/7/2009	17:25	198.20	
							17.90	6/19/2009	NR	199.59	
							19.08	9/18/2008	11:35	198.41	
							18.63	9/5/2007	15:30	198.86	
							19.29	8/14/2000	NR	198.20	
							20.57	9/9/2012	16:45	260.32	
							19.68	5/26/2012	13:36	261.21	
							19.97	9/1/2011	16:14	260.92	
			11.0 - 21.0	278.39			20.57 9/9/2012 16:45 19.68 5/26/2012 13:36 19.97 9/1/2011 16:14 19.51 8/26/2011 9:12 20.40 9/21/2010 10:20 DRY 10/7/2009 NR 20.10 6/19/2009 NR	261.38			
14407	21/2	22.70			200.00	140 TD			10:20	260.49	
MW07	N/A	23.70			280.89	14.8 - ID	19.29 8/14/2000 NR 20.57 9/9/2012 16:45 19.68 5/26/2012 13:36 19.97 9/1/2011 16:14 19.51 8/26/2011 9:12 20.40 9/21/2010 10:20 DRY 10/7/2009 NR 20.10 6/19/2009 NR DRY 9/18/2008 NR 20.42 9/5/2007 14:00 DRY 8/14/2000 NR	NR	DRY		
									20.10	6/19/2009	NR
							DRY		NR	DRY	
							20.42	9/5/2007	14:00	260.47	
							DRY	8/14/2000	NR	DRY	
							12.74	9/9/2012	16:10	318.58	
N 414/00	448400460	16.0	50 450	220.02	224.22	2.5 - 4.0, 10.5 -	11.64	5/26/2012	13:23	319.68	
MW08	11MP01SB	16.0	5.0 - 15.0	328.92	331.32	TD	13.65	9/1/2011	16:28	317.67	
							13.70	8/30/2011	9:21	317.62	
							27.81	9/11/2012	11:20	249.47	
						110 160	27.88	9/9/2012	15:30	249.40	
MW09	11MP17SB	31.0	20.0 - 30.0	274.88	277.28	14.0 - 16.0,	26.67	5/26/2012	14:04	250.61	
						31.0 - TD	28.11	9/1/2011	16:43	249.17	
							>31.56	8/29/2011	18:21	DRY	
							26.88	9/10/2012	11:35	249.33	
							26.39	9/9/2012	15:45	249.82	
MW10	MW10 11MP14SB 63	61.0	50.0 - 60.0	274.31	276.21	48.0 - TD	25.62	5/26/2012	14:14	250.59	
ININATO TITINILTA2R			2/4.51			29.17	9/1/2011	16:38	246.37		
							30.60	8/29/2011	16:15	245.61	

Table 3-1 Well Construction and Groundwater Depth Information

		on and Groundwate					Static \	Water Level		
Monitoring Well ID	Soil Boring ID	Total Well Depth (feet below TOC)	Screened Interval (feet bgs)	Ground Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	GW Encountrered During Drilling (feet bgs)	Depth (feet below TOC)	Date	Time	Ground Water Elevation (feet NAVD88)
							24.24	9/9/2012	16:00	247.06
MW11	11MP12SB	23.0	12.0 - 22.0	268.70	271.30	dry	22.60	5/26/2012	14:24	248.70
1010011	1110171236	23.0	12.0 - 22.0	200.70	2/1.30	ury	DRY	9/1/2011	16:34	DRY
							DRY	8/29/2011	> 12:00	DRY
							3.30	9/9/2012	16:39	262.32
MW12	11RD13SB	15.0	4.0 - 14.0	263.22	265.62	1.0 - TD	2.46	5/26/2012	11:04	263.16
1010012	11101336	13.0	4.0 - 14.0	203.22	203.02	1.0 - 10	3.70	9/1/2011	16:20	261.92
							3.72	8/31/2011	13:34	261.90
							24.06	9/9/2012	16:50	252.64
MW13	11MP20SB	32.0	21.0 - 31.0	274.30	276.70	27.0 - TD	18.41	5/26/2012	13:45	258.29
1010013	1110172036	32.0	21.0 - 31.0	274.30	270.70	27.0-10	29.70	9/1/2011	16:09	247.00
							30.05	8/30/2011	18:04	246.65
							27.34	9/10/2012	17:35	221.67
MW14	11MP25SB	36.0	25.0 - 35.0	246.71	249.01	25.7 - TD	24.40	5/26/2012	14:45	224.61
1010014	1110172336	30.0	25.0 - 55.0	240.71	249.01	23.7 - 10	30.01	9/1/2011	16:00	219.00
							30.51	8/31/2011	10:05	218.50
							18.3	9/8/2012	13:00	226.63
MW15	11MP29SB	26.0	15.0 - 25.0	242.63	244.93	16.2 - TD	18.33	5/26/2012	14:56	226.60
1010013	1110172936	20.0	15.0 - 25.0	242.03	244.93	10.2 - 10	19.59	9/1/2011	15:56	225.34
							19.64	8/30/2011	10:35	225.29
							8.88	9/8/2012	14:30	219.21
MW16	11MP30SB	22.0	11.0 - 21.0	226.09	228.09	16.0 - TD	6.17	5/26/2012	15:08	221.92
1010010	11WIF 303B	22.0	11.0 - 21.0	220.03	228.03	10.0 - 10	14.90	9/1/2011	15:50	213.19
							13.84	8/30/2011	11:35	214.25
							10.79	9/8/2012	16:20	217.87
MW17	11MP91SB	52.5	41.5 - 51.5	226.36	228.66	25.0 - 33.0,	8.20	5/26/2012	15:03	220.46
IVIVV I/	TTIAIL STOD	J2.J	41.5 21.3	220.30	220.00	33.0 - TD	13.78	9/1/2011	15:52	214.88
							15.00	8/30/2011	9:20	213.66
							24.83	9/9/2012	17:20	219.00
MW18	11MP31SB	40.0	29.0 - 39.0	241.33	243.83	38.0 - TD	21.82	5/26/2012	13:10	222.01
IAIAATO	TTIAIL DIDD	40.0 29.0 - 39.0	241.33	273.03	30.0 - 10	29.87	9/1/2011	15:37	213.96	
							29.66	8/31/2011	15:47	214.17

Table 3-1 Well Construction and Groundwater Depth Information

		on and Groundwate					Static \	Water Level		
Monitoring Well ID	Soil Boring ID	Total Well Depth (feet below TOC)	Screened Interval (feet bgs)	Ground Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	GW Encountrered During Drilling (feet bgs)	Depth (feet below TOC)	Date	Time	Ground Water Elevation (feet NAVD88)
							16.02	9/9/2012	17:25	223.98
MW19	11MP33SB	43.0	32.0 - 42.0	237.70	240.00	39.0 - TD	11.54	5/26/2012	12:59	228.46
10100 19	111/11/2220	45.0	32.0 - 42.0	237.70	240.00	39.0 - 10	19.47	9/1/2011	15:32	220.53
							19.38	9/1/2011	9:34	220.62
							5.53	9/9/2012	10:10	209.67
MW20	11MP38SB	15.5	4.5 - 14.5	212.90	215.20	6.5 - TD	4.82	5/26/2012	15:26	210.38
1010020	11INIP382B	15.5	4.5 - 14.5	212.90	215.20	טו - 5.ס	6.97	9/1/2011	15:43	208.23
							6.89	8/31/2011	8:53	208.31
							8.29	9/8/2012	17:35	201.84
N 4) A / 2 1	111402000	17.5	65 165	200.22	210.12	7.0 TD	7.91	5/26/2012	15:36	202.22
MW21	11MP39SB	17.5	6.5 - 16.5	208.23	210.13	7.0 - TD	8.82	9/1/2011	17:10	201.31
							8.80	8/31/2011	10:16	201.33
							7.77	9/9/2012	17:35	197.33
N 414/22	448404060	45.5	45 445	202.40	205.40	7.0 TD	5.55	5/26/2012	15:44	199.55
MW22	11MP40SB	15.5	4.5 - 14.5	203.10	205.10	7.8 - TD	8.48	9/1/2011	17:04	196.62
							8.20	8/31/2011	11:08	196.90
							15.56	9/9/2012	17:47	188.6
	441406660	20.0	10.0.20.0	204.06	204.46	20.0 TD	14.60	5/26/2012	15:56	189.56
MW23	11MP66SB	29.0	18.0 - 28.0	201.96	204.16	20.0 - TD	16.01	9/1/2011	15:14	188.15
							16.02	8/30/2011	16:31	188.14
							16.45	9/9/2012	14:00	207.06
N 4) 4/2 4	441406260	20.0	10.0 20.0	224.44	222.54	20.0 TD	14.59	5/26/2012	16:15	208.92
MW24	11MP62SB	30.0	19.0 - 29.0	221.41	223.51	20.0 TD	17.61	9/1/2011	15:06	205.90
							17.70	8/30/2011	14:51	205.81
							33.87	9/9/2012	10:30	205.89
N 4) 4/2 F	441400000	42.0	24.0.44.0	227.50	220.76	22.0 TD	29.74	5/26/2012	16:22	210.02
MW25	11MP89SB	42.0	31.0 - 41.0	237.56	239.76	32.0 - TD	31.88	9/1/2011	14:50	207.88
							31.85	8/30/2011	18:02	207.91
							34.01	9/9/2012	17:55	211.92
NAVA/26	111405200	42.0	22.0.42.0	244.02	245.02	24.0 TD	32.76	5/26/2012	16:30	213.17
MW26	11MP52SB	43.0	32.0 - 42.0	244.03	245.93	34.0 - TD	36.30	9/1/2011	14:47	209.63
							36.25	8/30/2011	11:35	209.68

Table 3-1 Well Construction and Groundwater Depth Information

		on and Groundwate					Static \	Water Level		
Monitoring Well ID	Soil Boring ID	Total Well Depth (feet below TOC)	Screened Interval (feet bgs)	Ground Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	GW Encountrered During Drilling (feet bgs)	Depth (feet below TOC)	Date	Time	Ground Water Elevation (feet NAVD88)
							28.64	9/9/2012	12:50	214.3
MW27	11MP60SB	34.0	23.0 - 33.0	241.04	242.94	29.0 - TD	26.28	5/26/2012	16:38	216.66
1010027	1110170036	54.0	25.0 - 55.0	241.04	242.94	29.0 - 10	30.37	9/1/2011	14:58	212.57
							30.30	8/30/2011	16:50	212.64
							27.01	9/10/2012	15:43	214.93
MW28	11MP88SB	64.0	53.0 - 63.0	239.94	241.94	49.0 - TD	24.19	5/26/2012	16:41	217.75
1010020	111011 0030	04.0	33.0 - 03.0	233.34	241.54	45.0 - 10	28.61	9/1/2011	14:53	213.33
							25.50	8/30/2011	14:57	216.44
							61.20	9/9/2012	16:22	221.05
MW29	11MP41SB	70.0	59.0 - 69.0	280.35	282.25	61.0 - TD	52.65	5/26/2012	17:09	229.60
1010025	111011 4135	70.0	33.0 03.0	200.55	202.23	01.0 15	63.21	9/1/2011	13:20	219.04
							63.21	9/1/2011	13:28	219.04
							nr	9/9/2012	nr	nr
MW30	11SM31SB	53.0	42.0 - 52.0	275.71	277.41	45.0 - TD	52.63	5/26/2012	16:58	224.78
	1105105	55.5	.2.0 02.0	2.02		.5.6 .5	53.53	9/1/2011	14:35	223.88
							53.44	9/1/2011	15:41	223.97
							36.29	9/9/2012	18:10	461.7
MW31	11UP11SB	44.8	33.8 - 43.8	495.79	497.99	34.0 - TD	34.12	5/26/2012	10:10	463.87
51	110.1100		55.5 .5.5	.50.75	.57.55	5	37.51	9/1/2011	14:05	460.48
							37.75	8/29/2011	13:51	460.24
							17.21	9/8/2012	15:40	179.37
MW32	11RD05SB	25.0	14.0 - 24.0	194.38	196.58	16.5 - TD	16.71	5/26/2012	12:45	179.87
							18.86	9/1/2011	15:26	177.72
							18.90	8/31/2011	15:55	177.68
							5.97	9/8/2012	12:30	172.95
MW33	11RD20SB	23.0	12.0 - 22.0	176.62	178.92	10.5 - TD	3.98	5/26/2012	12:33	174.94
							8.19	9/1/2011	15:20	170.73
							8.14	8/31/2011	17:57	170.78
MW34	AST5 MW1	NR	NR	290.95	294.25		15.57	9/1/2011	16:49	278.68
MW35	AST5 MW2	NR	NR	285.76	289.26		41.97	9/1/2011	16:55	247.29
MW36	AST5 MW3	NR	NR	286.33	290.03		35.81	9/1/2011	16:57	254.22

Table 3-1 Well Construction and Groundwater Depth Information

						Static '	Water Level		
Monitoring Well ID	Soil Boring ID	Total Well Depth (feet below TOC)	Ground Elevation (feet NAVD88)	Top of Casing Elevation (feet NAVD88)	Encountrered During Drilling	Depth (feet below TOC)	Date	Time	Ground Water Elevation (feet NAVD88)

Notes

Elevation datum: NAVD88 calculated using GEOID09.

Top of casing (TOC) refers to the top of PVC inner casing.

Key

NR Not Recorded

TD Total depth of soil boring

TOC Top of Casing

Table 3-2 Red Devil Creek Discharge

Monitoring		Estimated Discharge (cfs)	
Location	August 18, 2011	May 26, 2012	September 12, 2012
RD10	5.5	12.2	4.6
RD04	5.9	12.7	3.5
RD13	Station not established	10.5	3.8
RD12	8.2	Station not monitored	Station not monitored
RD09	6.0	13.4	3.4
RD06	6.8	14.5	3.8
RD08	7.2	14.2	3.1

Key:

cfs = cubic feet per second

Table 3-3 Groundwater Baseline Sample Results, Spring 2012

Table 3-3 Groundwater Baseline Sa	ample Results, Sp	ring 2012																				
	1		1	10 01		1	Station D			MW01	MW04	MW06	MW08	MW10	MW12	MW13	MW14	MW15	MW16	MW17	MW19	MW20
	Background Screen ng	No of	No of	Detected Resu ts	Maximum Detected	Minimum Detected	Geograph c Area		Units	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA
	Cr ter a	Samp es	Detect ons	Exceed ng	Va ue	Va ue	Samp e ID		Uillis	0512MW01GW	0512MW04GW	0512MW06GW	0512MW08GW	0512MW10GW	0512MW12GW					0512MW17GW	0512MW19GW	0512MW20GW
Analyte				Background			Method															
Total Inorganic Elements																						
Aluminum	405 0.505 J	21	16	2	9870 9100	50 0.49	Total(3020) Metals by ICP - 6010C	6010C			120	5.44 U	70	5.44 U	100	370	970	270	350	5.44 U	170	5.44 U
Antimony Arsenic	13.5	21 21	21 18	20 13	7030	0.49	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A		μg/L ug/L	5.46 39	51.3 12	9.87 53	0.68 0.06 U	1.23 148	0.56 21	924 396	103 7030	6440 4570	2.2 0.06 U	10.7	0.49 0.06 U	985 662
Barium	83.3	21	21	7	380	10	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	130	60	120	30	120	120	50	280	4570	40	40	50	40
Bervllium	0.018 J	21	2	2	1.3	0.4	Total (3020) Metals by ICPMS - 6020A		ug/L	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	0.4	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U
Cadmium	0.017 J	21	1	1	1	1	Total (3020) Metals by ICPMS - 6020A		μg/L		0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U
Calcium	20600	21	21	9	100000	8010	Total(3020) Metals by ICP - 6010C	6010C	μg/L	14600	71100	31700	8150	21100	18800	10900	42600	15700	8010	17400	18400	15600
Chromium	4.95	21	12	2	59.4	0.7	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	1.6	0.9	0.107 U	0.7	0.107 U	0.107 U	1	5.4	3	1.1	0.107 U	0.9	0.107 U
Cobalt	1.14	21	17	9	17.4	0.1	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.5	1.4	2	0.006 U	0.1	0.2	3.2	17.4	0.6	0.3	0.006 U	0.7	0.006 U
Copper	0.48	21	12	12	44.5	0.9	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.9	5	0.06 U	0.06 U	0.06 U	0.06 U	3.3	6.1	2	1.3	0.06 U	1	0.06 U
Iron	8990	21	21	4	36900	20	Total(3020) Metals by ICP - 6010C		μg/L	14100	220	2480	60	930	11900	940	36900	280	480	20	400	650
Lead	0.311	21	7	5	17.9	0.3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.6	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.3	2.8	0.019 U	0.019 U	0.019 U	0.4	0.019 U
Magnesium	11300 1120	21 21	21 19	15 4	125000 10100	3780 3	Total(3020) Metals by ICP - 6010C	6010C	μg/L	9620	125000	32000	6130	32500	11200	16000 830	41300 10100 J	25000	3780	13000	12800	12200
Manganese Mercury	0.0000584	6	6	6	0.00153	0.00008	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L		1180 J	849	0.069 UJ	185	1070 J	830		21 J	16	0.069 UJ	37	5
Nickel	2.68	21	11	10	57	2	Total Mercury by EPA 245.1 - Water Total (3020) Metals by ICPMS - 6020A		mg/L μg/L	2	35	3	0.184 U	0.184 U	0.184 U	9	0.00011 18	0.00153 8	0.184 U	0.184 U	0.184 U	0.00076 0.184 U
Potassium	708	21	18	10	3100	400	Total (3020) Metals by ICP - 6010C	6010C	μg/L	400	1500	800	24.9 U	1000	600	1000	1000	1200	400	24.9 U	24.9 U	400
Selenium	ND	21	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
Silicon		21	21		18900	3800	Total(3020) Metals by ICP - 6010C	6010C	μg/L	6300	6300	8200	4600	4100	8800	6100	8900	6000	4800	4800	3800	4300
Silver	0.016 J	21	1	1	0.4	0.4	Total (3020) Metals by ICPMS - 6020A		μg/L		0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.4	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Sodium	2800	21	21	13	34300	1100	Total(3020) Metals by ICP - 6010C	6010C	μg/L	2200	34300	4400	1100	3300	2900	3200	7200	2800	2200	2300	2300	2000
Thallium	0.009 J	21	0	0			Total (3020) Metals by ICPMS - 6020A	6020A		0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Vanadium	0.55	21	5	5	25	2	Total (3020) Metals by ICPMS - 6020A	6020A		5	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	7	3	0.027 U	0.027 U	0.027 U	0.027 U
Zinc	1.3	21	13	12	110	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	10	50	5.86 U	20 J	5.86 U	5.86 U	10	30	20	5.86 U	5.86 U	30	10
Total Low Level Mercury Mercury	0.0000584	15	15	7	0.0106	0.000002	Total Mercury by EPA 1631	EDA 1624	ma/t	0.000271	0.000211	0.000016	0.000000	0.000032	0.000008	0.000051			0.00133	0.000035	0.000002	
Dissolved Inorganic Elements	0.0000584	15	15		0.0100	0.000002	i otal Mercury by EPA 1631	EPA 1631	mg/L	0.0002/1	0.000211	0.000016	0.000009	0.000032	0.000008	0.000051			0.00133	0.000035	0.000002	
Aluminum	8.3 J	6	1	1	70	70	Dissolved Metals by ICP (6010C)	6010C	110/1	5.48 II	5.4811					70	5.48 II					
Antimony	0.522 J	6	6	6	32.1	1.6	Dissolved Metals by ICPMS (6020A)		μg/L μg/L		32.1					1.6	26					
Arsenic	13.9	6	4	3	6340	7	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.044 U	7					0.044 U	6340					
Barium	87.7	6	6	2	160	30	Dissolved Metals by ICPMS (6020A)	6020A		60	40					30	160					
Beryllium	0.01 J	6	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.028 U	0.028 U					0.028 U	0.028 U					
Cadmium	0.008 J	6	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.1 U	0.1 U					0.1 U	0.1 U					
Calcium	20400	6	6	4	64600	7800	Dissolved Metals by ICP (6010C)	6010C	μg/L	13900	64600					7800	41900					
Chromium	1.43	6	2	1	4.2	0.6	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.096 U	0.096 U					0.096 U	0.6					
Cobalt	1.21 0.34	6	6	3	10.9	0.1	Dissolved Metals by ICPMS (6020A)		μg/L	0.1	1					0.2	10.9					
Copper		6	5	1			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.033 U	1.8					0.033 U	0.033 U					
Lead	8760 0.244	6	0	0	33100	60	Dissolved Metals by ICP (6010C) Dissolved Metals by ICPMS (6020A)	6010C 6020A	μg/L ug/L		0.56 U 0.009 U					60 0.009 U	33100 0.009 U					
Magnesium	11400	6	6	4	105000	3690		6010C		9340	105000					3690	38700					
Manganese	1190	6	6	1	8780	9	Dissolved Metals by ICP (6010C) Dissolved Metals by ICPMS (6020A)	6020A	μg/L		786 I					9	8780 I					
Mercury	0.00000114	6	6	6	0.00137	0.000077	Dissolved Mercury by EPA 245.1 - Water	EPA 245.1	mg/I	1237	7007						0.00011	0.00137				0.00037
Nickel	1.84	6	5	0	21	2.9	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.107 U	21					2.9	7.6					
Potassium	730	6	5	0	1500	400	Dissolved Metals by ICP (6010C)	6010C	μg/L	400	1500					8.09 U	800					
Selenium	ND	21	15	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.263 U	0.263 U					0.263 U	0.263 U					
Silicon		6	6		7700	3700	Dissolved Metals by ICP (6010C)	6010C	μg/L		6100					4500	7700					
Silver	0.004 J	6	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L		0.009 U					0.009 U	0.009 U					
Sodium	2810 ND	6 19	- 6	6	31200	2200	Dissolved Metals by ICP (6010C)	6010C	μg/L	2200	31200					2300	7400					
Thallium Vanadium	0.74	19	13	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.006 U	0.006 U					0.006 U	0.006 U					
variadium Zinc	0.74 0.4 J	6	3	0	30	10	Dissolved Metals by ICPMS (6020A)	6020A 6020A	μg/L	0.026 U 0.164 U	0.026 U					0.026 U 0.164 U	0.026 U					
Dissolved Low Level Mercury	0.41		3	U	30	10	Dissolved Metals by ICPMS (6020A)	6020A	ug/L	0.164 U	20					0.164 U	10					
Mercury	0.00000114	15	14	11	0.000077	0.000001	Dissolved Mercury by EPA 1631	FPA 1631	ma/I	o ooooos	0.000057	0.000007	0.000003	0.00000017 UJ	0.000001	0.000007			0.000077	0.000007	0.000001	
Gasoline Range Organics and BTEX																						
4-Bromofluorobenzene							AK101 GRO/BTEX - Water	AK101	96												0.5 U	
Benzene							AK101 GRO/BTEX - Water	AK101	μg/L												46.9	
Ethylbenzene							AK101 GRO/BTEX - Water		μg/L												0.5 U	
GRO by 8260 (nC6-nC10)			+				AK101 GRO/BTEX - Water	AK101	μg/L							-						
m p-Xylenes Naphthalene	+		+	-		-	AK101 GRO/BTEX - Water	AK101	μg/L		-	-				-					96.1	
o-Xylene	+		1	1	-	1	AK101 GRO/BTEX - Water AK101 GRO/BTEX - Water		μg/L		1					1					1 U	
Toluene			+	1		<u> </u>	AK101 GRO/BTEX - Water AK101 GRO/BTEX - Water	AK101 AK101	μg/L												20 U	
Total PAH	+		+			<u> </u>	AK101 GRO/BTEX - Water AK101 GRO/BTEX - Water	AK101	ug/L							+					2 U	
Diesel Range Organics and Residual Ra	ange Organics		•				The state of the s	CIDAVA	LIE/ C		•	•				•					5 U	
Diesel Range Organics (nC10-nC25)							AK102DRO/103RRO	AK 102/103	mg/L												10	
o-Terphenyl							AK102DRO/103RRO	AK 102/103	%												1 U	
Residual Range Organics (nC25-nC36)							AK102DRO/103RRO	AK 102/103	mg/L												U	
General Chemistry																						
Bicarbonate as HCO3							Alkalinity	SM 2320B			226	230	49	218	119	43	105	55	77	112	114	130
Carbonate as CO3							Alkalinity	SM 2320B		1 U	1 U	1 U	10	1 U	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U
Chloride	+		+	-	-	-	Anions by ION Chromatography	EPA 300.0			0.5	1	0.7	0.6	0.4	0.7	0.8	0.8	0.7	0.6	0.4	0.5
Fluoride Nitrate-Nitrite Nitrogen (as N)	+		1	1	-	1	Anions by ION Chromatography	EPA 300.0	mg/L	0.006 U	0.006 U	0.006 U	0.006 U	0.2	0.006 U	0.006 U	0.006 U	0.8	0.006 U	0.006 U	0.006 U	0.006 U
Nitrate-Nitrite Nitrogen (as N) Sulfate			+	1		<u> </u>	Nitrogen, Nitrate-Nitrite (as N) Anions by ION Chromatography	EPA 353.2 EPA 300.0	mg/L	0.06 12.4	0.5 514	0.01 U 20.1	0.43 3.3	0.01 U	0.01 U 0.6	0.26 2.5	0.01 U 189	0.17 81	0.11 25.6	0.01 U 5.3	0.01 U 5,5	0.01 U 9
Total Alkalinity (as CaCO3)	+		+			<u> </u>	Anions by ION Chromatography Alkalinity	SM 2320B		12.4 64	514 185	20.1 189	3.3 40	179	98	36	189 86	81 45	25.b 63	5.3 91	93	107
Total Dissolved Solids (180)			1				Solids By SM 2540	SM 2540			930 J	210 J	50 J	180 J	110 J	40 J	390	190 U	120 J	110 J	100	100 J
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	47 U	9 U	2.6 U	2.6 U	8 UJ	14 U	7 UJ	171 U	2.6 U	2.6 UJ	2.6 U	17 U	1007
Field Parameters																						
Temperature								Field Test	oC	7.56	5.72	9.59	4.57	6.18	3.53	3.34	6.37	5.75	5.63	3.81	4.24	3.15
pH							-	Field Test	N/A		NR	7.12	6.01	4.8	6.32	5.1	3.3	5	5.97	6.12	6.95	7.07
Conductance			1					Field Test			1.41	0.378	0.104	0.369	0.245	0.085	0.64	0.309	0.193	0.209	0.215	0.196
Turbidity	_		1					Field Test			11.6	0.0	0.0	2.8	0.0	11	26.2	4	2.6	0.0	0.0	0.0
UKP	1		1	1	1			Field Test		90	NR	-19	242	-35	-44	220	49	190	193	244	167	177
Discaland Occurs																						
Dissolved Oxygen								Field Test	mg/L	0.00	0.00	0.00	10.84	0.00	0.00	8.08	0.00	6.9	5.97	9.59	3.28	8.31

Table 3-3 Groundwater Baseline Sample Results, Spring 2012

Table 3-3 Groundwater Baseline Sam	ple Results, Sp	ring 2012															
	Bartenand			No of	Maximum	Minimum	Station D			MW21	MW24	MW25	MW27	MW28	MW29	MW32	MW33
	Background Screen ng	No of	No of	Detected Resu ts	Maximum Detected	Minimum	Geograph c Area		Units	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Post 1955 MPA	Area	Delta	Delta
	Cr ter a	Samp es	Detect ons	Exceed ng	Va ue	Va ue	Samp e ID		1	0512MW21GW	0512MW24GW	0512MW25GW	0512MW27GW	0512MW28GW	0512MW29GW	0512MW32GW	0512MW33GW
Analyte				Background			Method										
Total Inorganic Elements Aluminum	405	21	16	-	9870	50			- 6	5 44 11		60					
Antimony	0.505 J	21	21	20	9100	0.49	Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6010C 6020A	μg/L μg/L	9100	50 99	7.97	60 12.7	270 13.2	9870 6.52	200 4,35	160 391
Arsenic	13.5	21	18	13	7030	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	2540	4	7.37	37	73	102	2	31
Barium	83.3	21	21	7	380	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	90	10	80	70	70	380	20	30
Beryllium	0.018 J	21	2	2	1.3	0.4	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	1.3	0.012 U	0.012 U
Cadmium	0.017 J 20600	21	21	1 9	100000	1 8010	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	1 42500	0.031 U	0.031 U
Chromium	4.95	21	12	2	59.4	0.7	Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6010C 6020A	μg/L ug/L	28700 0.107 U	19100 0.107 U	28000 0.107 U	100000 0.107 U	38900 1.9	42500 59.4	10900	15500 0.7
Cobalt	1.14	21	17	9	17.4	0.1	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.006 U	0.107 0	1.6	2.1	4.9	12.7	1.5	0.2
Copper	0.48	21	12	12	44.5	0.9	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	1.6	0.06 U	0.06 U	0.06 U	1.6	44.5	1.8	1.1
Iron	8990	21	21	4	36900	20	Total(3020) Metals by ICP - 6010C	6010C	μg/L	40	80	110	90	1480	14600	220	330
Lead	0.311	21	7	5	17.9	0.3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.019 U	0.019 U	0.019 U	0.019 U	0.4	17.9	0.019 U	0.3
Magnesium Manganese	11300 1120	21 21	21 19	15	125000 10100	3780 3	Total (3020) Metals by ICP - 6010C	6010C	μg/L	27600	15200	21000 84	59500	29900	43900	8530	10900
Mercury	0.0000584	6	6	6	0.00153	0.00008	Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 245.1 - Water	6020A EPA 245.1	μg/L mg/L	0.00016	6 J	0.00008	1710 J 0.00014	1410 J	871 J	105 J	17 J
Nickel	2.68	21	11	10	57	2	Total (3020) Metals by ICPMS - 6020A	6020A	ug/L	0.184 U	0.184 U	10	57	11	39	12	0.184 U
Potassium	708	21	18	10	3100	400	Total(3020) Metals by ICP - 6010C	6010C	μg/L	2000	600	600	2600	1000	3100	400	600
Selenium	ND	21	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
Silicon Silver	0.016 (21	21	1	18900	3800	Total(3020) Metals by ICP - 6010C	6010C	μg/L	7600	6900	5900	7200	5100	18900	8300	9600
Sodium	2800	21	21	13	34300	1100	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C	6020A 6010C	μg/L ug/L	0.013 U 3200	0.013 U 3700	0.013 U 4100	0.013 U 22600	0.013 U 10800	0.013 U 13600	0.013 U 1400	0.013 U 4100
Thallium	0.009 J	21	0	0	34300	1100	Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A	μg/L μg/L	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Vanadium	0.55	21	5	5	25	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	2	0.027 U	0.027 U	0.027 U	0.027 U	25	0.027 U	0.027 U
Zinc	1.3	21	13	12	110	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	5.86 U	5.86 U	30	40	10	110	10	5.86 U
Total Low Level Mercury	0.000050	45	45	7	0.0105	0.00000=											
Mercury Dissolved Inorganic Elements	0.0000584	15	15	7	0.0106	0.000002	Total Mercury by EPA 1631	EPA 1631	mg/L		0.0106			0.00134	0.00006	0.000151	0.00021
Aluminum	8.3 J	6	1	1	70	70	Dissolved Metals by ICP (6010C)	6010C	μg/L					5.48 II	5.48 U		
Antimony	0.522 J	6	6	6	32.1	1.6	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					3.3	2.3		
Arsenic	13.9	6	4	3	6340	7	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					39	20		
Barium	87.7	6	6	2	160	30	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					50	150		
Beryllium	0.01 J	6	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.028 U	0.028 U		
Cadmium Calcium	0.008 J 20400	6	6	4	64600	7800	Dissolved Metals by ICPMS (6020A) Dissolved Metals by ICP (6010C)	6020A 6010C	μg/L					0.1 U 37500	0.1 U 37500		
Chromium	1.43	6	2	1	4.2	0.6	Dissolved Metals by ICP (6010C) Dissolved Metals by ICPMS (6020A)	6020A	μg/L ug/L					0.096 U	4.2		
Cobalt	1.21	6	6	3	10.9	0.1	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					3	4		
Copper	0.34	6	1	1	1.8	1.8	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.033 U	0.033 U		
Iron	8760 0.244	6	5	1 0	33100	60	Dissolved Metals by ICP (6010C)	6010C	μg/L					670	1280		
Lead Magnesium	11400	6	6	4	105000	3690	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.009 U	0.009 U		
Manganese	11400	6	6	1	8780	3090	Dissolved Metals by ICP (6010C) Dissolved Metals by ICPMS (6020A)	6010C 6020A	μg/L μg/L					27800 924 J	37200 406 J		
Mercury	0.00000114	6	6	6	0.00137	0.000077	Dissolved Mercury by EPA 245.1 - Water	EPA 245.1		0.00015		0.000077	0.00017	3243	4007		
Nickel	1.84	6	5	0	21	2.9	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					6	12.5		
Potassium	730	6	5	0	1500	400	Dissolved Metals by ICP (6010C)	6010C	μg/L					900	1300		
Selenium	ND	21	15	0	7700	3700	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.263 U	0.263 U		
Silicon Silver	0.004	6	6	0	7/00	3700	Dissolved Metals by ICP (6010C) Dissolved Metals by ICPMS (6020A)	6010C 6020A	μg/L μg/L					4700 0.009 U	3700 0.009 U		
Sodium	2810	6	6	6	31200	2200	Dissolved Metals by ICP (6010C)	6010C	μg/L					11000	12100		
Thallium	ND	19	13	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.006 U	0.006 U		
Vanadium	0.74	6	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.026 U	0.026 U		
Zinc	0.4 J	6	3	0	30	10	Dissolved Metals by ICPMS (6020A)	6020A	μg/L					0.164 U	30		
Dissolved Low Level Mercury Mercury	0.00000114	15	14	11	0.000077	0.000001		EPA 1631	mg/L		0.000008			0.000038		0.000031	0.000007
Gasoline Range Organics and BTEX	0.00000114	15	14	- 11	0.000077	0.000001	Dissolved Mercury by EPA 1631	EPA 1631	mg/L		0.000008			0.000038	0.000001	0.000031	0.000007
4-Bromofluorobenzene							AK101 GRO/BTEX - Water	AK101	%								
Benzene							AK101 GRO/BTEX - Water	AK101	μg/L								
Ethylbenzene							AK101 GRO/BTEX - Water	AK101	μg/L								
GRO by 8260 (nC6-nC10)				-			AK101 GRO/BTEX - Water	AK101	μg/L								
m p-Xylenes Naphthalene							AK101 GRO/BTEX - Water AK101 GRO/BTEX - Water	AK101 AK101	μg/L								
o-Xylene							AK101 GRO/BTEX - Water AK101 GRO/BTEX - Water	AK101	μg/L μg/L								
Toluene							AK101 GRO/BTEX - Water	AK101	μg/L								
Total PAH							AK101 GRO/BTEX - Water		μg/L								
Diesel Range Organics and Residual Rang	e Organics																
Diesel Range Organics (nC10-nC25) o-Terphenyl					-		AK102DRO/103RRO AK102DRO/103RRO	AK 102/103 AK 102/103	mg/L %								
o-Terpnenyl Residual Range Organics (nC25-nC36)					-		AK102DRO/103RRO AK102DRO/103RRO	AK 102/103 AK 102/103									
General Chemistry							MK102DNO/103NNO	AR 102/103	mg/£								
Bicarbonate as HCO3							Alkalinity	SM 2320B	mg/L	188	84	133	270	233	295	58	77
Carbonate as CO3							Alkalinity	SM 2320B		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloride							Anions by ION Chromatography	EPA 300.0		0.4	0.5	1	1.5	0.6	0.6	0.5	0.8
Fluoride Nitrata Nitrata Nitragan (as N)							Anions by ION Chromatography	EPA 300.0	mg/L	0.4	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
Nitrate-Nitrite Nitrogen (as N) Sulfate							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2		0.01 U 21	0.83	1.13	0.58	0.01 U 42.8	0.01 U	0.8	0.52
Total Alkalinity (as CaCO3)							Anions by ION Chromatography Alkalinity	EPA 300.0 SM 2320B	mg/L mg/l	21 154	37.9 69	41.5 109	360 221	42.8 191	28 242	12.2 48	18.2 63
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540		200 J	150 J	170 J	660 J	240	270	80	110 J
Total Suspended Solids							Solids By SM 2540	SM 2540			2.6 U	2.6 UJ	2.6 UJ	30 U	934	2.6 U	8 U
Field Parameters																	
Temperature								Field Test		2.36	4.78	14.62	9.23	7.91	ļ	4	2.45
pH Conductance				-				Field Test		6.97	6.26	4.11	4.82	4.94	Water quality	4.61	6.11
Conductance Turbidity								Field Test Field Test		0.37 0.0	0.25	0.258 0.4	0.925 2.4	0.464 32.8	meter not	0.139	0.193 0.5
ORP								Field Test	mV	183	195	296	204	36	functioning.	243	229
Dissolved Oxygen								Field Test	mg/L	0.27	8.36	0.00	0.00	0.00		3.66	9.93

Table 3-4 Surface Water Baseline Sample Results, Spring 2012

Total Inorganic Elements	80 1.52 1.1 26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J .00000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 7 6 7 0 0 7 7 1 1 1 0 0 7 7 0 0 1 1 7 7 0 0 7 7 7 0 0 7 7 7 0 0 7 7 7 0 0 7 7 7 0 0 7	No. of Detected Results Exceeding Background 1 7 6 3 0 0 1 1 1 4 0 5 0 1 1 1 1 0 0 7 7 6 0 7 6 1 0 7	90 281 1400 170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200 10 0.000478	Mini mum Detec ted Value 60 1.79 14 20 11000 0.6 0.2 120 120 1200 10 0.000005	Station ID Geographic Area Sample ID	6010C 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C	Peg/L Peg	RD04 Red Devil Creek 0512RD04SW 60 25.9 14 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	RD05 Red Devil Creek 0512RD05SW 5.44 U 191 1400 170 0.012 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	80 80 278 113 30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 1500 0.013 U 0.027 U 5.86 U	RD08 Red Devil Creek 0512RD08SW 70 281 112 30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 1400 0.013 U 5.86 U	RD09 Red Devil Creek 0512RD09SW 70 253 109 20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	90 1.79 0.06 U 20 0.012 U 0.031 U 11000 0.107 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 0.027 U 5.86 U	RD12 Red Devil Creek 0512RD12SW 80 80.7 40 20 0.012 U 0.031 U 11100 0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Total Inorganic Elements	80 1.52 1.1 26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J .00000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 7 6 7 0 0 7 7 1 1 1 0 7 7 0 0 1 1 7 7 6 6	### Background 1	90 281 1400 170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200	60 1.79 14 20 11000 0.6 0.2 120 120 11 36 1200 11 0.000005	Total(3020) Metals by ICP - 6010C	6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C	нg/L нg/L нg/L нg/L нg/L нg/L нg/L нg/L	60 25.9 14 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 5.86 U	5.44 U 191 1400 170 0.012 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	80 278 113 30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U	70 281 112 30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	70 253 109 20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	90 1.79 0.06 U 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	80 80.7 40 20 0.012 U 0.031 U 11100 0.6 0.006 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Total Inorganic Elements	80 1.52 1.1 26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 7 6 7 0 0 7 1 4 0 7 0 7 7 1 1 0 7 0 7 0 7 1 1 0 0 7 7 0 0 7 7 0 0 0 0	1 7 6 3 0 0 0 1 1 4 0 5 0 5 0 1 1 4 1 1 0 0 5 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0	90 281 1400 170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200	11000 0.6000005	Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C	нg/L нд/L	25.9 14 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 0.027 U 5.86 U	191 1400 170 0.012 U 0.031 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	278 113 30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	281 112 30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	253 109 20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	1.79 0.06 U 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	80.7 40 20 0.012 U 0.031 U 11100 0.6 0.006 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Aluminum 80 Antimony 1.5 Arsenic 1. Barium 26 Beryllium NI Cadmium NI Calcium 184 Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96 Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silver NI Sodium 155 Thallium NI Vanadium 0. Zinc 0.5 Total Low Level Mercury 0.000 Dissolved Inorganic Elements Aluminum 1.4 Antimony 1.4 Arsenic 0 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 C	1.52 1.1 26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 6 7 0 0 7 1 4 0 7 0 7 7 1 1 0 7 0 7 0 7 7 1 1 0 0 7 7 7 1 1 0 0 0 0	7 6 3 0 0 0 1 1 1 4 0 5 0 1 1 1 1 0 0 1 7 0 0 7 6	281 1400 170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200	1.79 14 20 11000 0.6 0.2 120 120 120 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C	нg/L нд/L	25.9 14 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 0.027 U 5.86 U	191 1400 170 0.012 U 0.031 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	278 113 30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	281 112 30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	253 109 20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	1.79 0.06 U 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	80.7 40 20 0.012 U 0.031 U 11100 0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Aluminum 88 Antimony 1.5 Arsenic 1.5 Barium 26 Beryllium NI Cadmium NI Calcium 184 Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96i Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Silicon Silicon NI Silicon NI Silicon NI Silicon 0.5 Silicon 0.5 Silicon NI Silicon NI Silicon NI Silicon NI Sodium 155 Thallium NI Vanadium 0.5 Total Low Level Mercury 0.0000 Dissolved Inorganic Elements Aluminum 1.4 Antimony 1.4 Arsenic 0.0 Barium 2.1 Beryllium NI Calcium 192 Chromium 0.2 Codalt 0.0 Copper 0.2 Iron 1.2 Iron 1.2 Iron 1.3 Iron 1.4 Iron 1.4 Iron 1.4 Iron 1.5 Iro	1.52 1.1 26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 6 7 0 0 7 1 4 0 7 0 7 7 1 1 0 7 0 7 0 7 7 1 1 0 0 7 7 7 1 1 0 0 0 0	7 6 3 0 0 0 1 1 1 4 0 5 0 1 1 1 1 0 0 1 7 0 0 7 6	281 1400 170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200	1.79 14 20 11000 0.6 0.2 120 120 120 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C	нg/L нд/L	25.9 14 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 0.027 U 5.86 U	191 1400 170 0.012 U 0.031 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	278 113 30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	281 112 30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	253 109 20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	1.79 0.06 U 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	80.7 40 20 0.012 U 0.031 U 11100 0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Antimony 1.5 Arsenic 1. Barium 26 Beryllium NI Cadmium NI Calcium 184 Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96i Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Siliver NI Silicon Siliver NI Thallium NI Vanadium 0.5 Total Low Level Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0.6 Barium 2.1 Beryllium NI Calcium 192 Chromium 0.2 Codalt 0.0 Copper 0.2 Codper 0.2 Codper 0.2 Copper 0.2 Clead NI Magnesium 102	1.52 1.1 26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 7 0 0 7 1 4 0 7 7 7 1 1 0 7 0 7 7 0 7 0 7 7 7 1 1 7 7 7 7	6 3 0 0 1 1 1 4 0 5 5 0 1 1 4 1 1 0 0 1 7 6	1400 170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200	14 20 11000 0.6 0.2 120 6200 11 36 1200 3300 1200	Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C	нg/L нд/L	14 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	1400 170 0.012 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	113 30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	112 30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	109 20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.06 U 20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	40 20 0.012 U 0.031 U 11100 0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Barium 26 Beryllium NI Cadmium NI Calcium 184 Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96 Manganese 17 Nickel 0.4 Potassium 21 Selenium 0.5 Silicon Silicon Silicor NI Sodium 153 Thallium NI Vanadium 0.5 Silicon 0.5 Total Low Level Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Arsenic 0 Barium 20 Beryllium NI Cadmium NI Cadmium NI Cadmium NI Cadmium 0.2 Chromium 0.2 <	26.4 ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 0 0 7 1 4 0 7 0 7 7 1 1 0 7 0 7 7 0 7 7 0 7 7 0 7 0	3 0 0 0 1 1 1 4 0 5 0 1 1 4 1 1 0 0 1 7 0 7 6	170 37900 0.6 9.1 1990 41900 525 36 1200 4300 12200 10 0.000478	20 11000 0.6 0.2 120 6200 11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6020A 6010C 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A	нg/L нд/L	20 0.012 U 0.031 U 11000 0.107 U 0.006 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 0.027 U 5.86 U	170 0.012 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	30 0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	30 0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	20 0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	20 0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	20 0.012 U 0.031 U 11100 0.6 0.006 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Beryllium	ND ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 7 1 4 0 7 0 7 7 1 1 0 7 0 7 0 7 0 7 0 7	0 0 1 1 4 0 5 0 5 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1	37900 0.6 9.1 1990 41900 525 36 1200 4300 12200 10	11000 0.6 0.2 120 6200 11 36 1200 3300 1200 10	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6010C 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A	нg/L нд/L	0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 1200 0.013 U 5.86 U	0.012 U 0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	0.012 U 0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.012 U 0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.012 U 0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.012 U 0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.012 U 0.031 U 11100 0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Cadmium NI Calcium 184 Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96 Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Silicon Siliver Nr Sodium 15 Thallium NI Vanadium 0.5 Total Low Level Mercury Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 1.4 Artimony 1.4 Arsenic 0 Barium 2 Beryllium NI Cadmium NI Cadcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 1.0	ND 18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 7 1 4 0 7 0 7 7 1 1 1 0 7 0 7 0 7 0 7 7 0 7	0 1 1 4 0 5 0 5 0 1 1 4 1 1 1 0 0 0 1 1 7	0.6 9.1 1990 41900 525 36 1200 4300 12200 10	0.6 0.2 120 6200 11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6010C 6020A 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.031 U 11000 0.107 U 0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.031 U 37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	0.031 U 11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.031 U 11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.031 U 11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.031 U 11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.031 U 11100 0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Calcium 184 Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96 Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Silicon Silver NI Sodium 15 Thallium NI Vanadium 0. Zinc 0.5 Total Low Level Mercury Mercury Dissolved Inorganic Elements Aluminum Aluminum 11. Antimony 1.4 Arsenic 0 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 1.0 Lead NI	18400 0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J .00000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 1 4 0 7 0 7 7 1 1 0 7 7 1 1 0 7 0 7 0 7 7 0 7 6	1 1 4 0 5 0 5 0 1 1 4 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0	0.6 9.1 1990 41900 525 36 1200 4300 12200 10	0.6 0.2 120 6200 11 36 1200 3300 1200 10 0.000005	Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6010C 6020A 6020A 6020A 6010C 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	11000 0.107 U 0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	37900 0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	11900 0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	11800 0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	11700 0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	11000 0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	11100 0.6 0.006 U 0.006 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Chromium 0.4 Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96 Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Ni Sodium 158 Thallium NI Vanadium 0.5 Total Low Level Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Copper 0.2 Iron 10 Lead NI Magnesium 102	0.43 0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.0000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 4 0 7 0 7 7 7 1 1 0 7 0 7 0 0 7 7 7 0 0 7 7 7 7	1 4 0 5 0 1 1 4 1 1 0 0 0 0 1 7	0.6 9.1 1990 41900 525 36 1200 4300 12200 10	0.6 0.2 120 6200 11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6020A 6010C 6020A 6010C 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.107 U 0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.107 U 9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	0.107 U 0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.107 U 0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.107 U 0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.107 U 0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.6 0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Cobalt 0.0 Copper 0.3 Iron 13 Lead 0.0 Magnesium 96 Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Ni Sodium 153 Thallium Ni Vanadium 0.5 Zinc 0.5 Total Low Level Mercury 0.0000 Dissolved Inorganic Elements Aluminum Aluminum 11. Antimony 1.4 Arsenic 0 Beryllium Ni Cadmium Ni Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead Ni Magnesium 102	0.066 0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.0000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 0 7 0 7 7 1 1 0 7 0 7 0 0 7	4 0 5 0 1 4 1 1 1 0 0 0 1 0 0 1 7	9.1 1990 41900 525 36 1200 4300 12200 10	0.2 120 6200 11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6020A Total (3020) Metals by ICPMS - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A	6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.006 U 0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	9.1 0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U	0.2 0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.2 0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.2 0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.006 U 0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.006 U 0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Copper	0.37 138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.0000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 7 0 7 7 1 1 0 7 0 7 0 0 1	0 5 0 1 4 1 1 1 0 0 0 1 1 7	1990 41900 525 36 1200 4300 12200 10 0.000478	120 6200 11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A	6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.06 U 120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.06 U 1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	0.06 U 160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.06 U 150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.06 U 150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.06 U 160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.06 U 130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Iron	138 0.021 9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.0000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 0 7 7 1 1 1 0 7 0 7 0 0 1	5 0 1 4 1 1 1 0 0 0 1 1 7	41900 525 36 1200 4300 12200 10 0.000478	6200 11 36 1200 3300 1200	Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6010C 6020A 6010C 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	120 0.019 U 6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	1990 0.019 U 41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U	160 0.019 U 7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	150 0.019 U 7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	150 0.019 U 7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	160 0.019 U 6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	130 0.019 U 6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Magnesium 968 Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Silicon Silver NI Sodium 158 Thallium NI Vanadium 0.5 Total Low Level Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0 Barium 2a Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Copper 0.2 Iron 10 Lead NI Magnesium 102	9680 17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J .00000263	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 1 1 0 7 0 7 0 1 1 7 0 7 0 7 6	1 4 1 1 0 0 0 1 0 0 1 7	525 36 1200 4300 12200 10 0.000478	11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6010C 6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	6280 11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	41900 525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U	7410 22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	7370 20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	7250 18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	6200 11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	6380 11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Manganese 17 Nickel 0.4 Potassium 218 Selenium 0.5 Silicon Ni Silver NI Sodium 158 Thallium NI Vanadium 0. Zinc 0.5 Total Low Level Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 1.0 Magnesium 102	17.5 0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.0000263	7 7 7 7 7 7 7 7 7 7 7 7 7	7 1 1 0 7 0 7 0 0 1	4 1 1 0 0 1 0 0 1 7	525 36 1200 4300 12200 10 0.000478	11 36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6020A 6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	11 J 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	525 36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U	22 J 0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	20 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	18 0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	11 0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	11 0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Nickel	0.44 218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.00000263	7 7 7 7 7 7 7 7 7 7 7 7	1 1 0 7 0 7 0 0 0 1	1 1 0 0 1 0 0 0 1 7	36 1200 4300 12200 10 0.000478	36 1200 3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6020A 6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	36 1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U	0.184 U 24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.184 U 24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.184 U 24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.184 U 24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Potassium 218	218 J 0.5 J ND 1580 ND 0.3 0.5 J 0.0000263 11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7 7 7 7 7 7 7 7	1 0 7 0 7 0 0 1	1 0 0 1 0 0 0 1 7	1200 4300 12200 10 0.000478	1200 3300 1200 10 0.000005	Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPWS - 6020A Total(3020) Metals by ICPMS - 6020A Total(3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A	6010C 6020A 6010C 6020A 6010C 6020A 6020A 6020A 6020A EPA 1631	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	1200 0.27 U 4300 0.013 U 12200 0.013 U 0.027 U 10	24.9 U 0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	24.9 U 0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	24.9 U 0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	24.9 U 0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Selenium 0.5 Silicon Silicon Silver NI Sodium 153 Thallium NI Vanadium 0. Zinc 0.5 Total Low Level Mercury Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Arsenic 0 Barium 2 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Copalt 0.0 Copper 0.2 Iron 1.0 Lead NI Magnesium 102	0.5 J ND 1580 ND 0.3 0.5 J .00000263 11.9 J 1.4 J 0 24 ND ND ND	7 7 7 7 7 7 7 7 7 7 7	0 7 0 7 0 0 0 1	0 1 0 0 0 1 7	12200 10 0.000478	3300 1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A	6020A 6010C 6020A 6010C 6020A 6020A 6020A EPA 1631	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.27 U 4300 0.013 U 12200 0.013 U 0.027 U	0.27 U 3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.27 U 3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	0.27 U 3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	0.27 U 3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Silicon Silver NI Sodium 15i Thallium NI Vanadium 0. Zinc 0.5 Total Low Level Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Artimony 1.4 Arsenic 0 Barium NI Cadmium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Ipon 1.2 Lead NI Magnesium 102	ND 1580 ND 0.5 J 0.0000263 11.9 J 1.4 J 0 24 ND ND ND	7 7 7 7 7 7 7 7 7 7 7	7 0 7 0 0 1 7 7	0 1 0 0 1 7	12200 10 0.000478	1200 10 0.000005	Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6010C 6020A 6010C 6020A 6020A 6020A EPA 1631	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	4300 0.013 U 12200 0.013 U 0.027 U 10	3400 0.013 U 1500 0.013 U 0.027 U 5.86 U	3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	3400 0.013 U 1400 0.013 U 0.027 U 5.86 U	3300 0.013 U 1200 0.013 U 0.027 U 5.86 U	3400 0.013 U 1200 0.013 U 0.027 U 5.86 U
Silver NI Sodium 158 Thallium NI Vanadium 0. Zinc 0.5 Total Low Level Mercury Mercury 0.0000 Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0 Barium 24 Beryllium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	1580 ND 0.3 0.5 J 0.00000263 11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7 7 7 7 7 7 7	7 0 0 0 0 1	1 0 0 1 7	12200 10 0.000478	1200 10 0.000005	Total (3020) Metals by ICPMS - 6020A Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6020A 6010C 6020A 6020A 6020A EPA 1631	μg/L μg/L μg/L μg/L μg/L μg/L mg/L	0.013 U 1200 0.013 U 0.027 U 5.86 U	0.013 U 12200 0.013 U 0.027 U 10	0.013 U 1500 0.013 U 0.027 U 5.86 U	0.013 U 1400 0.013 U 0.027 U 5.86 U	0.013 U 1400 0.013 U 0.027 U 5.86 U	0.013 U 1200 0.013 U 0.027 U 5.86 U	0.013 U 1200 0.013 U 0.027 U 5.86 U
Sodium	1580 ND 0.3 0.5 J 0.00000263 11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 0 0 1 7 0 7 6	1 0 0 1 7	0.000478	10	Total(3020) Metals by ICP - 6010C Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6010C 6020A 6020A 6020A EPA 1631	μg/L μg/L μg/L μg/L μg/L	1200 0.013 U 0.027 U 5.86 U	12200 0.013 U 0.027 U 10	1500 0.013 U 0.027 U 5.86 U	1400 0.013 U 0.027 U 5.86 U	1400 0.013 U 0.027 U 5.86 U	1200 0.013 U 0.027 U 5.86 U	1200 0.013 U 0.027 U 5.86 U
Thallium	ND 0.3 0.5 J	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 0 0 1	0 0 1 7 0 7 6	0.000478	10	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6020A 6020A 6020A 6020A EPA 1631	μg/L μg/L μg/L mg/L	0.013 U 0.027 U 5.86 U	0.013 U 0.027 U 10	0.013 U 0.027 U 5.86 U	0.013 U 0.027 U 5.86 U	0.013 U 0.027 U 5.86 U	0.013 U 0.027 U 5.86 U	0.013 U 0.027 U 5.86 U
Vanadium 0. Zinc 0.5 Total Low Level Mercury 0.0000 Dissolved Inorganic Elements 1.1 Aluminum 1.1 Arsenic 0 Barium 2 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Copalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	0.3 0.5 J 0.00000263 11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7 7 7	0 1 7 0 7 6	0 1 7	0.000478	0.000005	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6020A 6020A EPA 1631	µg/L µg/L mg/L	0.027 U 5.86 U	0.027 U 10	0.027 U 5.86 U	0.027 U 5.86 U	0.027 U 5.86 U	0.027 U 5.86 U 0.000005	0.027 U 5.86 U
Zinc 0.5	0.5 J 0.0000263 11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7 7 7	0 7 6	0 7 6	0.000478	0.000005	Total (3020) Metals by ICPMS - 6020A Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6020A EPA 1631 6010C	µg/L mg/L	5.86 U	10	5.86 U	5.86 U	5.86 U	5.86 U 0.000005	5.86 U
Mercury 0.0000 Dissolved Inorganic Elements 11. Aluminum 11. Antimony 1.4 Arsenic 0 Barium 20 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7	0 7 6	0 7 6	249		Total Mercury by EPA 1631 Dissolved Metals by ICP (6010C)	6010C	mg/L	0.000024	0.000041	0.000328	0.000467	0.000321		0.000478
Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0 Barium 22 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7	0 7 6	0 7 6	249		Dissolved Metals by ICP (6010C)	6010C		0.000024	0.000041	0.000328	0.000467	0.000321		0.000478
Dissolved Inorganic Elements Aluminum 11. Antimony 1.4 Arsenic 0 Barium 22 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	11.9 J 1.4 J 0 24 ND ND	7 7 7 7 7	7	7 6	249		Dissolved Metals by ICP (6010C)	6010C								0.0000
Aluminum 11. Antimony 1.4 Arsenic 0 Barium 22 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	1.4 J 0 24 ND ND	7 7 7 7 7	7	7 6		1.91			μg/L							
Antimony 1.4 Arsenic 0 Barium 2 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	1.4 J 0 24 ND ND	7 7 7 7 7	7	7 6		1.91			P6/ =	5.48 U	5.48 U	5.48 U	5.48 U	5.48 U	5.48 U	5.48 U
Arsenic 0 Barium 2 Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	0 24 ND ND	7 7 7	6	6				6020A	μg/L	17.6	95.7	195	210	249	1.91	58.5
Beryllium NI Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	ND ND	7	7		020	10	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	10	620	75	71	87	0.044 U	28
Cadmium NI Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	ND			1	90	10	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	20	90	20	20	20	20	10
Calcium 192 Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 1.0 Lead NI Magnesium 102		7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U
Chromium 0.2 Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102		7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Cobalt 0.0 Copper 0.2 Iron 10 Lead NI Magnesium 102	19200	7	7	1	36400	10600	Dissolved Metals by ICP (6010C)	6010C	μg/L	10600	36400	11400	11300	11200	10700	10700
Copper 0.2 Iron 10 Lead NI Magnesium 102	0.23	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.096 U	0.096 U	0.096 U	0.096 U	0.096 U	0.096 U	0.096 U
Iron 10 Lead NI Magnesium 102	0.056	7	1	1	4.2	4.2	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.008 U	4.2	0.008 U	0.008 U	0.008 U	0.008 U	0.008 U
Lead NI Magnesium 102	0.27	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Magnesium 102	100	7	6	1	1100	20	Dissolved Metals by ICP (6010C)	6010C	μg/L	20	1100	30	30	40	0.56 U	20
	ND 10300	7	0 7	0	20500	C010	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U
ivialigatiese 15		7	6	1	38500 307	6010 3	Dissolved Metals by ICP (6010C) Dissolved Metals by ICPMS (6020A)	6010C 6020A	μg/L μg/L	6010 3 J	38500 307	7080 10 J	7080 9	7000 9	6020 0.047 U	6200 3
Nickel 0.3	0.35	7	1	1	17.5	17.5	Dissolved Metals by ICPMS (6020A)	6020A	μg/L μg/L	0.107 U	17.5	0.107 U	0.107 U	0.107 U	0.047 U	0.107 U
	220 J	7	1	1	1300	1300	Dissolved Metals by ICP (6010C)	6010C	μg/L	8.09 U	1300	8.09 U	8.09 U	8.09 U	8.09 U	8.09 U
	0.5 J	7	0	0	1500	1500	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U
Silicon		7	7		4300	3200	Dissolved Metals by ICP (6010C)	6010C	μg/L	3200	4300	3400	3400	3300	3300	3300
* **	ND	7	1	0	0.03	0.03	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.009 U	0.009 U	0.03	0.009 U	0.009 U	0.009 U	0.009 U
Sodium 16:	1610	7	7	1	12300	1200	Dissolved Metals by ICP (6010C)	6010C	μg/L	1200	12300	1500	1500	1400	1200	1200
	ND	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
	0.13 J	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.026 U	0.026 U	0.026 U	0.026 U	0.026 U	0.026 U	0.026 U
	ND	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.164 U	0.164 U	0.164 U	0.164 U	0.164 U	0.164 U	0.164 U
Dissolved Low Level Mercury	,															
Mercury 0.0000	.00000637	7	7	5	0.000188	0.000002	Dissolved Mercury by EPA 1631	EPA 1631	mg/L	0.000011	0.000002	0.00002	0.000025	0.000014	0.000005	0.000188
Arsenic Speciation																
Arsenate		7	7		83.9	0.665	EPA 1632	EPA 1632	μg/L	10.4	83.9	72.2	77	82.5	0.665	27.7
Arsenite		7	7		409	0.014	EPA 1632	EPA 1632	μg/L	0.097 J	409 J	2.2 J	1.65 J	2.01 J	0.014 J	0.548 J
Inorganic Arsenic		7	7		492	0.68	EPA 1632	EPA 1632	μg/L	10.5	492	74.4	78.6	84.5	0.68	28.2
Methylmercury				<u> </u>			1							<u> </u>		
ivicaryillici cui y	l l	Ī														
Methylmercury 0.0	0.08 J	7	7	7	0.289	0.108	EPA 1630	EPA 1630	ng/L	0.108	0.289	0.158	0.151	0.146	0.11	0.14
General Chemistry							1									
Bicarbonate as HCO ₃				1			Alkalinity	SM 2320B	mg/L	56	298	61	65	61	56	56
Carbonate as CO ₃							Alkalinity	SM 2320B	ma/l	1 U	111	111	111	111	1 U	1 U
							•		mg/L		1 U	1 U	1 U	1 U		
Chloride Fluoride				t .	1		Anions by ION Chromatography Anions by ION Chromatography	EPA 300.0 EPA 300.0	mg/L mg/L	0.5 0.006 U	0.5 0.006 U	0.5 0.006 U	0.4 0.006 U	0.5 0.006 U	0.3 0.006 U	0.5 0.006 U

Table 3-4 Surface Water Baseline Sample Results, Spring 2012

Analyte	Background Screening Criteria	No. of Samples	No. of Detec- tions	No. of Detected Results Exceeding Background	Maxi mum Detec ted Value	Mini mum Detec ted Value	Station ID Geographic Area Sample ID Method		Units	RD04 Red Devil Creek 0512RD04SW	RD05 Red Devil Creek 0512RD05SW	RD06 Red Devil Creek 0512RD06SW	RD08 Red Devil Creek 0512RD08SW	RD09 Red Devil Creek 0512RD09SW	RD10 Red Devil Creek 0512RD10SW	RD12 Red Devil Creek 0512RD12SW
Nitrate-Nitrite Nitrogen (as N)							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2	mg/L	0.24	0.01 U	0.23	0.22	0.22	0.24	0.23
Sulfate							Anions by ION Chromatography	EPA 300.0	mg/L	5.2	33.8	6.7	6.3	6.7	5.2	5.7
Total Alkalinity (as CaCO ₃)							Alkalinity	SM 2320B	mg/L	46	244	50	54	50	46	46
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540	mg/L	70 J	260 J	70 J	30 J	eo 1	60 J	50 J
Total Organic Carbon							Total Organic Carbon	SM 5310B	mg/L	2	0.1 U	2	2	2	2	2
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	2.6 UJ	8 UJ	2.6 UJ	61	16 UJ		2.6 UJ
Field Parameters																
Temperature								Field Test	°C	3.99	3.07	4.04	3.89	3.93	3.92	4.08
pH								Field Test	pH units	6.54	6.28	6.78	6.53	6.43	6.55	6.82
Conductance								Field Test	mS/cm	0.110	0.033	0.122	0.131	0.121	0.122	0.111
Turbidity								Field Test	NTU	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ORP								Field Test	mV	155	38	122	204	132	167	68
Dissolved Oxygen								Field Test	mg/L	13.61	0.02	17.85	19.46	16.70	14.59	14.61

Key:

μg/L = micrograms per liter

CaCO_{3 =} calcium carbonate

ICP = inductively-coupled plasma
ICPMS inductively-coupled plasma

mass spectometry

ND = not detected

°C = degrees Celsius

ORP = oxidation-reduction potential

mS/c = miliSiemens per centimeter

J = analyte detected but relative percent difference was outside control limits;

therefore concentration is estimated

mg/L = milligrams per liter
mV = millivolt
NTU = nephelometric turbidity unit
U = analyte was analyzed for but not detected.

Value provided is reporting limit

Table 3-5 Groundwater Baseline Sample Results, Fall 2012

Table 3-5 Groundwater Base	line Sample Re	sults, Fall 2	2012	No. of	1	i	Chattan ID			B414/04	I MANAGE	L 8414/00	BANA/10	D 0) A / 1 / 2	D4)4/15
	Background			No. of Detected	Maximum	Minimum	Station ID		-	MW04	MW06	MW09	MW10	MW14	MW15
Analyte	Screening	No. of	No. of Detections	Results	Detected	Detected	Geographic Area		Units	Post 1955 MPA	Post 1955 MPA				
	Criteria	Jampies	Detections	Exceeding	Value	Value	Sample ID			0912MW04GW	0912MW06GW	0912MW09GW	0912MW10GW	0912MW14GW	0912MW15GW
				Background			Method								
Total Inorganic Elements															
Aluminum	405	17	12	3	1920	50	Total(3020) Metals by ICP - 6010C	6010C	μg/L	90	5.44 U	500	160	1920	50
Antimony	0.505 J	17	17	17	9490	1.34	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	32.7	6.19	11.7	2.65	74.8	8430
Arsenic	13.5	17	17	12	9710	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	10	34	13	110	9710	5370
Barium	83.3	17	17	6	530	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	60	80	340	100	140	40
Beryllium	0.018 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.012 U	0.012 U				
Cadmium	0.017 J	17	1	1	0.6	0.6	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.6	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U
Calcium	20600	17	17	14	98600	10300	Total(3020) Metals by ICP - 6010C	6010C	μg/L	64400	32500	53100	22400	22500	23100
Chromium	4.95	17	11	6	47.7	0.8	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	4.2	0.107 U	47.7	4	11.1	3.3
Cobalt	1.14	17	13	8	27.8		Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	3.4	1.5	6.6	0.4	8.8	0.1
Copper	0.48	17	13	13	10.6	1.2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	6.4	0.06 U	4.3	1.2	10.6	2
Iron	8990	17	14	3	49200	30	Total(3020) Metals by ICP - 6010C	6010C	μg/L	190	2460	2070	1360	25400	40
Lead	0.311	17	6	4	1.9	0.3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.019 U	0.019 U	0.7	0.4	1.9	0.019 U
Magnesium	11300	17	17	16	98100	7640	Total(3020) Metals by ICP - 6010C	6010C	μg/L	98100	30400	34400	32100	18700	35900
Manganese	1120	17	15	6	7650		Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	1750 J	603	4880 J	184 J	4390 J	3
Mercury	0.0000584	7	7	7	0.00572		Total Mercury by EPA 245.1 - Water	EPA 245.1	mg/L					0.00572 J	0.0024 J
Nickel	2.68	17	13	13	50	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	50	3	33	3	15	12
Potassium	708	17	16	13	3700	500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	1400	900	2600	1200	1100	1700
Selenium	ND	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.27 U	0.27 U				
Silicon		17	17		10200	4400	Total(3020) Metals by ICP - 6010C	6010C	μg/L	5600	9200	8800	4700	9900	7000
Silver	0.016 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U	0.013 U				
Sodium	2800	17	17	13	21400	1500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	8800	4400	4700	3400	4100	4500
Thallium	0.009 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U	0.013 U				
Vanadium	0.55	17	2	2	9		Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.027 U	0.027 U	0.027 U	0.027 U	9	2
Zinc	1.3	17	3	3	20	20	Total(3020) Metals by ICP - 6010C	6010C	μg/L	20	3.88 U	3.88 U	3.88 U	20	3.88 U
Total Low Level Mercury															
Mercury	0.0000584	10	8	4	0.000197	0.000008	Total Mercury by EPA 1631	EPA 1631	mg/L	0.000197 J	0.00000016 UJ	0.000172 J	0.00000016 UJ		
Dissolved Inorganic Elements					1										
Dissolved Mercury							Dissolved Mercury by EPA 245.1 - Water	EPA 245.1	mg/L					0.000254 J	0.002 J
Dissolved Low Level Mercury															
Mercury	0.00000114	11	6	6	0.00006	0.000003	Dissolved Mercury by EPA 1631	EPA 1631	mg/L	0.00005 J	0.00000017 UJ	0.000011 J	0.00000017 UJ		
General Chemistry															
Bicarbonate as HCO3							Alkalinity	SM 2320B	mg/L	143 J	217 J	315 J	218 J	122 J	77 J
Carbonate as CO3							Alkalinity	SM 2320B	mg/L	1 UJ	1 UJ				
Chloride							Anions by ION Chromatography	EPA 300.0		0.5 J	0.8	0.5 J	1.2 J	0.7 J	3.5
Fluoride							Anions by ION Chromatography	EPA 300.0		0.006 UJ	0.006 U	0.006 UJ	0.006 UJ	0.006 J	0.006 U
Nitrate-Nitrite Nitrogen (as N)							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2		0.01 UJ	0.01 U	0.1 J	0.01 UJ	0.01 UJ	0.21
Sulfate							Anions by ION Chromatography	EPA 300.0		424 J	25	20.5 J	9.3 J	41 J	128
Total Alkalinity (as CaCO3)							Alkalinity	SM 2320B		117 J	178 J	258 J	178 J	100 J	63 J
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540	mg/L	760 J	230 J	310 J	200 J	200 J	310 J
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	2.6 UJ	2.6 UJ	22 J	81	135 J	2.6 UJ
Field Parameters															
Temperature								Field Test	°C	4.61	4.25	4.48	3.56	6.60	6.58
рН								Field Test	N/A	5.83	7.11	6.85	6.87	6.23	6.4
Conductance								Field Test		1.17	0.405	0.541	0.413	0.378	0.429
Turbidity								Field Test	NTU	0.0	0.8	40.1	0.0	0.0	0.0
ORP								Field Test	mV	109	-22	14	-40	-39	240
	1	1					1	ricia rest		103				33	

Table 3-5 Groundwater Baseline Sample Results, Fall 2012

				No. of			Station ID			MW16
Analyte	Background	No. of	No. of	Detected Results	Maximum Detected	Minimum Detected	Geographic Area		Units	Post 1955 MPA
Analyte	Screening Criteria	Samples	Detections	Exceeding	Value	Value	Sample ID		Units	0912MW16GW
	Criteria			Background	Value	Value	Method			03121010010000
Total Inorganic Elements				Duckground	ı		I memou			
Aluminum	405	17	12	3	1920	50	Total(3020) Metals by ICP - 6010C	6010C	μg/L	100
Antimony	0.505 J	17	17	17	9490	1.34	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	757
Arsenic	13.5	17	17	12	9710	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	830
Barium	83.3	17	17	6	530	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	50
Beryllium	0.018 J	17	0	0	330	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.012 U
Cadmium	0.017 J	17	1	1	0.6	0.6	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.031 U
Calcium	20600	17	17	14	98600	10300	Total(3020) Metals by ICP - 6010C	6010C	μg/L	24400
Chromium	4.95	17	11	6	47.7	0.8	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.107 U
Cobalt	1.14	17	13	8	27.8	0.0	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	7.9
Copper	0.48	17	13	13	10.6	1.2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	1.3
ron	8990	17	14	3	49200	30	Total(3020) Metals by ICP - 6010C	6010C	μg/L	11200
Lead	0.311	17	6	4	1.9	0.3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.019 U
Magnesium	11300	17	17	16	98100	7640	Total (3020) Metals by ICP - 6010C	6010C	μg/L μg/L	42800
	1120	17	15	6	7650	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L μg/L	5440
Manganese Mercury	0.0000584	7	7	7	0.00572	0.000139	Total Mercury by EPA 245.1 - Water	EPA 245.1	μg/L mg/L	0.000664 J
Nickel	2.68	17	13	13	50					6
Potassium	708	17	16	13	3700	3 500	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICP - 6010C	6020A 6010C	μg/L μg/L	2200
	ND	17	0	0	3700	300	` '	6020A		0.27 U
Selenium	ND			U	10200	4400	Total (3020) Metals by ICPMS - 6020A		μg/L	
Silicon	0.016.1	17	17	0	10200	4400	Total(3020) Metals by ICP - 6010C	6010C	μg/L	8000
Silver	0.016 J	17	0	0	21122	1700	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U
Sodium	2800	17	17	13	21400	1500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	5000
Thallium	0.009 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U
Vanadium 	0.55	17	2	2	9	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.027 U
Zinc	1.3	17	3	3	20	20	Total(3020) Metals by ICP - 6010C	6010C	μg/L	3.88 U
Total Low Level Mercury										
Mercury	0.0000584	10	8	4	0.000197	0.000008	Total Mercury by EPA 1631	EPA 1631	mg/L	
Dissolved Inorganic Elements										
Dissolved Mercury							Dissolved Mercury by EPA 245.1 - Water	EPA 245.1	mg/L	0.000285 J
Dissolved Low Level Mercury										
Mercury	0.00000114	11	6	6	0.00006	0.000003	Dissolved Mercury by EPA 1631	EPA 1631	mg/L	
General Chemistry										
Bicarbonate as HCO3							Alkalinity	SM 2320B	mg/L	138 J
Carbonate as CO3							Alkalinity	SM 2320B	mg/L	1 UJ
Chloride							Anions by ION Chromatography	EPA 300.0	mg/L	0.3
Fluoride							Anions by ION Chromatography	EPA 300.0	mg/L	0.006 U
Nitrate-Nitrite Nitrogen (as N)							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2	mg/L	0.05
Sulfate							Anions by ION Chromatography	EPA 300.0	mg/L	142
Total Alkalinity (as CaCO3)							Alkalinity	SM 2320B	mg/L	113 J
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540	mg/L	350 J
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	6 J
Field Parameters									_	
Temperature								Field Test	°C	6.96
рН								Field Test	N/A	6.62
Conductance	 							Field Test	mS/cm	0.54
Turbidity	 							Field Test	NTU	9
ORP	 							Field Test		-18
	-								mV	
Dissolved Oxygen								Field Test	mg/L	1.07

Table 3-5 Groundwater Baseline Sample Results, Fall 2012

Table 3-5 Groundwater Basel	ine Sample Re	suits, Fall 2	2012	No. of			Station ID		1	MW17	MW20	MW21	MW24	MW25	MW27
	Background			Detected	Maximum	Minimum			1	1010017	1010020	1010021	1010024	1010023	1010027
Analyte	Screening	No. of Samples	No. of Detections	Results	Detected	Detected	Geographic Area		Units	Post 1955 MPA					
	Criteria		20100110110	Exceeding	Value	Value	Sample ID			0912MW17GW	0912MW20GW	0912MW21GW	0912MW24GW	0912MW25GW	0912MW27GW
				Background			Method								
Total Inorganic Elements								Januar	- 6	=		=	=		
Aluminum	405	17	12	3	1920	50	Total(3020) Metals by ICP - 6010C	6010C	μg/L	5.44 U	5.44 U	5.44 U	5.44 U	50	150
Antimony	0.505 J	17	17	17	9490	1.34	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	6.44	871	9490	108	69.6	12.9
Arsenic	13.5 83.3	17 17	17 17	12 6	9710	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	3 40	221 40	2510 110	5 10	1160 530	31 60
Barium	0.018 J	17	0	0	530	10	Total (3020) Metals by ICPMS - 6020A	6020A 6020A	μg/L	0.012 U					
Beryllium Cadmium	0.018 J 0.017 J	17	1	1	0.6	0.6	Total (3020) Metals by ICPMS - 6020A Total (3020) Metals by ICPMS - 6020A	6020A	μg/L μg/L	0.012 U					
Calcium	20600	17	17	14	98600	10300	Total (3020) Metals by ICP - 6010C	6010C	μg/L μg/L	20700	19900	35100	24200	56600	98600
Chromium	4.95	17	11	6	47.7	0.8	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.107 U	0.107 U	0.107 U	0.107 U	6.3	8.9
Cobalt	1.14	17	13	8	27.8	0.8	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.006 U	0.006 U	0.006 U	0.006 U	27.8	1.9
Copper	0.48	17	13	13	10.6	1.2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.06 U	0.06 U	1.9	0.06 U	3.6	2.1
Iron	8990	17	14	3	49200	30	Total(3020) Metals by ICP - 6010C	6010C	μg/L	5.06 U	30	5.06 U	5.06 U	49200	310
Lead	0.311	17	6	4	1.9	0.3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.3	0.019 U				
Magnesium	11300	17	17	16	98100	7640	Total(3020) Metals by ICP - 6010C	6010C	μg/L	13900	15700	30300	18200	32000	59000
Manganese	1120	17	15	6	7650	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.069 U	5	2	0.069 U	7650	1280
Mercury	0.0000584	7	7	7	0.00572	0.000139	Total Mercury by EPA 245.1 - Water	EPA 245.1	mg/L		0.00108 J	0.000139 J		0.000951 J	
Nickel	2.68	17	13	13	50	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.184 U	0.184 U	3	0.184 U	24	48
Potassium	708	17	16	13	3700	500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	24.9 U	600	2400	700	3700	2300
Selenium	ND	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.27 U					
Silicon		17	17		10200	4400	Total(3020) Metals by ICP - 6010C	6010C	μg/L	5000	5000	9700	6800	8700	7300
Silver	0.016 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U					
Sodium	2800	17	17	13	21400	1500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	2600	2400	3400	7200	5200	21400
Thallium	0.009 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U					
Vanadium	0.55	17	2	2	9	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.027 U					
Zinc	1.3	17	3	3	20	20	Total(3020) Metals by ICP - 6010C	6010C	μg/L	3.88 U	20				
Total Low Level Mercury															
Mercury	0.0000584	10	8	4	0.000197	0.000008	Total Mercury by EPA 1631	EPA 1631	mg/L	0.00001 J			0.000035 J		0.000112 J
Dissolved Inorganic Elements															
Dissolved Mercury							Dissolved Mercury by EPA 245.1 - Water	EPA 245.1	mg/L		0.00085 J	0.000131 J		0.000138 J	
Dissolved Low Level Mercury															
Mercury	0.00000114	11	6	6	0.00006	0.000003	Dissolved Mercury by EPA 1631	EPA 1631	mg/L	0.00000017 UJ			0.00000017 UJ		0.00006 J
General Chemistry															
Bicarbonate as HCO3							Alkalinity	SM 2320B	mg/L	135 J	113 J	214 J	126 J	264 J	266 J
Carbonate as CO3							Alkalinity	SM 2320B	<u> </u>	1 UJ					
Chloride							Anions by ION Chromatography	EPA 300.0		0.6	0.5	0.6	0.5	0.7	1 J
Fluoride							Anions by ION Chromatography	EPA 300.0		0.006 U	0.006 UJ				
Nitrate-Nitrite Nitrogen (as N)							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2		0.05	0.01 U	0.06	0.32	0.01 U	0.01 U
Sulfate							Anions by ION Chromatography	EPA 300.0		5.5	17.7	25.3	37.1	66.2	230 J
Total Alkalinity (as CaCO3)							Alkalinity	SM 2320B		111 J	93 J	175 J	103 J	216 J	218 J
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540	mg/L	130 J	140 J	270 J	190 J	380 J	640 J
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	2.6 UJ	2.6 UJ	2.6 UJ	2.6 UJ	96 J	2.6 UJ
Field Parameters														ı	
Temperature								Field Test		5.34	3.91	5.83	5.37	5.66	7.10
рН								Field Test		7.28	7.03	6.86	6.80	6.64	6.40
Conductance								Field Test		0.213	0.235	0.400	0.287	0.762	1.03
Turbidity								Field Test		0.0	7.5	0.0	1.6	0.0	0.0
ORP								Field Test		130	202	173	212	-58	87
Dissolved Oxygen								Field Test	mg/L	5.42	6.66	2.73	5.86	0.00	0.00

Table 3-5 Groundwater Baseline Sample Results, Fall 2012

Table 3-5 Groundwater Base	line Sample Ke	Suits, Faii 2	2012	No. of	l l		Station ID			MW28	MW29	MW32	MW33
	Background	No. of	No. of	Detected	Maximum	Minimum					Surface Mined	Red Devil Creek	
Analyte	Screening	No. of Samples	No. of Detections	Results	Detected	Detected	Geographic Area		Units	Post 1955 MPA	Area	Delta	Delta
	Criteria	Jumpics	Detections	Exceeding	Value	Value	Sample ID			0912MW28GW	0912MW29GW	0912MW32GW	0912MW33GW
				Background			Method						
Total Inorganic Elements													
Aluminum	405	17	12	3	1920	50	Total(3020) Metals by ICP - 6010C	6010C	μg/L	440	140	400	150
Antimony	0.505 J	17	17	17	9490	1.34	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	17.4	1.34	6.35	417
Arsenic	13.5	17	17	12	9710	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	68	44	3	29
Barium	83.3	17	17	6	530	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	70	230	30	40
Beryllium	0.018 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.012 U	0.012 U	0.012 U	0.012 U
Cadmium	0.017 J	17	1	1	0.6	0.6	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.031 U	0.031 U	0.031 U	0.031 U
Calcium	20600	17	17	14	98600	10300	Total(3020) Metals by ICP - 6010C	6010C	μg/L	40900	50200	10300	17100
Chromium	4.95	17	11	6	47.7	0.8	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	8	5.1	1.5	0.8
Cobalt	1.14	17	13	8	27.8	0.1	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	3.9	0.8	0.6	0.2
Copper	0.48	17	13	13	10.6	1.2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	2.6	1.2	2.9	1.3
Iron	8990	17	14	3	49200	30	Total(3020) Metals by ICP - 6010C	6010C	μg/L	2250	2690	620	370
Lead	0.311	17	6	4	1.9	0.3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.8	0.019 U	0.3	0.019 U
Magnesium	11300	17	17	16	98100	7640	Total(3020) Metals by ICP - 6010C	6010C	μg/L	29200	48200	7640	11600
Manganese	1120	17	15	6	7650	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	1070 J	398	27	16
Mercury	0.0000584	7	7	7	0.00572	0.000139	Total Mercury by EPA 245.1 - Water	EPA 245.1	mg/L	0.000183 J			
Nickel	2.68	17	13	13	50	3	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	11	4	9	0.184 U
Potassium	708	17	16	13	3700	500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	1200	1100	500	800
Selenium	ND	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.27 U	0.27 U	0.27 U	0.27 U
Silicon		17	17		10200	4400	Total(3020) Metals by ICP - 6010C	6010C	μg/L	5600	4400	9800	10200
Silver	0.016 J	17	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U	0.013 U	0.013 U	0.013 U
Sodium	2800	17	17	13	21400	1500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	11100	2600	1500	5000
Thallium	0.009 J	17	0	0	_	_	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U	0.013 U	0.013 U	0.013 U
Vanadium	0.55	17	2	2	9	2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.027 U	0.027 U	0.027 U	0.027 U
Zinc	1.3	17	3	3	20	20	Total(3020) Metals by ICP - 6010C	6010C	μg/L	3.88 U	3.88 U	3.88 U	3.88 U
Total Low Level Mercury											ı		
Mercury	0.0000584	10	8	4	0.000197	0.000008	Total Mercury by EPA 1631	EPA 1631	mg/L		0.000008 J	0.00019 J	0.00001 J
Dissolved Inorganic Elements													
Dissolved Mercury							Dissolved Mercury by EPA 245.1 - Water	EPA 245.1	mg/L				
Dissolved Low Level Mercury													
Mercury	0.00000114	11	6	6	0.00006	0.000003	Dissolved Mercury by EPA 1631	EPA 1631	mg/L	0.000026 J	0.000007 J	0.000028 JU	0.000003 J
General Chemistry													
Bicarbonate as HCO3							Alkalinity	SM 2320B	mg/L	255 J	333 J	47 J	99 J
Carbonate as CO3							Alkalinity	SM 2320B	mg/L	1 UJ	1 UJ	1 UJ	1 UJ
Chloride							Anions by ION Chromatography	EPA 300.0	mg/L	0.6 J	0.7	0.5	0.8
Fluoride							Anions by ION Chromatography	EPA 300.0	mg/L	0.006 J	0.3	0.006 U	0.006 U
Nitrate-Nitrite Nitrogen (as N)							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2	mg/L	0.01 UJ	0.01 U	0.89	0.16
Sulfate							Anions by ION Chromatography	EPA 300.0	mg/L	40.5 J	28.1	15.8	14.9
Total Alkalinity (as CaCO3)							Alkalinity	SM 2320B	mg/L	209 J	273 J	39 J	81 J
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540	mg/L	280 J	330 J	120 J	140 J
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	38 J	13 J	2.6 UJ	81
Field Parameters								•	<u>.</u>				
Temperature								Field Test	°C	6.69	4.37	3.76	3.86
pH								Field Test	N/A	6.57	6.83	5.58	6.38
Conductance								Field Test		0.514	0.641	0.135	0.223
Turbidity								Field Test	NTU	0.514	0.641	0.135	0.223
ORP								Field Test		13	24	215	183
									mV ma/l				
Dissolved Oxygen							l .	Field Test	mg/L	0.00	0.00	5.09	5.72

Table 3-6 Surface Water Baseline Sample Results, Fall 2012

Analyte				No. of Detected			Station ID			RD04	RD05	RD06	RD08	RD09	RD10	RD12
	Background	No. of Committee	No of Detection		Maximum	Minimum	Geographic Area		11-24-	Red Devil Creek	Red Devil Creek	Red Devil Creek	Red Devil Creek	Red Devil Creek	Red Devil Creek	Red Devil Creek
	Screening Criteria	No. of Samples	No. of Detections	Results Exceeding Background	Detected Value	Detected Value	Sample ID		Units	0912RD04SW	0912RD05SW	0912RD06SW	0912RD08SW	0912RD09SW	0912RD10SW	0912RD12SW
				Dackground			Method									
Total Inorganic Elements																
Aluminum	80	7	0	0			Total(3020) Metals by ICP - 6010C	6010C	μg/L	5.44 U	5.44 U	5.44 U	5.44 U	5.44 U	5.44 U	5.44 U
Antimony	1.52	7	7	7	243	1.6	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	27.3	38.2	227	243	195	1.6	80.3
Arsenic	1.1	7	6	6	842	14	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	14	842	88	90	83	0.06 U	30
Barium	26.4	7	7	4	110	20	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	20	110	30	30	30	20	20
Beryllium	ND	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U	0.012 U
Cadmium	ND	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U
Calcium	18400	7	7	1	41500	15600	Total(3020) Metals by ICP - 6010C	6010C	μg/L	15600	41500	16900	16800	16700	16000	15700
Chromium	0.43	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.107 U	0.107 U	0.107 U	0.107 U	0.107 U	0.107 U	0.107 U
Cobalt	0.066	7	4	4	5.9	0.2	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.006 U	5.9	0.2	0.2	0.2	0.006 U	0.006 U
Copper	0.37	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U
Iron	138	7	7	3	2320	90	Total(3020) Metals by ICP - 6010C	6010C	μg/L	110	2320	150	130	150	90	100
Lead	0.021	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U	0.019 U
Magnesium	9680	7	7	4	42600	8490	Total(3020) Metals by ICP - 6010C	6010C	μg/L	8490	42600	10200	10000	10000	8580	8640
Manganese	17.5	7	7	4	420	10	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	11	420	24 J	22	22	10	11
Nickel	0.44	7	1	1	22	22	Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.184 U	22	0.184 U				
Potassium	218 J	7	1	1	1400	1400	Total(3020) Metals by ICP - 6010C	6010C	μg/L	24.9 U	1400	24.9 U				
Selenium	0.5 J	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
Silicon		7	7		4600	3900	Total(3020) Metals by ICP - 6010C	6010C	μg/L	3900	4600	4100	4000	4000	3900	3900
Silver	ND	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Sodium	1580	7	7	4	10900	1500	Total(3020) Metals by ICP - 6010C	6010C	μg/L	1500	10900	1900	1900	1800	1500	1500
Thallium	ND	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U	0.013 U
Vanadium	0.3	7	0	0			Total (3020) Metals by ICPMS - 6020A	6020A	μg/L	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U	0.027 U
Zinc	0.5 J	7	0	0			Total(3020) Metals by ICP - 6010C	6010C	μg/L	3.88 U	3.88 U	3.88 U	3.88 U	3.88 U	3.88 U	3.88 U
Total Low Level Mercury																
Mercury	0.00000263	7	7	7	0.00012	0.000004	Total Mercury by EPA 1631	EPA 1631	mg/L	0.000012 J	0.000007 J	0.000046 J	0.00012 J	0.000097 J	0.000004 J	0.000053 J
Dissolved Inorganic Elements																
Aluminum	11.9 J	7	0	0	0	0	Dissolved Metals by ICP (6010C)	6010C	μg/L	5.48 U	5.48 U	5.48 U	5.48 U	5.48 U	5.48 U	5.48 U
Antimony	1.4 J	7	7	7	226	1.6	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	25.9	15.8	192	226	186	1.6	77.3
Arsenic	0.9	7	6	6	619	14	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	14	619	71	77	71	0.044 U	28
Barium	24	7	7	1	100	20	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	20	100	20	20	20	20	20
Beryllium	ND	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U
Cadmium	ND	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Calcium	19200	7	7	1	37400	14300	Dissolved Metals by ICP (6010C)	6010C	μg/L	14400	37400	15300	15400	15200	14500	14300
Chromium	0.23	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.096 U	0.096 U	0.096 U	0.096 U	0.096 U	0.096 U	0.096 U
Cobalt	0.056	7	4	4	4.7	0.1	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.008 U	4.7	0.1	0.1	0.2	0.008 U	0.008 U
Copper	0.27	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U	0.033 U
Iron	100	7	7	1	1570	40	Dissolved Metals by ICP (6010C)	6010C	μg/L	60	1570	70	50	70	40	50
Lead	ND	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U
Magnesium	10200	7	7	1	38700	7830	Dissolved Metals by ICP (6010C)	6010C	μg/L	7890	38700	9250	9280	9210	7830	7960
Manganese	15.9	7	7	4	386	6	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	7	386 J	18 J	17	17	6	8
Nickel	0.35	7	4	4	17.6	0.7	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.107 U	17.6	0.7	0.8	0.8	0.107 U	0.107 U
Potassium	220 J	7	1	1	1300	1300	Dissolved Metals by ICP (6010C)	6010C	μg/L	8.09 U	1300	8.09 U				
Selenium	0.5 J	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U	0.263 U
Silicon		7	7		4200	3500	Dissolved Metals by ICP (6010C)	6010C	μg/L	3500	4200	3600	3700	3600	3500	3500
C:I ···	ND	7	0	0			Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U	0.009 U
Silver		7	7	4	10300	1500	Dissolved Metals by ICP (6010C)	6010C	μg/L	1600	10300	1900	1900	1800	1500	1500
Sodium	1610	/	/	-	10300	1500	Dissolved ivietals by icr (0010C)	00100	μ ₆ / L							
	1610 ND	7	0	0	10300	1500	Dissolved Metals by ICPMS (6020A)	6020A	μg/L	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
Sodium					10300	1500					0.006 U 0.026 U					

Table 3-6 Surface Water Baseline Sample Results, Fall 2012

Analyte				No. of Detected	Maximum	Minimum	Station ID			RD04	RD05 Red Devil Creek	RD06 Red Devil Creek	RD08 Red Devil Creek	RD09 Red Devil Creek	RD10 Red Devil Creek	RD12 Red Devil Creek
	Background						Geographic Area			Red Devil Creek						
	Screening Criteria	No. of Samples	No. of Detections	Results Exceeding	Detected Value	Detected Value	Sample ID		Units	0912RD04SW	0912RD05SW	0912RD06SW	0912RD08SW	0912RD09SW	0912RD10SW	0912RD12SW
				Background			Method									
Dissolved Low Level Mercury																
Mercury	0.00000637	7	6	5	0.000013	0.00000017	Dissolved Mercury by EPA 1631	EPA 1631	mg/L	0.000008 J	0.000000 J	0.000012 J	0.000013 J	0.00001 J	0.000003 UJ	0.000012 J
Arsenic Speciation																
Arsenate		7	7		275	0.774	EPA 1632	EPA 1632	μg/L	13.2	275	76.6	78.2	71.2	0.774	24.6
Arsenite		7	7		492	0.094	EPA 1632	EPA 1632	μg/L	0.256	492	8.97	4.87	9.65	0.094	0.4
Inorganic Arsenic		7	7		767	0.868	EPA 1632	EPA 1632	μg/L	13.4	767	85.6	83	80.9	0.868	25
Methylmercury																
Methylmercury	0.08 J	7	7	7	0.392	0.101	EPA 1630	EPA 1630	ng/L	0.236	0.392	0.132	0.137	0.118	0.101	0.118
General Chemistry																
Bicarbonate as HCO ₃							Alkalinity	SM 2320B	mg/L	81	319	89	89	87	88	85
Carbonate as CO ₃							Alkalinity	SM 2320B	mg/L	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U
Chloride							Anions by ION Chromatography	EPA 300.0	mg/L	0.5	0.7	0.4	0.5	0.5	0.4	0.5
Fluoride							Anions by ION Chromatography	EPA 300.0	mg/L	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U	0.006 U
Nitrate-Nitrite Nitrogen (as N)							Nitrogen, Nitrate-Nitrite (as N)	EPA 353.2	mg/L	0.01 U	0.01 U	0.43	0.01 U	0.01 U	0.05	0.2
Sulfate							Anions by ION Chromatography	EPA 300.0	mg/L	6.6	36.5	9.1	8.7	9.2	6.2	7.1
Total Alkalinity (as CaCO₃)							Alkalinity	SM 2320B	mg/L	66	261	73	73	71	72	70
Total Dissolved Solids (180)							Solids By SM 2540	SM 2540	mg/L	120	300	120	130	110	120	120
Total Organic Carbon							Total Organic Carbon	SM 5310B	mg/L	2	0.1 U	2	2	2	2	2
Total Suspended Solids							Solids By SM 2540	SM 2540	mg/L	2.6 U	7	2.6	2.6 U	2.6 U	2.6 U	2.6 U
Field Parameters																
Temperature								Field Test	оС	4.29	7.42	2.64	2.40	3.13	3.95	4.41
рН								Field Test	pH units	7.92	7.65	6.75	6.01	6.92	6.35	8.0
Conductance								Field Test	mS/cm	0.168	0.329	0.206	0.214	0.204	0.172	0.148
Turbidity								Field Test	NTU	0.0	3.8	0.0	0.0	0.0	0.0	8.1
ORP								Field Test	mV	38	-67	184	238	154	208	51
Dissolved Oxygen								Field Test	mg/L	9.77	10.40	11.04	10.40	11.28	14.75	8.45

Key:

μg/L = micrograms per liter

CaCO3 = calcium carbonate

ICP = inductively-coupled plasma ICPMS inductively-coupled plasma ICPMS inductively-coupled plasma mass spectometry ND = not detected °C = degrees Celsius

ORP = oxidation-reduction potential

mS/c = miliSiemens per centimeter

J = analyte detected but relative percent difference was outside control limits;

therefore concentration is estimated

mg/L = milligrams per liter
mV = millivolt
NTU = nephelometric turbidity unit
U = analyte was analyzed for but not detected.
Value provided is reporting limit

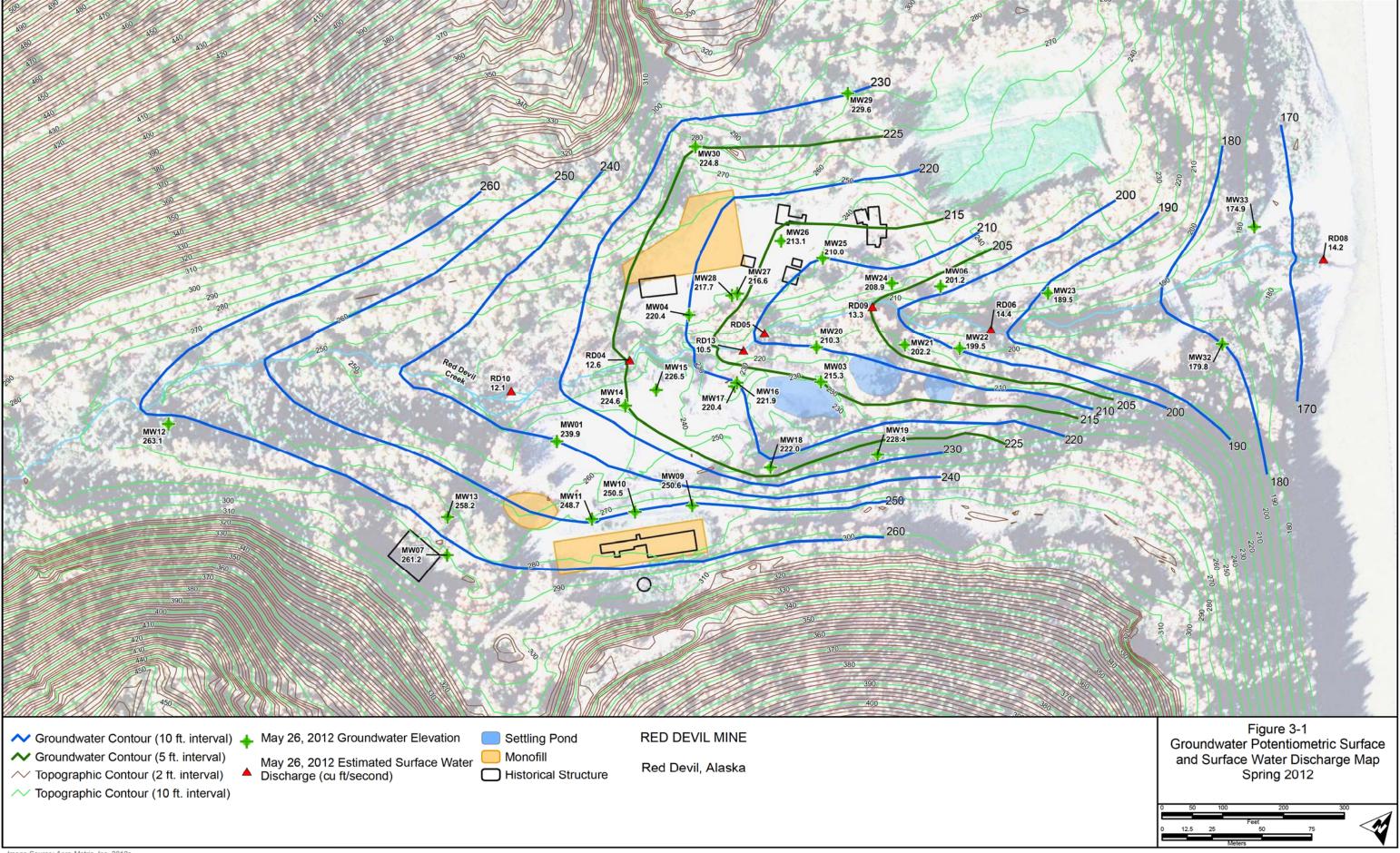
Table 3-7 Red Devil Creek Surface Water Loading, May 2012 - Antimony,

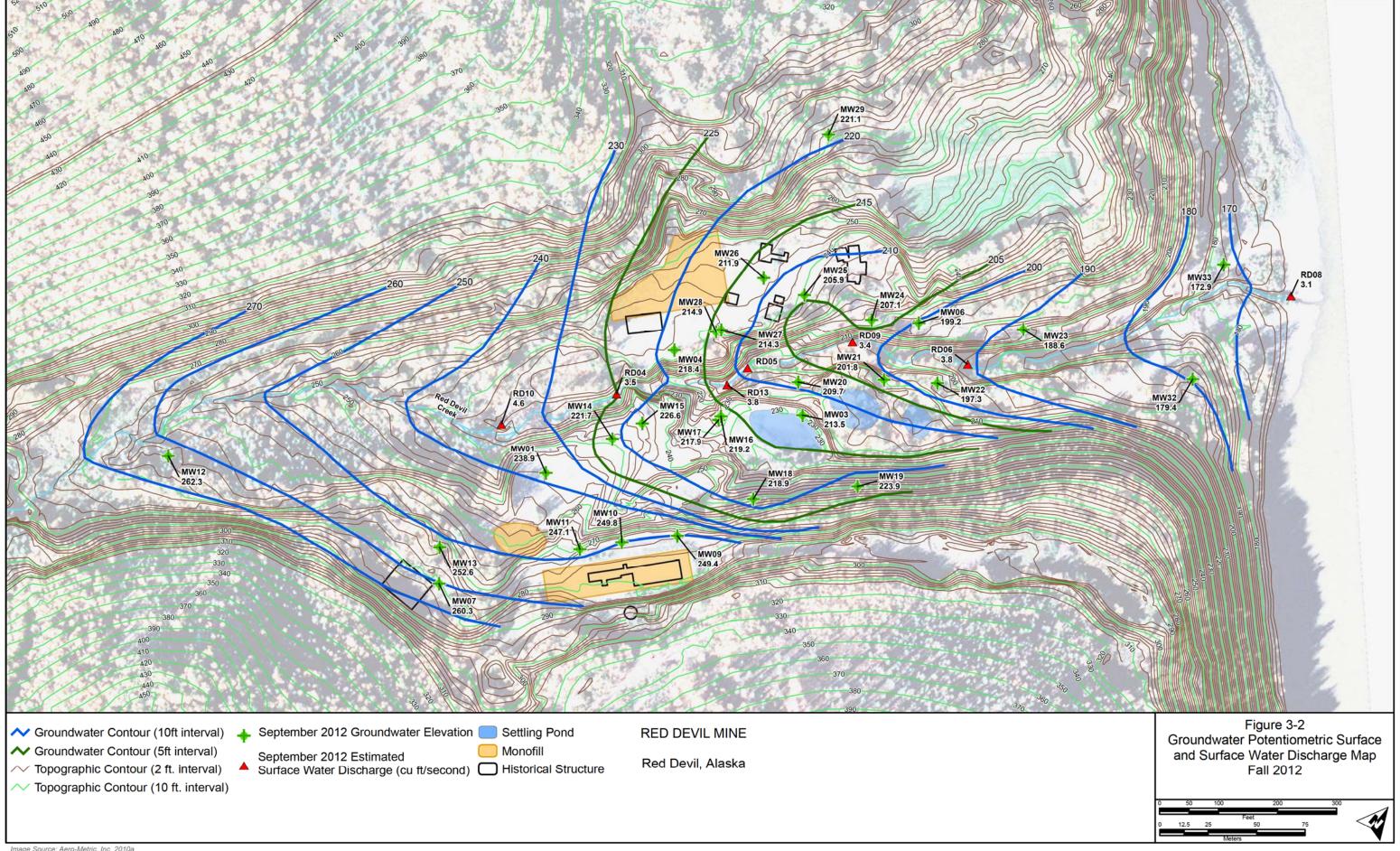
Arsenic, Mercury, and Methylmercury (kg/day)

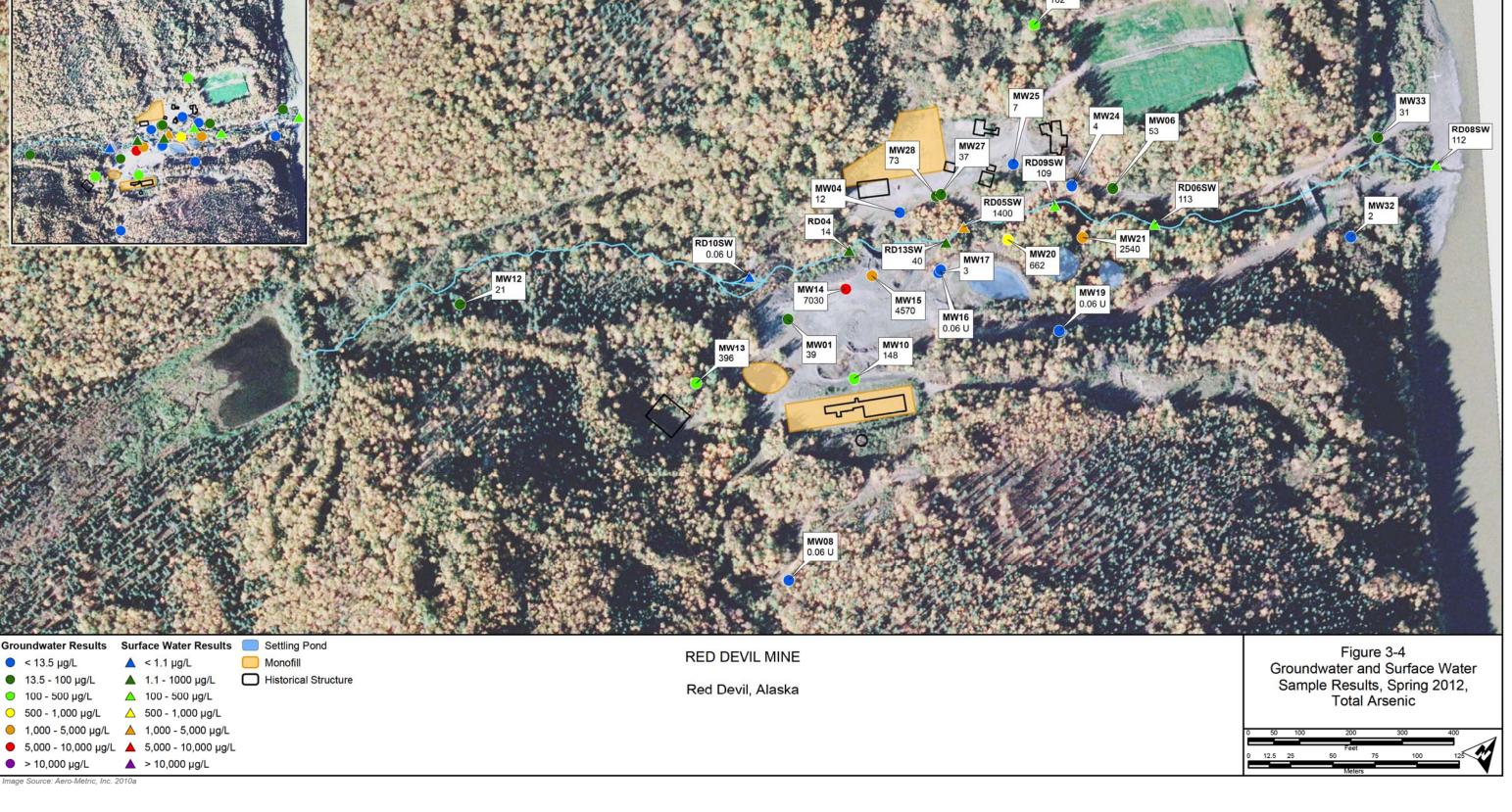
Station ID	RD10	RD04	RD13	RD09	RD06	RD08	
Sample ID	0512RD10SW	0512RD04SW	0512RD12SW	0512RD09SW	0512RD06SW	0512RD08SW	
Total Antimony	0.053	0.80	2.1	8.3	9.8	9.8	
Total Arsenic	NA	0.43	1.0	3.6	4.0	3.9	
Total Mercury	1.5E-04	7.4E-04	1.2E-02	1.0E-02	1.2E-02	1.6E-02	
Methylmercury	3.3E-06	3.3E-06	3.6E-06	4.8E-06	5.6E-06	5.2E-06	

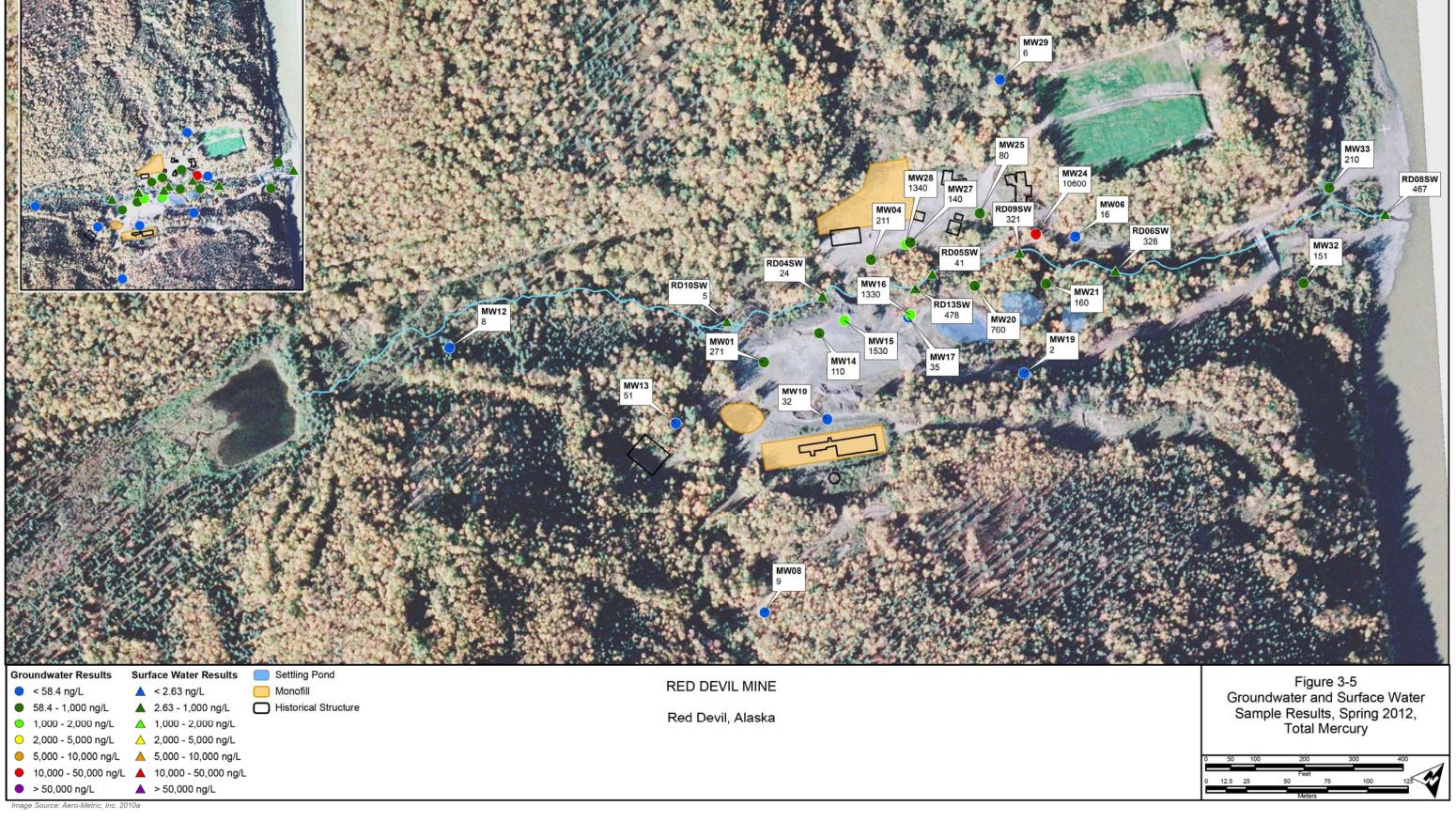
kg/day = kilograms per day

NA = Not calculated because sample results was nondetect.

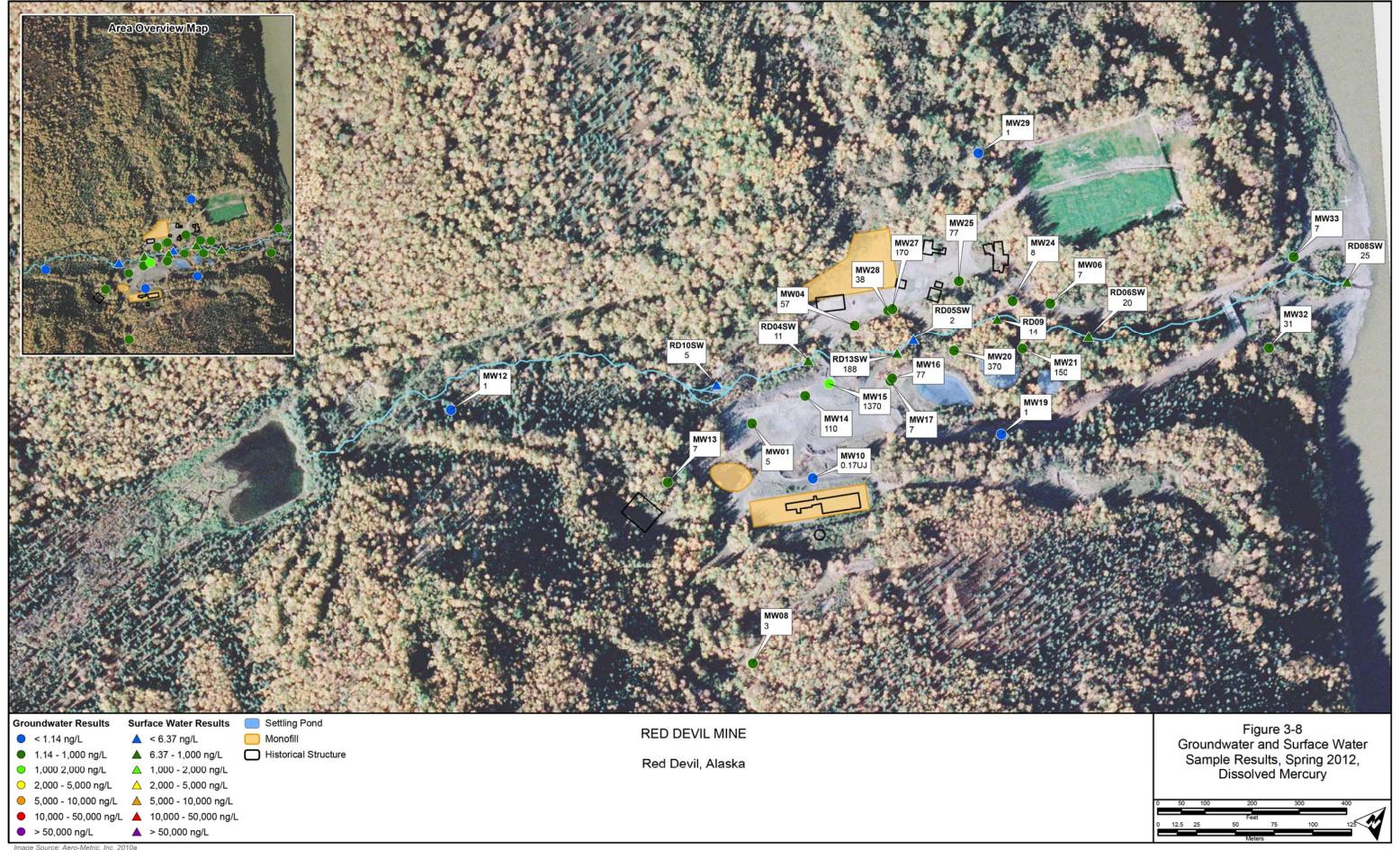

Table 3-8 Red Devil Creek Surface Water Loading, September 2012 - Antimony,

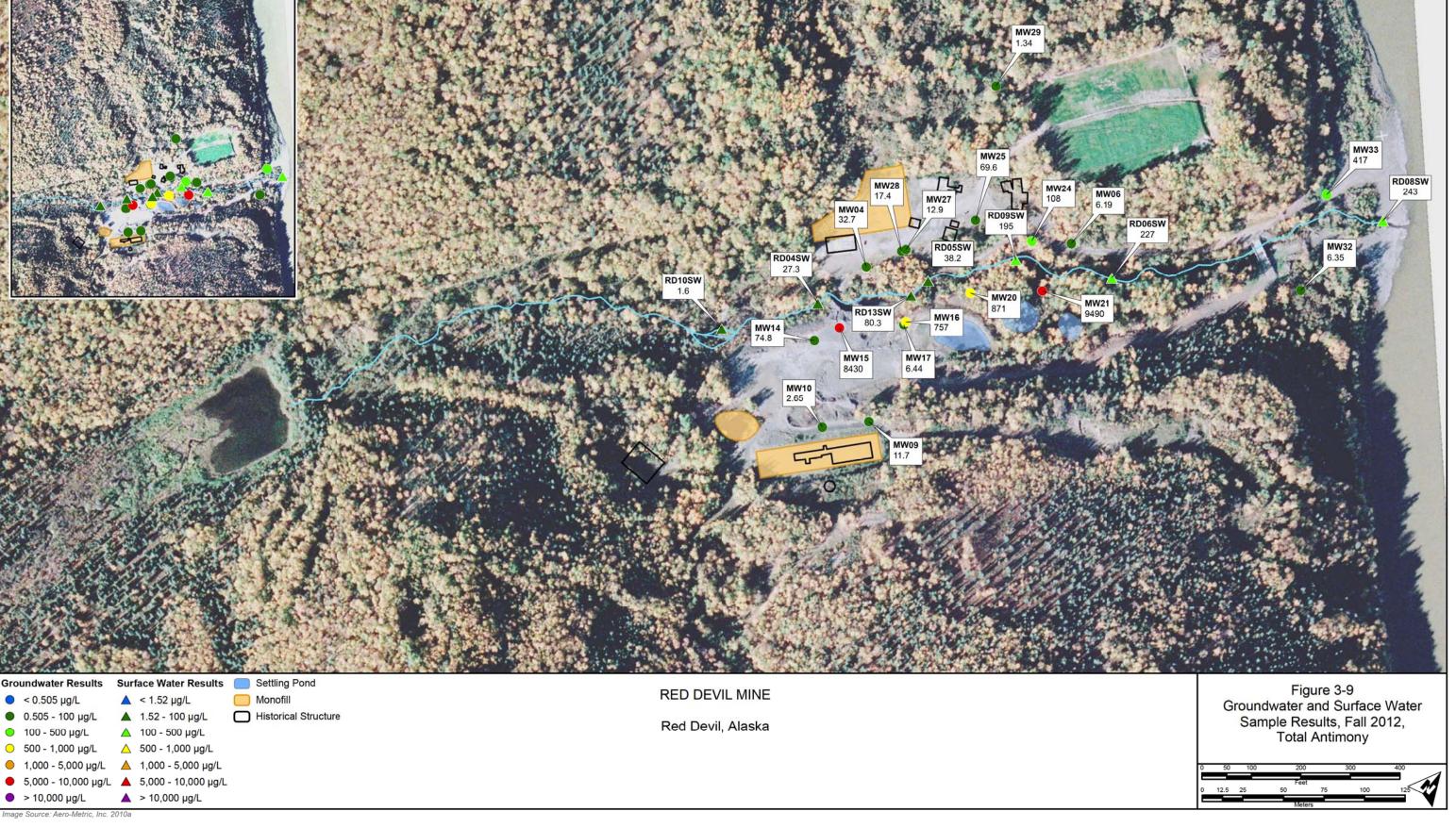

Arsenic, Mercury, and Methylmercury (kg/day)

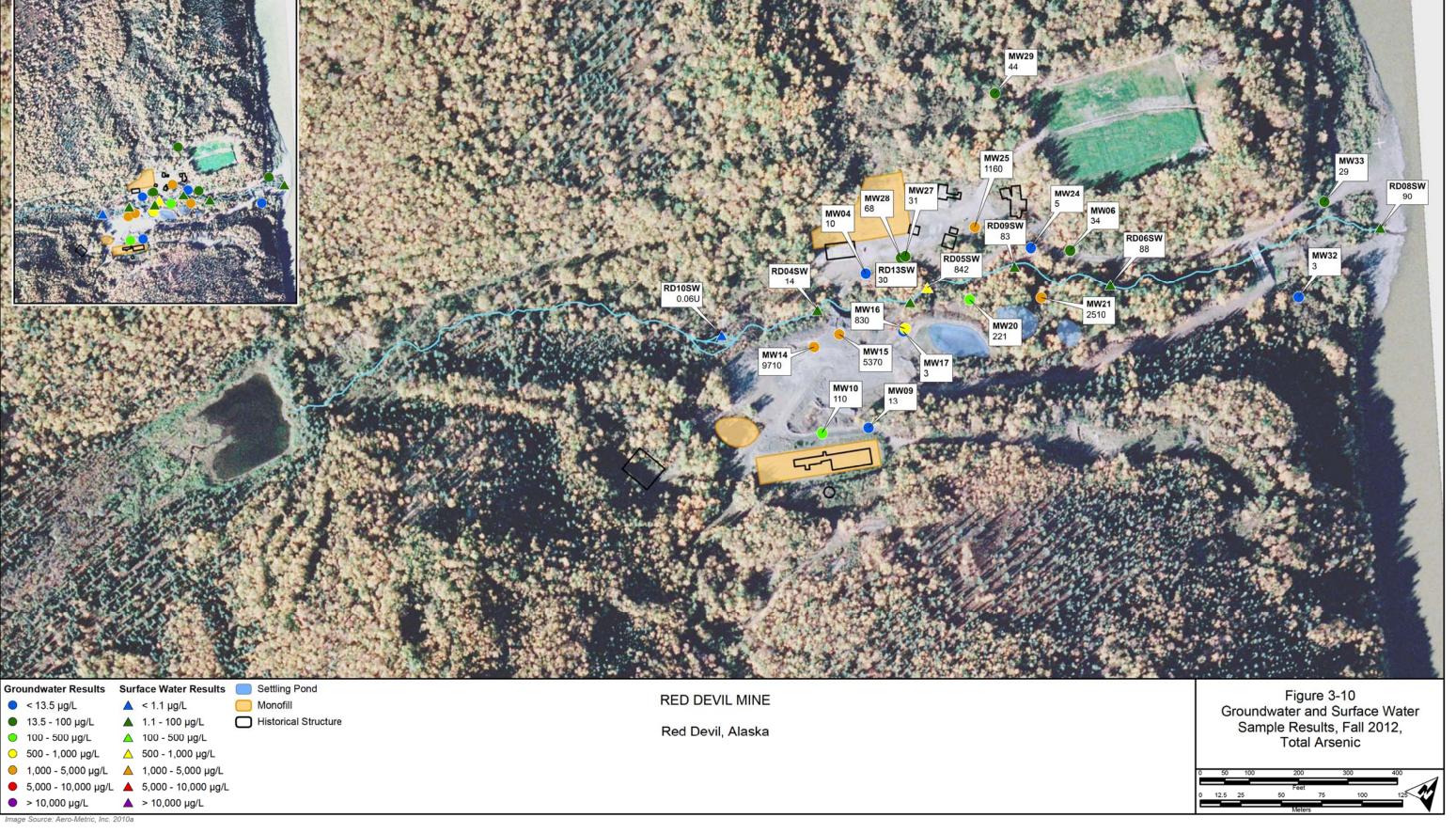

			. , ,				
Station ID	RD10	RD04	RD13	RD09	RD06	RD08	
Sample ID	0912RD10SW	0912RD04SW	0912RD12SW	0912RD09SW	0912RD06SW	0912RD08SW	
Total Antimony	0.018	0.23	0.7	1.6	2.1	1.8	
Total Arsenic	NA	0.12	0.3	0.7	0.8	0.7	
Total Mercury	4.5E-05	1.0E-04	4.9E-04	8.1E-04	4.3E-04	9.1E-04	
Methylmercury	1.1E-06	2.0E-06	1.1E-06	9.8E-07	1.2E-06	1.0E-06	

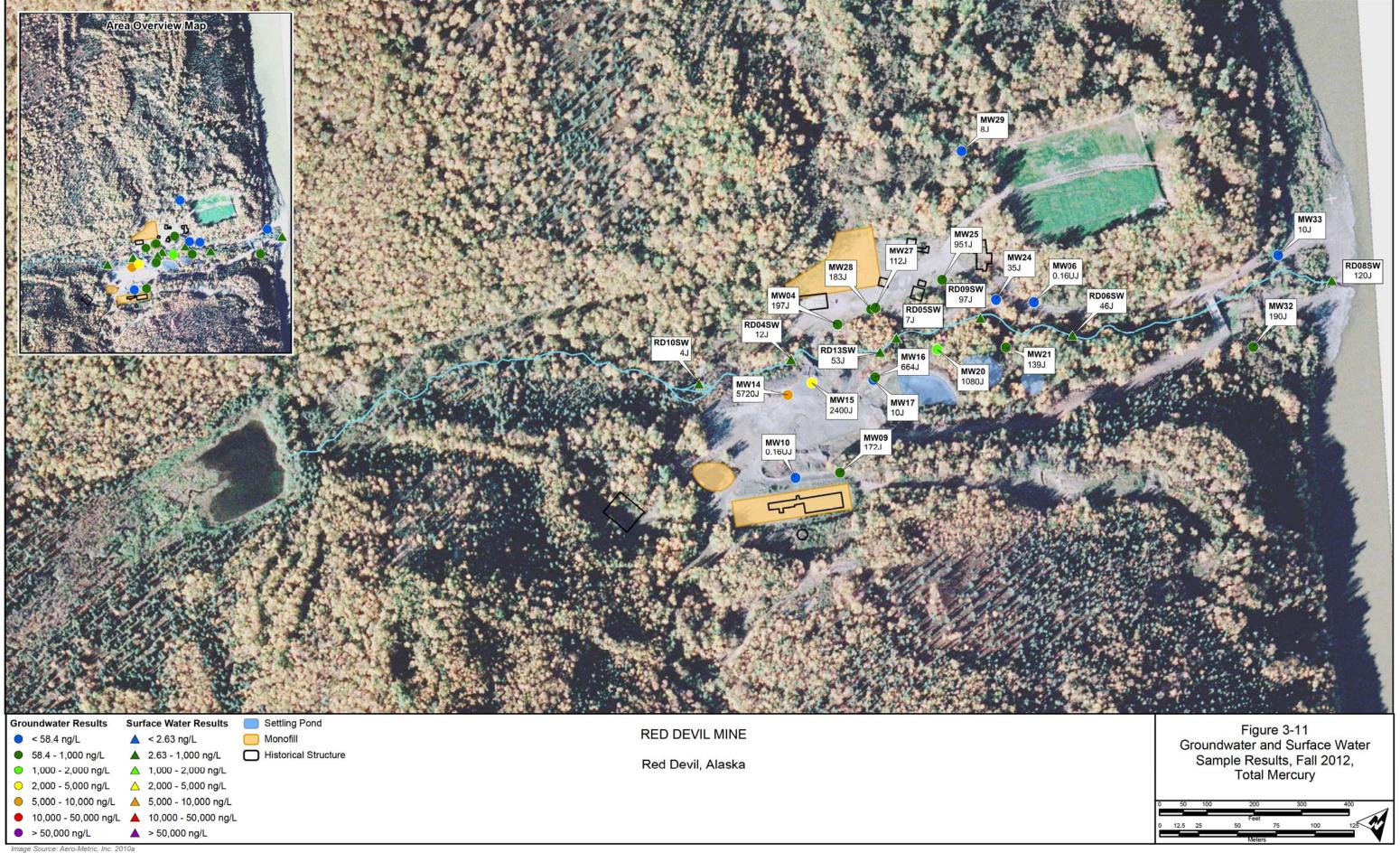

kg/day = kilograms per day

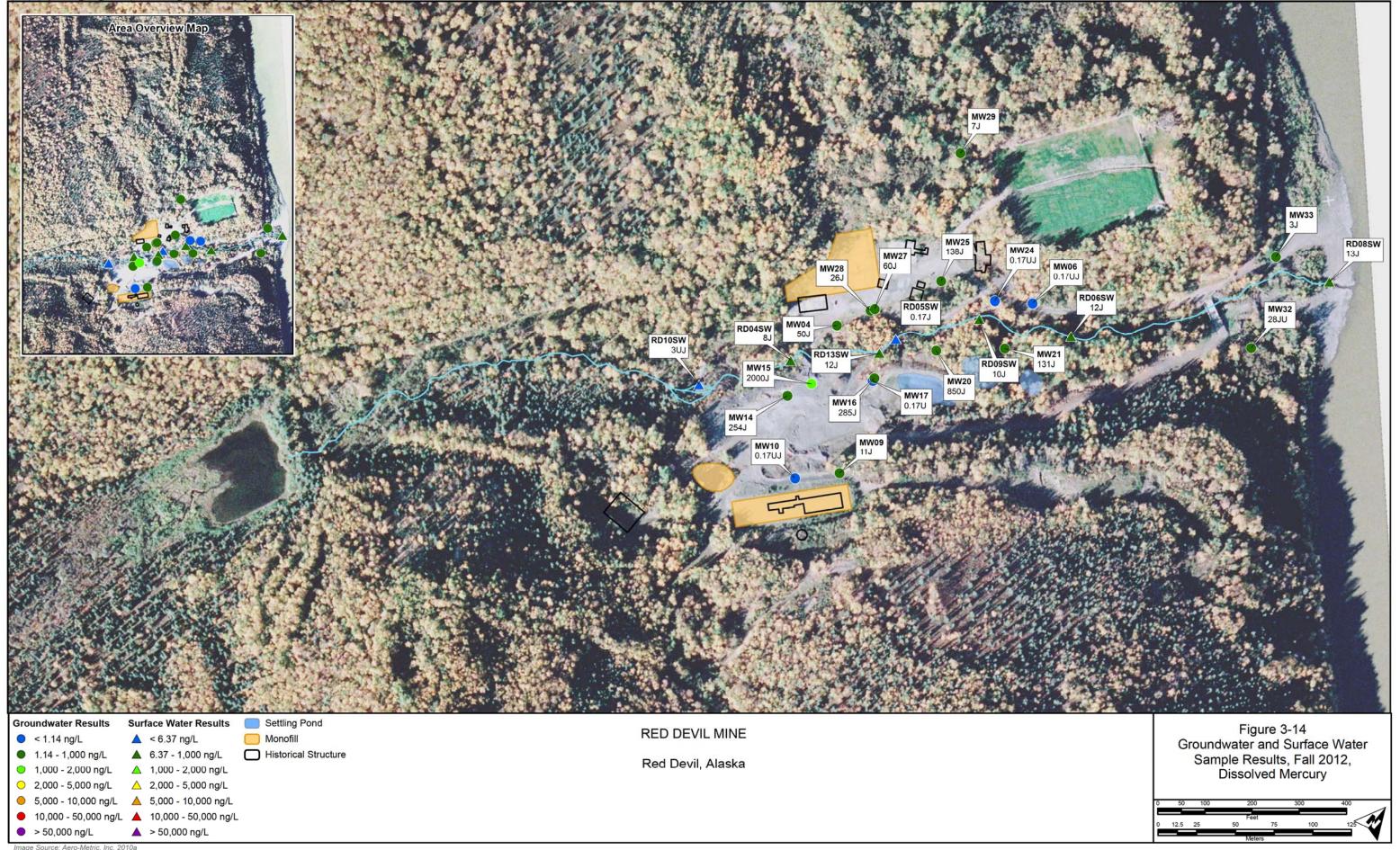
NA = Not calculated because sample results was nondetect.

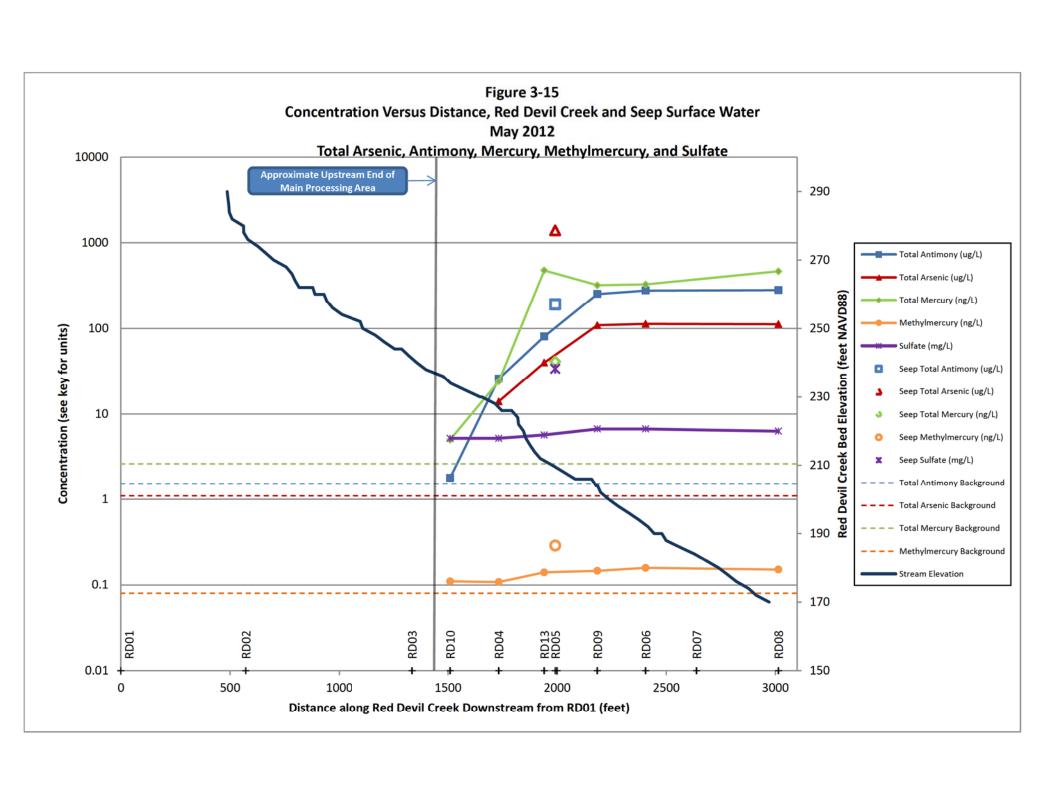


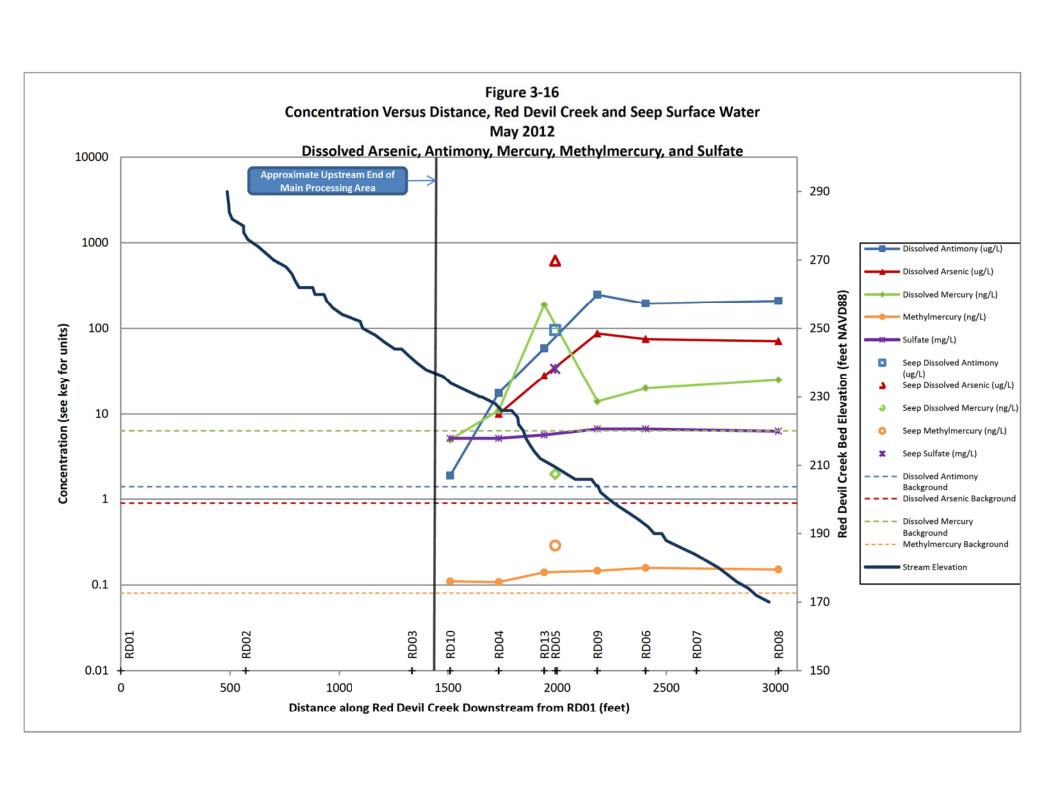


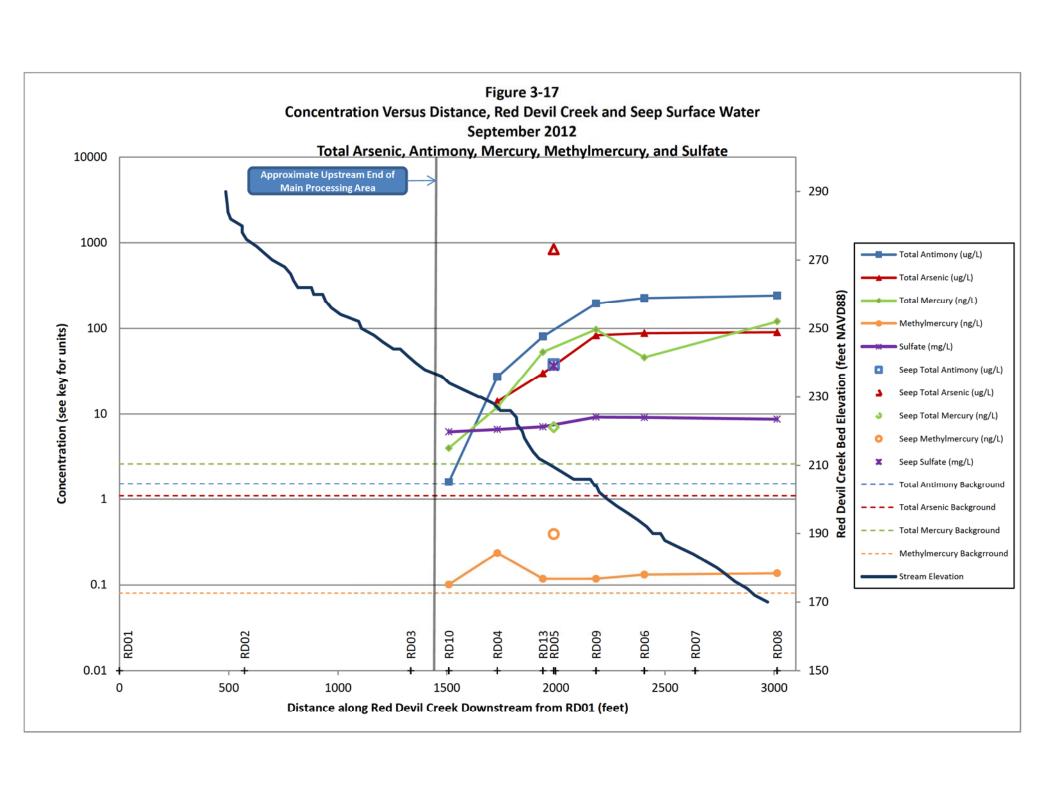


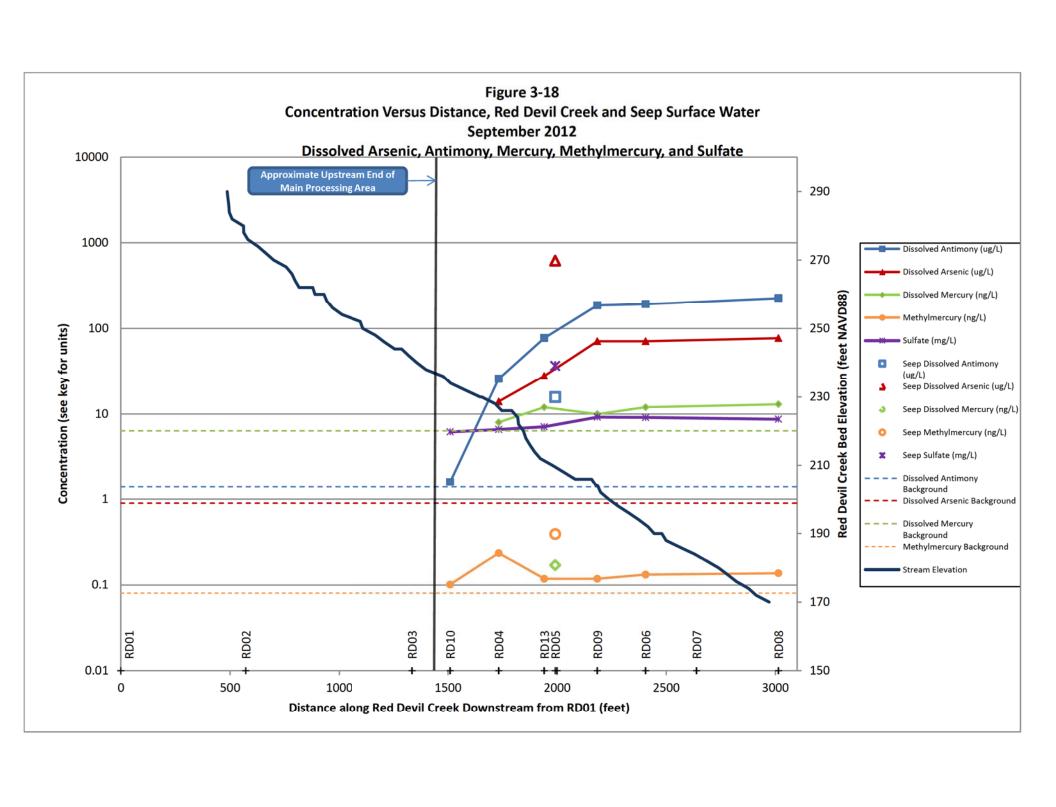














4 References

This page intentionally left blank.

Laboratory Data Quality Assurance Review Memoranda

This appendix was provided by a third party lab, as a scanned document. It is not fully accessible. If you need assistance with this appendix, please contact the BLM Alaska Public Information Center 907-271-5960,

BLM AK AKSO Public Room@blm.gov

This page intentionally left blank.

DATA REVIEW MEMORANDUM

DATE: November 14, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA 11/16/12

SUBJ: Data Review: Red Devil Mine

REFERENCE:

Project ID	Lab Work Order	Lab
EE-1096-0070	S1209429	Inter-Mountain Labs

I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

Table 1 Sample Listing

Work Order	Matrix	Sample ID	Lab ID	Sample Date	MS/MS	ID Corrections
S1209429	Water	0912RD09SW	S1209429-001	09/11/2012	X	
S1209429	Water	0912RD21SW	S1209429-002	09/11/2012		
			-			
				~~~		
						:
		444				

## Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1209429	Water	SM 2540	TDS	2	
S1209429	Water	SM 2540	TSS	2	
S1209429	Water	SM 2320B	Alkalinity	2	
S1209429	Water	SM 5310B	TOC	2	
S1209429	Water	EPA 300.0/353.2	Anions	2	
S1209429	Water	EPA 6010C/6020A	Dissolved Metals	2	
S1209429	Water	EPA 6010C/6020A	Total Metals	2	
-					
	T i				
		2			

#### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold (4 ±2) °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 7.6 °C. No problems with the condition of the sample upon receipt are documented. Since the samples were received at temperature outside of range (>6 °C), the detected results were qualified as estimated (J) and the non-detected results were qualified as estimated (UJ) for the analyses of Anions. Qualification for metals, TDS, TSS, Total Alkalinity, and TOC was not necessary.

#### III. LABORATORY DATA

#### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

#### **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes except Total Dissolved solids and Total Suspended Solids. The detected TDS and TSS results were qualified as estimated (J) and the non-detected TDS and TSS results were qualified as estimated (UJ).

#### 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes except trace amount (0.14 mg/L) of magnesium were detected in the method blank at reporting limit levels. Finding does not require qualification since sample concentration was greater than 5x the blank concentration.

#### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

#### **REVIEW RESULTS:**

Not applicable for these analyses.

#### 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The

potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on sample 0912RD09SW at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

#### 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

#### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

#### V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

Professional judgment was used to determine whether or not to qualify results.

#### **REVIEW RESULTS:**

No Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria.

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

#### 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result Qual	Anal Type Units PQI
EPA 6010C	MBLK		Magnesium	0.14	mg/L
					1 1

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						

## Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte Blank Result	Sample Result Sample Qual PQL
None.			

## Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.							

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit	High Limit	Sample Qual	Reportable
None.											
								:			
			*****					***************************************			

Sample ID	Analyte	Method	RPD RPD Limit	No. of Affected Samples	Samp Qual
None.					

## Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	The way of the second contract of the second	High Limit	No. of Affected Samples	Samp Qual
None.							T. May A war. June

## Table 6 -Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
None.				

Table 7 – Summary of Field Duplicate Results:

			Γ				<u> </u>		
Sample Qualifier									
ᅙᄹ									
E 76									
N ∃		1		Ì '				}	
<b>"</b> 0									
		l							
RPD Rating		-	├					$\vdash$	⊢
- O									
<b>- 5</b>									
7									
<b>2</b>									
			<del>  -</del>	-					⊢
۵									
Δ.	i '				'				
~ ~									
			<b>-</b> -	$\vdash$				<u> </u>	┝
							1		
				1					
				:					
		<u> </u>	<u> </u>	<b> </b>	<b> </b>			ļ	
	:								
	'	·		) :					
						[ :			
			l						
			<u> </u>						$\vdash$
Units									
E Y									
<b>:</b> :=									
		<b></b>	<u> </u>		$\vdash$				┝
				1					
A									
¥									
Analyte									
2									
₹									
				] .					
			L_						ļ
								i i	
U									
2		\ \ \		۱ ۱			i !		
#									
- 0				·					
Method	None.								
	Ě								
	ž	;							
		L	L	Ĺ	L				Щ



1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: \$1209429001

Work Order: S1209429

Collection Date: 9/11/2012 1:12:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209429-001 Client Sample ID: 0912RD09SW

COC: RDM-0912-003 **Analyses** RL Units Result Qual Date Analyzed/Init Method General Parameters 110 J SM 2540 Total Dissolved Solids (180) 10 Н mg/L 09/25/2012 1456 JCG ND VJ **Total Suspended Solids** r Н SM 2540 mg/L 09/25/2012 1612 JCG Alkalinity, Total (As CaCO3) 71 5 mg/L 09/25/2012 1923 KV SM 2320B Total Organic Carbon 2 mg/L 09/26/2012 1019 AMB SM 5310B 1 Anions Alkalinity, Bicarbonate as HCO3 SM 2320B 87 7 5 mg/L 09/25/2012 1923 KV Alkalinity, Carbonate as CO3 SM 2320B ND UT 5 ma/L 09/25/2012 1923 KV Chloride 0.5 09/25/2012 2237 AM EPA 300.0 0.2 mg/L Fluoride ND UT 0.2 mg/L 09/25/2012 2237 AM EPA 300.0 Nitrogen, Nitrate-Nitrite (as N) ND UJ 0.05 mg/L 09/25/2012 1634 RH EPA 353.2 Sulfate 0.2 mg/L 09/25/2012 2237 AM **EPA 300.0 Dissolved Metals** Aluminum ND 09/26/2012 1252 DG 6010C 50 μg/L 186 0.2 09/28/2012 1242 MS 6020A Antimony μg/L 6020A Arsenic 71 2 μg/L 09/28/2012 1242 MS Barium 20 10 µg/L 09/28/2012 1242 MS 6020A Beryllium ND 0.2 μg/L 09/28/2012 1242 MS 6020A ND 6020A Cadmium 0.9 µg/L 09/28/2012 1242 MS 15200 09/26/2012 1252 DG 6010C Calcium 50 μg/L. ND 0.5 6020A Chromium 09/28/2012 1242 MS μg/L 6020A Cobalt 0.2 0.1 μg/L 09/28/2012 1242 MS ND 6020A Copper 0.9 µq/L 09/28/2012 1242 MS 70 6010C Iron 20 09/26/2012 1252 DG µg/L Lead ND 0.14 μg/L 09/28/2012 1242 MS 6020A 6010C Magnesium 9210 20 μg/L 09/26/2012 1252 DG 09/28/2012 1242 MS 6020A Manganese 2 17 μg/L Nickel 0.8 0.7 μg/L 09/28/2012 1242 MS 6020A 6010C Potassium ND 400 μg/L 09/26/2012 1252 DG 6020A ND 2 Selenium μg/L 09/28/2012 1242 MS 3600 Silicon 400 µg/L 09/26/2012 1252 DG 6010C 6020A Silver ND 0.2 µg/L 09/28/2012 1242 MS 6010C Sodium 1800 200 09/26/2012 1252 DG µg/L Thallium ND 0.3 09/28/2012 1242 MS 6020A µg/L Vanadium ND 2 09/28/2012 1242 MS 6020A µg/L ND 10 09/26/2012 1252 DG 6010C Zinc μg/L

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- c Calculated Value
- Н Holding times for preparation or analysis exceeded
- Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits S

#### **RL** - Reporting Limit

- Analyte detected in the associated Method Blank
- F Value above quantitation range
- Analyte detected below quantitation limits
- Value exceeds Monthly Ave or MCL
- Outside the Range of Dilutions

11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor



1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-003

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: \$1209429001

Work Order: S1209429

Collection Date: 9/11/2012 1:12:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209429-001
Client Sample ID:	0912RD09SW

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals						
Aluminum	ND	50		μg/L	10/01/2012 1953 DG	6010C
Antimony	195	0.07		μg/L	09/28/2012 1301 MS	6020A
Arsenic	83	2		μg/L	09/28/2012 1301 MS	6020A
Barium	30	10		μg/L	09/28/2012 1301 MS	6020A
Beryllium	ND	0.2		µg/L	09/28/2012 1301 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1301 MS	6020A
Calcium	16700	50		μg/L	10/01/2012 1953 DG	6010C
Chromium	, ND	0.5		µg/L	09/28/2012 1301 MS	6020A
Cobalt	0.2	0.1		µg/L	09/28/2012 1301 MS	6020A
Copper	ND	0.9		µg/L	09/28/2012 1301 MS	6020A
Iron	150	20		μg/L	10/01/2012 1953 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1301 MS	6020A
Magnesium	10000	20		μg/L	10/01/2012 1953 DG	6010C
Manganese	22	2		μg/L	09/28/2012 1301 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1301 MS	6020A
Potassium	ND	400		μg/L	10/01/2012 1953 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1301 MS	6020A
Silicon	4000	400		μg/L	10/01/2012 1953 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1301 MS	6020A
Sodium	1800	200		μg/L	10/01/2012 1953 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1301 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1301 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 1953 DG	6010C

m AJ 1115/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 2 of 4



1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-003

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209429001

Work Order: S1209429

Collection Date: 9/11/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: \$1209429-002 Client Sample ID: 0912RD21SW

COC:

RL Units **Analyses** Result Qual Date Analyzed/Init Method General Parameters 120 J 09/25/2012 1458 JCG SM 2540 Total Dissolved Solids (180) 10 Н mg/L ND UJ 5 Н 09/25/2012 1613 JCG SM 2540 **Total Suspended Solids** mg/L Alkalinity, Total (As CaCO3) 72 5 mg/L 09/25/2012 1939 KV SM 2320B Total Organic Carbon 2 mg/L 09/26/2012 1104 AMB SM 5310B 1 **Anions** ... Alkalinity, Bicarbonate as HCO3 88 5 mg/L 09/25/2012 1939 KV SM 2320B Alkalinity, Carbonate as CO3 5 mg/L 09/25/2012 1939 KV SM 2320B 0.5 ゴ EPA 300.0 Chloride 0.2 mg/L 09/26/2012 003 AM ND UJ Fluoride 0.2 mg/L 09/26/2012 003 AM EPA 300.0 EPA 353.2 Nitrogen, Nitrate-Nitrite (as N) 0.3 0.1 mg/L 10/01/2012 1612 AMB J 8.8 0.2 09/26/2012 003 AM EPA 300.0 Sulfate mg/L **Dissolved Metals** Aluminum ND 50 μg/L 09/26/2012 1259 DG 6010C 197 0.2 09/28/2012 1325 MS 6020A Antimony μg/L Arsenic 74 2 μg/L 09/28/2012 1325 MS 6020A Barium 20 10 μg/L 09/28/2012 1325 MS 6020A Beryllium ND 0.2 09/28/2012 1325 MS 6020A μg/L Cadmium ND 0.9 μg/L 09/28/2012 1325 MS 6020A Calcium 15200 50 μg/L 09/26/2012 1259 DG 6010C ND 0.5 μg/L 09/28/2012 1325 MS 6020A Chromium 6020A Cobalt 0.2 0.1 µg/L 09/28/2012 1325 MS ND 6020A Copper 0.9 μg/L 09/28/2012 1325 MS 70 6010C 20 09/26/2012 1259 DG Iron µg/L Lead ND 0.14 μg/L 09/28/2012 1325 MS 6020A 9200 6010C Magnesium 20 μg/L 09/26/2012 1259 DG 6020A 2 09/28/2012 1325 MS Manganese 19 μg/L Nickel 0.8 0.7 μg/L 09/28/2012 1325 MS 6020A μg/L 6010C Potassium ND 400 09/26/2012 1259 DG ND 2 09/28/2012 1325 MS 6020A Selenium μg/L Silicon 3600 400 μg/L 09/26/2012 1259 DG 6010C Silver ND 0.2 09/28/2012 1325 MS 6020A μg/L 1900 200 6010C Sodium μg/L 09/26/2012 1259 DG Thallium ND 0.3 µg/L 09/28/2012 1325 MS 6020A Vanadium ND 2 μg/L 09/28/2012 1325 MS 6020A 6010C Zinc ND 10 µg/L 09/26/2012 1259 DG

These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

30 AJ 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 3 of 4



COC:

Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-003

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209429001

Work Order: S1209429

Collection Date: 9/11/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209429-002
Client Sample ID:	0912RD21SW

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals						
Aluminum	ND	50		μg/L	10/01/2012 2000 DG	6010C
Antimony	232	0.07		µg/L	09/28/2012 1330 MS	6020A
Arsenic	90	2		µg/L	09/28/2012 1330 MS	6020A
Barium	30	10		μg/L	09/28/2012 1330 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1330 MS	6020A
Cadmlum	ND	0.5		μg/L	09/28/2012 1330 MS	6020A
Calcium	16700	50		µg/t.	10/01/2012 2000 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1330 MS	6020A
Cobalt	0.2	0.1		μg/L	09/28/2012 1330 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1330 MS	6020A
Iron	140	20		µg/L	10/01/2012 2000 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1330 MS	6020A
Magnesium	9960	20		μg/L	10/01/2012 2000 DG	6010C
Manganese	25	2		μg/L	09/28/2012 1330 MS	6020A
Nickel	ND	2		µg/L	09/28/2012 1330 MS	6020A
Potassium	ND	400		μg/L	10/01/2012 2000 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1330 MS	6020A
Silicon	4000	400		μg/L	10/01/2012 2000 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1330 MS	6020A
Sodium	1900	200		μg/L	10/01/2012 2000 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1330 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1330 MS	6020A
Zinc	ND	10		µg/L	10/01/2012 2000 DG	6010C

m / 1/15/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL М

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 4 of 4



Inter-Mountain Labs ———

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

#### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Project:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209429

Red Devil Mine

Report ID: S1209429001

Ref Samp %REC

Spike Ref Samp %REC

Alkalinity

Sample Type MBLK	Units: mg	ı/L							
Sample ID	RunNo: 87577	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
BLANK	09/25/12 12:57	Alkalinity, Total (As CaCO3)	ND	5	125 111 1 13				
Sample Type LCS	Units: mg	/L							
Sample ID	RunNo: 87577	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
ATQC	09/25/12 12:51	Alkalinity, Total (As CaCO3)	585	5	601		97.4	90 - 110	
Sample Type DUP	Units: mg	ſL.							
Sample ID	RunNo: 87577	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-001AD	09/25/12 19:31	Alkalinity, Bicarbonate as HCO3	87	5	87	0.250		20	_
		Alkalinity, Carbonate as CO3	ND	5	ND			20	
		Alkalinity, Total (As CaCO3)	72	5	71	0.250		20	

#### Dissolved Metals by ICP (6010C)

Sample Type MBLK

Units: mg/L

Sample ID	RunNo: 87609	Analyte	Result	RL	Spike
MBLK DISS/CAT	09/26/12 12:38	Aluminum	ND	0.1	
		Calcium	ND	0.1	
		Iron	ND	0.05	
		Magnesium	ND	0.1	
		Potassium	ND	1	
		Silicon	ND	0.01	
		Sodium	ND	0.1	
		Zinc	ND	0.01	

Analyte

m / 1/15/12

% Rec Limits

% Rec Limits

Qual

Sample Type LCS
Sample ID

Units: mg/L

RunNo: 87609

<u>"</u>		·							,
DISS LCS Q	09/26/12 12:41	Aluminum	1.0	0.1	1		102	80 - 120	
		Iron	1.01	0.05	1		101	80 - 120	
		Sillcon	1.00	0.01	1		99.6	80 - 120	
		Zinc	1.04	0.01	1		104	80 - 120	
Sample ID	RunNo: 87609	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
CAT LCS IML3	09/26/12 12:43	Calcium	40.1	0.1	40		100	80 - 120	
		Magnesium	39.6	0.1	40		99.0	80 - 120	
		Potassium	40	1	40		101	80 - 120	
		Sodium	39.5	0.1	40		98.8	80 - 120	

Result

RL.

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

#### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209429

Report ID: S1209429001

Project:

Red Devil Mine

Dissolved Metals by ICPMS (6020A)

Sample Type MBLK

Units: mg/l

Type MBLK	Units: mg	/t.							
Sample ID	RunNo: 87727	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MBLK	09/28/12 11:32	Antimony	ND	0.005					
		Arsenic	ND	0.005					
		Barium	ND	0.1					
		Beryllium	ND	0.002					
		Cadmium	ND	0.002					
		Chromium	ND	0.001					
		Cobalt	ND	0.01					
		Copper	ND	0.01					
		Lead	ND	0.02					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005					
		Silver	ND	0.003				h	
		Thallium	ND	0.001		/22			1, ,-1
		Vanadium	ND	0.02				0 [1]	15/

Sample Type LCS

Units: mg/L

,,,,		r <del>-</del>							
Sample ID	RunNo: 87727	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	09/28/12 11:28	Antimony	0.101	0.005	0.1		101	80 - 120	
		Arsenic	0.099	0.005	0.1		98.6	80 - 120	
		Barium	0.1	0.1	0.1		102	80 - 120	
		Beryllium	0.099	0.002	0.1		98.6	80 - 120	
		Cadmium	0.098	0.002	0.1		97.6	80 - 120	
		Chromium	0.100	0.001	0.1		100	80 - 120	
		Cobalt	0.10	0.01	0.1		101	80 - 120	
		Copper	0.10	0.01	0.1		102	80 - 120	
		Lead	0.10	0.02	0.1		102	80 - 120	
		Manganese	0.10	0.01	0.1		101	80 - 120	
		Nickel	0.10	0.01	0.1		99.5	80 - 120	
		Selenium	0.099	0.005	0.1		98.8	80 - 120	
		Silver	0.097	0.003	0.1		97.4	80 - 120	
		Thallium	0.102	0.001	0.1		102	80 - 120	
		Vanadium	0.10	0.02	0.1		98.6	80 - 120	

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
  - RPD outside accepted recovery limits



#### ANALYTICAL QC SUMMARY REPORT

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209429

Report ID: S1209429001

Project: Red Devil Mine

Anions by ION Chromatography

Sample Type	MBLK	Units:	ma/L

Sample Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87638	Analyte	Result	RI.	Spike	Ref Samp	%REC	% Rec Limits	Qual
BLK	09/25/12 11:41	Chloride	ND	1					
		Fluoride	ND	0.1				,	
		Sulfate	ND	1					Z,
Sample Type LCS	Units: mg	/L					مستسيده	0	11/0
Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
DIONEX	09/25/12 11:16	Chloride	31	1	30		102	90 - 110	
		Fluoride	20.7	0.1	20		104	90 - 110	
		Sulfate	144	1	150		95.8	90 - 110	
Sample Type MS	Units: mg	/L							
Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209429-001ASPK	09/25/12 23:01	Chloride	5	1	5	ND	95.0	80 - 120	
		Fluoride	2.2	0.1	2	ND	108	80 - 120	
		Sulfate	49	1	40	9	99.7	80 - 120	
Sample Type MSD	Units: mg	/L							
Sample ID	RunNo: 87638	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209429-001ASPK	09/25/12 23:14	Chloride	5	1	5	0.426	95.5	20	
		Fluoride	2.2	0.1	2.2	0.498	107	20	
		Sulfate	50	1	49	1.10	101	20	
Sample Type DUP	Units: mg	ſL.							
Sample ID	RunNo: 87638	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-001A	09/25/12 22:49	Chloride	0.5	0.2	0.5	4.92		20	
		Fluoride	ND	0.2	ND			20	

Qualifiers:

Analyte detected in the associated Method Blank

Sulfate

Н Holding times for preparation or analysis exceeded

Ł Analyzed by a contract laboratory

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Value above quantitation range

9.2

0.2

9.2

0.0347

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

20



#### ANALYTICAL QC SUMMARY REPORT

CLIENT:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209429

Report ID: S1209429001

Project:

Red Devil Mine

Nitrogen, Nitrate-Nitrite (as N)

Sample Ty	ype MBLK	Units: mg	/L							
Si	ample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
BI	LANK	09/25/12 15:51	Nitrogen, Nitrate-Nitrite (as N)	ND	0.1			1	r fo	11/1
Sa	ample ID	RunNo: 87825	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Bl	LANK	10/01/12 15:28	Nitrogen, Nitrate-Nitrite (as N)	ND	0.1			·		
Sample Ty	/ρe LCS	Units: mg/	L.							
Sa	ample ID	RunNo: 87583	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
Q	С	09/25/12 15:53	Nitrogen, Nitrate-Nitrite (as N)	18.5	0.1	19.3		95.7	90 - 110	
Sa	ample ID	RunNo: 87825	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Q	С	10/01/12 15:30	Nitrogen, Nitrate-Nitrite (as N)	19.4	0.1	19.3		101	90 - 110	
Sample Ty	pe MS	Units: mg/	L							
Sa	ample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1	1209429-001B	09/25/12 16:36	Nitrogen, Nitrate-Nitrile (as N)	4.78	0.05	5	ND	95.6	80 - 120	
Sample Ty	rpe MSD	Units: mg/	L							
Sa	ample ID	RunNo: 87583	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1	1209429-001B	09/25/12 16:37	Nitrogen, Nitrate-Nitrite (as N)	5.22	0.05	4.78	9.33	104	20	·
Sample Ty	pe DUP	Units: mg/	L							
Sa	ample ID	RunNo: 87583	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1	I209429-001B	09/25/12 16:35	Nitrogen, Nitrate-Nitrite (as	ND	0.05	ND			20	

N)

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Ε Value above quantitation range

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits



#### **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209429

Report ID: S1209429001

Project: Red Devil Mine

Solids	Ву	SM	2540
--------	----	----	------

	Sy SM 2540 Type MBLK	Units: mg/	L							
8	Sample ID	RunNo: 87559	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
E	BLANK	09/25/12 16:02	Total Suspended Solids	ND	5			•		
8	Sample ID	RunNo: 87637	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
E	OI .	09/25/12 14:32	Total Dissolved Solids (180)	ND	10					
Sample T	Type LCS	Units: mg/	L							
8	Sample ID	RunNo: 87559	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
_	CONTROL	09/25/12 16:03	Total Suspended Solids	102	5	100		102	90 - 110	·
S	Sample ID	RunNo: 87637	Analyte	Result	RL	Splke	Ref Samp	%REC	% Rec Limits	Qual
	CONTROL	09/25/12 14:33	Total Dissolved Solids (180)	240	10	226		106	90 - 110	
Sample T	ype DUP	Units: mg/l	L.							
s	Sample ID	RunNo: 87559	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S	S1209429-002A	09/25/12 16:14	Total Suspended Solids	ND	5	ND			20	Н
s	Sample ID	RunNo: 87637	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
9	S1209429-001A	09/25/12 14:57	Total Dissolved Solids (180)	120	10	110	7.27		20	Н
Total Or	ganic Carbon									
Sample T	ype MBLK	Unils: mg/l					,			
s	Sample ID	RunNo: 87635	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
В	BLANK	09/26/12 12:33	Total Organic Carbon	ND	0.5				<u> </u>	15/
Sample T	yρe LCS	Units: mg/l	<del>-</del>					7	0 110	· ->/
s	Sample ID	RunNo: 87635	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
L	.cs	09/26/12 9:55	Total Organic Carbon	55.8	0.5	56.3		99.2	90 - 110	
Sample T	ype MS	Units: mg/l	•							
s	Sample ID	RunNo: 87635	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
s	31209429-001ESPK	09/26/12 10:42	Total Organic Carbon	51.5	0.5	50	2.2	98.6	80 - 120	
Sample T	ype MSD	Units: mg/L	-							
s	Sample ID	RunNo: 87635	Analyte	Result	RL.	Conc	%RPD	%REC	% RPD Limits	Qual
s	1209429-001ESPK	09/26/12 10:53	Total Organic Carbon	51.4	0.5	51.5	0.252	98.4	20	
Sample T	ype DUP	Units: mg/L	-							
s	sample ID	RunNo: 87635	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
s	1209429-001E	09/26/12 10:30	Total Organic Carbon	2	1	2	5.51		20	

#### Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



#### **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order: Project:

S1209429

Report ID: \$1209429001

Red Devil Mine

Total(3020) Metals by ICP - 6010C

A1-	<b>T</b>	
Sample	IVpe	MBLK

Sample	Type MBLK	Units: mg	/L							
	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Ī	ICB	10/01/12 13:09	Aluminum	ND	0.005					-
			Calcium	ND	0.2					
			Iron	ND	0.05					
			Magnesium	0.14	0.02					В
			Potassium	ND	0.1					
			Silicon	ND	0.1					
			Sodium	ND	0.1					
			Zinc	ND	0.005					
Sample 1	Гуре LCS	Units: mg	Ղ.							
	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
1	CV Q	10/01/12 13:11	Silicon	1.0	0.1	1		102	80 - 120	
[	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
Ī	CV 3	10/01/12 13:13	Calcium	39.9	0.2	40		99.7	80 - 120	
			Magnesium	39.1	0.02	40		97.7	80 - 120	
			Potassium	40.4	0.1	40		101	80 - 120	
			Sodium	39.4	0.1	40		98.5	80 - 120	
[5	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
ī	_CS-6432	10/01/12 19:51	Aluminum	0.525	0,005	0.5		105	80 - 120	
			lron	0.57	0.05	0.5		113	80 - 120	
			Zinc	0.206	0.005	0.2		103	80 - 120	
Sample T	Type MS	Units: mg/	L							
[5	Sample ID	RunNo: 87797	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
	S1209429-001DS	10/01/12 19:56	Aluminum	0.550	0.005	0.5	0.031	104	75 - 125	
			Iron	0.69	0.05	0.5	0.15	109	75 - 125	
			Zinc	0.206	0.005	0.2	ND	103	75 - 125	
Sample T	ype MSD	Units: mg/	L.							
[8	Sample ID	RunNo: 87797	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
5	31209429-001DMSD	10/01/12 19:58	Aluminum	0.546	0.005	0.550	0.673	103	20	
			iron	0.68	0.05	0.69	1.35	107	20	
			Zinc	0.205	0.005	0.206	0.388	103	20	

mff 11/15/12

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

⁰ Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Value above quantitation range

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits



#### **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209429

Report ID: S1209429001

Project:

Red Devil Mine

Total(3020) Metals by ICP - 6010C

Sample Type DUP

Units: mg/L

· .,po = o.	O.IIIO/ IIIg	r 1-2							
Sample ID	RunNo: 87797	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-002DD	10/01/12 20:03	Aluminum	0.028	0.005	0.028	1.78		20	
		Calcium	16.7	0.2	16.7	0.0228		20	
		iron	0.14	0.05	0.14	0.861		20	
		Magnesium	9.92	0.02	9.96	0.463		20	
		Potassium	0.3	0.1	0.4	0.172		20	
		Silicon	4.0	0.1	4.0	0.145		20	
		Sodium	1.9	0.1	1.9	0.423		20	
		Zinc	ND	0.005	ND			20	

Total (3020) Metals by ICPMS - 6020A

Sample Type MBLK

Units: mg/L

- 17P- 111-E11	Onnor mg	, 44							
Sample ID	RunNo: 87728	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MB-6432	09/28/12 12:22	Antimony	ND	0.005					
		Arsenic	ND	0.005					
		Barium	ND	0.01					
		Beryllium	ND	0.002					
		Cadmium	ND	0.002					
		Chromium	ND	0.001					
		Cobalt	ND	0.01					
		Copper	ND	0.001					
		Lead	ND	0.001					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005				/	
		Silver	ND	0.003			2	-11	
		Thallium	ND	0.01				51/4/13	>
		Vanadium	ND	0.02				11/15/12	
								,	

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

Page 1 of 1

#### CHAIN OF CUSTODY RECORD

No: RDM-0912-003

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537 Cooler #. 3 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

Ecology and Environment, Inc S 1 209429 - 00 /

		<b>-</b>								
L,	ab#	t.ocation		Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
	/	0912RD09SW		Total Inorganic Elements	9/11/2012	13:12	3	250 mL HDPE	HNO3 pH<2	Y
¥		0912RD09SW		Dissolved Inorganic Elements	9/11/2012	13:12	3	250 mL HDPE	HNO3 pH<2	Y
		0912RD09SW	F	Methyl Mercury 🔍 🚐	9/11/2012	13:12	3	500 mL FLPE	HCI	Υ
		0912RD09SW	c>	Arsenic Speciation	9/11/2012	13:12	3	250 mL HDPE	HCI	Y
-001		0912RD09SW		Anions, TSS, TDS, Carbonate, Bicarbonate	9/11/2012	13:12	3	500 mL HDPE	None	Y
		0912RD09SW		Nitrate/Nitrite	9/11/2012	13:12	3	125 mL HDPE	H2SO4 pH<2	Υ
		0912RD09SW		Total Organic Carbon	9/11/2012	13:12	6	40 mJ Amber Glass	HCI	Υ
	1	0912RD218W		Total Inorganic Elements	9/11/2012	07:00	1	250 mt HDPE	HNO3 pH<2	•
		0912RD21\$W		Dissolved Inorganic Elements	9/11/2012	07:00	1	250 mL HDPE	HNO3 pH<2	
,		0912RD218W	F	√ Methyl Mercury	9/11/2012	07:00	1	500 mL FLPE	HCI	·
		0912RD21SW	6	Arsenic Speciation	9/11/2012	07:00	1	250 mL HDPE	HÇI	
-005		0912RD21SW		Anions, TSS, TDS, Carbonate, Bicarbonate	9/11/2012	07:00	1	500 mL HDPE	None	
`		0912RD21SW		Nitrate/Nitrite	9/11/2012	07:00	1	125 mL HDPE	H2SO4 pH<2	
	. \	0912RD21\$W		- Total Organic Carbon	9/11/2012	07:00	. 2	40 ml Amber Glass	HCI	

Special Instructions: Lab Gilter Aniens, carbonte, and Birmbonnte

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY#

Items/Reason Relinquished by Date Received by Date Time Items/Reason Relinquished By Data Received by Date Time

#### **DATA REVIEW MEMORANDUM**

DATE: November 14, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA

SUBJ: Data Review: Red Devil Mine

#### REFERENCE:

Project ID	Lab Work Order	Lab
EE-1096-0070	1	Brooks Rand Labs

#### I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Brooks Rand Labs in Seattle, WA for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	Sample ID	Lab ID	- Sample Date	MS/MS D	ID Corrections
1239038	Water	S1209429-001	1239038-01	09/11/2012	Х	0912RD09SW
1239038	Water	S1209429-002	1239038-02	09/11/2012		0912RD21SW
1239038	Water	S1209431-001	1239038-03	09/11/2012		0912RD04SW
1239038	Water	S1209431-002	1239038-04	09/11/2012		0912RD08SW
1239038	Water	S1209431-003	1239038-05	09/12/2012		0912RD10SW
1239038	Water	S1209431-004	1239038-06	09/11/2012		0912RD12SW
1239038	Water	S1209432-006	1239038-07	09/11/2012		0912RD05SW
1239038	Water	S1209432-007	1239038-08	09/11/2012		0912RD06SW

## Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
1239038	Water	EPA 1632	As (III)	8	
1239038	Water	EPA 1632	As(Inorg)	8	
1239038	Water	EPA 1630	MeHg	8	

#### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold  $(4 \pm 2)$  °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 0.8 °C. No problems with the condition of the sample upon receipt are documented.

#### III. LABORATORY DATA

#### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

#### **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes. No data were qualified.

#### 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes were detected in the method blanks at reporting limit levels.

#### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

#### **REVIEW RESULTS:**

Not applicable for these analyses.

#### 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The

potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

#### 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

#### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

#### V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

Professional judgment was used to determine whether or not to qualify results.

#### **REVIEW RESULTS:**

Field duplicates analyses were performed on 0912RD21SW and 0912RD06SW. All RPDs were within the acceptance limit.

The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria.

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

#### 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable as noted in this report.

Table 2	List of	Docitivo	Doculto	for Plan	k Samples
i abie z -	LIST O	Positive	Kesuits	tor Blan	k Sambies

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
None.								
	_							
							]	

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						

## Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	POL
None.						

## Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.			1					

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit	High Limit	Sample Qual	Reportable
None.											

Sample ID Ana	alyte	Method	RPD RPD Limit	No. of Affected Samples	Samp Qual
None.					

### Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	No. of Affected Samples	Samp Qual
None.							

## Table 6 –Samples that were Re-analyzed

Sample ID	lab ID	Method	Sample Type	Action
None.				

Table 7 - Summary of Field Duplicate Results

Method	Analýte	Units	0912RD21SW	0912RD06SW	RPD	Samı Rating Quali	
EPA 1632	As(III)	ug/L	8.49	8.97	5	Good	
EPA 1632	As(Inorg)	ug/L	80.5	85.6	6	Good	
Calculation	As(V)	ug/L	72.0	76.6	6	Good	
EPA 1630	МеНд	ng/L	0.128	0.132	3	Good	



BRL Report 1239038 Client PM: Wade Nieuwsma Client PO: 240421

# Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
S1209429-001										
1239038-01	As(III)	Water	T	9.65		0.320	1.00	μg/L	B121819	1200751
1239038-01	As(Inorg)	Water	T	80.9		3.20	10.0	μg/L	B121818	1200769
1239038-01	As(V)	Water	T	71.2		3.20	10.0	μg/L	[CALC]	N/A
1239038-01	MeHg	Water	Т	0.118		0.020	0.049	ng/L	B121851	1200784
S1209429-002										
1239038-02	As(III)	Water	Т	8.49		0.160	0.500	μg/L	B121819	1200751
1239038-02	As(Inorg)	Water	T	80.5		1.60	5.00	μg/L	B121818	1200769
1239038-02	As(V)	Water	T	72.0		1.60	5.00	μg/L	[CALC]	N/A
1239038-02	MeHg	Water	Т	0.128		0.020	0.051	ng/L	B121851	1200784
S1209431-001										
1239038-03	As(III)	Water	T	0.256		800.0	0.025	μg/L	B121819	1200751
1239038-03	As(Inorg)	Water	T	13.4		0.320	1.00	μg/L	B121818	1200769
1239038-03	As(V)	Water	Т	13.2		0.320	1.00	μg/L	[CALC]	N/A
1239038-03	MeHg	Water	Т	0.236		0.020	0.051	ng/L	B121851	1200784
S1209431-002										
1239038-04	As(III)	Water	T	4.87		0.160	0.500	μg/L	B121819	1200751
1239038-04	As(Inorg)	Water	T	83.0		1.60	5.00	μg/L	B121818	1200769
1239038-04	As(V)	Water	T	78.2		1.60	5.00	μg/L	[CALC]	N/A
1239038-04	MeHg	Water	Т	0.137		0.020	0.050	ng/L	B121851	1200784
S1209431-003										
1239038-05	As(III)	Water	T	0.094		800.0	0.025	μg/L	B121819	1200751
1239038-05	As(Inorg)	Water	T	0.868		0.053	0.167	μg/L	B121818	1200769
1239038-05	As(V)	Water	T	0.774		0.053	0.167	μg/L	[CALC]	N/A
1239038-05	MeHg	Water	Т	0.101		0.020	0.050	ng/L	B121851	1200784
S1209431-004										
1239038-06	As(III)	Water	Т	0.400		800.0	0.025	μg/L	B121819	1200751
1239038-06	As(Inorg)	Water	T	25.0		0.320	1.00	μg/L	B121818	1200769
1239038-06	As(V)	Water	Т	24.6		0.320	1.00	μg/L	[CALC]	N/A
1239038-06	MeHg	Water	T	0.118		0.019	0.049	ng/L	B121851	1200784

-m- 11/15/12



BRL Report 1239038
Client PM: Wade Nieuwsma
Client PO: 240421

# Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
S1209432-006										
1239038-07	As(III)	Water	T	492		6.40	20.0	μg/L	B121819	1200751
1239038-07	As(Inorg)	Water	T	767		16.0	50.0	μg/L	B121818	1200769
1239038-07	As(V)	Water	Т	275		16,0	50.0	μg/L	[CALC]	N/A
1239038-07	MeHg	Water	T	0.392		0.021	0.054	ng/L	B121851	1200784
S1209432-007										
1239038-08	As(III)	Water	T	8.97		0.320	1.00	μg/L	B121819	1200751
1239038-08	As(Inorg)	Water	T	85.6		3.20	10.0	μg/L	B121818	1200769
1239038-08	As(V)	Water	Ŧ	76.6		3.20	10.0	μg/L	[CALC]	N/A
1239038-08	MeHg	Water	T	0.132		0.021	0.052	ng/L	B121851	1200784

m-10/15/12

Project ID: IML-SH1201 PM: Lydia Greaves



BRL Report 1239038 Client PM: Wade Nieuwsma Client PO: 240421

# Method Blanks & Reporting Limits

Batch: B121818 Matrix: Water Method: EPA 1632 Analyte: As(Inorg)

Sample	Result	Units
B121818-BLK1	0.127	μg/L
B121818-BLK2	0.120	μg/L
B121818-BLK3	0.128	µg/L

Average: 0.125

Standard Deviation: 0.004

MDL: 0.160

Limit: 0.320

Limit: 0.107 MRL: 0.500

m / 1/15/12

Project ID: IML-SH1201 PM: Lydia Greaves



BRL Report 1239038 Client PM: Wade Nieuwsma Client PO: 240421

# Method Blanks & Reporting Limits

Batch: B121819 Matrix: Water Method: EPA 1632 Analyte: As(III)

 Sample
 Result
 Units

 B121819-BLK1
 0.034
 μg/L

 B121819-BLK2
 0.00
 μg/L

 B121819-BLK3
 0.00
 μg/L

Average: 0.011

Standard Deviation: 0.020

MDL: 0.160

Limit: 0.320

Limit: 0.107

MRL: 0.500

m/15/12

Project ID: IML-SH1201 PM: Lydia Greaves



BRL Report 1239038 Client PM: Wade Nieuwsma **Client PO: 240421** 

# Method Blanks & Reporting Limits

Batch: B121851 Matrix: Water Method: EPA 1630 Analyte: MeHg

Sample	Result	Units
B121851-BLK1	0.010	ng/L
B121851-BLK2	0.007	ng/L
B121851-BLK3	0.006	ng/L
B121851-BLK4	0.004	ng/L

Average: 0.007 Limit: 0.045 Standard Deviation: 0.003

MDL: 0.021

Limit: 0.015

MRL: 0.051

11/15/12

#### CHAIN OF CUSTODY RECORD

Inter-Mountain Laboratories, Inc. 1673 Terra Ave., Sheridan, WY 82801 Phone 800-828-1097 FAX 307-672-6053

1239038

Relinquished by:

9-25-12@15:07

Received by Lab:

Date/Time:

Sent to: Summit Env. Tech. Akron, OH 44310

Phone: 800-278-0140

	211	<b>ななつ</b>
P.O.	o/ 11	042

P.O. 240421	·	,		·			<del>,</del>
Sample No.	Client ID	Sample	Sample	Number of	Sample	Analyses/	Remarks
		Date	Time	Containers	Matrix	Parameters	
S1209429-001	0912RD09SW	9/11/2012	13:12	6	water	Methyl Mercury/AS Speciation	MATRIX Spike/MSD this sample
S1209429-002	0912RD215W	9/11/2012	7:00	6	water	Methyl Mercury/AS Speciation	
S1209431-001	0912RD04SW	9/11/2012	17:26	2	water	Methyl Mercury/AS Speciation	Call if you have any questions.
S1209431-002	0912RD08SW	9/11/2012	11:11	2	water	Methyl Mercury/AS Speciation	
\$1209431-003	0912RD10SW	9/12/2012	11:52	2	water	Methyl Mercury/AS Speciation	Please e-mail Results by:
S1209431-004	0912RD12SW	9/11/2012	16:27	2	water	Methyl Mercury/AS Speciation	Regest Standard TAT (20Days)
S1209432-006	0912RD05SW	9/11/2012	15:23	2	water	Methyl Mercury/AS Speciation	Please include EDD and QC report
S1209432-007	0912RD06SW	9/11/2012	11:57	2	water	Methyl Mercury/AS Speciation	Thank you
							e-mail: cmattson@tmlinc.com +
							lketron@imlinc.com

#### **DATA REVIEW MEMORANDUM**

DATE: November 15, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA

SUBJ: Data Review: Red Devil Mine

#### REFERENCE:

	l ab Work Order	Lab
EE-1096-0070	0.200.00	Inter-Mountain Labs

#### I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	Sample ID	. Lab ID	Sample Date	MS/MS D	ID Corrections
S1209430	Water	0912MW06GW	S1209430-001	09/09/2012		
S1209430	Water	0912MW15GW	S1209430-002	09/08/2012		
S1209430	Water	0912MW16GW	S1209430-003	09/08/2012		
S1209430	Water	0912MW17GW	S1209430-004	09/08/2012		
S1209430	Water	0912MW20GW	S1209430-005	09/09/2012		
S1209430	Water	0912MW21GW	S1209430-006	09/08/2012		
S1209430	Water	0912MW24GW	S1209430-007	09/09/2012		
S1209430	Water	0912MW25GW	S1209430-008	09/09/2012		
S1209430	Water	0912MW27GW	S1209430-009	09/09/2012	Х	
S1209430	Water	0912MW29GW	S1209430-010	09/09/2012		
S1209430	Water	0912MW32GW	S1209430-011	09/08/2012		
S1209430	Water	0912MW33GW	S1209430-012	09/08/2012	Х	
S1209430	Water	0912MW53GW	S1209430-013	09/09/2012		
S1209430	Water	0912MW54GW	S1209430-014	09/09/2012		
S1209430	Water	0912EB01D1	S1209430-015	09/09/2012		

## Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type	
S1209430	Water	SM 2540	TDS	15		
S1209430	Water	SM 2540	TSS	15		
S1209430	Water	SM 2320B	Alkalinity	15		
S1209430	Water	EPA 300.0/353.2	Anions	15		
S1209430	Water	EPA 6010C/6020A	Total Metals	15		
	-					
				1		
	900	ST WEST TRANSPORTED TO THE STATE OF THE STAT				
				137046		

#### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold  $(4 \pm 2)$  °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 4.9 °C. No problems with the condition of the sample upon receipt are documented.

#### III. LABORATORY DATA

#### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

#### **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes except Alkalinity, Total Dissolved solids, and Total Suspended Solids. The detected Alkalinity, TDS and TSS results were qualified as estimated (J) and the non-detected Alkalinity, TDS and TSS results were qualified as estimated (UJ). Also, for sample 0912MW27GW, re-analysis of Chloride, Sulfate, and Fluoride due to matrix interference was done outside of holding time and reported results were qualified as estimated (J).

#### 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes except trace amount (0.14 mg/L) of magnesium were detected in the method blank at reporting limit levels. Finding does not require qualification since sample concentration was greater than 5x the blank concentration. Also, trace amount of Antimony (0.12 ug/L) and Magnesium (70 ug/L) were detected in the equipment blank (0912EB01DI). Finding does not require qualification since sample concentration was greater than 5x the blank concentration,

### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

#### **REVIEW RESULTS:**

Not applicable for these analyses.

#### 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the

digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on samples 0912MW27GW and 0912MW33GW at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

#### 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

#### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

#### V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

Professional judgment was used to determine whether or not to qualify results.

#### **REVIEW RESULTS:**

Two Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria. The detected Nitrogen, Nitrate-Nitrite result in 0912MW53GW was qualified as estimated (J) and the non-detected Nitrogen, Nitrate-Nitrite result in 0912MW20GW was qualified as estimated (UJ). Also, the detected AI, Fe, Cr, and Cu results in samples 0912MW27GW and 0912MW54GW were qualified as estimated (J) and the non-detected AI result in sample 0912ME54GW was qualified as estimated (UJ).

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

#### 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result Qual	Anal Type Units PQ
EPA 6020A	0912EB01DI		Antimony	0.12	ug/L
EPA 6010C	0912EB01DI		Magnesium	70	ug/L
EPA 6010C	MBLK		Magnesium	0.14	mg/L mg/L

### Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Sample Result	Sample Qual	PQL
None.					

### Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						

### Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.								

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit	High Limit	Sample Qual	Reportable
None.											
					-						

Sample ID	Analyte	Method	P R	RPD Limit	No. of Affected Samples	Samp Qual
None.						

### Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	No. of Affected Samples	Samp Qual
None.							
T. Carry or Park							

### Table 6 - Samples that were Re-analyzed

Sample ID	Lab ID	different Proceduction of the	Sample Type	unimaterial resident
None.				

Table 7 – Summary of Field Duplicate Results:

Method	Analyte	Units	0912MW20GW	0.9112MW53GW	RPD	Rating	Sample Qualifier
SM 2320B	Total Alkalinity	mg/L	93	89	4	Good	
EPA 300.0	Chloride	mg/L	0.5	0.5	0	Good	
EPA 300.0	Fluoride	mg/L	<0.2	<0.2	0	Good	
EPA 300.0	Sulfate	mg/L	17.7	17.6	1	Good	
SM 2540	TDS	mg/L	140	150	7	Good	
SM 2540	TSS	mg/L	<5	<5	0	Good	
EPA 353.2	Nitrogen, Nitrate-Nitrite	mg/L	<0.05	0.10	NC_	Poor	J
EPA 6010C	Aluminum	ug/L	<50	<50	0	Good	
EPA 6010C	Calcium	ug/L	19900	19600	2	Good	
EPA 6010C	lron	ug/L	30	20	40	Good	
EPA 6010C	Magnesium	ug/L	15700	15200	3	Good	
EPA 6010C	Potassium	ug/L	600	600	0	Good	
EPA 6010C	Silicone	ug/L	5000	4900	2	Good	
EPA 6010C	Sodium	ug/L	2400	2400	0	Good	
EPA 6010C	Zinc	ug/L	<10	<10	0	Good	
EPA 6020A	Antimony	ug/L	871	866	1	Good	
EPA 6020A	Arsenic	ug/L	221	233	5	Good	
EPA 6020A	Barium	ug/L	40	40	0	Good	
EPA 6020A	Beryllium	ug/L	<0.2	<0.2	0	Good	
EPA 6020A	Cadmium	ug/L	<0.5	<0.5	0	Good	
EPA 6020A	Chromium	ug/L	<0.5	<0.5	0	Good	
EPA 6020A	Cobalt	ug/L	<0.1	<0.1	0	Good	

NC: Not calculated

Method			0912MW20GW	0912MW53GW	RPD	Rating	Sample
	Analyte	Units ug/L					Qualifier
EPA 6020A	Copper		<0.9	<0.9	0	Good	
EPA 6020A	Lead	ug/L	<0.3	<0.3	0	Good	
EPA 6020A	Manganese	ug/L	5	5	0	Good	
EPA 6020A	Nickel	ug/L	<2	<2	0	Good	
EPA 6020A	Selenium_	ug/L	<3	<3	0	Good	
EPA 6020A	Silver	ug/L	<0.3	<0.3	0	Good	
EPA 6020A	Thallium	ug/L	<0.3	<0.3	0	Good	
EPA 6020A	Vanadium	ug/L	<2	<2	0	Good	

Method	Analyte	Units	0912MW27GW	0912MW54GW	RPD	Rating	Sample Qualifier
SM 2320B	Total Alkalinity	mg/L	218	221	1	Good	
EPA 300.0	Chloride	mg/L	1.0	1.1	1	Good	
EPA 300.0	Fluoride	mg/L	<0.2	<0.2	0	Good	
EPA 300.0	Sulfate	mg/L	230	233	1	Good	
SM 2540	TDS	mg/L	640	620	3	Good	
SM 2540	TSS	mg/L	<5	<5	0	Good	
EPA 353.2	Nitrogen, Nitrate-Nitrite	mg/L	<0.05	<0.05	0	Good	
EPA 6010C	Aluminum	ug/L	150	<50	NC	Poor	J
EPA 6010C	Calcium	ug/L	98600	94700	4	Good	
EPA 6010C	Iron	ug/L	310	50	144	Poor	J
EPA 6010C	Magnesium	ug/L	59000	54700	8	Good	
EPA 6010C	Potassium	ug/L	2300	1900	19	Good	
EPA 6010C	Silicone	ug/L	7300	6700	9	Good	
EPA 6010C	Sodium	ug/L	21400	20800	3	Good	
EPA 6010C	Zinc	ug/L	20	20	0	Good	
EPA 6020A	Antimony	ug/L	12.9	9.23	33	Good	
EPA 6020A	Arsenic	ug/L	31	29	7	Good	
EPA 6020A	Barium	ug/L	60	50	18	Good	
EPA 6020A	Beryllium	ug/L	<0.2	<0.2	0	Good	
EPA 6020A	Cadmium	ug/L	<0.5	<0.5	0	Good	
EPA 6020A	Chromium	ug/L	8.9	4.3	70	Poor	
EPA 6020A	Cobalt	ug/L	1.9	1.3	38	Good	

NC: Not calculated

Method	Analyte	Units	0912MW20GW	0912MW53GW	RPD	Rating	Sample Qualifier
EPA 6020A	Copper	ug/L	2.1	1.1	63	Poor	J
EPA 6020A	Lead	ug/L	<0.3	<0.3	0	Good	
EPA 6020A	Manganese	ug/L	1280	1070	18	Good	
EPA 6020A	Nickel	ug/L	48	50	4	Good	
EPA 6020A	Selenium	ug/L	<3	<3	0	Good	
EPA 6020A	Silver	ug/L	<0.3	<0.3	0	Good	
EPA 6020A	Thallium	ug/L	<0.3	<0.3	0	Good	
EPA 6020A	Vanadium	ug/L.	<2	<2	0	Good	



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-011

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/9/2012 12:40:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-001
Client Sample ID:	0912MW06GW

COC:

***************************************							
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method	
General Parameters							
Total Dissolved Solids (180)		J 10	Н	mg/L	09/25/2012 1459 JCG	SM 2540	
Total Suspended Solids	ND (	UJ 5	H	mg/L	09/25/2012 1615 JCG	SM 2540	
Alkalinity, Total (As CaCO3)	178	J 5	H	mg/L	09/25/2012 1946 KV	SM 2320B	
Anions							
Alkalinity, Bicarbonate as HCO3	-11	三 5	Н	mg/L	09/25/2012 1946 KV	SM 2320B	
Alkalinity, Carbonate as CO3	ND (	/J 5	Н	mg/L	09/25/2012 1946 KV	SM 2320B	
Chloride	0.8	0.2		mg/L	09/25/2012 1752 AM	EPA 300.0	
Fluoride	ND	0.2		mg/L	09/25/2012 1752 AM	EPA 300.0	
Nitrogen, Nitrate-Nitrite (as N)	ND	0.05		mg/L	09/28/2012 1600 RH	EPA 353.2	
Sulfate	25.0	0.2		mg/L	09/25/2012 1752 AM	EPA 300.0	
Total Metals							
Aluminum	ND	50		μg/L	10/01/2012 2005 DG	6010C	
Antimony	6.19	0.07		μg/L	09/28/2012 1525 MS	6020A	
Arsenic	34	2		μg/L	09/28/2012 1525 MS	6020A	
Barium	80	10		μg/L	09/28/2012 1525 MS	6020A	
Beryllium	ND	0.2		μg/l.	09/28/2012 1525 MS	6020A	
Cadmium	ND	0.5		μg/L	09/28/2012 1525 MS	6020A	
Calcium	32500	50		μg/L	10/01/2012 2005 DG	6010C	
Chromium	ND	0.5		µg/L	09/28/2012 1525 MS	6020A	
Cobalt	1.5	0.1		μg/L	09/28/2012 1525 MS	6020A	
Соррег	ND	0.9		μg/L	09/28/2012 1525 MS	6020A	
Iron	2460	20		μg/L	10/01/2012 2005 DG	6010C	
Lead	ND	0.3		μg/L	09/28/2012 1525 MS	6020A	
Magnesium	30400	20		μg/L	10/01/2012 2005 DG	6010C	
Manganese	603	2		μg/L	09/28/2012 1525 MS	6020A	
Nickel	3	2		μg/L	09/28/2012 1525 MS	6020A	
Potassium	900	400		µg/L	10/01/2012 2005 DG	6010C	
Selenium	ND	3		μg/L	09/28/2012 1525 MS	6020A	
Silicon	9200	400		μg/L	10/01/2012 2005 DG	6010C	
Silver	ND	0.3		μg/L	09/28/2012 1525 MS	6020A	
Sodium	4400	200		μg/L	10/01/2012 2005 DG	6010C	
Thallium	ND	0.3		μg/L	09/28/2012 1525 MS	6020A	
Vanadium	ND	2		μg/L	09/28/2012 1525 MS	6020A	
Zinc	ND	10		μg/L	10/01/2012 2005 DG	6010C	

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L. Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

1/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/8/2012 2:00:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-002
Client Sample ID:	0912MW15GW
COC:	RDM-0912-011

				mulia, muo					
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method			
General Parameters	-								
Total Dissolved Solids (180)	310	T 10	Н	mg/L	09/25/2012 1500 JCG	SM 2540			
Total Suspended Solids	ND (		Н	mg/L	09/25/2012 1616 JCG	SM 2540			
Alkalinity, Total (As CaCO3)	63 ·	T 5	Н	mg/L	09/25/2012 1953 KV	SM 2320B			
Anions									
Alkalinity, Bicarbonate as HCO3	77		H	mg/L	09/25/2012 1953 KV	SM 2320B			
Alkalinity, Carbonate as CO3	ND V	J 5	Н	mg/L	09/25/2012 1953 KV	SM 2320B			
Chloride	3.5	0.2		mg/L	09/25/2012 1805 AM	EPA 300.0			
Fluoride	ND	0.2		mg/L	09/25/2012 1805 AM	EPA 300.0			
Nitrogen, Nitrate-Nitrite (as N)	0.21	0.05		mg/L	09/25/2012 1559 RH	EPA 353.2			
Sulfate	128	0.2		mg/L	09/25/2012 1805 AM	EPA 300.0			
Total Metals									
Aluminum	50	50		µg/L	10/01/2012 2008 DG	6010C			
Antimony	8430	0.07		μg/L	09/28/2012 1802 MS	6020A			
Arsenic	5370	2		μg/L	09/28/2012 1802 MS	6020A			
Barium	40	10		μg/L	09/28/2012 1530 MS	6020A			
Beryllium	ND	0.2		μg/L	09/28/2012 1530 MS	6020A			
Cadmium	ND	0.5		μg/L	09/28/2012 1530 MS	6020A			
Calcium	23100	50		μg/L	10/01/2012 2008 DG	6010C			
Chromium	3.3	0.5		μg/L	09/28/2012 1530 MS	6020A			
Cobalt	0.1	0.1		μg/L	09/28/2012 1530 MS	6020A			
Copper	2.0	0.9		μg/L	09/28/2012 1530 MS	6020A			
Iron	40	20		μg/L	10/01/2012 2008 DG	6010C			
Lead	ND	0.3		μg/L	09/28/2012 1530 MS	6020A			
Magnesium	35900	20		μg/L	10/01/2012 2008 DG	6010C			
Manganese	3	2		μg/L	09/28/2012 1530 MS	6020A			
Nickel	12	2		μg/L	09/28/2012 1530 MS	6020A			
Potassium	1700	400		µg/L	10/01/2012 2008 DG	6010C			
Selenium	ND	3		µg/L	09/28/2012 1530 MS	6020A			
Silicon	7000	400		μg/L	10/01/2012 2008 DG	6010C			
Silver	ND	0.3		μg/L	09/28/2012 1530 MS	6020A			
Sodium	4500	200		μg/L	10/01/2012 2008 DG	6010C			
Thallium	ND	0.3		μg/L	09/28/2012 1530 MS	6020A			
Vanadium	2	. 2		μg/L	09/28/2012 1530 MS	6020A			
Zinc	ND	10		μg/L	10/01/2012 2008 DG	6010C			

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

E. Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

m / 11/15/12

Page 2 of 15



#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-011

Seattle, WA 98104

Date Reported: 10/8/2012

ph: (307) 672-8945

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/8/2012 3:35:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209430-003 Client Sample ID: 0912MW16GW

COC:

RL Units **Analyses** Result Qual Date Analyzed/Init Méthod **General Parameters** Total Dissolved Solids (180) 350 J 10 Н 09/25/2012 1501 JCG SM 2540 mg/L J Total Suspended Solids 6 5 Н mg/L 09/25/2012 1617 JCG SM 2540 Ţ 113 Alkalinity, Total (As CaCO3) 5 Н SM 2320B mg/L 09/25/2012 1959 KV Alkalinity, Bicarbonate as HCO3 138 5 Н ma/L 09/25/2012 1959 KV SM 2320B US ND SM 2320B Alkalinity, Carbonate as CO3 5 Н mg/L 09/25/2012 1959 KV Chloride 0.3 0.2 mg/L 09/25/2012 1817 AM EPA 300.0 Fluoride ND 0.2 mg/l. 09/25/2012 1817 AM **EPA 300.0** Nitrogen, Nitrate-Nitrite (as N) 0.05 0.05 EPA 353.2 mg/L 09/25/2012 1600 RH Sulfate 142 0.2 09/25/2012 1817 AM EPA 300.0 mg/L **Total Metals** 100 Aluminum 50 10/01/2012 2010 DG 6010C µg/L Antimony 757 0.07 μg/L 09/28/2012 1535 MS 6020A Arsenic 830 2 μg/L 09/28/2012 1535 MS 6020A Barium 50 10 09/28/2012 1535 MS 6020A µg/L ND Beryllium 0.2 μg/L 09/28/2012 1535 MS 6020A Cadmium ND 0.5 μg/L 09/28/2012 1535 MS 6020A Calcium 24400 50 µg/L 10/01/2012 2010 DG 6010C Chromium ND 0.5 µg/L 09/28/2012 1535 MS 6020A Cobalt 7.9 0.1 09/28/2012 1535 MS 6020A µg/L 6020A 1.3 0.9 09/28/2012 1535 MS Copper μg/L Iron 11200 20 10/01/2012 2010 DG 6010C μg/L Lead ND 0.3 09/28/2012 1535 MS 6020A µg/L 42800 6010C 20 10/01/2012 2010 DG Magnesium μg/L Manganese 5440 2 09/28/2012 1817 MS 6020A μg/L μg/L Nickel 6 2 09/28/2012 1535 MS 6020A 2200 400 6010C Potassium μg/L 10/01/2012 2010 DG Selenium ND 3 09/28/2012 1535 MS 6020A μg/L Silicon 8000 400 10/01/2012 2010 DG 6010C μg/L 6020A Silver ND 0.3 µg/L 09/28/2012 1535 MS Sodium 5000 200 10/01/2012 2010 DG 6010C μg/L Thallium ND 0.3 09/28/2012 1535 MS 6020A µg/L Vanadium 2 09/28/2012 1535 MS 6020A ND µg/L Zinc ND 10 µg/L 10/01/2012 2010 DG 6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- c Calculated Value
- Holding times for preparation or analysis exceeded н
- Analyzed by a contract laboratory
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

- Analyte detected in the associated Method Blank
  - Value above quantitation range
- Analyte detected below quantitation limits
- Value exceeds Monthly Ave or MCL
- Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

11/15/12

Page 3 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-011

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/8/2012 4:59:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-004
Client Sample ID:	0912MW17GW

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Seneral Parameters						
Total Dissolved Solids (180)	130 🗐	10	Н	mg/L	09/25/2012 1502 JCG	SM 2540
Total Suspended Solids	ND ()		H	mg/L	09/25/2012 1618 JCG	SM 2540
Alkalinity, Total (As CaCO3)	111 .	J 5	H	mg/L	09/25/2012 2006 KV	SM 2320B
nions						
Alkalinity, Bicarbonate as HCO3	135	5	H	mg/L	09/25/2012 2006 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND U	J 5	Н	mg/L	09/25/2012 2006 KV	SM 2320B
Chloride	0.6	0.2		mg/L	09/25/2012 1829 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 1829 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.05	0.05		mg/L	09/28/2012 1556 RH	EPA 353.2
Sulfate	5.5	0.2		mg/L	09/25/2012 1829 AM	EPA 300.0
otal Metals						
Aluminum	ND	50		μg/L	10/01/2012 2020 DG	6010C
Antimony	6.44	0.07		μg/L	09/28/2012 1540 MS	6020A
Arsenic	3	2		μg/L	09/28/2012 1540 MS	6020A
Barium	40	10		μg/L	09/28/2012 1540 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1540 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1540 MS	6020A
Calcium	20700	50		μg/L	10/01/2012 2020 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1540 MS	6020A
Cobalt	ND	0.1		µg/L	09/28/2012 1540 MS	6020A
Copper	ND	0.9		µg/L	09/28/2012 1540 MS	6020A
lron	ND	20		µg/L	10/01/2012 2020 DG	6010C
Lead	0.3	0.3		µg/L	09/28/2012 1540 MS	6020A
Magnesium	13900	20		µg/L	10/01/2012 2020 DG	6010C
Manganese	ND	2		μg/L	09/28/2012 1540 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1540 MS	6020A
Potassium	ND	400		μg/L	10/01/2012 2020 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1540 MS	6020A
Silicon	5000	400		μg/L	10/01/2012 2020 DG	6010C
Silver	ND	0.3		µg/L	09/28/2012 1540 MS	6020A
Sodium	2600	200		μg/L	10/01/2012 2020 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1540 MS	6020A
Vanadlum	ND	2		μg/L	09/28/2012 1540 MS	6020A
Zinc	ND	10		μg/L.	10/01/2012 2020 DG	6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L. Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

may 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/9/2012 10:40:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-005
Client Sample ID:	0912MW20GW
COC:	RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	140	J 10	H	mg/L	09/25/2012 1503 JCG	SM 2540
Total Suspended Solids	ND (		Н	mg/L	09/25/2012 1619 JCG	SM 2540
Alkalinity, Total (As CaCO3)	93	<b>5</b> 5	Н	mg/L	09/25/2012 2013 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3		ブ 5	Н	mg/L	09/25/2012 2013 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND (	)J 5	Н	mg/L	09/25/2012 2013 KV	SM 2320B
Chloride	0.5	0.2		mg/L	09/25/2012 1842 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 1842 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	ND	0.05		mg/L	09/25/2012 1606 RH	EPA 353.2
Sulfate	17.7	0.2		mg/L	09/25/2012 1842 AM	EPA 300.0
Total Metals						
Aluminum	ND	50		μg/L	10/01/2012 2022 DG	6010C
Antimony	871	0.07		μg/L	09/28/2012 1545 MS	6020A
Arsenic	221	2		μg/L	09/28/2012 1545 MS	6020A
Barium	40	10		µg/L	09/28/2012 1545 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1545 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1545 MS	6020A
Calcium	19900	50		μg/L	10/01/2012 2022 DG	6010C
Chromlum	ND	0.5		μg/L	09/28/2012 1545 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1545 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1545 MS	6020A
Iron	30	20		μց/Լ_	10/01/2012 2022 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1545 MS	6020A
Magnesium	15700	20		μg/L	10/01/2012 2022 DG	6010C
Manganese	5	2		μg/L	09/28/2012 1545 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1545 MS	6020A
Potassium	600	400		µg/L	10/01/2012 2022 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1545 MS	6020A
Silicon	5000	400		μg/L	10/01/2012 2022 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1545 MS	6020A
Sodium	2400	200		μg/L	10/01/2012 2022 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1545 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1545 MS	6020A
Zinc	ND	10		µg/L	10/01/2012 2022 DG	6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- . Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

### RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

my 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 5 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/8/2012 6:00:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-006
Client Sample ID:	0912MW21GW
COC:	RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	270	J 10	Н	mg/L	09/25/2012 1504 JCG	SM 2540
Total Suspended Solids	ND C		Н	mg/L	09/25/2012 1620 JCG	SM 2540
Alkalinity, Total (As CaCO3)	175	J 5	Н	mg/L	09/25/2012 2020 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3		J 5	Н	mg/L	09/25/2012 2020 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND (	)エ 5	Н	mg/L	09/25/2012 2020 KV	SM 2320B
Chloride	0.6	0.2		mg/L	09/25/2012 1854 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 1854 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.06	0.05		mg/L	09/28/2012 1557 RH	EPA 353.2
Sulfate	25.3	0.2		mg/L	09/25/2012 1854 AM	EPA 300.0
otal Metals						
Aluminum	ND	50		μg/L	10/01/2012 2024 DG	6010C
Antimony	9490	0.07		μg/L	09/28/2012 1822 MS	6020A
Arsenic	2510	2		μg/L	09/28/2012 1550 MS	6020A
Barium	110	10		μg/L	09/28/2012 1550 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1550 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1550 MS	6020A
Calcium	35100	50		µg/L	10/01/2012 2024 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1550 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1550 MS	6020A
Copper	1.9	0.9		µg/L	09/28/2012 1550 MS	6020A
Iron	ND	20		μg/L	10/01/2012 2024 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1550 MS	6020A
Magnesium	30300	20		µg/Լ	10/01/2012 2024 DG	6010C
Manganese	2	2		μg/L	09/28/2012 1550 MS	6020A
Nickel	3	2		μg/L	09/28/2012 1550 MS	6020A
Potassium	2400	400		µg/L	10/01/2012 2024 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1550 MS	6020A
Silicon	9700	400		μg/L	10/01/2012 2024 DG	6010C
Silver	ND	0.3		µg/L	09/28/2012 1550 MS	6020A
Sodium	3400	200		µg/L	10/01/2012 2024 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1550 MS	6020A
Vanadium	ND	2		µg/L	09/28/2012 1550 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2024 DG	6010C

These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

o of Dilutions 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 6 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/9/2012 2:50:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	\$1209430-007
Client Sample ID:	0912MW24GW
COC:	RDM-0912-011

Analyses	Result	RL.	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	,,,,	J 10	Н	mg/L	09/25/2012 1505 JCG	SM 2540
Total Suspended Solids	NU	UJ 5	Н	mg/L	09/25/2012 1621 JCG	SM 2540
Alkalinity, Total (As CaCO3)	103	ブ ₅	Н	mg/L	09/25/2012 2027 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	,1-0	J 5	Н	mg/L	09/25/2012 2027 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND	$U_{5}$	Н	mg/L	09/25/2012 2027 KV	SM 2320B
Chloride	0.5	0.2		mg/L	09/25/2012 1906 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 1906 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.32	0.05		mg/L	09/25/2012 1607 RH	EPA 353.2
Sulfate	37.1	0.2		mg/L	09/25/2012 1906 AM	EPA 300.0
otal Metals						
Aluminum	ND	50		µg/L	10/01/2012 2027 DG	6010C
Antimony	108	0.07		μg/L	09/28/2012 1554 MS	6020A
Arsenic	5	2		µg/L	09/28/2012 1554 MS	6020A
Barium	10	10		μg/L	09/28/2012 1554 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1554 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1554 MS	6020A
Calcium	24200	50		μg/L	10/01/2012 2027 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1554 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1554 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1554 MS	6020A
Iron	ND	20		μg/L	10/01/2012 2027 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1554 MS	6020A
Magnesium	18200	20		μg/L	10/01/2012 2027 DG	6010C
Manganese	ND	2		μg/L	09/28/2012 1554 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1554 MS	6020A
Potassium	700	400		μg/L	10/01/2012 2027 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1554 MS	6020A
Silicon	6800	400		μg/L	10/01/2012 2027 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1554 MS	6020A
Sodium	7200	200		μg/L	10/01/2012 2027 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1554 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1554 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2027 DG	6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Calculated Value
- Н Holding times for preparation or analysis exceeded
- Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- Analyte detected in the associated Method Blank
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- Value exceeds Monthly Ave or MCL
- Outside the Range of Dilutions

7 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/9/2012 11:10:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	\$1209430-008
Client Sample ID:	0912MW25GW
COC:	RDM-0912-011

1\DM-0312-011	Matrix, Water							
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method		
General Parameters								
Total Dissolved Solids (180)	380	J 10	Н	mg/L	09/25/2012 1506 JCG	SM 2540		
Total Suspended Solids	96	<b>ブ</b> 5	H	mg/L	09/25/2012 1622 JCG	SM 2540		
Alkalinity, Total (As CaCO3)	216	J 5	Н	mg/L	09/25/2012 2033 KV	SM 2320B		
Anions								
Alkalinity, Bicarbonate as HCO3	264		Н	mg/L	09/25/2012 2033 KV	SM 2320B		
Alkalinity, Carbonate as CO3	ND	UT 5	Н	mg/L	09/25/2012 2033 KV	SM 2320B		
Chloride	0.7	0.2		mg/l.	09/25/2012 1919 AM	EPA 300.0		
Fluoride	ND	0.2		mg/L	09/25/2012 1919 AM	EPA 300.0		
Nitrogen, Nitrate-Nitrite (as N)	ND	0.05		mg/L	09/25/2012 1608 RH	EPA 353.2		
Sulfate	66.2	0.2		mg/L	09/25/2012 1919 AM	EPA 300.0		
Total Metals								
Aluminum	50	50		μg/L	10/01/2012 2029 DG	6010C		
Antimony	69.6	0.07		μg/L	09/28/2012 1559 MS	6020A		
Arsenic	1160	2		μg/L	09/28/2012 1559 MS	6020A		
Barium	530	10		μg/L	09/28/2012 1559 MS	6020A		
Beryllium	ND	0.2		μg/L	09/28/2012 1559 MS	6020A		
Cadmium	ND	0.5		μg/L	09/28/2012 1559 MS	6020A		
Calcium	56600	50		μg/L	10/01/2012 2029 DG	6010C		
Chromlum	6.3	0.5		μg/L	09/28/2012 1559 MS	6020A		
Cobalt	27.8	0.1		μg/L	09/28/2012 1559 MS	6020A		
Copper	3.6	0.9		μg/L	09/28/2012 1559 MS	6020A		
Iron	49200	20		μg/L	10/01/2012 2029 DG	6010C		
Lead	ND	0.3		µg/L	09/28/2012 1559 MS	6020A		
Magnesium	32000	20		µg/L	10/01/2012 2029 DG	6010C		
Manganese	7650	2		μg/L	09/28/2012 1827 MS	6020A		
Nickel	24	2		μg/L	09/28/2012 1559 MS	6020A		
Potassium	3700	400		μg/L	10/01/2012 2029 DG	6010C		
Selenium	ND	3		µg/L	09/28/2012 1559 MS	6020A		
Silicon	8700	400		µg/L	10/01/2012 2029 DG	6010C		
Silver	ND	0.3		μg/L	09/28/2012 1559 MS	6020A		
Sodium	5200	200		μg/L	10/01/2012 2029 DG	6010C		
Thallium	ND	0.3		μg/L	09/28/2012 1559 MS	6020A		
Vanadium	ND	2		μg/L	09/28/2012 1559 MS	6020A		
Zinc	ND	10		μg/L	10/01/2012 2029 DG	6010C		

### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- . Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

of MCL (1) 15-/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 8 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/9/2012 1:34:00 PM

Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-009
Client Sample ID:	0912MW27GW
COC:	RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	640 J		H	mg/L	09/25/2012 1507 JCG	SM 2540
Total Suspended Solids	ND U	v	Н	mg/L	09/25/2012 1623 JCG	SM 2540
Alkalinity, Total (As CaCO3)	218 ブ	5	Н	mg/L	09/25/2012 2040 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	266 🏋	5	Н	mg/L	09/25/2012 2040 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND U		Н	mg/L	09/25/2012 2040 KV	SM 2320B
Chloride	7.0 ع	0.2	Н	mg/L	10/12/2012 1146 AM	EPA 300.0
Fluoride	ND VJ	0.2	Н	mg/L	10/12/2012 1146 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	ND	0.05		mg/L	09/25/2012 1616 RH	EPA 353.2
Sulfate	230 丁	0.2	Н	mg/L	10/12/2012 1146 AM	EPA 300.0
otal Metals						
Aluminum	150	50		μg/L	10/01/2012 2032 DG	6010C
Antimony	12.9	0.07		μg/L	09/28/2012 1604 MS	6020A
Arsenic	31	2		μg/L	09/28/2012 1604 MS	6020A
Barium	60	10		μg/L	09/28/2012 1604 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1604 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1604 MS	6020A
Calcium	98600	50		μg/L	10/01/2012 2032 DG	6010C
Chromium	8.9	0.5		μ <b>ց</b> /Լ.	09/28/2012 1604 MS	6020A
Cobalt	1.9	0.1		μg/L	09/28/2012 1604 MS	6020A
Copper	2.1	0.9		μg/L	09/28/2012 1604 MS	6020A
Iron	310	20		hg/L	10/01/2012 2032 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1604 MS	6020A
Magnesium	59000	20		μg/L	10/01/2012 2032 DG	6010C
Manganese	1280	2		μg/L	09/28/2012 1604 MS	6020A
Nickel	48	2		μg/L	09/28/2012 1604 MS	6020A
Potassium	2300	400		μg/L	10/01/2012 2032 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1604 MS	6020A
Silicon	7300	400		μg/L	10/01/2012 2032 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1604 MS	6020A
Sodium	21400	200		μg/L	10/01/2012 2032 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1604 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1604 MS	6020A
Zinc	20	10		μg/L	10/01/2012 2032 DG	6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

ons 11/15/12

Page 9 of 15



Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-011

Seattle, WA 98104

Date Reported: 10/8/2012

ph: (307) 672-8945

Report ID: \$1209430001

Work Order: S1209430

Collection Date: 9/9/2012 4:58:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209430-010 Client Sample ID: 0912MW29GW

COC:

**Analyses** Result RL Qual Units Date Analyzed/Init Method **General Parameters** Total Dissolved Solids (180) 330 J 10 H mg/L 09/25/2012 1509 JCG SM 2540 7 Total Suspended Solids 13 5 Н mg/L 09/25/2012 1624 JCG SM 2540 273 Alkalinity, Total (As CaCO3) 5 H 09/25/2012 2053 KV SM 2320B mg/L 333 🍱 Alkalinity, Bicarbonate as HCO3 5 н mg/L 09/25/2012 2053 KV SM 2320B ND UJ Alkalinity, Carbonate as CO3 5 н 09/25/2012 2053 KV SM 2320B mg/L Chloride 0.7 0.2 mg/L 09/25/2012 2045 AM EPA 300.0 Fluoride 0.3 0.2 mg/L 09/25/2012 2045 AM EPA 300.0 Nitrogen, Nitrate-Nitrite (as N) ND 0.05 mg/L 09/25/2012 1626 RH EPA 353.2 Sulfate 28.1 0.2 mg/L 09/25/2012 2045 AM **EPA 300.0 Total Metals** 140 10/01/2012 2039 DG 6010C Aluminum 50 µg/L 6020A Antimony 1.34 0.07 μg/L 09/28/2012 1629 MS 6020A Arsenic 44 2 μg/L 09/28/2012 1629 MS 230 09/28/2012 1629 MS 6020A Barium 10 μg/L 6020A Beryllium ND 0.2 μg/L 09/28/2012 1629 MS 6020A Cadmium ND 0.5 μg/L 09/28/2012 1629 MS 50200 6010C Calcium 50 µg/L 10/01/2012 2039 DG Chromium 5.1 0.5 µg/L 09/28/2012 1629 MS 6020A Cobalt 8.0 0.1 µg/L 09/28/2012 1629 MS 6020A 6020A 1.2 0.9 μg/L 09/28/2012 1629 MS Copper Iron 2690 20 μg/L 10/01/2012 2039 DG 6010C ND 0.3 μg/L 09/28/2012 1629 MS 6020A Lead 48200 6010C 20 10/01/2012 2039 DG Magnesium µg/L 398 2 μg/L 09/28/2012 1629 MS 6020A Manganese µg/L Nickel 2 09/28/2012 1629 MS 6020A 4 1100 6010C 400 10/01/2012 2039 DG Potassium μg/L Selenium ND 3 09/28/2012 1629 MS 6020A ug/L Sillcon 4400 400 10/01/2012 2039 DG 6010C μg/L 6020A Silver ND 09/28/2012 1629 MS 0.3 μg/L Sodium 2600 200 μg/L 10/01/2012 2039 DG 6010C Thallium ND 0.3 μg/L 09/28/2012 1629 MS 6020A Vanadium ND 2 09/28/2012 1629 MS 6020A μg/L Zinc ND 10 10/01/2012 2039 DG 6010C µg/L

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- Holding times for preparation or analysis exceeded Н
- i Analyzed by a contract laboratory
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

#### **RL** - Reporting Limit

- Analyte detected in the associated Method Blank
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- М Value exceeds Monthly Ave or MCi.
- Outside the Range of Dilutions

1 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 10 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/8/2012 4:18:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-011
Client Sample ID:	0912MW32GW
COC:	RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						, , , , , , , , , , , , , , , , , , ,
Total Dissolved Solids (180)	160	J 10	Н	mg/L	09/25/2012 1510 JCG	SM 2540
Total Suspended Solids	ND (		Н	mg/L	09/25/2012 1626 JCG	SM 2540
Alkalinity, Total (As CaCO3)	39	T 5	H	mg/L	09/25/2012 2100 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3		ブ_5	H	mg/L	09/25/2012 2100 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND (	ノブ 5	Н	mg/L	09/25/2012 2100 KV	SM 2320B
Chloride	0.5	0.2		mg/L	09/25/2012 2058 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 2058 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.89	0.05		mg/L	09/28/2012 1558 RH	EPA 353.2
Sulfate	15.8	0.2		mg/L	09/25/2012 2058 AM	EPA 300.0
Total Metals						
Aluminum	400	50		μg/L	10/01/2012 2051 DG	6010C
Antimony	6.35	0.07		µg/L	09/28/2012 1639 MS	6020A
Arsenic	3	2		μg/L	09/28/2012 1639 MS	6020A
Barium	30	10		μg/L	09/28/2012 1639 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1639 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1639 MS	6020A
Calcium	10300	50		μg/L	10/01/2012 2051 DG	6010C
Chromium	1.5	0.5		µg/L	09/28/2012 1639 MS	6020A
Cobalt	0.6	0.1		μg/L	09/28/2012 1639 MS	6020A
Copper	2.9	0.9		µg/L	09/28/2012 1639 MS	6020A
Iron	620	20		μg/L	10/01/2012 2051 DG	6010C
Lead	0.3	0.3		μg/L	09/28/2012 1639 MS	6020A
Magnesium	7640	20		μg/L	10/01/2012 2051 DG	6010C
Manganese	27	2		μg/L	09/28/2012 1639 MS	6020A
Nickel	9	2		μg/L	09/28/2012 1639 MS	6020A
Potassium	500	400		μg/L	10/01/2012 2051 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1639 MS	6020A
Sílicon	9800	400		μg/L	10/01/2012 2051 DG	6010C
Silver	ND	0.3		µg/L	09/28/2012 1639 MS	6020A
Sodium	1500	200		μg/L	10/01/2012 2051 DG	6010C
Thallium	ND	0.3		μg/L.	09/28/2012 1639 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1639 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2051 DG	6010C

These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L. Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

of Dilutions 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 11 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-011

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/8/2012 12:52:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209430-012 Client Sample ID: 0912MW33GW

COC:

**Analyses** Result RL Qual Units Date Analyzed/Init Method **General Parameters** 140 SM 2540 Total Dissolved Solids (180) 10 Н mg/L 09/25/2012 1511 JCG SM 2540 Н 09/25/2012 1627 JCG **Total Suspended Solids** 8 5 mg/L Alkalinity, Total (As CaCO3) 81 5 Н mg/L 09/25/2012 2107 KV SM 2320B **Anions** 09/25/2012 2107 KV SM 2320B Alkalinity, Bicarbonate as HCO3 99 5 Н mg/L VJ ND 5 SM 2320B Alkalinity, Carbonate as CO3 Н mg/L 09/25/2012 2107 KV EPA 300.0 Chloride 0.8 0.2 ma/L 09/25/2012 2110 AM EPA 300.0 ND 0.2 mg/L 09/25/2012 2110 AM Fluoride Nitrogen, Nitrate-Nitrite (as N) 0.16 0.05 mg/L 09/25/2012 1601 RH EPA 353.2 EPA 300.0 Sulfate 14.9 0.2 mg/L 09/25/2012 2110 AM **Total Metals** 6010C Aluminum 150 50 μg/L. 10/01/2012 2053 DG 0.07 09/28/2012 1644 MS 6020A Antimony 417 μg/L 2 09/28/2012 1644 MS 6020A Arsenic 29 μg/L 6020A Barium 40 10 μg/L 09/28/2012 1644 MS Beryllium ND 0.2 μg/L 09/28/2012 1644 MS 6020A 09/28/2012 1644 MS ND 0.5 μg/L 6020A Cadmium 6010C Calcium 17100 50 μg/L 10/01/2012 2053 DG 6020A Chromium 0.8 0.5 μg/L. 09/28/2012 1644 MS 6020A 0.2 0.1 09/28/2012 1644 MS Cobalt μg/L 6020A Copper 1.3 0.9 μg/L 09/28/2012 1644 MS 6010C iron 370 20 μg/L 10/01/2012 2053 DG 6020A ND 0.3 09/28/2012 1644 MS µg/L Lead 6010C Magnesium 11600 20 μg/L 10/01/2012 2053 DG 6020A Manganese 16 2 μα/L 09/28/2012 1644 MS 2 09/28/2012 1644 MS 6020A Nickel ND µg/L Potassium 800 400 μg/L 10/01/2012 2053 DG 6010C 6020A Selenium ND 3 μg/L 09/28/2012 1644 MS 6010C 10200 400 10/01/2012 2053 DG Silicon μg/L Silver ND 0.3 μg/L 09/28/2012 1644 MS 6020A 6010C Sodium 5000 200 µg/L 10/01/2012 2053 DG 6020A Thallium ND 0.3 09/28/2012 1644 MS µg/L Vanadium ND 2 09/28/2012 1644 MS 6020A µg/L Zinc ND 10 µg/L 10/01/2012 2053 DG 6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

m 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 12 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: \$1209430

Collection Date: 9/9/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	\$1209430-013
Client Sample ID:	0912MW53GW
COC:	RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters	***************************************	<u> </u>			The second secon	
Total Dissolved Solids (180)	100	7 10	Н	mg/L	09/25/2012 1513 JCG	SM 2540
Total Suspended Solids	NU	JT 5	H	mg/L	09/25/2012 1628 JCG	SM 2540
Alkalinity, Total (As CaCO3)	99 ^	J 5	H	mg/L	09/25/2012 2121 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	121	5	Н	mg/L	09/25/2012 2121 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND C	)丁 5	Н	mg/L	09/25/2012 2121 KV	SM 2320B
Chloride	0.5	0.2		mg/L	09/25/2012 2159 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 2159 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.10	0.05		mg/L	09/28/2012 1601 RH	EPA 353.2
Sulfate	17.6	0.2		mg/L	09/25/2012 2159 AM	EPA 300.0
otal Metals						
Aluminum	ND	50		µg/L	10/01/2012 2100 DG	6010C
Antimony	866	0.07		μg/L	09/28/2012 1658 MS	6020A
Arsenic	233	2		μg/L	09/28/2012 1658 MS	6020A
Barium	40	10		μg/L	09/28/2012 1658 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1658 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1658 MS	6020A
Calcium	19600	50		μg/L	10/01/2012 2100 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1658 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1658 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1658 MS	6020A
Iron	20	20		μg/L	10/01/2012 2100 DG	6010C
Lead	ND	0.3		ha\r	09/28/2012 1658 MS	6020A
Magnesium	15200	20		μg/L	10/01/2012 2100 DG	6010C
Manganese	5	2		μg/L	09/28/2012 1658 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1658 MS	6020A
Potassium	600	400		µg/L	10/01/2012 2100 DG	6010C
Selenium	ND	3		µg/L	09/28/2012 1658 MS	6020A
Silicon	4900	400		μg/L	10/01/2012 2100 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1658 MS	6020A
Sodium	2400	200		μg/L	10/01/2012 2100 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1658 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1658 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2100 DG	6010C

These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- . Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL.
- O Outside the Range of Dilutions

Julions / 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 13 of 15



Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

ph: (307) 672-8945

Report ID: S1209430001

Work Order: \$1209430

Collection Date: 9/9/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine
Lab ID: \$1209430-014
Client Sample ID: 0912MW54GW

Client Sample ID: 0912MW54GW COC: RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters			· · · · · · · · · · · · · · · · · · ·			
Total Dissolved Solids (180)	620	10	Н	mg/L	09/25/2012 1514 JCG	SM 2540
Total Suspended Solids	ND (	)T 5	Н	mg/L	09/25/2012 1629 JCG	SM 2540
Alkalinity, Total (As CaCO3)	221	J 5	H	mg/L	09/25/2012 2127 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	2.10	<u> </u>	Н	mg/L	09/25/2012 2127 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND (	ノゴ ₅	Н	mg/L	09/25/2012 2127 KV	SM 2320B
Chloride	1.1	0.2		mg/L	09/25/2012 2212 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 2212 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	ND	0.05		mg/L	09/28/2012 1602 RH	EPA 353.2
Sulfate	233	0.2		mg/L	09/25/2012 2212 AM	EPA 300.0
Total Metals						
Aluminum	ND	50		μg/L	10/01/2012 2103 DG	6010C
Antimony	9.23	0.07		hg/L	09/28/2012 1703 MS	6020A
Arsenic	29	2		μg/L	09/28/2012 1703 MS	6020A
Barium	50	10		μg/L	09/28/2012 1703 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1703 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1703 MS	6020A
Calcium	94700	50		μg/L	10/01/2012 2103 DG	6010C
Chromium	4.3	0.5		μg/L	09/28/2012 1703 MS	6020A
Cobalt	1.3	0.1		μg/L	09/28/2012 1703 MS	6020A
Copper	1.1	0.9		μg/L	09/28/2012 1703 MS	6020A
Iron	50	20		μ <b>ց/</b> L	10/01/2012 2103 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1703 MS	6020A
Magnesium	54700	20		μg/L	10/01/2012 2103 DG	6010C
Manganese	1070	2		μg/L	09/28/2012 1703 MS	6020A
Nickel	50	2		μg/L	09/28/2012 1703 MS	6020A
Potassium	1900	400		μg/L	10/01/2012 2103 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1703 MS	6020A
Silicon	6700	400		μg/L	10/01/2012 2103 DG	6010C
Sliver	ND	0.3		μg/L	09/28/2012 1703 MS	6020A
Sodium	20800	200		μg/L	10/01/2012 2103 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1703 MS	6020A
Vanadium	ND	2		µg/L	09/28/2012 1703 MS	6020A
Zinc	20	10		μg/L	10/01/2012 2103 DG	6010C

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

of Dilutions 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 14 of 15



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/8/2012

Report ID: S1209430001

Work Order: S1209430

Collection Date: 9/9/2012 1:50:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209430-015
Client Sample ID:	0912EB01DI
COC:	RDM-0912-011

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	ND	UJ 10	Н	mg/L	09/25/2012 1515 JCG	SM 2540
Total Suspended Solids	ND	) 5	Н	mg/L	09/25/2012 1630 JCG	SM 2540
Alkalinity, Total (As CaCO3)	ND	5	Н	mg/L	09/25/2012 2133 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	ND	5	Н	mg/L	09/25/2012 2133 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND	<b>U</b> 5	Н	mg/L	09/25/2012 2133 KV	SM 2320B
Chloride	ND	0.2		mg/L	09/25/2012 2224 AM	EPA 300.0
Fluoride	ND	0.2		mg/L	09/25/2012 2224 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	ND	0.05		mg/L	09/28/2012 1603 RH	EPA 353.2
Sulfate	ND	0.2		mg/L	09/25/2012 2224 AM	EPA 300.0
otal Metals						
Aluminum	ND	50		μg/L	10/01/2012 2105 DG	6010C
Antimony	0.12	0.07		µg/L	09/28/2012 1718 MS	6020A
Arsenic	ND	2		μg/L	09/28/2012 1718 MS	6020A
Barium	ND	10		μg/L	09/28/2012 1718 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1718 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1718 MS	6020A
Calcium	ND	50		μg/L	10/01/2012 2105 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1718 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1718 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1718 MS	6020A
Iron	ND	20		μg/L	10/01/2012 2105 DG	6010C
Lead	ND	0.3		µg/L	09/28/2012 1718 MS	6020A
Magnesium	70	20		μg/L	10/01/2012 2105 DG	6010C
Manganese	ND	2		μg/L	09/28/2012 1718 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1718 MS	6020A
Potassium	ND	400		μg/L	10/01/2012 2105 DG	6010C
Selenium	ND	3		μg/t.	09/28/2012 1718 MS	6020A
Silicon	ND	400		μg/L	10/01/2012 2105 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1718 MS	6020A
Sodium	ND	200		μg/L	10/01/2012 2105 DG	6010C
Thalllum	ND	0.3		μg/L	09/28/2012 1718 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1718 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2105 DG	6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Calculated Value
- Holding times for preparation or analysis exceeded H
- Analyzed by a contract laboratory
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- М Value exceeds Monthly Ave or MCl.

Outside the Range of Dilutions

1 11/15/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 15 of 15

% Rec Limits

Qual



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

Alkalinity, Total (As CaCO3)

### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

09/25/12 12:57

Work Order:

S1209430

Project: Red Devil Mine

**BLANK** 

Date: 10/8/2012

Report ID: S1209430001

Spike Ref Samp %REC

Alkalinity

Sample Type MBLK Units: mg/L

Sample ID RunNo: 87577 Analyte

Sample	e Type LCS	Units: mg/	<b>L</b>						
	Sample ID	RunNo: 87577	Analyte	Result	RL	Spike	Ref Samp %REC	% Rec Limits	Qual
	ATQC	09/25/12 12:51	Alkalinity, Total (As CaCO3)	585	5	601	97.4	90 - 110	

Result

ND

RL

5

Sample Type DUP Units: mg/L

Sample ID	RunNo: 87577	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209430-009AD	09/25/12 20:46	Alkalinity, Bicarbonate as HCO3	268	5	266	0.835		20	Н
		Alkalinity, Carbonate as CO3	ND	5	ND			20	Н
		Alkalinity, Total (As CaCO3)	220	5	218	0.835		20	Н
Sample ID	RunNo: 87577	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual

S1209430-012AD Alkalinity, Bicarbonate as 5 09/25/12 21:14 98 99 1.02 20 Н HCO₃ Alkalinity, Carbonate as CO3 ND 5 ND 20 Н Alkalinity, Total (As CaCO3) 80 5 1.02 20 Н 81

m 11/5/12

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

S1209430

Work Order: Project:

Red Devil Mine

Date: 10/8/2012

Report ID: S1209430001

Sar	nnle.	Type	MBL	ĸ

Sample T	ype MBLK	Units: mg	Л							
s	Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
В	BLK	09/25/12 11:41	Chloride	ND	1					
			Fluoride	ND	0.1					
			Sulfate	ND	1					
s	Sample ID	RunNo: 88248	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
В	BLK	10/12/12 11:35	Chloride	ND	1					
			Fluoride	ND	0.1				1	
			Sulfate	ND	1		_	2	- A	11/15
Sample T	ype LCS	Units: mg	ſL							
s	Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
D	DIONEX	09/25/12 11:16	Chloride	31	1	30		102	90 - 110	
			Fluoride	20.7	0.1	20		104	90 - 110	
			Sulfate	144	1	150		95.8	90 - 110	
s	sample ID	RunNo: 88248	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
D	IONEX	10/12/12 11:12	Chloride	30	1	30		99.4	90 - 110	
			Fluoride	20.8	0.1	20		104	90 - 110	
			Sulfate	144	1	150		95.9	90 - 110	
ample Ty	Type MS Units: mg/L									
s	ample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
s	1209430-012ASPK	09/25/12 21:35	Chloride	6	1	5	ND	97.9	80 - 120	
			Fluoride	2.2	0.1	2	ND	109	80 - 120	
			Sulfate	58	1	40	15	107	80 - 120	
s	ample ID	RunNo: 88248	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
s	1209430-009ASPK	10/12/12 12:09	Chloride	29	1	30	1	94.6	80 - 120	Н
			Fluoride	11.5	0.1	12	ND	95.4	80 - 120	Н
			Sulfate	491	1	240	230	109	80 - 120	H
ampte Ty	ype MSD	Units: mg/	L							
S	ample ID	RunNo: 87638	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
s	1209430-012ASPK	09/25/12 21:47	Chloride	6	1	6	0.0263	97.8	20	
			Fluoride	2.2	0.1	2.2	0.140	109	20	
			Sulfate	58	1	58	0.0493	107	20	
	ample ID	RunNo: 88248	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S:						_				
	1209430-009ASPK	10/12/12 12:20	Chloride	29	1	29	0.555	94.1	20	H
	1209430-009ASPK	10/12/12 12:20	Chloride Fluoride	29 11.4	1 0.1	29 11.5	0.555 1.27	94.1 94.1	20 20	H H

#### Qualifiers:

0

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- Analyzed by a contract laboratory L Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits



### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Project:

Ecology & Environment, Inc.

Date: 10/8/2012

Work Order:

S1209430

Red Devil Mine

Report ID: S1209430001

#### Anions by ION Chromatography

Sample Type DUP

Units: mg/L

ample Type DUP	Units: mg	ı/L							
Sample ID	RunNo: 87638	Analyte	Result	RL	Ref Samj	%RPD	%REC	% RPD Limits	Qua
S1209430-012A	09/25/12 21:22	Chloride	0.8	0.2	0.8	2.53		20	
		Fluoride	ND	0.2	ND			20	
		Sulfate	14.8	0.2	14.9	0.345		20	
Sample ID	RunNo: 88248	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qua
S1209430-009A	10/12/12 11:57	Chloride	1.0	0.2	1.0	0.364		20	Н
		Fluoride	ND	0.2	ND			20	Н
		Sulfate	226	0.2	230	1.62		20	Н
itrogen, Nitrate-Nitrite	(as N)					_	<b>~</b>		111
imple Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
BLANK	09/25/12 15:51	Nitrogen, Nitrate-Nitrite (as N)	ND	0.1					
mple Type LCS	Units: mg	Л.							_
Sample ID	RunNo: 87583	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qua
QC	09/25/12 15:53	Nitrogen, Nitrate-Nitrite (as N)	18.5	0.1	19.3		95.7	90 - 110	
mple Type MS	Units: mg	/L							_
Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
S1209430-012B	09/25/12 16:04	Nitrogen, Nitrate-Nitrite (as N)	5.69	0.05	5	0.16	110	80 - 120	
Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
S1209430-009B	09/25/12 16:19	Nitrogen, Nitrate-Nitrite (as N)	5.03	0.05	5	ND	101	80 - 120	
mple Type MSD	Units: mg	/L							_
Sample ID	RunNo: 87583	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qua
S1209430-012B	09/25/12 16:05	Nitrogen, Nitrate-Nitrite (as N)	5.02	0.05	5.69	11.6	97.2	20	
Sample ID	RunNo: 87583	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qua
S1209430-009B	09/25/12 16:20	Nitrogen, Nitrate-Nitrite (as N)	4.94	0.05	5.03	1.65	98.9	20	
mple Type DUP	Units: mg/	L							
Sample ID	RunNo: 87583	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qua
S1209430-012B	09/25/12 16:02	Nitrogen, Nitrate-Nitrite (as N)	0.14	0.05	0.16	17.2		20	

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
  S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Project:

Ecology & Environment, Inc.

S1209430

Work Order:

Red Devil Mine

Date: 10/8/2012

Report ID: S1209430001

Nitrogen, Nitrate-Nitrite (as N)

Sample Type DUP

Units: mg/L

 71		_						
Sample ID	RunNo: 87583	Analyte	Result	RL	Ref Samp %RPD	%REC	% RPD Limits	Qual
S1209430-009B	09/25/12 16:18	Nitrogen, Nitrate-Nitrite (as	ND	0.05	ND		20	

S1209430-009B	09/25/12 16:18	Nitrogen, Nitrate-Nitrite (as N)	ND	0.05	ND			20	
Solids By SM 2540									
Sample Type MBLK	Units: mg	r/L							
Sample ID	RunNo: 87559	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
BLANK	09/25/12 16:02	Total Suspended Solids	ND	5					
Sample ID	RunNo: 87637	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
DI	09/25/12 14:32	Total Dissolved Solids (180)	ND	10	-		<del></del>		
ample Type LCS	Units: mg	/L						11/	1157
Sample ID	RunNo: 87559	Analyte	Result	RI.	Spike	Ref Samp	%REC	% Rec Limits	Qual
CONTROL	09/25/12 16:03	Total Suspended Solids	102	5	100		102	90 - 110	
Sample ID	RunNo: 87637	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
CONTROL	09/25/12 14:33	Total Dissolved Solids (180)	240	10	226		106	90 - 110	
ample Type DUP	Units: mg	/L							
Sample ID	RunNo: 87559	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209430-010A	09/25/12 16:25	Total Suspended Solids	14	5	13	7.69		20	Н
Sample ID	RunNo: 87637	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209430-009A	09/25/12 15:08	Total Dissolved Solids (180)	640	10	640	0		20	H
Sample ID	RunNo: 87637	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209430-012A	09/25/12 15:12	Total Dissolved Solids (180)	140	10	140	0		20	H

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

Outside the Range of Dilutions 0

Spike Recovery outside accepted recovery limits

Value above quantitation range

Analyte detected below quantitation limits

Not Detected at the Reporting Limit ND

RPD outside accepted recovery limits

### **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Project:

Ecology & Environment, Inc.

Work Order:

S1209430

Red Devil Mine

Date: 10/8/2012

Report ID: S1209430001

#### Total(3020) Metals by ICP - 6010C

Sample	Time	MBLK
CONTINUE	1 ANG	MDEL

Units: mg/L

nple Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
ICB	10/01/12 13:09	Aluminum	ND	0.005					
		Calcium	ND	0.2					
		Iron	ND	0.05					
		Magnesium	0.14	0.02					В
		Potassium	ND	0.1					
		Silicon	ND	0.1					
		Sodium	ND	0.1					_
		Zinc	ND	0.005			·	3	.0
nple Type LCS	Units: mg	/L							5
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
ICV Q	10/01/12 13:11	Silicon	1.0	0.1	1		102	80 - 120	
Sample ID	RunNo: 87797	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qu
ICV 3	10/01/12 13:13	Calcium	39.9	0.2	40		99.7	80 - 120	
		Magnesium	39.1	0.02	40		97.7	80 - 120	
		Potassium	40.4	0.1	40		101	80 - 120	
		Sodium	39.4	0.1	40		98.5	80 - 120	
Sample ID	RunNo: 87797	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qu
LCS-6432	10/01/12 19:51	Aluminum	0.525	0.005	0.5		105	80 - 120	
		Iron	0.57	0.05	0.5		113	80 - 120	
		Zinc	0.206	0.005	0.2		103	80 - 120	
nple Type MS	Units: mg	<u>L</u>				<del>-</del>			
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qu
S1209430-009CS	10/01/12 20:34	Aluminum	0.640	0.005	0.5	0.145	99.0	75 - 125	
		iron	0.83	0.05	0.5	0.31	104	75 - 125	
		Zinc	0.229	0.005	0.2	0.024	103	75 - 125	
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
S1209430-012CS	10/01/12 20:55	Aluminum	0.604	0.005	0.5	0.153	90.2	75 - 125	
		Iron	0.89	0.05	0.5	0.37	105	75 - 125	
		Zinc	0.207	0.005	0.2	ND	101	75 - 125	
ple Type MSD	Units: mg/	L					·····		
Sample ID	RunNo: 87797	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qua
S1209430-009CMSI	D 10/01/12 20:36	Aluminum	0.638	0.005	0.640	0.406	98,5	20	
		Iron	0.82	0.05	0.83	0.363	104	20	
		Zinc	0.229	0.005	0.229	0.0873	103	20	

#### Qualiflers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L. Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Work Order:

Ecology & Environment, Inc.

S1209430

Project: Red Devil Mine

Date: 10/8/2012

Report ID: S1209430001

Total (3020) Metals by ICPMS - 6020A

Sample Type MBLK

Units: mg/L

type Miprix	Offits, rily	/ E							
Sample ID	RunNo: 87728	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MB-6432	09/28/12 12:22	Antimony	ND	0.005					
		Arsenic	ND	0.005					
		Barium	ND	0.01					
		Beryllium	ND	0.002					
		Cadmium	ND	0.002					
		Chromium	ND	0.001					
		Cobalt	ND	0.01					
		Copper	ND	0.001					
		Lead	ND	0.001					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005					
		Silver	ND	0.003				1	
		Thallium	ND	0.01		1		41 111	15/1
		Vanadium	ND	0.02				0 "	13//

Sample Type LCS

Units: mg/L

.,,,,	414	-							
Sample ID	RunNo: 87728	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS-6432	09/28/12 12:32	Antimony	0.198	0.005	0.2		99.2	80 - 120	
		Arsenic	0.206	0.005	0.2		103	80 - 120	
		Barium	0.21	0.01	0.2		103	80 - 120	
		Beryllium	0.224	0.002	0.2		112	80 - 120	
		Cadmium	0.196	0.002	0.2		98.2	80 - 120	
		Chromium	0.201	0.001	0.2		101	80 - 120	
		Cobalt	0.21	0.01	0.2		103	80 - 120	
		Copper	0.211	0.001	0.2		105	80 - 120	
		Lead	0.211	0.001	0.2		106	80 - 120	
		Manganese	0.21	0.01	0.2		105	80 - 120	
		Nickel	0.50	0.01	0.5		99.6	80 - 120	
		Selenium	0.394	0.005	0.4		98.4	80 - 120	
		Silver	0.106	0.003	0.1		106	80 - 120	
		Thallium	0.21	0.01	0.2		104	80 - 120	
		Vanadium	0.20	0.02	0.2		100	80 - 120	

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 1 of 4

#### CHAIN OF CUSTODY RECORD

No: RDM-0912-011

Ecology and Environment, Inc

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537 Cooler #. 11 Lab: Inter-Mountain Laboratories, Inc Lab Phone: 800-828-1097

	216	D4450								
	Lab#	Location	Analyses		Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
	•		4 Vermorganic Elem	THIS THE PARTY OF	0.000040	14/23				
		JOSMONNE.	Total Jagraania Elam	ole eres	00000			Bayes and the		AU
		15/1D03BE	Total Increants Flore	Na Comment	D 6/2010-					4U
		TOMBOADE - SECTION	<del>na pri</del> totalinot <del>y misl</del> ikom		2010/2012	46.00				······································
. 1		0912MW06GW	Total Inorganic Elem	nts	9/9/2012	12:40	1	250 mL HDPE	HNO3 pH<2	,
OD.		0912MW06GW	Anions, TSS, TDS, C Bicerbonate	arbonate,	9/9/2012	12:40	1	500 mL HDPE	None	•
		0912MW06GW	,Nitrate/Nitrite	i !	9/9/2012	12:40	1	125 mL HDPE	H2SO4 pH<2	;
,. <u></u>		0912MW15GW	Total Inorganic Eleme	ints	9/8/2012	14:00	1	250 mL HDPE	HNO3 pH<2	
632		0912MW15GW	Anions, TSS, TDS, C Bicarbonate	arbonate,	9/8/2012	14:00	1	500 mt HDPE	None	•
		0912MW15GW	Nitrate/Nitrite		9/8/2012	14:00	1	125 mL HDPE	H25O4 pH<2	•
•		0912MW16GW	Total Inorganic Elem	nts	9/8/2012	15:35	1	250 mL HDPE	HNO3 pH<2	
<u>3</u>		0912MW16GW	Anions, TSS, TDS, C Bicarbonate	arbonate,	9/8/2012	15:35	1	500 mt HDPE	None	
		0912MW16GW	-Nitrate/Nitrite		9/8/2012	15.35	1	125 mL HOPE	H2SO4 pH<2	•
F~		0912MW17GW	Total Inorganic Eleme	nts	9/8/2012	16:59	1	250 mL HDPE	HNO3 pH<2	
004		0912MW17GW	Anions, TSS, TDS, C Bicarbonate	arbonate,	9/8/2012	16:59	1	500 mL HDPE	None	
		0912MW17GW	Nitrate/Nitrite		9/8/2012	16:59	1	125 mL HDPE	H2SO4 pH<2	
035	•	0912MW20GW	Total Inorganic Elami	nts	9/9/2012	10:40	1	250 mL HDPE	HNO3 pH<2	

Special Instructions: Lab Silter Anions, Carbonate, bizarbanate

SAMPLES TRANSFERRED FROM CHAIN OF GUSTODY #

Items/Reason Relinquished by Date Received by Date Time Items/Reason Relinquished By Date Received by Date Time U.9.

.. ..

Page 2 of 4

Ecology and Environment, Inc.

## CHAIN OF CUSTODY RECORD

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537 Cooler #. 11 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

No: RDM-0912-011

5	51209430	3						
Lab	# Location	Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
0,5	0912MW20GW	Anlons, TSS, TDS, Carbonate, Bicarbonate	9/9/2012	10:40	1	500 mL HDPE	None	
0	0912MW20GW	Nitrate/Nitrite	9/9/2012	10:40	1	125 mL HDPE	H2SO4 pH<2	•
***	0912MW21GW	Total Inorganic Elements	9/8/2012	18:00	1	250 mt. HOPE	HNO3 pH<2	
ado	0912MW21GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/8/2012	18:00	1	500 mL HDPE	None	•
0,0	0912MW21GW	Nitrate/Nitrite	9/8/2012	18.00	1	125 mL HDPE	H2SO4 pH<2	
	0912MW24GW	Total Inorganic Elements	9/9/2012	14:50	1	260 mL HDPE	HNO3 pH<2	
77	0912MW24GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/9/2012	14:50	1	500 mL HDPE	None	
	0912MW24GW	Nitrate/Nitrite	9/9/2012	14:50	1	125 ml. HDPE	H2SO4 pH<2	
	0912MW25GW	Total Inorganic Elements	9/9/2012	11:10	1	250 mL HDPE	HNO3 pH<2	
OCO	0912MW25GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/9/2012	11:10	1	500 mL HDPE	None	
	0912MW25GW	Nitrate/Nitrite	9/9/2012	11:10	1	125 mL HDPE	H2\$O4 pH<2	
· · · · · · · · · · · · · · · · · · ·	0912MW27GW	Total Inorganic Elements	9/9/2012	13:34	3	250 mL HDPE	HNO3 pH<2	Υ
009	0912MW27GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/9/2012	13:34	3	500 mL HDPE	None	Y
•	0912MW27GW	Nitrate/Nitrite	9/9/2012	13:34	1	125 mL HDPE	H2SO4 pH<2	
010.	0912MW29GW	Total Inorganic Elements	9/9/2012	16:58	. 1	250 mL HDPE	HNO3 pH<2	•
· .		T i		,				

Special Instructions: Lab Filter Aniens, carbonate, branchounte

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

items/Reason

Relinquished by

Date

Received by

Date

ne Items/Reason

Relinquished By

Date

Date

Time

Page 3 of 4

CHAIN OF CUSTODY RECORD

No: RDM-0912-011 Cooler#: 11

Ecology and Environment, Inc.

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537

Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

	51209437	4	Comact chain	8: 200-024-9051			Eas Priore	s. 000-020-1091
Lab#	Location	Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
Olo	0912MW28GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/9/2012	16:58	1	500 mt. HDPE	None	
<del></del> .	0912MW29GW	Nitrate/Nitrite	9/9/2012	16:58	1	125 mL HDPE	H2SO4 pH<2	
	0912MW32GW	Total Inorganic Elements	9/8/2012	16:18	1	250 mL HDPE	HNO3 pH<2	
011	0912MW32GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/8/2012	16:18	1	500 mL HDPE	None	
	0912MW32GW	Nitrate/Nitrate	9/8/2012	16:18	1	125 mL HDPE	H2SO4 pH<2	•
4	0912MW33GW	Total Inorganic Elements	9/8/2012	12:52	3	250 mL HDPE	HNO3 pH<2	Y
012	0912MW33GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/8/2012	12:52	3	500 mL HDPE	None	Y
•	0912MW33GW	Nitrate/Nitrite	9/8/2012	12:52	3	125 mL HDPE	H2SO4 pH<2	Υ
<del></del>	0912MW53GW	Total Inorganic Elements	9/9/2012	07:00	1	250 mL HDPE	HNO3 pH<2	
013	0912MW53GW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/9/2012	07.00	1	500 mL HDPE	None	
	0912MW53GW	Nitrate/Nitrite	9/9/2012	07:00	1	125 mL HDPE	H2SO4 pH<2	
,	0912MW54GW	Total Inorganic Elements	9/9/2012	07:00	1	250 mL HDPE	HNO3 pH<2	
014	0912MW54GW	Anions, TSS. TDS, Carbonate, Bicarbonate	9/9/2012	07:00	1	500 mL HDPE	None	
	0912MW54GW	Nitrate/Nitrite	9/9/2012	07:00	1	125 mL HOPE	H2SO4 pH<2	
	0912EB01D1	Total Inorganic Elements	0/9/2012	13:50	1	250 mL HDPE	HNO3 pH<2	
010	•	* 4	•			•		

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason Relinquished by Date

Received by

Items/Reason Relinquished By

Page 4 of 4

CHAIN OF CUSTODY RECORD

No: RDM-0912-011 Cooler#: 11

Ecology and Environment, Inc.

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537

Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

5129430 Lab# Location

0912EB01DI

0912EB01DI

Analyses Anions, TSS, TDS, Carbonate, Bicarbonate

Nitrate/Nitrite

Collected 9/9/2012 9/9/2012

Sample Time 13:50

13:50

Numb Cont Container 1 500 mL HDPE Preservative None

MS/MSD

1 125 mL HDPE

112SO4 pH<2

Special Instructions: Lab Filty Anins, carbonate, bizarbanate

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason

Relinquished by

Received by

items/Reason

Refinquished By

Date

#### **DATA REVIEW MEMORANDUM**

DATE: November 15, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA 11/16/12

SUBJ: Data Review: Red Devil Mine

#### REFERENCE:

Project ID	Lab Work Order	Lab
EE-1096-0070	S1209431	Inter-Mountain Labs

#### I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	Sample ID	Lab ID	Sample Date	MS/MS D	ID Corrections
S1209431	Water	0912RD04SW	S1209431-001	09/11/2012		
S1209431	Water	0912RD08SW	S1209431-002	09/11/2012		
S1209431	Water	0912RD10SW	S1209431-003	09/12/2012		
S1209431	Water	0912RD12SW	S1209431-004	09/11/2012		
				_		
				_		
-						

# Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1209431	Water	SM 2540	TDS	2	
S1209431	Water	SM 2540	TSS	2	
S1209431	Water	SM 2320B	Alkalinity	2	
S1209431	Water	SM 5310B	тос	2	
S1209431	Water	EPA 300.0/353.2	Anions	2	
S1209431	Water	EPA 6010C/6020A	Dissolved Metals	2	
S1209431	Water	EPA 6010C/6020A	Total Metals	2	

#### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold  $(4 \pm 2)$  °C and in good condition as documented on the Cooler Receipt Form.

## **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 7.8 °C. No problems with the condition of the sample upon receipt are documented. Since the samples were received at temperature outside of range (>6 °C), the detected results were qualified as estimated (J) and the non-detected results were qualified as estimated (UJ) for the analyses of Anions. Qualification for metals, TDS, TSS, Total Alkalinity, and TOC was not necessary.

#### III. LABORATORY DATA

### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

#### **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes except Total Dissolved solids and Total Suspended Solids. The detected TDS results were qualified as estimated (J) and the non-detected TSS results were qualified as estimated (UJ).

## 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes except trace amount (0.14 mg/L) of magnesium were detected in the method blank at reporting limit levels. Finding does not require qualification since sample concentration was greater than 5x the blank concentration.

#### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

#### **REVIEW RESULTS:**

Not applicable for these analyses.

#### 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The

potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on sample 0912RD09SW at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

## 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

## **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

#### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

#### V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

Professional judgment was used to determine whether or not to qualify results.

#### **REVIEW RESULTS:**

No Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria.

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

#### 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
None.								
			·					
	!							

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						

# Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						

# Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.								

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
EPA 6010C	MBLK		Magnesium	0.14			mg/L	
			4					

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						

## Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual PQL
None.					

# Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.								

Table 7 – Summary of Field Duplicate Results:

Sample Qualifier									
<u>a</u> a									
<b>ಬೆ</b> ಕ									
		i							
Ĕ	- 1								
2									
RPD Rating									
		1							, 1
<b>a</b>									
2									
									_
								i 1	
	- 1		1	'			1		'
	1								
200,000									
							ľ		
Units							ļ		
29						l ,			
<b>.</b>									
Ð									
							i '		
Analyte									
2									
2									
4			1	, '	Ì	Ì '	·		
120212						_			
-				l i					
<b>5</b>									
<b>F</b>							1		
2							l		
Method									
	Vone.								
	6						İ		
	Ź	ı		i	ı	1	ı	l :	l



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

Collection Date: 9/11/2012 5:26:00 PM Date Received: 9/25/2012 11:47:00 AM

Sampler:

Project: Red Devil Mine Lab ID: S1209431-001 Client Sample ID: 0912RD04SW

COC: RDM-0912-004		Matrix: Water								
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method				
General Parameters										
Total Dissolved Solids (180)	120		Н	mg/L	09/25/2012 1516 JCG	SM 2540				
Total Suspended Solids	ND (	リゴ 5	Н	mg/L	09/25/2012 1631 JCG	SM 2540				
Alkalinity, Total (As CaCO3)	66	5		mg/L	09/25/2012 2141 KV	SM 2320B				
Total Organic Carbon	2	1		mg/L	09/26/2012 1117 AMB	SM 5310B				
Anions										
Alkalinity, Bicarbonate as HCO3	81 1			mg/L	09/25/2012 2141 KV	SM 2320B				
Alkalinity, Carbonate as CO3	ND (			mg/L	09/25/2012 2141 KV	SM 2320B				
Chloride	0.5			mg/L	09/26/2012 015 AM	EPA 300.0				
Fluoride		ブ 0.2		mg/L	09/26/2012 015 AM	EPA 300.0				
Nitrogen, Nitrate-Nitrite (as N)		J 0.05		mg/L	09/25/2012 1639 RH	EPA 353.2				
Sulfate	6.6	J 0.2		mg/L	09/26/2012 015 AM	EPA 300.0				
Dissolved Metals										
Aluminum	ND	50		μg/L	09/26/2012 1304 DG	6010C				
Antimony	25.9	0.2		μg/L	09/28/2012 1340 MS	6020A				
Arsenic	14	2		μg/L	09/28/2012 1340 MS	6020A				
Barium	20	10		μg/L	09/28/2012 1340 MS	6020A				
Beryllium	ND	0.2		μg/L	09/28/2012 1340 MS	6020A				
Cadmium	ND	0.9		μg/L	09/28/2012 1340 MS	6020A				
Calcium	14400	50		µg/L	09/26/2012 1304 DG	6010C				
Chromlum	ND	0.5		μg/L	09/28/2012 1340 MS	6020A				
Cobalt	ND	0.1		μg/L	09/28/2012 1340 MS	6020A				
Copper	ND	0.9		μg/L	09/28/2012 1340 MS	6020A				
fron	60	20		μg/L	09/26/2012 1304 DG	6010C				
Lead	ND	0.14		μg/L	09/28/2012 1340 MS	6020A				
Magnesium	7890	20		μg/L	09/26/2012 1304 DG	6010C				
Manganese	7	2		μg/L	09/28/2012 1340 MS	6020A				
Nickel	ND	0.7		µg/L	09/28/2012 1340 MS	6020A				
Potassium	ND	400		μg/L	09/26/2012 1304 DG	6010C				
Selenium	ND	2		µg/L	09/28/2012 1340 MS	6020A				
Silicon	3500	400		μg/L	09/26/2012 1304 DG	6010C				
Silver	ND	0.2		µg/L	09/28/2012 1340 MS	6020A				
Sodium	1600	200		μg/L	09/26/2012 1304 DG	6010C				
Thallium	ND	0.3		μg/L	09/28/2012 1340 MS	6020A				
Vanadium	ND	2		µg/L	09/28/2012 1340 MS	6020A				
Zinc	ND	10		μg/L	09/26/2012 1304 DG	6010C				

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

В Analyte detected in the associated Method Blank

Value above quantitation range E

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

11/16/12

Page 1 of 8



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-004

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

Collection Date: 9/11/2012 5:26:00 PM Date Received: 9/25/2012 11:47:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine
Lab ID: S1209431-001
Client Sample ID: 0912RD04SW

COC:

	115111 0012 001									
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method			
Total Metals										
Aluminum		ND	50		μg/L	10/01/2012 2107 DG	6010C			
Antimony		27.3	0.07		μg/L	09/28/2012 1345 MS	6020A			
Arsenic		14	2		μg/L	09/28/2012 1345 MS	6020A			
Barium		20	10		μg/L	09/28/2012 1345 MS	6020A			
Beryllium		ND	0.2		μg/L	09/28/2012 1345 MS	6020A			
Cadmium		ND	0.5		μg/L	09/28/2012 1345 MS	6020A			
Calcium		15600	50		µg/L	10/01/2012 2107 DG	6010C			
Chromium		ND	0.5		μg/L	09/28/2012 1345 MS	6020A			
Cobalt		ND	0.1		μg/L	09/28/2012 1345 MS	6020A			
Copper		ND	0.9		µg/L	09/28/2012 1345 MS	6020A			
Iron		110	20		µg/L	10/01/2012 2107 DG	6010C			
Lead		ND	0.3		µg/L	09/28/2012 1345 MS	6020A			
Magnesium		8490	20		µg/L	10/01/2012 2107 DG	6010C			
Manganese		11	2		μg/L	09/28/2012 1345 MS	6020A			
Nickel		ND	2		μg/L	09/28/2012 1345 MS	6020A			
Potassium		ND	400		μg/L	10/01/2012 2107 DG	6010C			
Selenium		ND	3		μg/L	09/28/2012 1345 MS	6020A			
Silicon		3900	400		μg/L	10/01/2012 2107 DG	6010C			
Silver		ND	0.3		µg/L	09/28/2012 1345 MS	6020A			
Sodium		1500	200		µg/L	10/01/2012 2107 DG	6010C			
Thallium		ND	0.3		µg/L	09/28/2012 1345 MS	6020A			
Vanadium		ND	2		µg/L	09/28/2012 1345 MS	6020A			
Zinc		ND	10		μg/L	10/01/2012 2107 DG	6010C			

my 11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 2 of 8



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: \$1209431001

Work Order: S1209431

Collection Date: 9/11/2012 11:11:00 AM Date Received: 9/25/2012 11:47:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209431-002 Client Sample ID: 0912RD08SW

RDM-0912-004 COC: Date Analyzed/Init **Analyses** Result RL Qual Units Method **General Parameters** 130 T 10 SM 2540 Н mg/L 09/25/2012 1517 JCG Total Dissolved Solids (180) ND UJ **Total Suspended Solids** 5 Н mg/L 09/25/2012 1632 JCG SM 2540 73 09/25/2012 2149 KV SM 2320B Alkalinity, Total (As CaCO3) 5 mg/L 2 09/26/2012 1130 AMB SM 5310B Total Organic Carbon 1 mg/L Anions Alkalinity, Bicarbonate as HCO3 89 J 5 mg/L 09/25/2012 2149 KV SM 2320B ND UJ 09/25/2012 2149 KV SM 2320B Alkalinity, Carbonate as CO3 5 mg/L Chloride 0.5 ブ 0.2 mg/L 09/26/2012 028 AM **EPA 300.0** ND UT Fluoride 0.2 mg/L 09/26/2012 028 AM **EPA 300.0** ND U J 0.05 Nitrogen, Nitrate-Nitrite (as N) mg/L 09/25/2012 1640 RH EPA 353.2 8.7 J Sulfate 0.2 09/26/2012 028 AM EPA 300.0 mg/L **Dissolved Metals** ND 09/26/2012 1306 DG 6010C Aluminum 50 μg/L 226 0.2 6020A Antimony µg/L 09/28/2012 1350 MS 77 2 6020A Arsenic μg/L 09/28/2012 1350 MS 20 6020A Barium 10 μg/L 09/28/2012 1350 MS Beryllium ND 0.2 μg/L 09/28/2012 1350 MS 6020A Cadmium ND 0.9 μg/L 09/28/2012 1350 MS 6020A 15400 09/26/2012 1306 DG 6010C Calcium 50 µg/L Chromium ND 0.5 μg/L 09/28/2012 1350 MS 6020A Cobalt 0.1 0.1 μg/L 09/28/2012 1350 MS 6020A Copper ND 0.9µg/L 09/28/2012 1350 MS 6020A 50 20 µg/L 09/26/2012 1306 DG 6010C Iron ND 0.14 μg/L 09/28/2012 1350 MS 6020A Lead 9280 6010C 09/26/2012 1306 DG Magnesium 20 µg/L 17 2 μg/L 09/28/2012 1350 MS 6020A Manganese Nickel 0.8 0.7 09/28/2012 1350 MS 6020A µg/L ND 6010C 400 09/26/2012 1306 DG Potassium μg/L Selenium ND 2 09/28/2012 1350 MS 6020A μg/L Silicon 3700 400 μg/L 09/26/2012 1306 DG 6010C Silver ND 0.2 μg/L 09/28/2012 1350 MS 6020A Sodium 1900 200 μg/L 09/26/2012 1306 DG 6010C Thallium ND 0.3 µg/L 09/28/2012 1350 MS 6020A Vanadium ND 2 μg/L 09/28/2012 1350 MS 6020A ND 10 μg/L 09/26/2012 1306 DG 6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Calculated Value
- Н Holding times for preparation or analysis exceeded
- Analyzed by a contract laboratory L
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- М Value exceeds Monthly Ave or MCL
- Outside the Range of Dilutions

11/16/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 3 of 8



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

**Collection Date:** 9/11/2012 11:11:00 AM **Date Received:** 9/25/2012 11:47:00 AM

Sampler:

Matrix: Water

Red Devil Mine Collection Date: 9
S1209431-002 Date Received: 9

Lab ID: S1209431-002
Client Sample ID: 0912RD08SW
COC: RDM-0912-004

Project:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method			
otal Metals									
Aluminum	ND	50		μg/L	10/01/2012 2110 DG	6010C			
Antimony	243	0.07		µg/L	09/28/2012 1355 MS	6020A			
Arsenic	90	2		μg/L	09/28/2012 1355 MS	6020A			
Barium	30	10		μg/L	09/28/2012 1355 MS	6020A			
Beryllium	ND	0.2		μg/L	09/28/2012 1355 MS	6020A			
Cadmium	ND	0.5		μg/L	09/28/2012 1355 MS	6020A			
Calcium	16800	50		μg/L	10/01/2012 2110 DG	6010C			
Chromium	ND	0.5		μg/L	09/28/2012 1355 MS	6020A			
Cobalt	0.2	0.1		μg/L	09/28/2012 1355 MS	6020A			
Copper	ND	0.9		μg/L	09/28/2012 1355 MS	6020A			
fron	130	20		μg/L	10/01/2012 2110 DG	6010C			
Lead	ND	0.3		µg/L	09/28/2012 1355 MS	6020A			
Magnesium	10000	20		µg/L	10/01/2012 2110 DG	6010C			
Manganese	22	2	•	μg/L	09/28/2012 1355 MS	6020A			
Nickel	ND	2		μg/L	09/28/2012 1355 MS	6020A			
Potassium	ND	400		μg/L	10/01/2012 2110 DG	6010C			
Selenium	ND	3		μg/L	09/28/2012 1355 MS	6020A			
Silicon	4000	400		μg/L	10/01/2012 2110 DG	6010C			
Silver	ND	0.3		μg/L	09/28/2012 1355 MS	6020A			
Sodium	1900	200		µg/L	10/01/2012 2110 DG	6010C			
Thallium	ND	0.3		μg/L	09/28/2012 1355 MS	6020A			
Vanadium	ND	2		μg/L	09/28/2012 1355 MS	6020A			
Zinc	ND	10		μg/L	10/01/2012 2110 DG	6010C			

m of 11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

. Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 4 of 8



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

Collection Date: 9/12/2012 11:52:00 AM Date Received: 9/25/2012 11:47:00 AM

Sampler:

Project: Red Devil Mine Lab ID: S1209431-003 Client Sample ID: 0912RD10SW

COC: RDM-0912-004	Matrix: Water							
Analyses	Result	RL.	Qual	Units	Date Analyzed/Init	Method		
General Parameters								
Total Dissolved Solids (180)		ブ 10	H	mg/L	09/25/2012 1518 JCG	SM 2540		
Total Suspended Solids	ND	<b>リゴ</b> 5	Н	mg/L	09/25/2012 1633 JCG	SM 2540		
Alkalinity, Total (As CaCO3)	72	5		mg/L	09/25/2012 2156 KV	SM 2320B		
Total Organic Carbon	2	1		mg/L	09/26/2012 1141 AMB	SM 5310B		
Anions								
Alkalinity, Bicarbonate as HCO3		J 5		mg/L	09/25/2012 2156 KV	SM 2320B		
Alkalinity, Carbonate as CO3		25 5		mg/L	09/25/2012 2156 KV	SM 2320B		
Chloride		J 0.2		mg/L	09/26/2012 040 AM	EPA 300.0		
Fluoride		15 0.2		mg/L	09/26/2012 040 AM	EPA 300.0		
Nitrogen, Nitrate-Nitrite (as N)	ND (	0.05		mg/L	09/25/2012 1641 RH	EPA 353.2		
Sulfate	6.2	<b>ブ</b> 0.2		mg/L	09/26/2012 040 AM	EPA 300.0		
Dissolved Metals								
Aluminum	ND	50		µg/L	09/26/2012 1308 DG	6010C		
Antimony	1.6	0.2		μg/L	09/28/2012 1400 MS	6020A		
Arsenic	ND	2		μg/L	09/28/2012 1400 MS	6020A		
Barium	20	10		μg/L	09/28/2012 1400 MS	6020A		
Beryllium	ND	0.2		µg/L	09/28/2012 1400 MS	6020A		
Cadmlum	ND	0.9		µg/L	09/28/2012 1400 MS	6020A		
Calcium	14500	50		μg/L	09/26/2012 1308 DG	6010C		
Chromium	ND	0.5		μg/L	09/28/2012 1400 MS	6020A		
Cobalt	ND	0.1		μg/L	09/28/2012 1400 MS	6020A		
Соррег	ND	0.9		µg/L	09/28/2012 1400 MS	6020A		
Iron	40	20		µg/L	09/26/2012 1308 DG	6010C		
Lead	ND	0.14		µg/L	09/28/2012 1400 MS	6020A		
Magnesium	7830	20		μg/L	09/26/2012 1308 DG	6010C		
Manganese	6	2		μg/L	09/28/2012 1400 MS	6020A		
Nickel	ND	0.7		μg/L	09/28/2012 1400 MS	6020A		
Potassium	ND	400		μg/L	09/26/2012 1308 DG	6010C		
Selenium	ND	2		μg/L	09/28/2012 1400 MS	6020A		
Silicon	3500	400		µg/L	09/26/2012 1308 DG	6010C		
Silver	ND	0.2		μg/L	09/28/2012 1400 MS	6020A		
Sodium	1500	200		μg/L	09/26/2012 1308 DG	6010C		
Thallium	ND	0.3		µg/L	09/28/2012 1400 MS	6020A		
Vanadium	ND	2		μg/L	09/28/2012 1400 MS	6020A		
Zinc	ND	10		μg/L	09/26/2012 1308 DG	6010C		

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Calculated Value
- Н Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Value exceeds Monthly Ave or MCL М
- Outside the Range of Dilutions

-11/16/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor



Project:

Lab ID:

Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209431-003

Seattle, WA 98104

Client Sample ID: 0912RD10SW

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

Collection Date: 9/12/2012 11:52:00 AM Date Received: 9/25/2012 11:47:00 AM

Sampler:

COC:	RDM-0912-004						
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
otal Metals							
Aluminum		ND	50		µg/L	10/01/2012 2112 DG	6010C
Antimony		1.60	0.07		μg/L	09/28/2012 1405 MS	6020A
Arsenic		ND	2		μg/L	09/28/2012 1405 MS	6020A
Barium		20	10		μg/L	09/28/2012 1405 MS	6020A
Beryllium		ND	0.2		μg/L	09/28/2012 1405 MS	6020A
Cadmium		ND	0.5		μg/L	09/28/2012 1405 MS	6020A
Calcium		16000	50		μg/L	10/01/2012 2112 DG	6010C
Chromium		ND	0.5		μg/L	09/28/2012 1405 MS	6020A
Cobalt		ND	0.1		μg/L	09/28/2012 1405 MS	6020A
Copper		ND	0.9		μg/L	09/28/2012 1405 MS	6020A
Iron		90	20		μg/L	10/01/2012 2112 DG	6010C
Lead		ND	0.3		μg/L	09/28/2012 1405 MS	6020A
Magnesium		8580	20		μg/L	10/01/2012 2112 DG	6010C
Manganese		10	2		μg/L	09/28/2012 1405 MS	6020A
Nickel		ND	2		μg/L	09/28/2012 1405 MS	6020A
Potassium		ND	400		μg/L	10/01/2012 2112 DG	6010C
Selenium		ND	3		µg/L	09/28/2012 1405 MS	6020A
Silicon		3900	400		μg/L	10/01/2012 2112 DG	6010C
Silver		ND	0.3		µg/L	09/28/2012 1405 MS	6020A
Sodium		1500	200		μg/L	10/01/2012 2112 DG	6010C
Thallium		ND	0.3		μg/L	09/28/2012 1405 MS	6020A
Vanadlum		ND	2		µg/L	09/28/2012 1405 MS	6020A
Zinc		ND	10		μg/L	10/01/2012 2112 DG	6010C

m 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits S

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 6 of 8



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

Collection Date: 9/11/2012 4:27:00 PM Date Received: 9/25/2012 11:47:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209431-004
Client Sample ID:	0912RD12SW
COC:	RDM-0912-004

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters	0 - 0 - 0 - 0 - 0					
Total Dissolved Solids (180)	120 丁	_ 10	Н	mg/L	09/25/2012 1519 JCG	SM 2540
Total Suspended Solids	ND V	5	Н	; mg/L	09/25/2012 1634 JCG	SM 2540
Alkalinity, Total (As CaCO3)	70	5		mg/L	09/25/2012 2204 KV	SM 2320B
Total Organic Carbon	2	1		mg/L	09/26/2012 1154 AMB	SM 5310B
Anions						
Alkalinity, Bicarbonate as HCO3	85 丁	5		mg/L	09/25/2012 2204 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND U	5		mg/L	09/25/2012 2204 KV	SM 2320B
Chloride	0.5 T	0.2		mg/L	09/26/2012 053 AM	EPA 300.0
Fluoride	NDUS	0.2		mg/L	09/26/2012 053 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.20 🌫	0.05		mg/L	09/25/2012 1642 RH	EPA 353.2
Sulfate	7.1 ブ	0.2		mg/L	09/26/2012 053 AM	EPA 300.0
Dissolved Metals						
Aluminum	ND	50		μg/L	09/26/2012 1310 DG	6010C
Antimony	77.3	0.2		μg/L	09/27/2012 1631 MS	6020A
Arsenic	28	2		μg/L	09/27/2012 1631 MS	6020A
Barium	20	10		μg/L	09/28/2012 1420 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1420 MS	6020A
Cadmium	ND	0.9		µg/L	09/28/2012 1420 MS	6020A
Calcium	14300	50		μg/L	09/26/2012 1310 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1420 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1420 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1420 MS	6020A
iron	50	20		μg/L	09/26/2012 1310 DG	6010C
Lead	ND	0.14		μg/L	09/28/2012 1420 MS	6020A
Magnesium	7960	20		μg/L	09/26/2012 1310 DG	6010C
Manganese	8	2		µg/L	09/28/2012 1420 MS	6020A
Nickel	ND	0.7		µg/L	09/28/2012 1420 MS	6020A
Potassium	ND	400		µg/L	09/26/2012 1310 DG	6010C
Selenium	ND	2		μg/L	09/28/2012 1420 MS	6020A
Silicon	3500	400		μg/L	09/26/2012 1310 DG	6010C
Silver	ND	0.2		μg/L	09/28/2012 1420 MS	6020A
Sodium	1500	200		μg/L	09/26/2012 1310 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1420 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1420 MS	6020A
Zinc	ND	10		μg/L	09/26/2012 1310 DG	6010C

These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

m of 11/16/12

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 7 of 8



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209431001

Work Order: S1209431

Collection Date: 9/11/2012 4:27:00 PM Date Received: 9/25/2012 11:47:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209431-004 Client Sample ID: 0912RD12SW RDM-0912-004

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals						
Aluminum	ND	50		µg/L	10/01/2012 2122 DG	6010C
Antimony	80.3	0.07		μg/L	09/28/2012 1425 MS	6020A
Arsenic	30	2		μg/L	09/28/2012 1425 MS	6020A
Barium	20	10		μg/L	09/28/2012 1425 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1425 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1425 MS	6020A
Calcium	15700	50		μg/L	10/01/2012 2122 DG	6010C
Chromium	<b>N</b> D	0.5		μg/L	09/28/2012 1425 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1425 MS	6020A
Copper	ND	0.9		μ <b>9</b> /L	09/28/2012 1425 MS	6020A
Iron	100	20		μg/L	10/01/2012 2122 DG	6010C
Lead	ND	0.3		µg/L	09/28/2012 1425 MS	6020A
Magnesium	8640	20		μg/L	10/01/2012 2122 DG	6010C
Manganese	11	2		μg/L	09/28/2012 1425 MS	6020A
Nickel	ND	2		μg/L	09/28/2012 1425 MS	6020A
Potassium	ND	400		µg/L	10/01/2012 2122 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1425 MS	6020A
Silicon	3900	400		µg/L	10/01/2012 2122 DG	6010C
Silver	ND	0.3		µg/L	09/28/2012 1425 MS	6020A
Sodium	1500	200		µg/L	10/01/2012 2122 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1425 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1425 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2122 DG	6010C

m 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits J

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 8 of 8

Qual



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

## **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209431

Report ID: \$1209431001

Project: Red Devil Mine

Dissolved Metals by ICPMS (6020A)

Uniter mad Sample Type MBLK

elype MBLK	Units: mg	<i>I</i> L							_
Sample ID	RunNo: 87727	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	
MBLK	09/28/12 11:32	Antimony	ND	0.005					
		Arsenic	ND	0.005					
		Barium	ND	0.1					
	Beryllium	ND	0.002						
	Cadmium	ND	0.002						
	Chromium	ND	0.001						
		Cobalt	ND	0.01					
		Copper	ND	0.01					
		Lead	ND	0.02					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005					
		Silver	ND	0.003				<i>.</i>	
		Thallium	ND	0.001		22		1/1/1	6
		Vanadium	ND	0.02			~ 0		

Sample Type LCS Units: mg/L

3 1)po 200	Office, The	[144						
Sample ID	RunNo: 87727	Analyte	Result	RL	Spike	Ref Samp %REC	% Rec Limits	Qual
LCS	09/28/12 11:28	Antimony	0.101	0.005	0.1	101	80 - 120	
		Arsenic	0.099	0.005	0.1	98.6	80 - 120	
		Barium	0.1	0.1	0.1	102	80 - 120	
		Beryllium	0.099	0.002	0.1	98.6	80 - 120	
		Cadmium	0.098	0.002	0.1	97.6	80 - 120	
		Chromium	0.100	0.001	0.1	100	80 - 120	
		Cobalt	0.10	0.01	0.1	101	80 - 120	
		Copper	0.10	0.01	0.1	102	80 - 120	
		Lead	0.10	0.02	0.1	102	80 - 120	
		Manganese	0.10	0.01	0.1	101	80 - 120	
		Nickel	0.10	0.01	0.1	99.5	80 - 120	
		Selenium	0.099	0.005	0.1	98.8	80 - 120	
		Silver	0.097	0.003	0.1	97.4	80 - 120	
		Thallium	0.102	0.001	0.1	102	80 - 120	
		Vanadium	0.10	0.02	0.1	98.6	80 - 120	

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Analyzed by a contract laboratory l.
- 0 Outside the Range of Dilutions
- Spike Recovery outside accepted recovery limits
- Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

## **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Project:

Work Order:

Ecology & Environment, Inc.

S1209431

Red Devil Mine

Date: 10/9/2012

Report ID: \$1209431001

Anions by ION Chromatography

Sample Type MBLK	Units: mg	A.							
Sample ID	RunNo: 87638	Analyte	. Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
BLK	09/25/12 11:41	Chloride	ND	1			•		
		Fluoride	ND	0.1					
		Sulfate	ND	1		سو		AJ 111	1161
Sample Type LCS	Units: mg	/L						0 "1	
Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
DIONEX	09/25/12 11:16	Chloride	31	1	30		102	90 - 110	
		Fluoride	20.7	0.1	20		104	90 - 110	
		Sulfate	144	1	150		95.8	90 - 110	
Sample Type MS	Units: mg	/L							_
Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209429-001ASF	PK 09/25/12 23:01	Chloride	5	1	5	ND	95.0	80 - 120	
		Fluoride	2.2	0.1	2	ND	108	80 - 120	
		Sulfate	49	1	40	9	99.7	80 - 120	
Sample Type MSD	Units: mg	/L							
Sample ID	RunNo: 87638	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209429-001ASP	K 09/25/12 23:14	Chloride	5	1	5	0.426	95.5	20	
		Fluoride	2.2	0.1	2.2	0.498	107	20	
		Sulfate	50	1	49	1.10	101	20	
Sample Type DUP	Units: mg	/L							
Sample ID	RunNo: 87638	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-001A	09/25/12 22:49	Chloride	0.5	0.2	0.5	4.92		20	
		Fluoride	ND	0.2	ND			20	
		Sulfate	9.2	0.2	9.2	0.0347		20	

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

0 Outside the Range of Dilutions Spike Recovery outside accepted recovery limits Value above quantitation range

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

%REC % RPD Limits

20

Qual



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

## ANALYTICAL QC SUMMARY REPORT

**CLIENT:** 

Work Order:

Ecology & Environment, Inc.

S1209431

Project: Red Devil Mine Date: 10/9/2012

Report ID: S1209431001

Ref Samp %RPD

ND

Nitrogen, Nitrate-Nitrite (as N)

Sample ID

S1209429-001B

Sample Ty	pe MBL	.K
-----------	--------	----

Sample	Type MBLK	Units: mg/	L							
	Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	BLANK	09/25/12 15:51	Nitrogen, Nitrate-Nitrite (as N)	ND	0.1		_	2.	A) 1	 11   16
Sample	Type LCS	Units: mg/l	L						~ / ·	
	Sample ID	RunNo: 87583	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
'	QC	09/25/12 15:53	Nitrogen, Nitrate-Nitrite (as N)	18.5	0.1	19.3	_	95.7	90 - 110	
Sample	Туре МЅ	Units: mg/l	L							
	Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
·	S1209429-001B	09/25/12 16:36	Nitrogen, Nitrate-Nitrite (as N)	4.78	0.05	5	ND	95.6	80 - 120	_
Sample	Туре MSD	Units: mg/l								_
	Sample ID	RunNo: 87583	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
•	S1209429-001B	09/25/12 16:37	Nitrogen, Nitrate-Nitrite (as N)	5.22	0.05	4.78	9.33	104	20	
Sample	Туре DUP	Units: mg/l								

Result

ND

RL

0.05

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

RunNo: 87583

09/25/12 16:35

Analyte

Nitrogen, Nitrate-Nitrite (as

L Analyzed by a contract laboratory

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Value above quantitation range

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

## **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Project:

Work Order:

Ecology & Environment, Inc.

S1209431

Red Devil Mine

Date: 10/9/2012

Report ID: S1209431001

201	ohi	Q.	CAA	2540

Sample	Type MBLK	Units: mg/l	L							
	Sample ID	RunNo: 87559	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
	BLANK	09/25/12 16:02	Total Suspended Solids	ND	5					
	Sample ID	RunNo: 87637	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	DI	09/25/12 14:32	Total Dissolved Solids (180)	ND	10		_		· · · · · · · · · · · · · · · · · · ·	
Sample	Type LCS	Units: mg/l								
	Sample ID	RunNo: 87559	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	CONTROL	09/25/12 16:03	Total Suspended Solids	102	5	100		102	90 - 110	
	Sample ID	RunNo: 87637	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	CONTROL	09/25/12 14:33	Total Dissolved Solids (180)	240	10	226	-	106	90 - 110	
Sample	Type DUP	Units: mg/l	-							
	Sample ID	RunNo: 87559	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
·	S1209429-002A	09/25/12 16:14	Total Suspended Solids	ND	5	ND			20	Н
	Sample ID	RunNo: 87637	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	S1209429-001A	09/25/12 14:57	Total Dissolved Solids (180)	120	10	110	7.27		20	Н
Total (	Organic Carbon									
Sample	Type MBLK	Units: mg/L	-							
	Sample ID	RunNo: 87635	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	BLANK	09/26/12 12:33	Total Organic Carbon	ND	0.5					
Sample	Type LCS	Units: mg/L	•							
	Sample ID	RunNo: 87635	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LCS	09/26/12 9:55	Total Organic Carbon	55.8	0.5	56.3	_	99.2	90 - 110	
Sample	Type MS	Units: mg/L	-							
	Sample ID	RunNo: 87635	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	S1209429-001ESPK	09/26/12 10:42	Total Organic Carbon	51.5	0.5	50	2.2	98.6	80 - 120	
Sample	Type MSD	Units: mg/L	•							
	Sample ID	RunNo: 87635	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
	S1209429-001ESPK	09/26/12 10:53	Total Organic Carbon	51.4	0.5	51.5	0.252	98.4	20	
Sample	Туре DUP	Units: mg/L								
	Sample ID	RunNo: 87635	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
_	S1209429-001E	09/26/12 10:30	Total Organic Carbon	2	1	2	5.51		20	

## Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

mat 11/16/12

Report ID: S1209431001



1673 Terra Avenue, Sheridan, Wyoming 82801

# **ANALYTICAL QC SUMMARY REPORT**

ph: (307) 672-8945

**CLIENT:** Ecology & Environment, Inc.

Date: 10/9/2012 S1209431

Project:

Work Order:

Red Devil Mine

Total(3020) Metals by ICP - 6010C

Sample Type	MBLK	Units: mg/L
-------------	------	-------------

ample Type MBLK	Units: mg	<u> </u>							
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
ICB	10/01/12 13:09	Aluminum	ND	0.005					
		Calcium	ND	0.2					
		Iron	ND	0.05					
		Magnesium	0.14	0.02					В
		Potassium	ND	0.1					
		Silicon	ND	0.1					
		Sodium	ND	0.1					
		Zinc	ND	0.005			12	and .	
ample Type LCS	Units: mg	<i>I</i> L						1011	116
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
ICV Q	10/01/12 13:11	Silicon	1.0	0.1	1		102	80 - 120	
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
ICV 3	10/01/12 13:13	Calcium	39.9	0.2	40		99.7	80 - 120	*****
		Magnesium	39.1	0.02	40		97.7	80 - 120	
		Potassium	40.4	0.1	40		101	80 - 120	
		Sodium	39.4	0.1	40		98.5	80 - 120	
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
LCS-6432	10/01/12 19:51	Aluminum	0.525	0.005	0.5		105	80 - 120	
		Iron	0.57	0.05	0.5		113	80 - 120	
		Zinc	0.206	0.005	0.2		103	80 - 120	
ample Type MS	Units: mg	/L							
Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
\$1209429-001DS	10/01/12 19:56	Aluminum	0.550	0.005	0.5	0.031	104	75 - 125	
		Iron	0.69	0.05	0.5	0.15	109	75 - 125	
		Zinc	0.206	0.005	0.2	ND	103	75 - 125	
ample Type MSD	Units: mg	/L							
Sample ID	RunNo: 87797	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qua
S1209429-001DMS	D 10/01/12 19:58	Aluminum	0.546	0.005	0.550	0.673	103	20	
		Iron	0.68	0.05	0.69	1.35	107	20	
		Zinc	0.205	0.005	0.206	0.388	103	20	

Qualiflers:

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

О Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

# **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209431

Report ID: S1209431001

Project: Red Devil Mine

Total(3020) Metals by ICP - 6010C Sample Type DUP

Units: ma/l

Type DUF	Onits, my	<i>!</i> L							
Sample ID	RunNo: 87797	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-002DD	10/01/12 20:03	Aluminum	0.028	0.005	0.028	1.78		20	_
		Calcium	16.7	0.2	16.7	0.0228		20	
		Iron	0.14	0.05	0.14	0.861		20	
		Magnesium	9.92	0.02	9.96	0.463		20	
	:	Potassium	0.3	0.1	0.4	0.172		20	
		Silicon	4.0	0.1	4.0	0.145		20	
		Sodium	1.9	0.1	1.9	0.423		20	
		Zinc	ND	0.005	ND			20	

Total (3020) Metals by ICPMS - 6020A

Sample Type MBLK

Units: mg/L

e Type MIBLI	Onits: ing	/L							
Sample ID	RunNo: 87728	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MB-6432	09/28/12 12:22	Antimony	ND	0.005					
		Arsenic	ND	0.005					
		Barium	ND	0.01					
		Beryllium	ND	0.002					
		Cadmium	ND	0.002					
		Chromium	ND	0.001					
		Cobalt	ND	0.01					
		Copper	ND	0.001					
		Lead	ND	0.001					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005					
		Silver	ND	0.003					
		Thallium	ND	0.01					
		Vanadium	ND	0.02					

m 11/16/12

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 1 of 2

Ecology and Environment, Inc.

Items/Reason

Relinquished by

CHAIN OF CUSTODY RECORD

No: RDM-0912-004 Lab: Inter-Mountain Laboratories, Inc.

Cooler#; 4

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537

	2001081	, and any monnion	1, 1110	į.		Common real	no. dia monaras		LDI	o. mai-mountain E	aboratories, tile.
	5	12094	3/			Contact Phor	ne: 206-624-9537			Leb Phon	e: 600-828-1097
		Location		Analyses		Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
		0912RD04SW		Total Inorganic Elem	ents	9/11/2012	17:26	1	250 mL HDPE	HNO3 pH<2	
		0912RD04SW		Dissolved Inorganic	Elements	9/11/2012	17:26	1	250 mL HDPE	HNO3 pH<2	
20	:	0912RD04SW	5	Methyl Mercury		9/11/2012	17;26	1	500 mL FLPE	HCI	
O.		0912RD04SW	ئ	/Arsenic Speciation		9/11/2012	17:26	1	250 mL HDPE	HCI	
	!	0912RD04SW		Anions, TSS, TDS, C Bicarbonate	arbonate,	9/11/2012	17:26	1	500 mL HDPE	None	:
•		0912RD04SW		Nitrate/Nitrite		9/11/2012	17:26	1	125 mL HDPE	H2SO4 pH<2	•
4-7-		0912RD04SW		Total Organic Carbor	)	9/11/2012	17:26	2	40 ml Amber Glass	HCI	
		0912RD08SW		Total Inorganic Eleme	ents	9/11/2012	11:11	1	250 mL HDPE	HNO3 pH<2	
_		0912RD08SW		Dissolved Inorganic E	lements	9/11/2012	11:11	1	250 mL HDPE	HNO3 pH<2	
100		0912RD08SW	F	Methyl Mercury		9/11/2012	11:11	1	500 mL FLPE	HCI	
		0912RD08SW	Ġ	Arsenic Speciation		9/11/2012	11:11	1	250 mL HDPE	HCI	
		0912RD08SW		Anions, TSS, TDS, C Bicarbonate	arbonate.	9/11/2012	11:11	1	500 mL HDPE	None	
		0912RD08SW		Nitrate/Nitrite		9/11/2012	11:11	. 1	125 mL HDPE	H2SO4 pH<2	
		0912RD08SW		Total Organic Carbon	)	9/11/2012	11:11	2	40 ml Amber Glass	HCI	
-	<del></del>	0912RD10SW		Total Inorganic Eleme	nls	9/12/2012	11:52	1	260 mL HDPE	HNO3 pH<2	
<b>ፈ</b> ን.	-	0912RD10SW		Dissolved Inorganic	lements	9/12/2012	- 11:52	1	250 mL HDPE	HNO3 pH<2	
702		0912RD10SW	F	Methyl Mercury		9/12/2012	11:52	1	500 mL FLPE	HCI	
$\checkmark$		0912RD10SW	1	Arsenic Speciation		9/12/2012	_ 11:52	1	250 mL HDPE	HCI	

special Instructions: Lab Sitter Anions, Carbonate, and bizerbonate

SAMPLES TRANSFERRED FROM **CHAIN OF CUSTODY #** 

Received by Relinquished By Received by Items/Reason Time 9,25.12 11:47

Page 2 of 2

CHAIN OF CUSTODY RECORD

No: RDM-0912-004

Ecology and Environment, Inc.

Red Devil Mine Project Contact Name; Bill Richards Contact Phone: 206-624-9537 Cooler #: 4 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

Lab#	Location	Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
	0912RD10SW	Anions, TSS, TDS, Carbonate, Bicarbonate	9/12/2012	11:52	1	500 mt HDPE	None	•
	0912RD10SW	Nitrate/Nitrite	9/12/2012	11:52	1	125 mL HDPE	H2SQ4 pH<2	
	0912RD10SW	Total Organic Carbon	9/12/2012	11:52	2	40 ml Amber Glass	HCI	1
	0912RD12SW	Total Inorganic Elements	9/11/2012	16:27	1	250 mL HDPE	HNO3 pH<2	
	0912RD12SW	Dissolved Inorganic Elements	9/11/2012	16:27	1	. 250 ml, HDPE	HNO3 pH<2	•
1.	0912RD12SW	Methyl Mercury	9/11/2012	16:27	1	500 mL FLPE	HCI	
20 ^L	0912RD12SW	Arsenic Speciation	9/11/2012	16.27	1	250 mL HDPE	HCI	
	0912RD128W	Anlons, TSS, TDS, Carbonate, Bicarbonate	9/11/2012	16:27	1	500 mL HDPE	None	•
	0912RD12SW	Nitrate/Nitrite	9/11/2012	16:27	1	125 mL HDPE	H2SO4 pH<2	
	0912RD12SW	Total Organic Carbon	9/11/2012	16:27	2	40 ml Amber Glass	HCI	

Special Instructions: Lab Citter Anions, Corbonate, and browbonate

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason Relinquished by Date Received by Date Time Items/Reason Hathy Tonk 9.25.1211:47

Relinquished By

Date F

Received by

Date Time

7.8.C

### **DATA REVIEW MEMORANDUM**

DATE: November 15, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

SUBJ: Data Review: Red Devil Mine

### **REFERENCE:**

ProjectID	Lab Work Order	Lab
EE-1096-0070	S1209432	Inter-Mountain Labs

## I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	Sample ID	Lab ID	Sample Date	MS/MS D	ID Corrections
S1209432	Water	0912MW04GW	S1209432-001	09/10/2012		
S1209432	Water	0912MW10GW	S1209432-002	09/10/2012		
S1209432	Water	0912MW14GW	S1209432-003	09/10/2012		
S1209432	Water	0912MW28GW	S1209432-004	09/10/2012		
S1209432	Water	0912R101D1	S1209432-005	09/16/2012		
S1209432	Water	0912RD05SW	S1209432-006	09/11/2012		
S1209432	Water	0912RD06SW	S1209432-007	09/11/2012		
S1209432	Water	0912EB02D1	S1209432-008	09/12/2012		
S1209432	Water	0912MW09GW	S1209432-009	09/11/2012		

# Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1209432	Water	SM 2540	TDS	7	
S1209432	Water	SM 2540	TSS	7	
S1209432	Water	SM 2320B	Alkalinity	7	
S1209432	Water	EPA 300.0/353.2	Anions	7	
S1209432	Water	EPA 6010C/6020A	Total Metals	9	
S1209432	Water	EPA 6010C/6020A	Dissolved Metals	3	
S1209432	Water	SM 5310B	TOC	2	
			T		

#### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold (4 ±2) °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 7.4 °C. No problems with the condition of the sample upon receipt are documented. Since the samples were received at temperature outside of range (>6 °C), the detected results were qualified as estimated (J) and the non-detected results were qualified as estimated (UJ) for the analyses of Anions. Qualification for metals, TDS, TSS, Total Alkalinity, and TOC was not necessary.

## III. LABORATORY DATA

## 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

## **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes except Alkalinity, Total Dissolved solids, and Total Suspended Solids. The detected Alkalinity, TDS and TSS results were qualified as estimated (J) and the non-detected Alkalinity, TDS and TSS results were qualified as estimated (UJ).

## 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes except trace amount (0.14 mg/L) of magnesium were detected in the method blank at reporting limit levels. Also, trace amount of antimony (0.07ug/L) and magnesium (60ug/L) were detected in the equipment blank (0912EB02D1). The detected antimony and magnesium results were qualified as non-detect (U) in sample 0912RI01DI since the sample concentration was less than 5X the blank concentration.

## 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

### **REVIEW RESULTS:**

Not applicable for these analyses.

## 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the

digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

## **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on samples 0912MW04GW and 0912RD09SW at the required frequency. MS/MSD recoveries were within the control limits except Manganese generated by the laboratory. The detected Mn results in all samples were qualified as estimated (J).

## 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

## IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

## **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

## V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

#### **REVIEW RESULTS:**

No Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria.

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

#### 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qual	Anal Type	Units	PQL
EPA 6020A	0912EB02DI		Antimony	0.07			ug/L	
EPA 6010C	0912EB02D2		Magnesium	60			ug/L	
EPA 6010C	MBLK		Magnesium	0.14			mg/L	
]								
	]							

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
EPA 6020A	0912RI01DI	Antimony	0.07	0.22	U	
EPA 6010C	0912R101DI	Мд	60	60	U	í.

# Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual PQL
None.					

# Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	a dabbar should	Low Limit	High Limit	Active strategic actions and	Sample Qual.
None.								
							·	

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.		Low Limit	High Limit	Sample Qual	Reportable
EPA 6020A	0912MW04GW	MS	Manganese	1.75	0.2	43%	1	75	125	J	Yes
EPA 6020A	0912MW04GW	MSD	Manganese	1.75	0.2	47	1	75	125	J	Yes

Sample ID	Analyte	Method RPD	RPD Limit No. of Affected Sample	Samp S Qual
None.				

# Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	0.12441313432	Low Limit	High Limit	No. of Affected Samples	Samp Qual
None.							

Table 6 -Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample T	ype	Action
None.					

Table 7 - Summary of Field Duplicate Results:

200									
Sample Sample Rating Qualifier								1	
01 h	i								
$\mathbb{Z}^{\mathbb{Z}}$				'					
			1	] '		ì '			
	ı								
				1					
									<u> </u>
			1	li					
<b>2</b>	1	1	1	1					
a Co									
<u>K</u>									
							_		
<b>a</b>	- 1	1	i						
a									
<b>~ ~</b>									
	_								
	ı		ļ į				,	l l	
		İ							
					i				
							1		
			;						
	- 1	l l							
							İ		
	ĺ								
					$\vdash$			$\vdash\vdash$	_
	'			1		'			
			1					1	
								1	
									l
						!			
						[ ,			
			li						
	. !								
Units	-		<del>  -</del>		$\vdash$	<del>                                     </del>	<del> </del>		
- v									
							i		
	. !						1		
				l '					
						l i			
	'			) '		'			Ì
<u> </u>				1					
Analyte									
o 📰						[ ;			
		[ ]		<b>\</b>		·	[		
	· '								
	;								
				1					
						١.			
		L	L I	L.	L	L i	_ !	L	L
						I		Π	
						l			
								İ	
100				i					
			1	1			\	۱ ۱	
Ĕ				1					
<b>#</b>				[				l	
				l					
Method						İ			
	None.						[ ]		
	Ĕ			]		·	]		
	Э		1	İ		1			
	_		i	ŀ	l i	ı		1	į



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-005

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: S1209432

Collection Date: 9/10/2012 2:41:00 PM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine
Lab ID: S1209432-001
Client Sample ID: 0912MW04GW

COC:

KDW-0912-005		Matrix. Mater	valei			
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	,	丁 10	Н	mg/L	09/25/2012 1520 JCG	SM 2540
Total Suspended Solids	ND	UJ 5	Н	mg/L	09/25/2012 1635 JCG	SM 2540
Alkalinity, Total (As CaCO3)	117	ブ 5	Н	mg/L	09/25/2012 2211 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	143	-	H	mg/L	09/25/2012 2211 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND	<b>レブ</b> 5	Н	mg/L	09/25/2012 2211 KV	SM 2320B
Chloride		J 0.2		mg/L	09/26/2012 105 AM	EPA 300.0
Fluoride		<b></b>		mg/L	09/26/2012 105 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)		<b>グ</b> 0.05		mg/L	09/25/2012 1621 RH	EPA 353.2
Sulfate	424	<b>J</b> 0.2		mg/L	09/26/2012 105 AM	EPA 300.0
Total Metals						
Aluminum	90	50		μg/L	10/01/2012 2134 DG	6010C
Antimony	32.7	0.07		μg/L	09/28/2012 1723 MS	6020A
Arsenic	10	2		µg/L	09/28/2012 1723 MS	6020A
Barium	60	10		µg/L	09/28/2012 1723 MS	6020A
Beryllium	ND	0.2		µg/L	09/28/2012 1723 MS	6020A
Cadmium	0.6	0.5		μg/L	09/28/2012 1723 MS	6020A
Calcium	64400	50		μg/L	10/01/2012 2134 DG	6010C
Chromium	4.2	0.5		µg/L	09/28/2012 1723 MS	6020A
Cobalt	3.4	0.1		µg/L	09/28/2012 1723 MS	6020A
Copper	6.4	0.9		μg/L	09/28/2012 1723 MS	6020A
Iron	190	20		μg/L	10/01/2012 2134 DG	6010C
Lead	ND	0.3		μg/L	09/28/2012 1723 MS	6020A
Magnesium	98100	20		µg/L	10/01/2012 2134 DG	6010C
Manganese	1750	<b>ブ</b> 2		μg/L	09/28/2012 1723 MS	6020A
Nickel	50	2		μg/L	09/28/2012 1723 MS	6020A
Potassium	1400	400		μg/L	10/01/2012 2134 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1723 MS	6020A
Silicon	5600	400		μg/L	10/01/2012 2134 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1723 MS	6020A
Sodium	8800	200		μg/L	10/01/2012 2134 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1723 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1723 MS	6020A
Zinc	20	10		µg/L	10/01/2012 2134 DG	6010C

# These results apply only to the samples tested.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

may 11/16/12

Page 1 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: \$1209432001

Work Order: S1209432

Collection Date: 9/10/2012 12:15:00 PM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209432-002
Client Sample ID:	0912MW10GW
COC:	RDM-0912-005

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters		_	•			
Total Dissolved Solids (180)		J 10	Н	mg/L	09/25/2012 1521 JCG	SM 2540
Total Suspended Solids		<b>5</b> 5	Н	mg/L	09/25/2012 1637 JCG	SM 2540
Alkalinity, Total (As CaCO3)	178	ブ 5	H	mg/L	09/25/2012 2219 KV	SM 2320B
nions						
Alkalinity, Bicarbonate as HCO3		J 5	Н	mg/L	09/25/2012 2219 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND U		H	mg/L	09/25/2012 2219 KV	SM 2320B
Chloride	1.2	0.2		mg/L	09/26/2012 117 AM	EPA 300.0
Fluoride		ナ 0.2		mg/L	09/26/2012 117 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)		ブ _{0.05}		mg/L	09/25/2012 1643 RH	EPA 353.2
Sulfate	9.3	0.2		mg/L	09/26/2012 117 AM	EPA 300.0
otal Metals						
Aluminum	160	50		μg/L	10/01/2012 2141 DG	6010C
Antimony	2.65	0.07		μg/L	09/28/2012 1738 MS	6020A
Arsenic	110	2		μg/L	09/28/2012 1738 MS	6020A
Barium	100	10		μg/L	09/28/2012 1738 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1738 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1738 MS	6020A
Calcium	22400	50		μg/L	10/01/2012 2141 DG	6010C
Chromium	4.0	0.5		μg/L	09/28/2012 1738 MS	6020A
Cobalt	0.4	0.1		μg/L	09/28/2012 1738 MS	6020A
Copper	1.2	0.9		μg/L	09/28/2012 1738 MS	6020A
Iron	1360	20		μg/L	10/01/2012 2141 DG	6010C
Lead	0.4	0.3		μg/L	09/28/2012 1738 MS	6020A
Magnesium	32100	20		μg/L	10/01/2012 2141 DG	6010C
Manganese	184 丁	7 2		μg/L	09/28/2012 1738 MS	6020A
Nickel	3	2		μg/L	09/28/2012 1738 MS	6020A
Potassium	1200	400		μg/L	10/01/2012 2141 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1738 MS	6020A
Silicon	4700	400		µg/L	10/01/2012 2141 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1738 MS	6020A
Sodium	3400	200		μg/L	10/01/2012 2141 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1738 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1738 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2141 DG	6010C

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank В

Value above quantitation range E

J Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 2 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209432-003

Seattle, WA 98104

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: \$1209432

Collection Date: 9/10/2012 6:03:00 PM

Date Received: 9/25/2012 11:49:00 AM

Client Sample ID: 0912MW14GW COC: RDM-0912-005		Sampler:  Matrix: Water					
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method	
Seneral Parameters					1		
Total Dissolved Solids (180)	200 🗇	10	Н	mg/L	09/25/2012 1522 JCG	SM 2540	
Total Suspended Solids	135 J		Н	mg/L	09/25/2012 1638 JCG	SM 2540	
Alkalinity, Total (As CaCO3)	100 🗓	5	Н	mg/L	09/25/2012 2225 KV	SM 2320B	
Anions							
Alkalinity, Bicarbonate as HCO3	122 🔾	5 5	Н	mg/L	09/25/2012 2225 KV	SM 2320B	
Alkalinity, Carbonate as CO3	ND V	<b>5</b>	Н	mg/L	09/25/2012 2225 KV	SM 2320B	
Chloride	0.7			mg/L	09/26/2012 130 AM	EPA 300.0	
Fluoride	0.2 J	0.2		mg/L	09/26/2012 130 AM	EPA 300.0	
Nitrogen, Nitrate-Nitrite (as N)	ND V	0.05		mg/L	09/28/2012 1614 RH	EPA 353.2	
Sulfate	41.0	0.2		mg/L	09/26/2012 130 AM	EPA 300.0	
otal Metals							
Aluminum	1920	50		μg/L	10/01/2012 2143 DG	6010C	
Antimony	74.8	0.07		μg/L	09/28/2012 1743 MS	6020A	
Arsenic	9710	2		μg/L	09/28/2012 1832 MS	6020A	
Barium	140	10		µg/L	09/28/2012 1743 MS	6020A	
Beryllium	ND	0.2		μg/L	09/28/2012 1743 MS	6020A	
Cadmium	ND	0.5		μg/L	09/28/2012 1743 MS	6020A	
Calcium	22500	50		µg/L	10/01/2012 2143 DG	6010C	
Chromium	11.1	0.5		µg/L	09/28/2012 1743 MS	6020A	
Coball	8.8	0.1		μg/L	09/28/2012 1743 MS	6020A	
Copper	10.6	0.9		μg/L	09/28/2012 1743 MS	6020A	
fron	25400	20		μg/L	10/01/2012 2143 DG	6010C	
Lead	1.9	0.3		μg/L	09/28/2012 1743 MS	6020A	
Magnesium	18700	20		μg/L	10/01/2012 2143 DG	6010C	
Manganese	4390 🤝	7 2		μg/L	09/28/2012 1832 MS	6020A	
Nickel	15	2		<b>µg/</b> L	09/28/2012 1743 MS	6020A	
Potassium	1100	400		µg/L	10/01/2012 2143 DG	6010C	
Selenium	ND	3		μg/L	09/28/2012 1743 MS	6020A	
Silicon	9900	400		μg/L	10/01/2012 2143 DG	6010C	
Silver	ND	0.3		μg/L	09/28/2012 1743 MS	6020A	
Sodium	4100	200		μg/L	10/01/2012 2143 DG	6010C	
Thallium	ND	0.3		μg/L	09/28/2012 1743 MS	6020A	
Vanadium	9	2		μg/L	09/28/2012 1743 MS	6020A	
Zinc	20	10		μg/L	10/01/2012 2143 DG	6010C	

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 3 of 12



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: \$1209432001

Work Order: S1209432

Collection Date: 9/10/2012 4:20:00 PM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209432-004 Client Sample ID: 0912MW28GW COC: RDM-0912-005

COC. NDW-0912-000					Midtix, Mater	
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters					And the second	
Total Dissolved Solids (180)		<u> </u>	н	mg/L	09/25/2012 1523 JCG	SM 2540
Total Suspended Solids	00	J 5	H	mg/L	09/25/2012 1639 JCG	SM 2540
Alkalinity, Total (As CaCO3)	209	5	Н	mg/L	09/25/2012 2239 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3		5	Н	mg/L	09/25/2012 2239 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND U	•	H	mg/L	09/25/2012 2239 KV	SM 2320B
Chloride	0.6	0.2		mg/L	09/26/2012 142 AM	EPA 300.0
Fluoride	0.2 🗂			mg/L	09/26/2012 142 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)		J 0.05		mg/L	09/28/2012 1615 RH	EPA 353.2
Sulfate	40.5	0.2		mg/L	09/26/2012 142 AM	EPA 300.0
Total Metals						
Aluminum	440	50		μg/L	10/01/2012 2153 DG	6010C
Antimony	17.4	0.07		μg/L	09/28/2012 1747 MS	6020A
Arsenic	68	2		μg/L	09/28/2012 1747 MS	6020A
Barium	70	10		µg/L	09/28/2012 1747 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1747 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1747 MS	6020A
Calcium	40900	50		μg/L	10/01/2012 2153 DG	6010C
Chromium	8.0	0.5		μg/L	09/28/2012 1747 MS	6020A
Cobalt	3.9	0.1		μg/L	09/28/2012 1747 MS	6020A
Copper	2.6	0.9		µg/L	09/28/2012 1747 MS	6020A
Iron	2250	20		µg/L	10/01/2012 2153 DG	6010C
Lead	0.8	0.3		μg/L	09/28/2012 1747 MS	6020A
Magnesium	29200	20		μg/L	10/01/2012 2153 DG	6010C
Manganese	1070	Γ 2		μg/L	09/28/2012 1747 MS	6020A
Nickel	11	2		µg/L	09/28/2012 1747 MS	6020A
Potassium	1200	400		µg/L	10/01/2012 2153 DG	6010C
Selenium	ND	3		µg/L	09/28/2012 1747 MS	6020A
Silicon	5600	400		μg/L	10/01/2012 2153 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1747 MS	6020A
Sodium	11100	200		μg/L	10/01/2012 2153 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1747 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1747 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2153 DG	6010C

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

32 // Page 4 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: S1209432

Collection Date: 9/16/2012 11:00:00 AM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Analyses	
COC:	RDM-0912-005
Client Sample ID:	0912RI01DI
Lab ID:	S1209432-005

Project:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Total Metals			"			
Aluminum	ND			μg/L	10/01/2012 2155 DG	6010C
Antimony	0.22	U 0.07		μg/L	09/28/2012 1752 MS	6020A
Arsenic	ND	2		μg/L	09/28/2012 1752 MS	6020A
Barium	ND	10		μg/L	09/28/2012 1752 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1752 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1752 MS	6020A
Calcium	ND	50		μg/L	10/01/2012 2155 DG	6010C
Chromlum	ND	0.5		μg/L	09/28/2012 1752 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1752 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1752 MS	6020A
Iron	ND	20		μg/L	10/01/2012 2155 DG	6010C
Lead	ND	0.3		<b>ի</b> ց/Լ	09/28/2012 1752 MS	6020A
Magnesium	60	<b>V</b> 20		µg/L	10/01/2012 2155 DG	6010C
Manganese	ND	2		μg/L	09/28/2012 1752 MS	6020A
Nickel	ND	2		µg/L	09/28/2012 1752 MS	6020A
Potassium	ND	400		μg/L	10/01/2012 2155 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1752 MS	6020A
Silicon	ND	400		μg/L	10/01/2012 2155 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1752 MS	6020A
Sodium	ND	200		µg/L	10/01/2012 2155 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1752 MS	6020A
Vanadium	ND	2		µg/L	09/28/2012 1752 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2155 DG	6010C

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank В

Value above quantitation range Ε

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-005

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: S1209432

Collection Date: 9/11/2012 3:23:00 PM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209432-006
Client Sample ID:	0912RD05SW

COC:

(COC)						viatiix. vvatei		
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method		
General Parameters								
Total Dissolved Solids (180)	300	ブ 10	Н	mg/L	09/25/2012 1524 JCG	SM 2540		
Total Suspended Solids	7	<b>J</b> 5	Н	mg/L	09/25/2012 1640 JCG	SM 2540		
Alkalinity, Total (As CaCO3)	261	5		mg/L	09/25/2012 2246 KV	SM 2320B		
Total Organic Carbon	ND \$	1 1		mg/L	09/26/2012 1207 AMB	SM 5310B		
Anions	•							
Alkalinity, Bicarbonate as HCO3	4.4	J 5		mg/L	09/25/2012 2246 KV	SM 2320B		
Alkalinity, Carbonate as CO3	ND C	5		mg/L	09/25/2012 2246 KV	SM 2320B		
Chloride	0.7	T 0.2		mg/L	09/26/2012 154 AM	EPA 300.0		
Fluoride		<i>l</i> ブ 0.2		mg/L	09/26/2012 154 AM	EPA 300.0		
Nitrogen, Nitrate-Nitrite (as N)		T0.05		mg/L	09/25/2012 1652 RH	EPA 353.2		
Sulfate	36.5	3 0.2		mg/L	09/26/2012 154 AM	EPA 300.0		
Dissolved Metals								
Aluminum	ND	50		μg/L	09/26/2012 1320 DG	6010C		
Antimony	15.8	0.2		μg/L	09/28/2012 1440 MS	6020A		
Arsenic	619	2		μg/L	09/28/2012 1440 MS	6020A		
Barlum	100	10		μg/L	09/28/2012 1440 MS	6020A		
Beryllium	ND	0.2		μg/L	09/28/2012 1440 MS	6020A		
Cadmium	ND	0.9		hg/F	09/28/2012 1440 MS	6020A		
Calcium	37400	50		µg/L	09/26/2012 1320 DG	6010C		
Chromium	ND	0.5		μg/L	09/28/2012 1440 MS	6020A		
Cobalt	4.7	0.1		μg/L	09/28/2012 1440 MS	6020A		
Copper	ND	0.9		μg/L	09/28/2012 1440 MS	6020A		
Iron	1570	20		μg/L	09/26/2012 1320 DG	6010C		
Lead	ND	0.14		μg/L	09/28/2012 1440 MS	6020A		
Magnesium	38700	20		μg/L	09/26/2012 1320 DG	6010C		
Manganese	386	7 2		μg/L	09/28/2012 1440 MS	6020A		
Nickel	17.6	0.7		μg/L	09/28/2012 1440 MS	6020A		
Potassium	1300	400		μg/L	09/26/2012 1320 DG	6010C		
Selenium	ND	2		μg/L	09/28/2012 1440 MS	6020A		
Sillcon	4200	400		μg/L	09/26/2012 1320 DG	6010C		
Silver	ND	0.2		μg/L	09/28/2012 1440 MS	6020A		
Sodium	10300	200		µg/L	09/26/2012 1320 DG	6010C		
Thallium	ND	0.3		μg/L	09/28/2012 1440 MS	6020A		
Vanadium	ND	2		μg/L	09/28/2012 1440 MS	6020A		
Zinc	ND	10		μg/L	09/26/2012 1320 DG	6010C		

These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- C Calculated Value
- H Holding times for preparation or analysis exceeded
- L. Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Reviewed by:

Lacey Ketron, Water Lab Supervisor

RL - Reporting Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- O Outside the Range of Dilutions

33 11/16/12 Page 6 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: \$1209432001

Work Order: S1209432

Collection Date: 9/11/2012 3:23:00 PM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209432-006

Client Sample ID: 0912RD05SW
COC: RDM-0912-005

000.	NDW-0312-003		mann, water						
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method		
otal Metals									
Aluminum		ND	50		µg/L	10/01/2012 2158 DG	6010C		
Antimony		38.2	0.07		μg/L	09/28/2012 1450 MS	6020A		
Arsenic		842	2		μg/L	09/28/2012 1450 MS	6020A		
Barium		110	10		μg/L	09/28/2012 1450 MS	6020A		
Beryllium		ND	0.2		μg/L	09/28/2012 1450 MS	6020A		
Cadmium		ND	0.5		μg/L	09/28/2012 1450 MS	6020A		
Calcium		41500	50		μg/L	10/01/2012 2158 DG	6010C		
Chromium		ND	0.5		μg/L	09/28/2012 1450 MS	6020A		
Cobalt		5.9	0.1		μg/L	09/28/2012 1450 MS	6020A		
Copper		ND	0.9		μg/L	09/28/2012 1450 MS	6020A		
lron		2320	20		μg/L	10/01/2012 2158 DG	6010C		
Lead		ND	0.3		μg/L	09/28/2012 1450 MS	6020A		
Magnesium		42600	20		μg/L	10/01/2012 2158 DG	6010C		
Manganese	•	420	プ 2		μg/L	09/28/2012 1450 MS	6020A		
Nickel		22	2		μg/L	09/28/2012 1450 MS	6020A		
Potassium		1400	400		µg/L	10/01/2012 2158 DG	6010C		
Selenium		ND	3		μg/L	09/28/2012 1450 MS	6020A		
Silicon		4600	400		μg/L	10/01/2012 2158 DG	6010C		
Silver		ND	0.3		μg/L	09/28/2012 1450 MS	6020A		
Sodium		10900	200		րց/Լ	10/01/2012 2158 DG	6010C		
Thallium		ND	0.3		μg/L	09/28/2012 1450 MS	6020A		
Vanadium		ND	2		μg/L	09/28/2012 1450 MS	6020A		
Zinc		ND	10		μg/L	10/01/2012 2158 DG	6010C		

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Ditutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

11/16/12

Page 7 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: S1209432

Collection Date: 9/11/2012 11:57:00 AM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Lab ID:

COC:

Red Devil Mine S1209432-007

Client Sample ID: 0912RD06SW

RDM-0912-005

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters					***	
Total Dissolved Solids (180)	120	10	H	mg/L	09/25/2012 1525 JCG	SM 2540
Total Suspended Solids	ND (	リナ 5	H	mg/L	09/25/2012 1641 JCG	SM 2540
Alkalinity, Total (As CaCO3)	73	<b>3</b> 5		mg/L	09/25/2012 2254 KV	SM 2320B
Total Organic Carbon	2	J (101		mg/L	09/26/2012 1220 AMB	SM 5310B
Anions		C				
Alkalinity, Bicarbonate as HCO3		J 5		mg/L	09/25/2012 2254 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND (			mg/L	09/25/2012 2254 KV	SM 2320B
Chloride	0.4			mg/L	09/26/2012 256 AM	EPA 300.0
Fluoride	ND L	ノブ 0.2		mg/L	09/26/2012 256 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)		J 0.05		mg/L	09/25/2012 1653 RH	EPA 353.2
Sulfate	9.1	J 0.2		mg/L	09/26/2012 256 AM	EPA 300.0
Dissolved Metals						
Aluminum	ND	50		μg/L	09/26/2012 1322 DG	6010C
Antimony	192	0.2		μg/L	09/28/2012 1455 MS	6020A
Arsenic	71	2		μg/L	09/28/2012 1455 MS	6020A
Barium	20	10		µg/L	09/28/2012 1455 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1455 MS	6020A
Cadmium	ND	0.9		μg/L	09/28/2012 1455 MS	6020A
Calcium	15300	50		μg/L	09/26/2012 1322 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1455 MS	6020A
Cobalt	0.1	0.1		μg/L	09/28/2012 1455 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1455 MS	6020A
Iron	70	20		μg/L	09/26/2012 1322 DG	6010C
Lead	ND	0.14		μg/L	09/28/2012 1455 MS	6020A
Magnesium	9250	20		μg/L	09/26/2012 1322 DG	6010C
Manganese	18 3	J 2		μg/L	09/28/2012 1455 MS	6020A
Nickel	0.7	0.7		μg/L	09/28/2012 1455 MS	6020A
Potassium	ND	400		μg/L	09/26/2012 1322 DG	6010C
Selenium	ND	2		μg/L	09/28/2012 1455 MS	6020A
Silicon	3600	400		μg/L	09/26/2012 1322 DG	6010C
Silver	ND	0.2		μg/L	09/28/2012 1455 MS	6020A
Sodium	1900	200		μg/L	09/26/2012 1322 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1455 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1455 MS	6020A
Zinc	ND	10		µg/L	09/26/2012 1322 DG	6010C

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL М

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

m/16/12



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209432-007

Seattle, WA 98104

Client Sample ID: 0912RD06SW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: \$1209432001

Work Order: S1209432

Collection Date: 9/11/2012 11:57:00 AM Date Received: 9/25/2012 11:49:00 AM

Sampler:

COC: RDM-0912-005				Matrix: Water					
Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method			
otal Metals		·		***************************************		· · · · · · · ·			
Aluminum	ND	50		μg/L	10/01/2012 2200 DG	6010C			
Antimony	227	0.07		μg/L	09/28/2012 1500 MS	6020A			
Arsenic	88	2		μg/L.	09/28/2012 1500 MS	6020A			
Barium	30	10		μց/Լ_	09/28/2012 1500 MS	6020A			
Beryllium	ND	0.2		μg/L	09/28/2012 1500 MS	6020A			
Cadmium	ND	0.5		μg/L	09/28/2012 1500 MS	6020A			
Calcium	16900	50		μg/L	10/01/2012 2200 DG	6010C			
Chromium	ND	0.5		μg/L	09/28/2012 1500 MS	6020A			
Cobalt	0.2	0.1		μg/L	09/28/2012 1500 MS	6020A			
Copper	ND	0.9		μg/L	09/28/2012 1500 MS	6020A			
Iron	150	20		μg/L	10/01/2012 2200 DG	6010C			
Lead	ND	0.3		µg/L	09/28/2012 1500 MS	6020A			
Magnesium	10200	20		µg/L	10/01/2012 2200 DG	6010C			
Manganese	24 ~	<b>ブ</b> 2		μg/L	09/28/2012 1500 MS	6020A			
Nickel	ND	2		μg/L	09/28/2012 1500 MS	6020A			
Potassium	ND	400		μg/L	10/01/2012 2200 DG	6010C			
Selenium	ND	3		μg/L	09/28/2012 1500 MS	6020A			
Silicon	4100	400		µg/L	10/01/2012 2200 DG	6010C			
Silver	ND	0.3		hâ\r	09/28/2012 1500 MS	6020A			
Sodium	1900	200		µg/L	10/01/2012 2200 DG	6010C			
Thallium	ND	0.3		µg/L	09/28/2012 1500 MS	6020A			
Vanadium	ND	2		μg/L	09/28/2012 1500 MS	6020A			
Zinc	ND	10		μg/L	10/01/2012 2200 DG	6010C			

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Catculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

Analyte detected in the associated Method Blank В

Value above quantitation range

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

may

Page 9 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: \$1209432

Collection Date: 9/12/2012 10:58:00 AM

Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine Lab ID: S1209432-008 Client Sample ID: 0912EB02DI RDM-0912-005

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals		· · · · · · · · · · · · · · · · · · ·				
Aluminum	ND	50		μg/L	09/26/2012 1324 DG	6010C
Antimony	ND	0.2		µg/L	09/28/2012 1505 MS	6020A
Arsenic	ND	2		μg/L	09/28/2012 1505 MS	6020A
Barium	ND	10		μg/L	09/28/2012 1505 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1505 MS	6020A
Cadmium	ND	0.9		μg/L	09/28/2012 1505 MS	6020A
Calcium	ND	50		µg/L	09/26/2012 1324 DG	6010C
Chromium	ND	0.5		μg/L	09/28/2012 1505 MS	6020A
Cobalt	ND	0.1		μg/L	09/28/2012 1505 MS	6020A
Copper	ND	0.9		μg/L	09/28/2012 1505 MS	6020A
Iron	ND	20		μg/L	09/26/2012 1324 DG	6010C
Lead	ND	0.14		µg/L	09/28/2012 1505 MS	6020A
Magnesium	ND	20		μg/L	09/26/2012 1324 DG	6010C
Manganese	ND	2		μg/L	09/28/2012 1505 MS	6020A
Nickel	ND	0.7		μg/L	09/28/2012 1505 MS	6020A
Potassium	ND	400		μg/L	09/26/2012 1324 DG	6010C
Selenium	ND	2		μg/L	09/28/2012 1505 MS	6020A
Silicon	ND	400		μg/L	09/26/2012 1324 DG	6010C
Silver	ND	0.2		µg/L	09/28/2012 1505 MS	6020A
Sodium	ND	200		µg/L	09/26/2012 1324 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1505 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1505 MS	6020A
Zinc	ND	10		μg/L	09/26/2012 1324 DG	6010C

#### These results apply only to the samples tested.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Calculated Value
- Н Holding times for preparation or analysis exceeded
- Ł Analyzed by a contract laboratory
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

RL - Reporting Limit

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- M Value exceeds Monthly Ave or MCL
- Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 10 of 12



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: S1209432

Collection Date: 9/12/2012 10:58:00 AM

Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Lab ID:

Red Devil Mine S1209432-008

Client Sample ID: 0912EB02DI COC:

RDM-0912-005

Analyses	Result RL		Qual Units		Date Analyzed/Init	Method	
otal Metals						······································	
Aluminum	ND	50		µg/L	10/01/2012 2202 DG	6010C	
Antimony	0.07	0.07		μg/L	09/28/2012 1520 MS	6020A	
Arsenic	ND	2		μg/L	09/28/2012 1520 MS	6020A	
Barium	ND	10		μg/L	09/28/2012 1520 MS	6020A	
Beryllium	ND	0.2		μg/L	09/28/2012 1520 MS	6020A	
Cadmium	ND	0.5		μg/L	09/28/2012 1520 MS	6020A	
Calcium	ND	50		µg/L	10/01/2012 2202 DG	6010C	
Chromium	ND	0.5		μg/L	09/28/2012 1520 MS	6020A	
Cobalt	ND	0.1		μg/L	09/28/2012 1520 MS	6020A	
Copper	ND	0.9		μg/L	09/28/2012 1520 MS	6020A	
Iron	ND	20		µg/L	10/01/2012 2202 DG	6010C	
Lead	ND	0.3		μg/L	09/28/2012 1520 MS	6020A	
Magnesium	60	20		μg/L	10/01/2012 2202 DG	6010C	
Manganese	ND	2		μg/L	09/28/2012 1520 MS	6020A	
Nickel	ND	2		μg/L	09/28/2012 1520 MS	6020A	
Potassium	ND	400		μg/L	10/01/2012 2202 DG	6010C	
Selenium	ND	3		µg/L	09/28/2012 1520 MS	6020A	
Silicon	ND	400		μg/L	10/01/2012 2202 DG	6010C	
Silver	ND	0.3		μg/L	09/28/2012 1520 MS	6020A	
Sodium	ND	200		μg/L	10/01/2012 2202 DG	6010C	
Thallium	ND	0.3		μg/L	09/28/2012 1520 MS	6020A	
Vanadium	ND	2		μg/L	09/28/2012 1520 MS	6020A	
Zinc	ND	10		μg/L	10/01/2012 2202 DG	6010C	

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

H Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range E

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL М

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

7 11/16/12 Page 11 of 12



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-005

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209432001

Work Order: S1209432

Collection Date: 9/11/2012 11:50:00 AM Date Received: 9/25/2012 11:49:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine
Lab ID: S1209432-009
Client Sample ID: 0912MW09GW

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
General Parameters						
Total Dissolved Solids (180)	310	<b>ブ 10</b>	Н	mg/L	09/25/2012 1526 JCG	SM 2540
Total Suspended Solids	22	丁 5	Н	mg/L	09/25/2012 1642 JCG	SM 2540
Alkalinity, Total (As CaCO3)	258	5		mg/L	09/25/2012 2301 KV	SM 2320B
Anions						
Alkalinity, Bicarbonate as HCO3	315			mg/L	09/25/2012 2301 KV	SM 2320B
Alkalinity, Carbonate as CO3	ND	UJ 5		mg/L	09/25/2012 2301 KV	SM 2320B
Chloride	0.5	ブ 0.2		mg/L	09/26/2012 308 AM	EPA 300.0
Fluoride	ND	UJ 0.2		mg/L	09/26/2012 308 AM	EPA 300.0
Nitrogen, Nitrate-Nitrite (as N)	0.10	ブ 0.05		mg/L	09/25/2012 1654 RH	EPA 353.2
Sulfate	20.5	0.2		mg/L	09/26/2012 308 AM	EPA 300.0
Total Metals						
Aluminum	500	50		μg/L	10/01/2012 2205 DG	6010C
Antimony	11.7	0.07		μg/L	09/28/2012 1757 MS	6020A
Arsenic	13	2		μg/L	09/28/2012 1757 MS	6020A
Barium	340	10		μ <b>g/L</b>	09/28/2012 1757 MS	6020A
Beryllium	ND	0.2		μg/L	09/28/2012 1757 MS	6020A
Cadmium	ND	0.5		μg/L	09/28/2012 1757 MS	6020A
Calcium	53100	50		µg/L	10/01/2012 2205 DG	6010C
Chromium	47.7	0.5		μg/L	09/28/2012 1757 MS	6020A
Cobalt	6.6	0.1		μg/L	09/28/2012 1757 MS	6020A
Copper	4.3	0.9		µg/L	09/28/2012 1757 MS	6020A
Iron	2070	20		μg/L	10/01/2012 2205 DG	6010C
Lead	0.7	0.3		μg/L	09/28/2012 1757 MS	6020A
Magnesium	34400	20		μg/L	10/01/2012 2205 DG	6010C
Manganese	4880	J 2		μg/L	09/28/2012 1837 MS	6020A
Nickel	33	2		μg/L	09/28/2012 1757 MS	6020A
Potassium	2600	400		μg/L	10/01/2012 2205 DG	6010C
Selenium	ND	3		μg/L	09/28/2012 1757 MS	6020A
Silicon	8800	400		μg/L	10/01/2012 2205 DG	6010C
Silver	ND	0.3		μg/L	09/28/2012 1757 MS	6020A
Sodium	4700	200		µg/L	10/01/2012 2205 DG	6010C
Thallium	ND	0.3		μg/L	09/28/2012 1757 MS	6020A
Vanadium	ND	2		μg/L	09/28/2012 1757 MS	6020A
Zinc	ND	10		μg/L	10/01/2012 2205 DG	6010C

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

7/16/12 Page 12 of 12



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

# **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209432

Report ID: S1209432001

Spike Ref Samp %REC % Rec Limits

Red Devil Mine Project:

Alkalinity	1
------------	---

Sample Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87577	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
BLANK	09/25/12 12:57	Alkalinity, Total (As CaCO3)	ND	5					
Sample Type LCS	Units: mg	<i>r</i> L							_
Sample ID	RunNo: 87577	Analyte	Result	RI.	Spike	Ref Samp	%REC	% Rec Limits	Qual
ATQC	09/25/12 12:51	Alkalinity, Total (As CaCO3)	585	5	601		97.4	90 - 110	
ample Type DUP	Units: mg	/L							
Sample ID	RunNo: 87577	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209432-003AD	09/25/12 22:32	Alkalinity, Bicarbonate as HCO3	121	5	122	0.788		20	Н
		Alkalinity, Carbonate as CO3	ND	5	ND			20	Н
		Alkalinity, Total (As CaCO3)	99	5	100	0.788		20	Н
Dissolved Metals by ICP (	6010C)								
ample Type MBLK	Units: mg	<u>/L</u>							
Sample ID	RunNo: 87609	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MBLK DISS/CAT	09/26/12 12:38	Aluminum	ND	0.1					
		Calcium	ND	0.1					
		Iron	ND	0.05					
		Magnesium	ND	0.1					
		Potassium	ND	1					
		Silicon	ND	0.01					
		Sodium	ND	0.1				h	1.
		Zinc	ND	0.01		00	and a	21111	1/2
ample Type LCS	Units: mg/	ſL.							

Sample	Type LCS	Units:	m
	Sample ID	RunNo: 87609	

. ·		•			•	•			
DISS LCS Q 09/26/12 12:41	Aluminum	1.0	0.1	1		102	80 - 120		
		Iron	1.01	0.05	1		101	80 - 120	
		Silicon	1.00	0.01	1		99.6	80 - 120	
		Zinc	1.04	0.01	1		104	80 - 120	
Sample ID	RunNo: 87609	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
CAT LCS IML3	09/26/12 12:43	Calcium	40.1	0.1	40		100	80 - 120	
		Magnesium	39.6	0.1	40		99.0	80 - 120	
		Potassium	40	1	40		101	80 - 120	
		Sodium	39.5	0.1	40		98.8	80 - 120	

Result

Qualifiers:

Analyte detected in the associated Method Blank

Analyte

- Holding times for preparation or analysis exceeded Н
- Ł Analyzed by a contract laboratory
- 0 Outside the Range of Dilutions
- Spike Recovery outside accepted recovery limits
- Ε Value above quantitation range
- Analyte detected below quantitation limits

RL.

- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits



# ANALYTICAL QC SUMMARY REPORT

CLIENT:

Project:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209432

Red Devil Mine

Report ID: S1209432001

Dissolved Metals by ICPMS (6020A)

Sample

Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87727	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MBLK	09/28/12 11:32	Antimony	ND	0.005				***	
		Arsenic	ND	0.005					
		Barium	ND	0.1					
		Beryllium	ND	0.002					
		Cadmium	ND	0.002					
		Chromium	ND	0.001					
		Cobalt	ND	0.01					
		Copper	ND	0.01					
		Lead	ND	0.02					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005					
		Silver	ND	0.003					
		Thallium	ND	0.001				11/	111
		Vanadium	ND	0.02					" " / /

Sample Type LCS

Units: mg/L

typo Log	Office, mg	/L							
Sample ID	RunNo: 87727	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	09/28/12 11:28	Antimony	0.101	0.005	0.1		101	80 - 120	
		Arsenic	0.099	0.005	0.1		98.6	80 - 120	
		Barium	0.1	0.1	0.1		102	80 - 120	
		Beryllium	0.099	0.002	0.1		98.6	80 - 120	
		Cadmium	0.098	0.002	0.1		97.6	80 - 120	
		Chromium	0.100	0.001	0.1		100	80 - 120	
		Cobalt	0.10	0.01	0.1		101	80 - 120	
		Copper	0.10	0.01	0.1		102	80 - 120	
		Lead	0.10	0.02	0.1		102	80 - 120	
		Manganese	0.10	0.01	0.1		101	80 - 120	
		Nickel	0.10	0.01	0.1		99.5	80 - 120	
		Selenium	0.099	0.005	0.1		98.8	80 - 120	
		Silver	0.097	0.003	0.1		97.4	80 - 120	
		Thallium	0.102	0.001	0.1		102	80 - 120	
		Vanadium	0.10	0.02	0.1		98.6	80 - 120	

Qualifiers:

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- 0 Outside the Range of Dilutions
- Spike Recovery outside accepted recovery limits
- Value above quantitation range
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits



# ANALYTICAL QC SUMMARY REPORT

**CLIENT:** 

Work Order:

Ecology & Environment, Inc.

S1209432

Project: Red Devil Mine Date: 10/9/2012

Report ID: S1209432001

Sample ID	RunNo: 87638	Analyte	Result	Rl.	Spike	Ref Samp	%REC	% Rec Limits	Qual
BLK	09/25/12 11:41	Chloride	ND	1		<u></u>			
	***************************************	Fluoride	ND	0.1					
		Sulfate	ND	1				and y	//
ple Type LCS	Units: mg	/L				•	7	211	
Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
DIONEX	09/25/12 11:16	Chloride	31	1	30		102	90 - 110	
		Fluoride	20.7	0.1	20		104	90 - 110	
		Sulfate	144	1	150		95.8	90 - 110	
ple Type MS	Units: mg	/L							
Sample ID	RunNo: 87638	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209429-001ASPK	09/25/12 23:01	Chloride	5	1	5	ND	95.0	80 - 120	
		Fluoride	2.2	0.1	2	ND	108	80 - 120	
		Sulfate	49	1	40	9	99.7	80 - 120	
ple Type MSD	Units: mg	L							
Sample ID	RunNo: 87638	Analyt <del>e</del>	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209429-001ASPK	09/25/12 23:14	Chloride	5	1	5	0.426	95.5	20	
		Fluoride	2.2	0.1	2.2	0.498	107	20	
		Sulfate	50	1	49	1.10	101	20	
ple Type DUP	Units: mg	L							***************************************
Sample ID	RunNo: 87638	Analyt <del>e</del>	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-001A	09/25/12 22:49	Chloride	0.5	0.2	0.5	4.92		20	_
		Fluoride	ND	0.2	ND			20	

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Sulfate

Ĺ. Analyzed by a contract laboratory

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Value above quantitation range

9.2

0.2

9.2

0.0347

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

20



# **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Work Order:

Ecology & Environment, Inc.

S1209432

Project:

Red Devil Mine

Date: 10/9/2012

Report ID: S1209432001

Nitrogen, Nitrate-Nitrite (as N)

Sample	Туре МВЬК	Units: mg/	L							
	Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	BLANK	09/25/12 15:51	Nitrogen, Nitrate-Nitrite (as N)	ND	0.1		ŧ	72~	15 1	/16,
	Sample ID	RunNo: 87734	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	BLANK	09/28/12 15:09	Nitrogen, Nitrate-Nitrite (as N)	ND	0.1					
Sample	Туре <b>LCS</b>	Units: mg/l								
	Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	QC	09/25/12 15:53	Nitrogen, Nitrate-Nitrite (as N)	18.5	0.1	19.3		95.7	90 - 110	
	Sample ID	RunNo: 87734	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
,	QC	09/28/12 15:12	Nitrogen, Nitrate-Nitrite (as N)	17.8	0.1	19.3		92.0	90 - 110	
Sample	Туре МЅ	Units: mg/i	-				_			
	Sample ID	RunNo: 87583	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	S1209430-009B	09/25/12 16:19	Nitrogen, Nitrate-Nitrite (as N)	5.03	0.05	5	ND	101	80 - 120	
Sample	Type MSD	Units: mg/L	-							_
	Sample ID	RunNo: 87583	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
•	S1209430-009B	09/25/12 16:20	Nitrogen, Nitrate-Nitrite (as N)	4.94	0.05	5.03	1.65	98.9	20	
Sample	Type DUP	Units: mg/L	-							
	Sample ID	RunNo: 87583	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
•	S1209430-009B	09/25/12 16:18	Nitrogen, Nitrate-Nitrite (as N)	ND	0.05	ND			20	J

#### Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



# **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Project:

Work Order:

Ecology & Environment, Inc.

S1209432

Red Devil Mine

Date: 10/9/2012

Report ID: \$1209432001

Solids	Ву	SM	2540
--------	----	----	------

Sample ID   RunNo: 87637   Analyte   Result   RL   Spike   Ref Samp   %I	n st	11/16/
Sample ID   RunNo: 87637   Analyte   Result   RL   Spike   Ref Samp   %I	REC % Rec Limits	
DI	REC % Rec Limits	Qual
Sample Type LCS		
Sample ID   RunNo: 87559   Analyte   Result   RL   Spike   Ref Samp   % I		
CONTROL. 09/25/12 16:03 Total Suspended Solids 102 5 100 1  Sample ID RunNo: 87637 Analyte Result RL Spike Ref Samp %I  CONTROL 09/25/12 14:33 Total Dissolved Solids (180) 240 10 226 1  Sample Type DUP Units: mg/L.  Sample ID RunNo: 87559 Analyte Result RL Ref Samp %RPD %I  S1209432-009A 09/25/12 16:43 Total Suspended Solids 22 5 22 0  Sample ID RunNo: 87637 Analyte Result RL Ref Samp %RPD %I		
Sample ID         RunNo: 87637         Analyte         Result         RL         Spike         Ref Samp         %I           CONTROL         09/25/12 14:33         Total Dissolved Solids (180)         240         10         226         1           Sample Type         DUP         Units: mg/L         Wind Dissolved Solids (180)         240         10         226         1           Sample ID         RunNo: 87559         Analyte         Result         RL         Ref Samp         %RPD         %I           S1209432-009A         09/25/12 16:43         Total Suspended Solids         22         5         22         0           Sample ID         RunNo: 87637         Analyte         Result         RL         Ref Samp         %RPD         %I	REC % Rec Limits	Qual
CONTROL 09/25/12 14:33 Total Dissolved Solids (180) 240 10 226 1  Sample Type DUP Units: mg/L  Sample ID RunNo: 87559 Analyte Result Rt. Ref Samp %RPD %I  S1209432-009A 09/25/12 16:43 Total Suspended Solids 22 5 22 0  Sample ID RunNo: 87637 Analyte Result Rt. Ref Samp %RPD %I	02 90 - 110	
Sample Type         DUP         Units: mg/l.           Sample ID         RunNo: 87559         Analyte         Result         Rl.         Ref Samp %RPD %I           \$1209432-009A         09/25/12 16:43         Total Suspended Solids         22         5         22         0           Sample ID         RunNo: 87637         Analyte         Result         RL         Ref Samp %RPD %I	REC % Rec Limits	Qual
Sample ID         RunNo: 87559         Analyte         Result         RI.         Ref Samp         %RPD         %I           S1209432-009A         09/25/12 16:43         Total Suspended Solids         22         5         22         0           Sample ID         RunNo: 87637         Analyte         Result         RL         Ref Samp         %RPD         %I	06 90 - 110	
S1209432-009A         09/25/12 16:43         Total Suspended Solids         22         5         22         0           Sample ID         RunNo: 87637         Analyte         Result         RL         Ref Samp %RPD %I		
Sample ID RunNo: 87637 Analyte Result RL Ref Samp %RPD %f	REC % RPD Limits	Qual
	20	H
S1209430-009A 09/25/12 15:08 Total Dissolved Solids (180) 640 10 640 0	REC % RPD Limits	Qual
· ·	20	Н
Total Organic Carbon		
Sample Type MBLK Units: mg/L		
Sample ID RunNo: 87635 Analyte Result Rt. Spike Ref Samp %f	REC % Rec Limits	Qual
BLANK 09/26/12 12:33 Total Organic Carbon ND 0.5		
Sample Type LCS Units: mg/L.		
Sample ID RunNo: 87635 Analyte Result RL Spike Ref Samp %I	REC % Rec Limits	Qual
LCS 09/26/12 9:55 Total Organic Carbon 55.8 0.5 56.3 9:	9.2 90 - 110	
Sample Type MS Units: mg/L.		
Sample ID RunNo: 87635 Analyte Result Rt. Spike Ref Samp %F	REC % Rec Limits	Qual
S1209429-001ESPK 09/26/12 10:42 Total Organic Carbon 51.5 0.5 50 2.2 9	8.6 80 - 120	
Sample Type MSD Units: mg/L		
Sample ID RunNo: 87635 Analyte Result RL Conc %RPD %F	REC % RPD Limits	Qual
S1209429-001ESPK 09/26/12 10:53 Total Organic Carbon 51.4 0.5 51.5 0.252 9	8.4 20	
Sample Type DUP Units: mg/L.		
Sample ID RunNo: 87635 Analyte Result RL Ref Samp %RPD %F		
S1209429-001E 09/26/12 10:30 Total Organic Carbon 2 1 2 5.51	REC % RPD Limits	Qual

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
  - RPD outside accepted recovery limits



Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

# **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209432

Report ID: S1209432001

Project:

Red Devil Mine

Total(3020) Metals by ICP - 6010C

Sample '	Туре	MBLK
----------	------	------

Sampl	e Type MBLK	Units: mg	/L							
	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	ICB	10/01/12 13:09	Aluminum	ND	0.005					
			Calcium	ND	0.2					
			Iron	ND	0.05					
			Magnesium	0.14	0.02					В
			Potassium	ND	0.1					
			Silicon	ND	0.1					
			Sodium	ND	0.1				1-	
			Zinc	ND	0.005			m.	J.	11/16
Sample	ЭТуре LCS	Units: mg	/L							
	Sample ID	RunNo: 87797	Analyte	Result	RL	Splke	Ref Samp	%REC	% Rec Limits	Qual
	ICV Q	10/01/12 13:11	Silicon	1.0	0.1	1		102	80 - 120	
	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	ICV 3	10/01/12 13:13	Calcium	39.9	0.2	40		99.7	80 - 120	
			Magnesium	39.1	0.02	40		97.7	80 - 120	
			Potassium	40.4	0.1	40		101	80 - 120	
			Sodium	39.4	0.1	40		98.5	80 - 120	
	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LCS-6432	10/01/12 19:51	Aluminum	0.525	0.005	0.5		105	80 - 120	
			tron	0.57	0.05	0.5		113	80 - 120	
			Zinc	0.206	0.005	0.2		103	80 - 120	
Sample	Type MS	Units: mg/	Ĺ							
	Sample ID	RunNo: 87797	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	S1209432-001CS	10/01/12 21:36	Aluminum	0.595	0.005	0.5	0.089	101	75 - 125	
			Iron	0.71	0.05	0.5	0.19	103	75 - 125	
			Zinc	0.229	0.005	0.2	0.021	104	75 - 125	
Sample	Type MSD	Units: mg/	L							
	Sample ID	RunNo: 87797	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
	S1209432-001CMS	D 10/01/12 21:38	Aluminum	0.592	0.005	0.595	0.538	101	20	
			Iron	0.71	0.05	0.71	0.522	104	20	

Qualifiers:

В Analyte detected in the associated Method Blank

Zinc

- Н Holding times for preparation or analysis exceeded
- Analyzed by a contract laboratory L
- 0 Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range

0.228

0.005

0.229

0.480

103

- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

20



# ANALYTICAL QC SUMMARY REPORT

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209432

Report ID: S1209432001

Project:

Red Devil Mine

Total(3020) Metals by ICP - 6010C

Sample Type DUP

Units: ma/L

Typo DOI	Office, file	/ L							
Sample ID	RunNo: 87797	Analyte	Result	RI.	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209431-004DD	10/01/12 21:24	Aluminum	0.031	0.005	0.029	8.36		20	***************************************
		Calcium	15.9	0.2	15.7	0.933		20	
		Iron	0.11	0.05	0.10	3.14		20	
		Magnesium	8.77	0.02	8.64	1.51		20	
		Potassium	0.3	0.1	0.3	0.134		20	
		Silicon	3.9	0.1	3.9	0.987		20	
		Sodium	1.5	0.1	1.5	0.273		20	
		Zinc	ND	0.005	ND			20	

Total (3020) Metals by ICPMS - 6020A

Sample Type MBLK

Units: mg/L

Sample ID	RunNo: 87728	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
MB-6432	09/28/12 12:22	Antimony	ND	0.005		-			
		Arsenic	ND	0.005					
		Barium	ND	0.01					
		Beryllium	ND	0.002					
		Cadmium	ND	0.002					
		Chromium	ND	0.001					
		Cobalt	ND	0.01					
		Copper	ND	0.001					
		Lead	ND	0.001					
		Manganese	ND	0.01					
		Nickel	ND	0.01					
		Selenium	ND	0.005					
		Silver	ND	0.003				1-	
		Thallium	ND	0.01			2		
		Vanadium	ND	0.02			- /	111	///

Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

E Value above quantitation range

Analyte detected below quantitation limits

Not Detected at the Reporting Limit ND

RPD outside accepted recovery limits R

Page 1 of 2

#### CHAIN OF CUSTODY RECORD No: RDM-0912-005 Red Devil Mine Project Cooler #. 5 Ecology and Environment, Inc. Contact Name: Bill Richards Lab: Inter-Mountain Laboratories, Inc. Contact Phone: 206-624-9537 Lab Phone: 800-828-1097 5/209432 Lab# Location Collected Sample Time Numb Cont · Container Preservative MS/MSD Analyses 0912MW04GW Total inorganic Elements 9/10/2012 14:41 1 250 mL HDPE HNO3 pH<2 0912MW04GW Anions, TSS, TDS, Carbonate, 001 9/10/2012 14:41 1 500 mL HDPE None Bicarbonate 0912MW04GW Nitrate/Nitrite 9/10/2012 1 125 mL HDPE H2SO4 pH<2 14:41 HNO3 pH<2 0912MW10GW , Total Inorganic Elements 9/10/2012 12:15 1 250 mL HDPE 0912MW10GW Anions, TSS, TDS, Carbonate, 9/10/2012 12:15 1 . 500 mL HDPE None 0)2 Bicarbonate H2SO4 pH<2 0912MW10GW Nitrate/Nitrite 9/10/2012 12:15 1 125 mL HDPE HNO3 pH<2 0912MW14GW Total Inorganic Elements 9/10/2012 18:03 250 mL HDPE 0912MW14GW Anlons, TSS, TDS, Carbonate, 9/10/2012 18:03 1 500 mL HDPE None 003 H2SO4 pH<2 0912MW14GW ' Nitrate/Nitrite 9/10/2012 18:03 1 125 mL HDPE HNO3 pH<2 1 250 mL HDPE 0912MW28GW Total Inorganic Elements 9/10/2012 16:20 Anions, TSS, TDS, Carbonate, 1 500 mL HDPE 0912MW28GW 9/10/2012 16.20 None Bicarbonate Nitrate/Nitrite H2SO4 pH<2 0912MW28GW 9/10/2012 16:20 1 125 mL HDPE 0912RI01DI Total Inorganic Elements 9/16/2012 11:00 1 250 mL HDPE HNO3 pH<2 °005 HNO3 pH<2 0912RD05SW Total Inorganic Elements 9/11/2012 15:23 1 250 mL HDPE 250 mL HDPE 0912RD05SW Dissolved Inorganic Elements 9/11/2012 15:23 HNO3 pH<2 0912RD05SW 500 mL FLPE HCI Methyl Mercury 9/11/2012 15:23 ہاص 0912RD05SW Arsenic Speciation 9/11/2012 16:23 1 250 mL HDPE HCI SAMPLES TRANSFERRED FROM Special Instructions: Lab Filter Anims, carbonnte, birarbonnte **CHAIN OF CUSTODY #** Items/Reason Items/Reason Received by Refinquished By Date Time Relinquished by Date Received by Date

Kathy Boryo 9.25.12 /1:49

7.4.0

Page 2 of 2

#### CHAIN OF CUSTODY RECORD

No: RDM-0912-005

Ecology and Environment, Inc

Red Devit Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537 Cooler #: 5 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

Lab#	Location		Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
مارح	0912RD05SW		Anlons, TSS, TDS, Carbonate, Bicarbonate	9/11/2012	15:23	1	500 mL HDPE	None	
	0912RD05SW		Nitrate/Nitrite •	9/11/2012	15:23	1	125 mL HDPE	H2SO4 pH<2	
	0912RD05SW		Total Organic Carbon	9/11/2012	15:23	2	40 ml Amber Glass	HCI	
	0912RD06SW		Total Inorganic Elements	9/11/2012	11:57	1	250 mL HDPE	HNO3 pH<2	
:	0912RD06SW		Dissolved Inorganic Elements	9/11/2012	11:57	1	250 mL HDPE	HNO3 pH<2	
-0	0912RD06SW	$\Gamma$	Methyl Mercury	9/11/2012	11:57	1	500 mL FLPE	HCł	
$\mathcal{O}_{\mathcal{I}_1}$	0912RD06SW	7	Arsenic Speciation	9/11/2012	11:57	1	250 mL HDPE	HCI	
	0912RD06SW	<u></u>	Anions, TSS, TDS, Carbonate, Bicarbonate	9/11/2012	11:57	1	500 mL HDPE	None	
	0912RD06SW		Nitrate/Nitrite	9/11/2012	11:57	1	125 mL HDPE	H2SO4 pH<2	•
	0912RD06SW		Total Organic Carbon	9/11/2012	11:57	2	40 ml Amber Glass	HCI	1
00%	0912EB02DI		Total Inorganic Elements	9/12/2012	10:58	1	250 mt. HDPE	HNQ3 pH<2	•
ω, ,	0912EB02DI		Dissolved Inorganic Elements	9/12/2012	10:58	1	250 mt HDPE	HNO3 pH<2	
•	0912MW09GW		Total Inorganic Elements	9/11/2012	11:50	1	250 mL HDPE	HNO3 pH<2	•
PCO	0912MW09GW		Anions, TSS, TDS, Carbonate, Bicarbonate	9/11/2012	11:50	1	500 mL HDPE	None	
	0912MW09GW		Nitrate/Nitrite	9/11/2012	11:50	1	125 mL HDPE	H2SO4 pH<2	

Special Instructions: Lab Filter Anions, Carbonnte, brandonnte

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason Relinquished by Date Received by Date Time Items/Reason Relinquished By Date Received by Date Time
Kathy Bart 9,2512 11:47

7.4 °C

#### **DATA REVIEW MEMORANDUM**

DATE: November 15, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA /// 11/16 /12

SUBJ: Data Review: Red Devil Mine

#### REFERENCE:

Project ID	Lab Work Order	Lab
EE-1096-0070	S1209437	Inter-Mountain Labs

#### I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	Sample ID	Lab ID	Sample Date	MS/MSD	ID Corrections
S1209437	Water	0912MW15GW	S1209437-001	09/08/2012		
S1209437	Water	0912MW17GW	S1209437-002	09/08/2012		
S1209437	Water	0912MW20GW	S1209437-003	09/09/2012		
S1209437	Water	0912MW25GW	S1209437-004	09/09/2012		
S1209437	Water	0912MW29GW	S1209437-005	09/09/2012		
S1209437	Water	0912MW33GW	S1209437-006	09/08/2012	X	
S1209437	Water	0912MW53GW	S1209437-007	09/09/2012		
S1209437	Water	0912MW54GW	S1209437-008	09/09/2012		
-						

# Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1209437	Water	EPA 245.1/1631	Dissolved Mercury	8	
S1209437	Water	EPA 245.1/1631	Total Mercury	8	

## II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold (4 ±2) °C and in good condition as documented on the Cooler Receipt Form.

# **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 9.2 °C. No problems with the condition of the sample upon receipt are documented. Since the samples were received at temperature outside of range (>6 °C), the detected results were qualified as estimated (J) and the non-detected results were qualified as estimated (UJ).

## III. LABORATORY DATA

#### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

## **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes. No data were qualified.

# 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes were detected in the method blanks at reporting limit levels.

#### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

#### **REVIEW RESULTS:**

Not applicable for these analyses.

# 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The

potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on samples 0912MW33GW (EPA 1631) and 0912RD09SW (EPA 245.1) at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

## 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

#### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

#### V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

Professional judgment was used to determine whether or not to qualify results.

#### **REVIEW RESULTS:**

Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria.

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

# 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
None.								
							***************************************	ĺ
								A MARKAMETA

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
None.						
						-

# Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual PQL
None.					

# Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.								
					:			

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit	High Limit	Sample Qual	Reportable
None.											

Sample ID	Analyte	Method	RPD RPD Lin	nit No. of Affected Samples	Samp Qual
None.					

# Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	No. of Affected Samples	Samp Qual
None.							
							and the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the proper

# Table 6 - Samples that were Re-analyzed

Sample ID	Method	Sample Type	Action
None.			

# Table 7 – Summary of Field Duplicate Results:

Method	Analyte	Units	0912MW20GW	0912MW53GW	RPD	Sample Rating Qualifier
EPA 245.1	Dissolved Mercury	ng/L	850	709	18	Good
EPA 245.1	Total Mercury	ng/L	1080	1070	1	Good

Method	Analyte	Units	0912MW	27GW 0912MW57	GW RPD	Rating	Sample Qualifier
EPA 1631	Dissolved Mercury	ng/L	60	58	3	Good	
EPA 1631	Total Mercury	ng/L	112	144	25	Good	



#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-001

Seattle, WA 98104

Client Sample ID: 0912MW15GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: \$1209437

Collection Date: 9/8/2012 2:00:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC: RDM-09	12-009	Matrix: Water					
Analyses	Result	RL Qual	Units	Date Analyzed/Init	Method		
Dissolved Metals							
Mercury	2000 丁	<b>-</b> 1	ng/L	09/27/2012 000 CS	EPA 245.1		
Total Metals		_					
Mercury	2400	1	ng/L	09/27/2012 000 CS	EPA 245.1		

m / 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

В Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 1 of 8



ph: (307) 672-8945

# Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-002

Seattle, WA 98104

Client Sample ID: 0912MW17GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/8/2012 4:59:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-009	Matrix: Water					
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method	
Dissolved Metal	s		1				
Mercury Total Metals		ND (	<b>灯</b> 1	ng/L	10/05/2012 1434 CS	EPA 1631	
Mercury		10	<del>ゴ</del> 1	ng/L	10/06/2012 1725 CS	EPA 1631	

m 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Ħ

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range E

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 2 of 8



Project:

Lab ID:

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-003

Seattle, WA 98104

Client Sample ID: 0912MW20GW

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/9/2012 10:40:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-009	Matrix: Water				
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury		850	ブ ₁	ng/L	09/27/2012 000 CS	EPA 245.1
Total Metals Mercury		1080	ブ ₁	ng/L	09/27/2012 000 CS	EPA 245.1

m / 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

RL - Reporting Limit

Analyte detected in the associated Method Blank В

Value above quantitation range Е

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL

Outside the Range of Difutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 3 of 8



Project:

Lab ID:

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-004

Seattle, WA 98104

Client Sample ID: 0912MW25GW

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/9/2012 11:10:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-009	Matrix: Water					
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method	
Dissolved Metals Mercury		138	ナ ₁	ng/L	09/27/2012 000 CS	EPA 245.1	
Total Metals Mercury		951	-J 1	ng/L	09/27/2012 000 CS	EPA 245.1	

my 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery ilmits

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 4 of 8



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-005

Seattle, WA 98104

Client Sample ID: 0912MW29GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/9/2012 4:58:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-009	Matrix: Water						
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method		
Dissolved Metals	· · · · · · · · · · · · · · · · · · ·							
Mercury		7 ~	<b>ブ</b> 1	ng/L	10/05/2012 1442 CS	EPA 1631		
Total Metals			<b></b> プ 。					
Mercury		8	1	ng/L	10/05/2012 000 CS	EPA 1631		

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range Ε

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 5 of 8



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-006

Seattle, WA 98104

Client Sample ID: 0912MW33GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/8/2012 12:52:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

coc:	RDM-0912-009		_		Matrix: Water	
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method
Dissolved Metals						
Mercury		3 🗒	<b>5</b> 1	ng/L	10/05/2012 1356 CS	EPA 1631
Total Metals		•	J ,			
Mercury		10	<b>ー</b> 1	ng/L	10/06/2012 1702 CS	EPA 1631

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Н Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL М

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 6 of 8

m 1/1/6/12



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209437-007

Seattle, WA 98104

Client Sample ID: 0912MW53GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/9/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-009				Matrix: Water	
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury		709	<b>万</b> 1	ng/L	09/27/2012 000 CS	EPA 245.1
Total Metals Mercury		1070	T 1	ng/L	09/27/2012 000 CS	EPA 245.1

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank В

Value above quantitation range

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 7 of 8



1673 Terra Avenue, Sheridan, Wyoming 82801

Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

ph: (307) 672-8945

Report ID: S1209437001

Work Order: S1209437

Collection Date: 9/9/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Lab ID:

Red Devil Mine S1209437-008

COC:

Client Sample ID: 0912MW54GW RDM-0912-009

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals					·	
Mercury	58 丁	1		ng/L	10/06/2012 1453 CS	EPA 1631
Fotal Metals Mercury	144 ブ	. 1		ng/L	09/27/2012 000 CS	EPA 245.1

m/1/11/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Holding times for preparation or analysis exceeded Н

f Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL М

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 8 of 8



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Work Order:

Ecology & Environment, Inc.

S1209437

Project: Red Devil Mine Date: 10/9/2012

Report ID: S1209437001

ject:	Red Devil									
	ved Mercury by EF Type MBLK	A 245.1 - Water Units: mg/	L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
',	LRB	09/27/12 9:29	Mercury	ND	0.001					
Sample	Type LCS	Units: mg/	L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LCS	09/27/12 9:28	Mercury	0.002	0.001	0.002		99.3	85 - 115	
Sample	Type MS	Units: mg/	L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	S1209393-001C	09/27/12 9:35	Mercury	0.002	0.001	0.00244	ND	86.1	70 - 130	
Sample	Type MSD	Units: mg/	L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
•	S1209393-001C	09/27/12 9:37	Mercury	0.002	0.001	0.002	9.09	93.9	20	
Sample	Туре DUP	Units: mg/	<u> </u>						·	
	Sample ID	RunNo: 87669	Analyte	Result	RI.	Ref Samp	%RPD	%REC	% RPD Limits	Qual
	S1209393-001C	09/27/12 9:33	Mercury	ND	0.001	ND			20	
	ved Mercury by EP							·	11/1	1.115
Sample I	Type MBLK	Units: mg/								
	Sample ID	RunNo: 87989	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
_	LRB	10/05/12 11:43	Mercury	ND	0.000001					
	Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
•	LRB	10/06/12 11:46	Mercury	ND	0.000001					
Sample	Type LCS	Units: mg/	L							
	Sample ID	RunNo: 87989	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
_	LCS	10/05/12 11:36	Mercury	0.000005	0.000001	5E-06		104	77 - 123	
	Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
1.	LCS	10/06/12 11:38	Mercury	0.000005	0.000001	5E-06		107	77 - 123	
Sample	Type MS	Units: mg/	L.							
	Sample ID	RunNo: 87989	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
	S1209437-006B	10/05/12 14:04	Mercury	0.000013	0.000001	0.00001	0.000003	103	71 - 125	
ample	Type MSD	Units: mg/i	L							
[	Sample ID	RunNo: 87989	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
-	S1209437-006B	10/05/12 14:11	Mercury	0.000014	0.000001	0.000013	0.752	104	24	

- 8 Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Analyzed by a contract laboratory
- 0 Outside the Range of Dilutions
- Spike Recovery outside accepted recovery limits
- Value above quantitation range
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Project:

Work Order:

Ecology & Environment, Inc.

S1209437

Red Devil Mine

Date: 10/9/2012

Report ID: S1209437001

Total	Mercury	hy FPA	245.1	- Water
i Vlai	Mercury	DVCPA	Z40. I	• vvater

Sample Type MBLK	5.1 - water Units: mg	л							
Sample ID	RunNo: 87669	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	09/27/12 9:29	Mercury	ND	0.001	- p	, , , , , , , , , , , , , , , , , , ,			
		•	110	0.001					
Sample Type LCS Sample ID	Units: mg RunNo: 87669	/L. Analyte	Result	RL	Coiko	Ref Samp	% DEC	% Rec Limits	Qual
						Kei Samp		<u> </u>	Quai
LCS	09/27/12 9:28	Mercury	0.002	0.001	0.002		99.3	85 - 115	
Sample Type MS	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209429-001D	09/27/12 12:57	Mercury	0.00248	0.00001	0.00244	0.00003	100	70 - 130	
Sample Type MSD	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209429-001D	09/27/12 12:59	Мегсигу	0.00253	0.00001	0.00248	2.22	103	20	
Sample Type DUP	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
\$1209429-001D	09/27/12 12:55	Mercury	0.00003	0.00001	0.00003	3.09		20	
Total Mercury by EPA 163	31						<u> </u>		1110
Sample Type MBLK	Units: mg/	L						111	6/12
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/06/12 11:46	Mercury	ND	0.000001					
Sample Type LCS	Units: mg/	L							
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/06/12 11:38	Mercury	0.000005	0.000001	5E-06		107	77 - 123	
Sample Type MS	Units: mg/	L							
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209437-006A	10/06/12 17:09	Mercury	0.000068	0.000001	0.00005	0.000010	116	71 - 125	•
Sample Type MSD	Units: mg/	Ն							
Sample ID	RunNo: 87992	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209437-006A	10/06/12 17:17	Mercury	0.000068	0.000001	0.000068	0.293	116	24	

Qualifiers:

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

E Value above quantitation range

Analyte detected below quantitation limits J

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Page 1 of 2

Ecology and Environment, Inc.

51209437

#### **CHAIN OF CUSTODY RECORD**

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537 No: RDM-0912-009

Cooler #: 9 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

	<b>ə</b> I	C0975T							
	Lab#	Location	Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
ر <i>ديا</i>		0912MW15GW	Total Low Level Mercury	9/8/2012	14.00	1	. 250 mL Clear Glass	HCI	
- 02/		0912MW15GW	Dissolved Low Level Mercury	9/8/2012	14:00	1	250 mL Clear Glass	HCI	
		0912MW17GW	Total Low Level Mercury	9/8/2012	16:59	1	250 mL Clear Glass	HCI	
_002		0912MW17GW	Dissolved Low Level Mercury	9/8/2012	16:59	1	250 mL Clear Glass	HCI	•
		0912MW20GW	Total Low Level Mercury	9/9/2012	10:40	•	250 mt. Clear Glass	HCI	•
-003		6912MW20GW	Dissolved Low Level Marcury	9/9/2012	10:40	1	250 mL Clear Glass	HCI	
		0912MW25GW	Total Low Level Mercury	9/9/2012	11:10	1	250 mL Clear Glass	HCI	
-00H		0912MW25GW	Dissolved Low Level Mercury	9/9/2012	11:10	1	250 mL Clear Glass	HCI	
	<u></u>	0912MW29GW	Total Low Level Mercury	9/9/2012	16:58	1	250 mL Clear Glass	HCI	
- 00s		0912MW29GW	Dissolved Low Level Mercury	9/9/2012	16:58	1	250 mL Clear Glass	HCI	•
_odo_		0912MW33GW	Total Low, Level Mercury	9/8/2012	12:52	3	250 mL Clear Glass	HCI	Y

Special Instructions:

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
			Leite	9-25-12	11.45						
							•			:	
	•		* *;	i						*	
			1	_						1	

Page 2 of 2

Ecology and Environment, Inc.

CHAIN OF CUSTODY RECORD

Red Devil Mine Project Contact Name, Bill Richards Contact Phone: 206-624-9537 No: RDM-0912-009 Cooler #: 9

Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

L ab	# Location	Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
-00 <b>6</b>	0912MW33GW	Dissolved Low Level Mercury	9/8/2012	12:52	3	250 mL Clear Glass	HCI	Υ
-007	0912MW53GW	Total Low Level Mercury	9/9/2012	07:00	. 1	250 mL Clear Glass	HCI	
-006	0912MW53GW	Dissolved Low Level Mercury	9/9/2012	07:00	1	250 mL Clear Glass	HCI	
000	0912MW54GW	Total Low Level Mercury	9/9/2012	07:00	* 1	250 mil. Clear Glass	HCI	
- <i>C</i> 84	0912MW54GW	Dissolved Law Level Mercury	9/9/2012	07.00	1	250 mL Clear Glass	HCI	
			•				•	•
	•	: 1	1					•
					•			
					•			
	;							
:	• • •				* *			

Special Instructions:

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason Refinquished by Date Received by Date Time Items/Reason Refinquished By Date Received by Date Time

01,7.6

### **DATA REVIEW MEMORANDUM**

DATE: November 15, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA

SUBJ: Data Review: Red Devil Mine

#### **REFERENCE:**

Project ID	Lab Work Order	Lab
EE-1096-0070	S1209439	Inter-Mountain Labs

### I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work				Sample		<b>B</b>
Order	Matrix	Sample ID	Lab ID	Date	MS/MSD	Corrections
S1209439	Water	0912MW04GW	S1209439-001	09/10/2012		
S1209439	Water	0912MW10GW	S1209439-002	09/10/2012		
S1209439	Water	0912MW14GW	S1209439-003	09/10/2012	X	
S1209439	Water	0912MW16GW	\$1209439-004	09/08/2012		
S1209439	Water	0912MW24GW	S1209439-005	09/09/2012		
S1209439	Water	0912MW28GW	S1209439-006	09/10/2012		
S1209439	Water	0912MW32GW	S1209439-007	09/08/2012		
S1209439	Water	0912AB01D1	S1209439-008	09/08/2012		
S1209439	Water	0912AB02D1	S1209439-009	09/12/2012		
S1209439	Water	0912R101D1	S1209439-010	09/16/2012		
S1209439	Water	0912RD05SW	S1209439-011	09/11/2012		
S1209439	Water	0912RD06SW	S1209439-012	09/11/2012		
S1209439	Water	0912EB02D1	S1209439-013	09/12/2012		
S1209439	Water	0912AB03D1	S1209439-014	09/12/2012		
S1209439	Water	0912MW09GW	S1209439-015	09/11/2012		

# Work Orders, Tests and Number of Samples included in this DVM

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1209437	Water	EPA 245.1/1631	Dissolved Mercury	15	
S1209437	Water	EPA 245.1/1631	Total Mercury	15	

### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold  $(4 \pm 2)$  °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 8.8 °C. No problems with the condition of the sample upon receipt are documented. Since the samples were received at temperature outside of range (>6 °C), the detected results were qualified as estimated (J) and the non-detected results were qualified as estimated (UJ).

#### III. LABORATORY DATA

#### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

#### **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes. No data were qualified.

#### 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes were detected in the method blanks and the equipment blank at reporting limit levels.

### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

### **REVIEW RESULTS:**

Not applicable for these analyses.

### 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The

potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on samples 0912MW14GW (EPA 245.1) and 0912MW33GW (EPA 1631) at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

### 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

### V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision. Professional judgment was used to determine whether or not to qualify results.

### **REVIEW RESULTS:**

Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria. The detected total mercury result in 0912RD06SW and 0912RD21SW were qualified as estimated (J).

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

### 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
None.								1
					***************************************			
					······			

### Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Blank Result	Sample Result	Sample Qual	PQL
None.					
				1100	

### Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual F	OL
None.						

## Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	and the second second second second	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
None.								

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit	High Limit	Sample Qual	Reportable
None.											

Sample ID	Analyte	Method	RPD	RPD Limit	No. of Affected Samples	Samp Qual
None.						

### Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	No. of Affected Samples	Samp Qual
None.							}

### Table 6 -Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
None.				

# Table 7 – Summary of Field Duplicate Results:

Method	Analyte	Units	0912RD06SW	0912RD21SW	RPD	Rating	Sample Qualifier
EPA 1631	Dissolved Mercury	ng/L	12	13	8	Good	
EPA 1631	Total Mercury	ng/L	46	143	103	Poor	J
					-		
					<u></u>		
**************************************							
					<del></del>		



Project:

Lab ID:

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-001

Seattle, WA 98104

Client Sample ID: 0912MW04GW

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/10/2012 2:41:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008				Matrix: Water	
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method
Dissolved Metals	\$	50			40/00/0042 4500 00	EDA 4824
Mercury Total Metals				ng/L	10/06/2012 1500 CS	EPA 1631
Mercury		197	J 1	ng/L	10/11/2012 1159 CS	EPA 1631

21/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 1 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-002

Seattle, WA 98104

Client Sample ID: 0912MW10GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/10/2012 12:15:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008					Matrix: Water	
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury		ND C	ブ 1		ng/L	10/11/2012 1222 CS	EPA 1631
Total Metals Mercury		ND (	151		ng/L	10/06/2012 1740 CS	EPA 1631

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory ŧ.

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 2 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

\$1209439-003

Seattle, WA 98104

Client Sample ID: 0912MW14GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: \$1209439

Collection Date: 9/10/2012 6:03:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008					Matrix: Water	
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury		254	5 1		ng/L	10/12/2012 1118 CS	EPA 245.1
Total Metals Mercury		5720	J 1		ng/L	10/12/2012 1119 CS	EPA 245.1

1116/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND Spike Recovery outside accepted recovery limits **RL** - Reporting Limit

В Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 3 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

\$1209439-004

Seattle, WA 98104

Client Sample ID: 0912MW16GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/8/2012 3:35:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008					Matrix: Water	
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury		285	1 1 1 1 1		ng/L	10/12/2012 1121 CS	EPA 245.1
Total Metals Mercury		664	ブ ₁		ng/L	10/12/2012 1123 CS	EPA 245.1

21/9/11/W

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range E

Analyte detected below quantitation limits Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 4 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-005

Seattle, WA 98104

Client Sample ID: 0912MW24GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/9/2012 2:50:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008	Matrix: Water						
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method	
Dissolved Metals		1 23	<u> </u>	•				
Mercury Total Metals		ND U	) 1		ng/L	10/05/2012 1458 CS	EPA 1631	
Mercury		35 ブ	1		ng/L	10/06/2012 1748 CS	EPA 1631	

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Ç Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 5 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-006

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/10/2012 4:20:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Client Sample ID: 0912MW28GW coc: RDM-0912-008

Project:

Lab ID:

110111 0012 000			matrix rate.		
Analyses	Result RL Qual	Units	Date Analyzed/Init	Method	
Dissolved Metals Mercury	26 ゴ 1	ng/L	10/06/2012 1508 CS	EPA 1631	
Total Metals Mercury	183 J 1	ng/L	09/27/2012 000 CS	EPA 245.1	

11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND Spike Recovery outside accepted recovery limits **RL - Reporting Limit** 

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

S

Lacey Ketron, Water Lab Supervisor

Page 6 of 15



Project:

Lab ID:

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-007

Seattle, WA 98104

Client Sample ID: 0912MW32GW

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/8/2012 4:18:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008			Matrix: Water			
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method	
Dissolved Meta	ls						
Mercury		28 *	ナ 1	ng/L	10/05/2012 1505 CS	EPA 1631	
Total Metals		_					
Mercury		190	7 1	ng/L	10/11/2012 1416 CS	EPA 1631	

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND s Spike Recovery outside accepted recovery limits **RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 7 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-008

Seattle, WA 98104

Client Sample ID: 0912AB01DI

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/8/2012 4:47:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008				Matrix: Water			
Analyses		Result	RL (	Qual	Units	Date Analyzed/Init	Method	
Dissolved Metals Mercury		ND (	 /丁 1		ng/L	10/05/2012 1513 CS	EPA 1631	
Total Metals Mercury		ND (	15 1		ng/L	10/06/2012 1818 CS	EPA 1631	

11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 8 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

\$1209439-009

Seattle, WA 98104

Client Sample ID: 0912AB02DI

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: \$1209439

Collection Date: 9/12/2012 1:08:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC: RDM-0912-008	Matrix: Water						
Analyses	Result RL Qual	Units	Date Analyzed/Init	Method			
Dissolved Metals Mercury	ND <i>V</i> J 1	ng/l.	10/05/2012 1521 CS	EPA 1631			
Total Metals Mercury	ND UJ 1	ng/L	10/06/2012 1826 CS	EPA 1631			

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

RL - Reporting Limit

В Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 9 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-010

Seattle, WA 98104

Client Sample ID: 0912RI01DI

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/16/2012 11:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008					Matrix: Water	
Analyses		Result	RL.	Qual	Units	Date Analyzed/Init	Method
Total Metals Mercury		ND C	<b>リ</b> ブ 1		ng/L	10/06/2012 1834 CS	EPA 1631

11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 10 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/11/2012 3:23:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project:	Red Devil Mine
Lab ID:	S1209439-011
Client Sample ID:	0912RD05SW
COC:	RDM-0912-008

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury	1 7	5 1		ng/L	10/06/2012 1516 CS	EPA 1631
Total Metals Mercury	7 =	J 1		ng/L	10/07/2012 1529 CS	EPA 1631

m/b 11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

. Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 11 of 15



Project:

Lab ID:

Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-012

Seattle, WA 98104

Client Sample ID: 0912RD06SW

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/11/2012 11:57:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008					Matrix: Water	
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Meta	ıls						
Mercury		12	J 1		ng/L	10/06/2012 1523 CS	EPA 1631
<b>Total Metals</b>							
Mercury		46	ブ ₁		ng/L	10/07/2012 1537 CS	EPA 1631

m/15/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

¢ Calculated Value

Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory L

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits S

**RL - Reporting Limit** 

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 12 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/12/2012 10:58:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Lab ID:	S1209439-013
Client Sample ID:	0912EB02DI
COC:	RDM-0912-008

Project:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury	ND (	<b>/</b> J 1		ng/L	10/06/2012 1531 CS	EPA 1631
Total Metals Mercury	ND C	<b>灯</b> 1		ng/L	10/07/2012 1545 CS	EPA 1631

11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit
S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

B Analyte detected in the associated Method Blank

Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 13 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-014

Seattle, WA 98104

Client Sample ID: 0912AB03DI

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: \$1209439

Collection Date: 9/12/2012 11:52:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008	Matrix: Water							
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method		
Dissolved Metal:	s	ND V	T 1		ng/L	10/06/2012 1539 CS	EPA 1631		
Total Metals Mercury		ND U	5 1		ng/L	10/07/2012 1552 CS	EPA 1631		

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

¢ Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 14 of 15



ph: (307) 672-8945

### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209439-015

Seattle, WA 98104

Client Sample ID: 0912MW09GW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209439001

Work Order: S1209439

Collection Date: 9/11/2012 11:50:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-008						
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury		11	J 1		ng/L	10/06/2012 1547 CS	EPA 1631
Total Metals Mercury		172	ブ 1		ng/L	10/11/2012 1431 CS	EPA 1631

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits S

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 15 of 15



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order: Project:

S1209439

Report ID: S1209439001

Dissolved Mercury by EPA 245.1 - Water

Sample Type	MBLK	Units: mg/L

Red Devil Mine

Sample Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	09/27/12 9:29	Mercury	ND	0.001					
Sample ID	RunNo: 87934	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/04/12 9:30	Mercury	ND	0.001					
Sample ID	RunNo: 88228	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/12/12 9:21	Mercury	ND	0.001					
ample Type LCS	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	09/27/12 9:28	Mercury	0.002	0.001.	0.002		99.3	85 - 115	
Sample ID	RunNo: 87934	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/04/12 9:29	Mercury	0.002	0.001	0.002		98.5	85 - 115	
Sample ID	RunNo: 88228	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/12/12 9:19	Mercury	0.002	0.001	0.002		98.7	85 - 115	
ample Type MS	Units: mg/	L							
Sample ID	RunNo: 87934	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209439-003B	10/04/12 9:36	Mercury	0.00275	0.000001	0.00244	0.000246	102	70 - 130	В
Sample ID	RunNo: 88228	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1210209-004C	10/12/12 11:12	Mercury	0.003	0.001	0.00244	ND	103	70 - 130	
ample Type MSD	Units: mg/	L							_
Sample ID	RunNo: 87934	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209439-003B	10/04/12 9:38	Mercury	0.00274	0.000001	0.00275	0.360	102	20	В
Sample ID	RunNo: 88228	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1210209-004C	10/12/12 11:14	Mercury	0.003	0.001	0.003	0.0199	103	20	
ample Type DUP	Units: mg/	L							
Sample ID	RunNo: 87934	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209439-003B	10/04/12 9:34	Мегсигу	0.000248	0.000001	0.000246	0.853		20	В
Sample ID	RunNo: 88228	Analyte	Result	RL.	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1210209-004C	10/12/12 11:10	Mercury	ND	0,001	ND			20	

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

0 Outside the Range of Dilutions

Spike Recovery outside accepted recovery limits

Value above quantitation range

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

AS 1116/12



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Ecology & Environment, Inc.

Work Order:

S1209439

Project:

Red Devil Mine

Date: 10/9/2012

Report ID: S1209439001

Dissolved Mercury by EPA 1631

Sample Type MBLK

Units: ma/L

Sample Type MBLI	K Units: mg/	L							
Sample ID	RunNo: 87989	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/05/12 11:43	Mercury	ND	0.000001					
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/06/12 11:46	Mercury	ND	0.000001					
Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/07/12 11:46	Mercury	ND	0.000001					
Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/11/12 11:21	Mercury	ND	0.000001					
Sample Type LCS	Units: mg/	L							
Sample ID	RunNo: 87989	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/05/12 11:36	Mercury	0.000005	0.000001	5E-06		104	77 - 123	
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/06/12 11:38	Mercury	0.000005	0.000001	5E-06		107	77 - 123	
Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/07/12 11:38	Mercury	0.000005	0.000001	5E-06		90.0	77 - 123	
Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/11/12 11:13	Mercury	0.000006	0.000001	5E-06		110	77 - 123	
Sample Type MS	Units: mg/	L							
Sample ID	RunNo: 87989	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209437-0	06B 10/05/12 14:04	Mercury	0.000013	0.000001	0.00001	0.000003	103	71 - 125	
Sample Type MSD	Units: mg/l	L.							
Sample ID	RunNo: 87989	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
\$1209437-00	06B 10/05/12 14:11	Mercury	0.000014	0.000001	0.000013	0.752	104	24	

m/1/16/12

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### ANALYTICAL QC SUMMARY REPORT

**CLIENT:** 

Ecology & Environment, Inc.

Work Order:

S1209439

Project:

Red Devil Mine

Date: 10/9/2012

Report ID: S1209439001

Total Mercury by EPA 2 Sample Type MBLK	45.1 - Water Units: mg	ı/L							
Sample ID	RunNo: 87669	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	09/27/12 9:29	Mercury	ND	0.001					_
Sample ID	RunNo: 87934	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/04/12 9:30	Mercury	ND	0.001					
Sample ID	RunNo: 88228	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/12/12 9:21	Mercury	ND	0.001					
Sample Type LCS	Units: mg	ı/L							_
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	09/27/12 9:28	Mercury	0.002	0.001	0.002		99.3	85 - 115	
Sample ID	RunNo: 87934	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/04/12 9:29	Mercury	0.002	0.001	0.002		98.5	85 - 115	
Sample ID	RunNo: 88228	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/12/12 9:19	Mercury	0.002	0.001	0.002		98.7	85 - 115	
Sample Type MS	Units: mg	/L							_
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209429-001D	09/27/12 12:57	Mercury	0.00248	0.00001	0.00244	0.00003	100	70 - 130	
Sample ID	RunNo: 87934	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209439-003A	10/04/12 14:33	Метсигу	0.00266	0.000001	0.00244	0.000150	103	70 - 130	В
Sample Type MSD	Units: mg	<i>I</i> L							_
Sample ID	RunNo: 87669	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209429-001D	09/27/12 12:59	Mercury	0.00253	0.00001	0.00248	2.22	103	20	
Sample ID	RunNo: 87934	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209439-003A	10/04/12 14:35	Mercury	0.00264	0.000001	0.00266	0.699	102	20	В
ample Type DUP	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	Rl.	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-001D	09/27/12 12:55	Mercury	0.00003	0.00001	0.00003	3.09		20	
Sample ID	RunNo: 87934	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual

Qualifiers:

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

10/04/12 14:31

Mercury

L Analyzed by a contract laboratory

0 Outside the Range of Dilutions

S1209439-003A

s Spike Recovery outside accepted recovery limits E Value above quantitation range

Analyte detected below quantitation limits

0.000143 0.000001 0.000150

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

21/11/11



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

### **ANALYTICAL QC SUMMARY REPORT**

CLIENT: Ecology & Environment, Inc.

Date: 10/9/2012

Work Order: \$1209439

Report ID: S1209439001

Project: Red Devil Mine

Total Mercury by EPA 1631

Sample	Type MBLK	Units: mg/	<u> </u>							
	Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LRB	10/06/12 11:46	Mercury	ND	0.000001					
	Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LRB	10/07/12 11:46	Mercury	ND	0.000001					
	Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LRB	10/11/12 11:21	Мегсигу	ND	0.000001					
Sample	Type LCS	Units: mg/	L							
	Sample ID	RunNo: 87992	Analyte	Result	RL	Splke	Ref Samp	%REC	% Rec Limits	Qual
·	LCS	10/06/12 11:38	Mercury	0.000005	0.000001	5E-06		107	77 - 123	
	Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LCS	10/07/12 11:38	Mercury	0.000005	0.000001	5E-06		90.0	77 - 123	
	Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
•	LCS	10/11/12 11:13	Mercury	0.000006	0.000001	5E-06		110	77 - 123	
Sample	Type MS	Units: mg/	L							
	Sample ID	RunNo: 87992	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
•	S1209437-006A	10/06/12 17:09	Mercury	0.000068	0.000001	0.00005	0.000010	116	71 - 125	
Sample	Type MSD	Units: mg/	L							
	Sample ID	RunNo: 87992	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
•	S1209437-006A	10/06/12 17:17	Mercury	0.000068	0.000001	0.000068	0.293	116	24	

m/3

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 1 of 3

Ecology and Environment, Inc.

CHAIN OF GUSTODY RECORD

Red Davil Mine Project Contact Name: Bill Richards

Cooler #; 8 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

No: RDM-0912-008

Contact Phone: 206-624-9537 5/209439 Lab# Location Analyses Collected Sample Time Numb Cont Container Preservative MS/MSD 0912MW04GW Total Low Level Mercury 9/10/2012 14:41 250 ml. Clear HCI Glass 0912MW04GW Dissolved Low Level Mercury 9/10/2012 14:41 1 250 mL Clear HÇI Glass 0912MW10GW Total Low Level Mercury 9/10/2012 12:15 1 250 mL Clear HCI Glass 0912MW10GW Dissolved Low Level Mercury 9/10/2012 12:15 1 250 mL Clear HCI Glass 0912MW14GW Total Low Level Mercury 9/10/2012 18:03 250 mL Clear HÇI 0912MW14GW Dissolved Low Level Mercury 9/10/2012 18:03 250 mL Clear HCI Glass 0912MW16GW Total Low Level Mercury 9/8/2012 15:35 1 250 mL Clear HÇI Glass 1 250 mL Clear Glass 0912MW16GW Dissolved Low Level Mercury HCI 9/8/2012 15:35 1 250 mL Clear Glass 0912MW24GW Total Low Level Mercury 9/9/2012 14:50 HCI 0912MW24GW Dissolved Low Level Mercury 9/9/2012 14:50 250 mL Clear Glass HCI 1 250 mt. Clear 0912MW28GW Total Low Level Mercury 9/10/2012 16:20 HC! Glass

Special Instructions:

(tems/Reason

Relinquished by

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Date Received by Date Time Items/Reason Relinquished By Date Received by Date Time

Page	2	Q.	3
------	---	----	---

Ecology and Environment, Inc		Red Davil Contact Nan	STODY RECORD Mine Project le: Bill Richards le: 206-624-9537			Lab: Inter-Mountain L	OM-0912-008 Cooler #: 8 aboratories, înc e: 800-828-1097
Lab# Location	, Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
Ο ( 0912MW28GW	Dissolved Low Level Mercury	9/10/2012	16:20	1	250 mL Clear Glass	HCI	•
0912MW32GW	Total Low Level Mercury	9/8/2012	16:18	1	250 ml. Clear Glass	HCI	
0912MW32GW	Dissolved Low Level Mercury	9/8/2012	16:18	1	250 mL Clear Glass	HCI	
0912AB01DI	Total Low Level Mercury	9/8/2012	16:47	1	250 mL Clear Glass	HCI	
0912AB01DI	Dissolved Low Level Mercury	9/8/2012	16:47	1	250 ml. Clear Glass	HCI	
O912AB02DI	Total Low Level Mercury	9/12/2012	13.08	1	250 mL Clear Glass	HCI	
0912AB02DI	Dissolved Low Level Mercury	9/12/2012	13:08	1	250 mL Clear Glass	HCI	
0912RI01DI	Total Low Level Mercury	9/16/2012	11:00	1	250 mL Clear Glass	HCI	
bil & 0912KD035VV	Total Low Level Mercury	9/11/2012	15:23	1	250 mL Clear Glass	HCI	
D912RD05SW	Dissolved Low Level Mercury	9/11/2012	15:23	1	250 mL Clear Glass	HCI	
0912RD06SW	Total Low Level Mercury	9/11/2012	11.57	. 1	250 mL Clear Glass	HCI	
DISI	•		•			•	
						ANSFERRED FROM	
Special Instructions:	· ·				CHAIN OF CU	JSTODY#	
	#						
Rems/Reason Relinquish	ed by Date Received by	Date Time	Items/Reason	Relinquishe	d By Date	Received by	Date Time

Red Devil Mine Project Cooler #. 8 Contact Name: Bill Richards Ecology and Environment, Inc. Lab: Inter-Mountain Laboratories, Inc. Contact Phone: 206-624-9537 Lab Phone: 800-828-1097 Location Collected Sample Time Numb Cont Container MS/MSD Analyses Preservative 0912RD06\$W Dissolved Low Level Mercury 9/11/2012 11:57 1 250 mL Clear HCI Glass 0912EB02D1 Total Low Level Mercury 9/12/2012 10:58 1 250 mL Clear HCI OB Glass 0912EB02DI Dissolved Low Level Mercury 9/12/2012 10:58 1 250 mL Clear HCI Glass . 0912A803DF Total Low Level Mercury 9/12/2012 1 250 mL Clear HCI 11:52 Glass 0912AB03D1 Dissolved Low Level Mercury 9/12/2012 11:52 1 250 mL Clear HCI Glass 0912MW09GW 9/11/2012 1 250 mL Clear HCI Total Low Level Mercury 11:50 0912MW09GW Dissolved Low Level Mercury 9/11/2012 11:50 1 250 mL Clear HCI SAMPLES TRANSFERRED FROM Special Instructions: CHAIN OF CUSTODY # Items/Reason Received by Relinquished By Relinquished by Items/Reason Date Received by Time Date Date

**CHAIN OF CUSTODY RECORD** 

No: RDM-0912-008

#### **DATA REVIEW MEMORANDUM**

DATE: November 15, 2012

TO: Bill Richards, Project Manager, E & E, Seattle, WA

FROM: Mindy Song, E & E, Long Beach, CA ////6/12

SUBJ: Data Review: Red Devil Mine

#### REFERENCE:

Project ID	Lab Work Order	Lab
EE-1096-0070	U U	Inter-Mountain Labs

## I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. All samples were sent to Inter-Mountain Labs in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	` Sample ID	Lab ID	Sample Date	MS/MSD	ID Corrections
S1209440	Water	0912MW06GW	S1209440-001	09/09/2012		
S1209440	Water	0912MW21GW	S1209440-002	09/08/2012		
S1209440	Water	0912MW27GW	S1209440-003	09/09/2012		
S1209440	Water	0912EB01D1	S1209440-004	09/09/2012		
S1209440	Water	0912RD04SW	S1209440-005	09/11/2012		
S1209440	Water	0912RD08SW	S1209440-006	09/11/2012		
S1209440	Water	0912RD09SW	S1209440-007	09/11/2012	X	
S1209440	Water	0912RD10SW	S1209440-008	09/12/2012		
S1209440	Water	0912RD12SW	S1209440-009	09/11/2012		
S1209440	Water	0912RD21SW	S1209440-010	09/11/2012		

# Work Orders, Tests and Number of Samples included in this DVM

Matrix	Test Method	Method Name	Number of Samples	Sample Type
Water	EPA 245.1/1631	Dissolved Mercury	10	
Water	EPA 245.1/1631	Total Mercury	10	
	Water	Water EPA 245.1/1631	Water EPA 245.1/1631 Dissolved Mercury	Water EPA 245.1/1631 Dissolved Mercury 10

#### II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold (4 ±2) °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at 8.8 °C. No problems with the condition of the sample upon receipt are documented. Since the samples were received at temperature outside of range (>6 °C), the detected results were qualified as estimated (J) and the non-detected results were qualified as estimated (UJ).

#### III. LABORATORY DATA

#### 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

## **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes. No data were qualified.

## 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. No analytes were detected in the method blanks at reporting limit levels. Trace amount (1 ng/L) of dissolved mercury was detected in the equipment blank (0912EB01DI) and the detected dissolved mercury result in sample 0912RD10SW was qualified as non-detect (U) since the sample concentration was less than 5X the blank concentration..

#### 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

## **REVIEW RESULTS:**

Not applicable for these analyses.

#### 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the affects that the sample matrix exerts on the

digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated in the analysis procedure. These results are presented in Table 4 (if applicable). The potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed on samples 0912MW14GW (EPA 245.1) and 0912MW27GW (EPA 1631) at the required frequency. MS/MSD recoveries were within the control limits generated by the laboratory.

#### 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

#### **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

## IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

## V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision.

Professional judgment was used to determine whether or not to qualify results.

## **REVIEW RESULTS:**

Field duplicates analyses were performed on this SDG. The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria. The detected total mercury result in 0912RD06SW and 0912RD21SW were qualified as estimated (J).

All the results show good precision in the sample pair as noted on table 7. Qualifiers were only added to the field duplicate sample pair results as noted.

## 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qual	Anal Type	Units	PQL
EPA 1631	0912EB01DI		dissolved mercury	1		7	ng/L	
						The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		
								ļ
							ļ	ļ
					<u> </u>		<u> </u>	-
			1			1		1

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
EPA 1631	0912RD10SW	Diss Hg		3	U	240

## Table 2B - List of Samples Qualified for Field Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	PQL
None.					

## Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Sample Qual.
None.							
							Annual Property of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit	High Limit	Sample Qual	Reportable
None.			\$20 to \$1 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to \$10 to								

Sample ID	Analyte	Method	RPD	RPD Limit	No. of Affected Samples	Samp Qual
None.						

## Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	No. of Affected Samples	Samp Qual
None.							

Table 6 -- Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
None.				

# Table 7 – Summary of Field Duplicate Results:

Method	Analyte	Units	0912RD06SW	0912RD21SW	RPD	Rating	Sample Qualifier
EPA 1631	Dissolved Mercury	ng/L	12	13	8	Good	
EPA 1631	Total Mercury	ng/L	46	143	103	Poor	J

Method	Analyte	Units	0912MW2	7GW 0912MW5	ZGW RPD	Rating	Sample Qualifier
EPA 1631	Dissolved Mercury	ng/L	60	58	3	Good	
EPA 1631	Total Mercury	ng/L	112	144	25	Good	
		·					



Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-010

Seattle, WA 98104

Date Reported: 10/9/2012

ph: (307) 672-8945

Report ID: S1209440001

Work Order: S1209440

Collection Date: 9/9/2012 12:40:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine
Lab ID: S1209440-001
Client Sample ID: 0912MW06GW

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals Mercury	ND U	ブ 1		ng/L	10/06/2012 1638 CS	EPA 1631
Total Metals Mercury	_{ND} V	J 1		ng/L	10/07/2012 1638 CS	EPA 1631

m/2 11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 1 of 10



Project:

Lab ID:

Inter-Mountain Labs

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209440-002

Seattle, WA 98104

Client Sample ID: 0912MW21GW

Date Reported: 10/9/2012

Report ID: \$1209440001

Work Order: S1209440

Collection Date: 9/8/2012 6:00:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

coc:	RDM-0912-010		Matrix: Water						
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method		
Dissolved Metal	S		-	W. W. W. W. W. W. W. W. W. W. W. W. W. W					
Mercury		131	5 1		ng/L	09/27/2012 000 CS	EPA 245.1		
Total Metals			т						
Mercury		139	1		ng/L	09/27/2012 000 CS	EPA 245.1		

mod 11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory l.

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL M

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 2 of 10



Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

RDM-0912-010

Seattle, WA 98104

Date Reported: 10/9/2012

Report ID: S1209440001

Work Order: S1209440

Collection Date: 9/9/2012 1:34:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

Project: Red Devil Mine
Lab ID: S1209440-003
Client Sample ID: 0912MW27GW

COC:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method
Dissolved Metals				•		
Mercury	60	ブ 1		ng/L	10/06/2012 1414 CS	EPA 1631
otal Metals		-T .				
Mercury	112	<i>-</i> 2 1		ng/L	10/07/2012 1506 CS	EPA 1631

m 1/1/6/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

. Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

RL - Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 3 of 10



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

\$1209440-004

Seattle, WA 98104

Client Sample ID: 0912EB01DI

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209440001

Work Order: S1209440

Collection Date: 9/9/2012 1:50:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC: RDM-0912-010	Matrix: Water					
Analyses	Result RL Qual	Units	Date Analyzed/Init	Method		
Dissolved Metals Mercury	1 万 1	ng/L	10/07/2012 1217 CS	EPA 1631		
Total Metals Mercury	ND U.J 1	ng/L	10/07/2012 1646 CS	EPA 1631		

m/s/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank В

Value above quantitation range

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 4 of 10



Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

Seattle, WA 98104

Date Reported: 10/9/2012

ph: (307) 672-8945

Report ID: \$1209440001

Work Order: S1209440

Collection Date: 9/11/2012 5:26:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

Matrix: Water

 Lab ID:
 \$1209440-005

 Client Sample ID:
 0912RD04SW

 COC:
 RDM-0912-010

Project:

Analyses	Result	RL	Qual	Units	Date Analyzed/Init	Method	]	
Dissolved Metals Mercury	8 ~	J 1		ng/L	10/07/2012 1224 CS	EPA 1631	_	
Total Metals Mercury	11	J 1		ng/L	10/07/2012 1654 CS	EPA 1631		

m/ 1/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

H Holding times for preparation or analysis exceeded

. Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

M · Value exceeds Monthly Ave or MCL

O Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 5 of 10



ph: (307) 672-8945

#### Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209440-006

Seattle, WA 98104

Client Sample ID: 0912RD08SW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: \$1209440001

Work Order: S1209440

Collection Date: 9/11/2012 11:11:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-010	Matrix: Water						
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method		
Dissolved Metals	}		11 ****** = ***************************		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			
Mercury		13 ブ	1	ng/L	10/07/2012 1315 CS	EPA 1631		
Total Metals								
Mercury		120	1	ng/L	10/07/2012 1409 CS	EPA 1631		

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL - Reporting Limit** 

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 6 of 10



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209440-007

Seattle, WA 98104

Client Sample ID: 0912RD09SW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209440001

Work Order: S1209440

Collection Date: 9/11/2012 1:12:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-010	Matrix: Water						
Analyses		Result	RL Q	ual Units	Date Analyzed/Init	Method		
Dissolved Metals Mercury		10	T 1	ng/L	10/07/2012 1154 CS	EPA 1631		
Total Metals Mercury		97	-	ng/L	10/07/2012 1346 CS	EPA 1631		

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits

**RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 7 of 10



Project:

Lab ID:

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209440-008

Seattle, WA 98104

Client Sample ID: 0912RD10SW

Date Reported: 10/9/2012

Report ID: S1209440001

Work Order: \$1209440

Collection Date: 9/12/2012 11:52:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-010	Matrix: Water						
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method		
Dissolved Metals		0.1	ーーーーー ブ 1		40/07/0040 4000 00			
Mercury Total Metals		-		ng/L	10/07/2012 1323 CS	EPA 1631		
Mercury		4 -	<b>ゴ</b> 1	ng/L	10/07/2012 1417 CS	EPA 1631		

11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

C Calculated Value

Н Holding times for preparation or analysis exceeded

Analyzed by a contract laboratory

ND Not Detected at the Reporting Limit Spike Recovery outside accepted recovery limits **RL** - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

М Value exceeds Monthly Ave or MCL.

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 8 of 10



ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209440-009

Seattle, WA 98104

Client Sample ID: 0912RD12SW

Project:

Lab ID:

Date Reported: 10/9/2012

Report ID: S1209440001

Work Order: S1209440

Collection Date: 9/11/2012 4:27:00 PM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-010	Matrix: Water						
Analyses		Result	RL	Qual	Units	Date Analyzed/Init	Method	
Dissolved Metals	3							
Mercury		12 "	丁 1		ng/L	10/07/2012 1331 CS	EPA 1631	
Total Metals		-	~					
Mercury		53	1		ng/L	10/07/2012 1425 CS	EPA 1631	

200/11/16/12

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits S

RL - Reporting Limit

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCL

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 9 of 10



Project:

Lab ID:

1673 Terra Avenue, Sheridan, Wyoming 82801

ph: (307) 672-8945

## Sample Analysis Report

CLIENT: Ecology & Environment, Inc.

720 Third Avenue, Suite 1700

Red Devil Mine

S1209440-010

Seattle, WA 98104

Client Sample ID: 0912RD21SW

Date Reported: 10/9/2012

Report ID: S1209440001

Work Order: \$1209440

Collection Date: 9/11/2012 7:00:00 AM Date Received: 9/25/2012 11:45:00 AM

Sampler:

COC:	RDM-0912-010				Matrix: Water	
Analyses		Result	RL Qual	Units	Date Analyzed/Init	Method
Dissolved Meta	als			— Vo. min a		
Mercury		13 "	ナ 1	ng/L	10/07/2012 1339 CS	EPA 1631
Total Metals						
Mercury		143	1 (س	na/l	10/07/2012 1451 CS	FPA 1631

These results apply only to the samples tested.

Qualifiers:

Value exceeds Maximum Contaminant Level

С Calculated Value

Holding times for preparation or analysis exceeded Н

Analyzed by a contract laboratory l.

Not Detected at the Reporting Limit ND

Spike Recovery outside accepted recovery limits S

RL - Reporting Limit

Analyte detected in the associated Method Blank В

Value above quantitation range

Analyte detected below quantitation limits

Value exceeds Monthly Ave or MCl.

Outside the Range of Dilutions

Reviewed by:

Lacey Ketron, Water Lab Supervisor

Page 10 of 10



## **ANALYTICAL QC SUMMARY REPORT**

CLIENT:

Project:

Ecology & Environment, Inc.

Date: 10/9/2012

Work Order:

S1209440

Red Devil Mine

Report ID: S1209440001

Dissolved Mercury by EPA 245.1 - Water

Sample	Type MBLK	Units: mg	/L							_
	Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
	LRB	09/27/12 9:29	Mercury	ND	0.001					
Sample	Type LCS	Units: mg	/L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
'	LCS	09/27/12 9:28	Mercury	0.002	0.001	0.002		99.3	85 - 115	
Sample	Type MS	Units: mg	<i>/</i> L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
'	S1209393-001C	09/27/12 9:35	Mercury	0.002	0.001	0.00244	ND	86.1	70 - 130	
Sample	Type MSD	Units: mg	/L.							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
•	S1209393-001C	09/27/12 9:37	Mercury	0.002	0.001	0.002	9.09	93.9	20	
Sample	Type DUP	Units: mg	/L							
	Sample ID	RunNo: 87669	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
•	S1209393-001C	09/27/12 9:33	Mercury	ND	0.001	ND			20	_

11/16/12

Qualifiers:

Analyte detected in the associated Method Blank

В Н Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

Outside the Range of Dilutions 0

Spike Recovery outside accepted recovery limits

Value above quantitation range E

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits



## **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

Work Order:

S1209440

Project: Red Devil Mine

Date: 10/9/2012

Report ID: S1209440001

#### Dissolved Mercury by EPA 1631

Sample Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/06/12 11:46	Mercury	ND	0.000001					
Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/07/12 11:46	Mercury	ND	0.000001					
Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	10/11/12 11:21	Mercury	ND	0.000001					
Sample Type LCS	Units: mg	/L							
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/06/12 11:38	Mercury	0.000005	0.000001	5E-06		107	77 - 123	
Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/07/12 11:38	Mercury	0.000005	0.000001	5E-06		90.0	77 - 123	
Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	10/11/12 11:13	Mercury	0.000006	0.000001	5E-06		110	77 - 123	
Sample Type MS	Units: mg/	<b>/</b> L							
Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209440-003B	10/06/12 14:22	Mercury	0.000087	0.000001	0.00001	0.000060	71.0	71 - 125	
Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209440-007B	10/07/12 12:01	Mercury	0.000019	0.000001	0.00001	0.000010	93.9	71 - 125	
Sample Type MSD	Units: mg/	L							
Sample ID	RunNo: 87992	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209440-003B	10/06/12 14:45	Mercury	0.000066	0.000001	0.000067	2.38	55.0	24	s
Sample ID	RunNo: 88004	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209440-007B	10/07/12 12:09	Mercury	0.000018	0.000001	0.000019	3.70	86.9	24	

11/16/12

Qualifiers:

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E. Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits



## **ANALYTICAL QC SUMMARY REPORT**

**CLIENT:** 

Ecology & Environment, Inc.

S1209440

Work Order: Project:

Red Devil Mine

Date: 10/9/2012

Report ID: S1209440001

Total Mercury by EPA 245.1 - Water

Sample Type MBLK	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
LRB	09/27/12 9:29	Мегсигу	ND	0.001					
Sample Type LCS	Units: mg	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
LCS	09/27/12 9:28	Mercury	0.002	0.001	0.002	<u>_</u>	99.3	85 - 115	
Sample Type MS	Units: mg	/L							_
Sample ID	RunNo: 87669	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
S1209429-001D	09/27/12 12:57	Mercury	0.00248	0.00001	0.00244	0.00003	100	70 - 130	
Sample Type MSD	Units: mg	/L							_
Sample ID	RunNo: 87669	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
S1209429-001D	09/27/12 12:59	Мегсигу	0.00253	0.00001	0.00248	2.22	103	20	
Sample Type DUP	Units: mg/	/L							
Sample ID	RunNo: 87669	Analyte	Result	RL	Ref Samp	%RPD	%REC	% RPD Limits	Qual
S1209429-001D	09/27/12 12:55	Mercury	0.00003	0.00001	0.00003	3.09		20	

02/11/16/12

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

L Analyzed by a contract laboratory

O Outside the Range of Dilutions

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits

Date: 10/9/2012



1673 Terra Avenue, Sheridan, Wyoming 82801 ph: (307) 672-8945

## **ANALYTICAL QC SUMMARY REPORT**

CLIENT: Ecology & Environment, Inc.

\$1209440 Report ID: \$1209440001

Project: Red Devil Mine

Work Order:

Total Mercury by EPA 1631

· F	Type MBLK	Units: mg	/L.							
5	Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
L	LRB	10/06/12 11:46	Mercury	ND	0.000001					
8	Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
L	_RB	10/07/12 11:46	Mercury	ND	0.000001					
8	Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qual
ī	_RB	10/11/12 11:21	Mercury	ND	0.000001					
ample T	Гуре <b>LCS</b>	Units: mg	ΛL							
8	Sample ID	RunNo: 87992	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
L	.cs	10/06/12 11:38	Mercury	0.000005	0.000001	5E-06		107	77 - 123	
S	Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
L	.cs	10/07/12 11:38	Mercury	0.000005	0.000001	5E-06		90.0	77 - 123	
8	Sample ID	RunNo: 88201	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
ī	.CS	10/11/12 11:13	Мегсигу	0.000006	0.000001	5E-06		110	77 - 123	
ample T	ype MS	Units: mg/	īL.							
s	Sample ID	RunNo: 87992	Analyte	Result	RL.	Spike	Ref Samp	%REC	% Rec Limits	Qual
s	S1209437-006A	10/06/12 17:09	Mercury	0.000068	0.000001	0.00005	0.000010	116	71 - 125	
s	Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
s	31209440-007A	10/07/12 13:54	Мегсигу	0.000125	0.000001	0.00001	0.000097	282	71 - 125	s
s	Sample ID	RunNo: 88004	Analyte	Result	RL	Spike	Ref Samp	%REC	% Rec Limits	Qua
s	61209440-003A	10/07/12 15:14	Mercury	0.000120	0.000001	0.00001	0.000112	80.0	71 - 125	
ample T	ype MSD	Units: mg/	<b>1</b> .							
s	Sample ID	RunNo: 87992	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qua
s	31209437-006A	10/06/12 17:17	Mercury	0.000068	0.000001	0.000068	0.293	116	24	
s	Sample ID	RunNo: 88004	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qual
s	1209440-007A	10/07/12 14:02	Mercury	0.000099	0.000001	0.000125	20.6	25.0	24	s
s	ample ID	RunNo: 88004	Analyte	Result	RL	Conc	%RPD	%REC	% RPD Limits	Qua

Qualifiers:

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- L. Analyzed by a contract laboratory
- O Outside the Range of Dilutions
- S Spike Recovery outside accepted recovery limits
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 1 of 2

Ecology and Environment, Inc.

#### CHAIN OF CUSTODY RECORD

No: RDM-0912-010

Red Devil Mine Project Contact Name: Bill Richards Contact Phone: 206-624-9537 Cooler #- 10 Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

	51269440	)							
Lab#	Location	Analyses		Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
201	0912MW06GW	Total Low Level Merc	ury	9/9/2012	12:40	1	250 ml. Clear Glass	HCI	
201	0912MW06GW	Dissolved Low Level	Mercury	9/9/2012	12:40	1	250 ml. Clear Glass	HCI	
002	> 0912MW21GW	Total Low Level Merc	ury	9/8/2012	18:00	1	250 mt. Clear Glass	HCI	
00 /	0912MW21GW	Dissolved Low Level	Mercury	9/8/2012	18:00	1	250 mt. Clear Glass	HCI	
$\omega_3 <$	0912MW27GW	Total Low Level Merc	ury	9/9/2012	13:34	3	260 mt. Clear Glass	HCI	Y
~ \	0912MW27GW	Dissolved Low Level	Mercury	9/9/2012	13:34	3	250 mL Clear Glass	HCI	Y
240	70912EB01DI	Total Low Level Merc	ury	9/9/2012	13:50	1	250 mL Clear Glass	HCI	
	0912EB01DI	Dissolved Low Level	Mercury	9/9/2012	13.50	1	250 mL Clear Glass	HCI	
05/	∕0912RD04SW	Total Low Level Merc	ury	9/11/2012	17.26		250 mL Clear Glass	HÇI	
	0912RD04SW	Dissolved Low Level	Mercury	9/11/2012	17:26	<b>§</b> .	250 mL Clear Glass	HCI	
· soles	70912RD08SW	Total Low Level Merc	ury	9/11/2012	11:11	1	250 mL Clear Glass	HCI .	

Special Instructions:

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason	:	Relinquished by	Date	1 1	y į t	Date Ti	ime	Items/Reason	Relinquished By	Date	Received by	Date	Time
	1			Lay Bo	9-3	25-12 11:4	45						

Page 2 of 2

CHAIN OF CUSTODY RECORD

No: RDM-0912-010 Cooler #: 10

Ecology and Environment, Inc

Red Devil Mine Project Contact Name: Bill Richards Contact Phone. 206-624-9537

Lab: Inter-Mountain Laboratories, Inc. Lab Phone: 800-828-1097

Lab # Location	Analyses	Collected	Sample Time	Numb Cont	Container	Preservative	MS/MSD
0912RD085W	Dissolved Low Level Mercury	9/11/2012	11:11	1	250 mL Clear Glass	HCI	
0012RD09SW	Total Low Level Mercury	9/11/2012	13:12	3	250 ml. Clear Glass	HCI	Υ
0912RD09SW	Dissolved Low Level Mercury	9/11/2012	13:12	3	250 ml. Clear Glass	HCI	Y
0912RD10SW	Total Low Level Mercury	9/12/2012	11:52	1	250 ml. Clear Glass	HCI	
0912RD10SW	Dissolved Low Level Mercury	9/12/2012	11:52	1	250 mL Clear Glass	HCI	
0912RD12SW	Total Low Level Mercury	9/11/2012	16:27	1	250 mL Clear Glass	HCI	
0912RD12SW	Dissolved Low Level Mercury	9/11/2012	16:27	1	250 ml. Clear Glass	HCI	
010 0912RD21SW	Total Low Level Mercury	9/11/2012	07.00	1	250 ml. Clear Glass	HCI	
0912RD21SW	Dissolved Low Level Mercury	9/11/2012	07:00	1	250 mL Clear Glass	HCI	
	*						•
	· · · · · · · · · · · · · · · · · · ·					•	

Special Instructions:

SAMPLES TRANSFERRED FROM CHAIN OF CUSTODY #

Items/Reason Relinquished by Date Receive

eived by

Date Time

Items/Reason Re

Relinquished By

Date

Received by

Date

Time

78'(.

## **DATA REVIEW MEMORANDUM**

**DATE:** October 29, 2012

**TO**: Bill Richards, Project Manager, E & E, Seattle

**FROM:** Bryan Kroon, Chemist, E & E, Buffalo

SUBJ: Data Review: Red Devil Mine

#### REFERENCE:

ProjectID	Lab Work Order
Red Devil Mine	O1206012
Red Devil Mine	O1206013
Red Devil Mine	S1206022
Red Devil Mine	S1206026
Red Devil Mine	S1206027
Red Devil Mine	S1206029
Red Devil Mine	S1206030
Red Devil Mine	S1206031
Red Devil Mine	S1206032
Red Devil Mine	S1206033
Red Devil Mine	S1206035

## I. SAMPLE IDENTIFICATION

For the sampling activities at Red Devil Mine, Ecology and Environment, Inc. (E & E) collected the samples listed on Table 1. Project-specific matrix spike/matrix spike duplicates (MS/MSD) were designated in the field, laboratory also identified batch MS/MSD's as batch QC for additional analytical testing. Trip blanks were provided with each shipment for this sampling event. All samples were sent to Brooks Rand Laboratory and Inter-Mountain in Sheridan, WY for analysis. All tables are included at the end of this memorandum.

Data were reviewed for field and laboratory precision, accuracy, and completeness in accordance with procedures and quality control (QC) limits, the current laboratory Quality Assurance Manual (QAM) and current standard operating procedures (SOPs). Laboratory data qualifiers for compound identification and quantitation were accepted. Any additional data review qualifiers added are noted below and listed on the tables at the end of this memorandum. Definitions of all data qualifiers are given in the report.

**Table 1 Sample Listing** 

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	MS/ MSD	ID Corrections
O1206012	Water	0512EB02DI	O1206012- 001	5/30/2012			None
O1206013	Water	0512EB02DI	O1206013- 001	5/30/2012			None
O1206013	Water	0512MW19GW	O1206013- 002	5/29/2012			None
O1206013	Water	0512MW52GW	O1206013- 003	5/29/2012			None
O1206013	Water	trip blank	O1206013- 004	5/29/2012			None
S1206022	Water	0512RD08SW	1224007-01	5/27/2012			None
S1206022	Water	0512RD04SW	1224007-02	5/27/2012			None
S1206022	Water	0512RD05SW	1224007-03	5/27/2012			None
S1206022	Water	0512RD06SW	1224007-04	5/27/2012			None
S1206022	Water	0512RD09SW	1224007-05	5/27/2012			None
S1206022	Water	0512RD10SW	1224007-06	5/27/2012			None
S1206022	Water	0512RD12SW	1224007-07	5/27/2012			None
S1206022	Water	0512RD20SW	1224007-08	5/27/2012			None
S1206026	Water	0512MW19GW	S1206026-002	5/29/2012			None
S1206027	Water	0512EB02DI	S1206027-001	5/30/2012			None
S1206027	Water	0512MW14GW	S1206027-002	5/30/2012			None
S1206027	Water	0512MW15GW	S1206027-003	5/30/2012			None
S1206027	Water	0512MW29GW	S1206027-004	5/30/2012			None
S1206029	Water	0512RD05SW	S1206029-001	5/27/2012			None
S1206029	Water	0512RD09SW	S1206029-002	5/27/2012			None
S1206029	Water	0512RD12SW	S1206029-003	5/27/2012			None
S1206029	Water	0512AB01DI	S1206029-004	5/27/2012			None
S1206029	Water	0512MW25GW	S1206029-005	5/27/2012			None
S1206029	Water	0512MW50GW	S1206029-006	5/27/2012			None

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	MS/ MSD	ID Corrections
S1206030	Water	0512MW08GW	S1206030-001	5/29/2012			None
S1206030	Water	0512MW12GW	S1206030-002	5/28/2012			None
S1206030	Water	0512MW17GW	S1206030-004	5/28/2012			None
S1206030	Water	0512MW24GW	S1206030-005	5/29/2012			None
S1206030	Water	0512MW51GW	S1206030-006	5/28/2012			None
S1206031	Water	0512AB02DI	S1206031-001	5/28/2012			None
S1206031	Water	0512MW01GW	S1206031-002	5/29/2012			None
S1206031	Water	0512MW04GW	S1206031-003	5/29/2012			None
S1206031	Water	0512MW28GW	S1206031-004	5/29/2012			None
S1206031	Water	0512MW32GW	S1206031-005	5/29/2012			None
S1206031	Water	0512MW33GW	S1206031-006	5/29/2012			None
S1206031	Water	0512AB03DI	S1206031-007	5/29/2012			None
S1206032	Water	0512RD04SW	S1206032-001	5/27/2012			None
S1206032	Water	0512RD06SW	S1206032-002	5/27/2012			None
S1206032	Water	0512RD20SW	S1206032-003	5/27/2012			None
S1206032	Water	0512MW27GW	S1206032-004	5/27/2012			None
S1206033	Water	0512EB01DI	S1206033-001	5/27/2012			None
S1206033	Water	0512ER01DI	S1206033-002	5/28/2012			None
S1206033	Water	0512MW06GW	S1206033-003	5/29/2012			None
S1206033	Water	0512MW10GW	S1206033-004	5/28/2012			None
S1206033	Water	0512MW13GW	S1206033-005	5/28/2012			None
S1206033	Water	0512MW16GW	S1206033-006	5/28/2012			None
S1206035	Water	0512RD08SW	S1206035-001	5/27/2012			None
S1206035	Water	0512RD10SW	S1206035-003	5/27/2012			None
S1206035	Water	0512MW20GW	S1206035-004	5/28/2012			None
S1206035	Water	0512MW21GW	S1206035-005	5/28/2012			None

# Work Orders, Tests and Number of Samples included in this $\ensuremath{\mathsf{DVM}}$

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
O1206012	Water	AK 102/103	AK102DRO/103RRO	1	SAMP
O1206013	Water	AK 102/103	AK102DRO/103RRO	2	SAMP
O1206013	Water	AK101	AK101 GRO/BTEX - Water	4	SAMP
S1206022	Water		Total Arsenic and Arsenic Speciation by HG-CT-AAS	8	SAMP
S1206022	Water		Total Mercury and Mercury Speciation by CVAFS	8	SAMP

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1206022	Water	EPA 1632	Total Arsenic and Arsenic Speciation by HG-CT-AAS	8	SAMP
S1206026	Water	6010C	Total(3020) Metals by ICP - 6010C	1	SAMP
S1206026	Water	6020A	Total (3020) Metals by ICPMS - 6020A	1	SAMP
S1206026	Water	EPA 1631	Dissolved Mercury by EPA 1631	1	SAMP
S1206026	Water	EPA 1631	Total Mercury by EPA 1631	1	SAMP
S1206026	Water	EPA 300.0	Anions by ION Chromatography	1	SAMP
S1206026	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	1	SAMP
S1206026	Water	SM 2320B	Alkalinity	1	SAMP
S1206026	Water	SM 2540	Solids By SM 2540	1	SAMP
S1206027	Water	6010C	Dissolved Metals by ICP (6010C)	2	SAMP
S1206027	Water	6010C	Total(3020) Metals by ICP - 6010C	4	SAMP
S1206027	Water	6020A	Dissolved Metals by ICPMS (6020A)	2	SAMP
S1206027	Water	6020A	Total (3020) Metals by ICPMS - 6020A	4	SAMP
S1206027	Water	EPA 1631	Dissolved Mercury by EPA 1631	2	SAMP
S1206027	Water	EPA 1631	Total Mercury by EPA 1631	2	SAMP
S1206027	Water	EPA 245.1	Dissolved Mercury by EPA 245.1 - Water	2	SAMP
S1206027	Water	EPA 245.1	Total Mercury by EPA 245.1 - Water	2	SAMP
S1206027	Water	EPA 300.0	Anions by ION Chromatography	4	SAMP
S1206027	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	4	SAMP
S1206027	Water	SM 2320B	Alkalinity	4	SAMP
S1206027	Water	SM 2540	Solids By SM 2540	4	SAMP
S1206029	Water	6010C	Dissolved Metals by ICP (6010C)	3	SAMP
S1206029	Water	6010C	Total(3020) Metals by ICP - 6010C	5	SAMP
S1206029	Water	6020A	Dissolved Metals by ICPMS (6020A)	3	SAMP
S1206029	Water	6020A	Total (3020) Metals by ICPMS - 6020A	5	SAMP
S1206029	Water	EPA 1631	Dissolved Mercury by EPA 1631	3	SAMP
S1206029	Water	EPA 1631	Total Mercury by EPA 1631	4	SAMP
S1206029	Water	EPA 245.1	Dissolved Mercury by EPA 245.1 - Water	2	SAMP
S1206029	Water	EPA 245.1	Total Mercury by EPA 245.1 - Water	2	SAMP
S1206029	Water	EPA 300.0	Anions by ION Chromatography	5	SAMP
S1206029	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	5	SAMP
S1206029	Water	SM 2320B	Alkalinity	5	SAMP
S1206029	Water	SM 2540	Solids By SM 2540	5	SAMP
S1206029	Water	SM 5310B	Total Organic Carbon	3	SAMP
S1206030	Water	6010C	Total(3020) Metals by ICP - 6010C	5	SAMP
S1206030	Water	6020A	Total (3020) Metals by ICPMS - 6020A	5	SAMP
S1206030	Water	EPA 1631	Dissolved Mercury by EPA 1631	5	SAMP
S1206030	Water	EPA 1631	Total Mercury by EPA 1631	5	SAMP
S1206030	Water	EPA 300.0	Anions by ION Chromatography	5	SAMP
S1206030	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	5	SAMP

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type	
S1206030	Water	SM 2320B	Alkalinity	5	SAMP	
S1206030	Water	SM 2540	Solids By SM 2540	Solids By SM 2540 5		
S1206031	Water	6010C	Dissolved Metals by ICP (6010C)	SAMP		
S1206031	Water	6010C	Total(3020) Metals by ICP - 6010C	5	SAMP	
S1206031	Water	6020A	Dissolved Metals by ICPMS (6020A)	3	SAMP	
S1206031	Water	6020A	Total (3020) Metals by ICPMS - 6020A	5	SAMP	
S1206031	Water	EPA 1631	Dissolved Mercury by EPA 1631	5	SAMP	
S1206031	Water	EPA 1631	Total Mercury by EPA 1631	7	SAMP	
S1206031	Water	EPA 300.0	Anions by ION Chromatography	5	SAMP	
S1206031	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	5	SAMP	
S1206031	Water	SM 2320B	Alkalinity	5	SAMP	
S1206031	Water	SM 2540	Solids By SM 2540	5	SAMP	
S1206032	Water	6010C	Dissolved Metals by ICP (6010C)	3	SAMP	
S1206032	Water	6010C	Total(3020) Metals by ICP - 6010C	4	SAMP	
S1206032	Water	6020A	Dissolved Metals by ICPMS (6020A)	3	SAMP	
S1206032	Water	6020A	Total (3020) Metals by ICPMS - 6020A	4	SAMP	
S1206032	Water	EPA 1631	Dissolved Mercury by EPA 1631	3	SAMP	
S1206032	Water	EPA 1631	Total Mercury by EPA 1631	3	SAMP	
S1206032	Water	EPA 245.1	Dissolved Mercury by EPA 245.1 - Water	1	SAMP	
S1206032	Water	EPA 245.1	Total Mercury by EPA 245.1 - Water	1	SAMP	
S1206032	Water	EPA 300.0	Anions by ION Chromatography	4	SAMP	
S1206032	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	4	SAMP	
S1206032	Water	SM 2320B	Alkalinity	4	SAMP	
S1206032	Water	SM 2540	Solids By SM 2540	4	SAMP	
S1206032	Water	SM 5310B	Total Organic Carbon	3	SAMP	
S1206033	Water	6010C	Dissolved Metals by ICP (6010C)	2	SAMP	
S1206033	Water	6010C	Total(3020) Metals by ICP - 6010C	6	SAMP	
S1206033	Water	6020A	Dissolved Metals by ICPMS (6020A)	2	SAMP	
S1206033	Water	6020A	Total (3020) Metals by ICPMS - 6020A	6	SAMP	
S1206033	Water	EPA 1631	Dissolved Mercury by EPA 1631	5	SAMP	
S1206033	Water	EPA 1631	Total Mercury by EPA 1631	6	SAMP	
S1206033	Water	EPA 300.0	Anions by ION Chromatography	4	SAMP	
S1206033	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	4	SAMP	
S1206033	Water	SM 2320B	Alkalinity	4	SAMP	
S1206033	Water	SM 2540	Solids By SM 2540	4	SAMP	
S1206035	Water	6010C	Dissolved Metals by ICP (6010C)	2	SAMP	
S1206035	Water	6010C	Total(3020) Metals by ICP - 6010C	4	SAMP	
S1206035	Water	6020A	Dissolved Metals by ICPMS (6020A)	2	SAMP	
S1206035	Water	6020A	Total (3020) Metals by ICPMS - 6020A	4	SAMP	
S1206035	Water	EPA 1631	Dissolved Mercury by EPA 1631	2	SAMP	
S1206035	Water	EPA 1631	Total Mercury by EPA 1631	2	SAMP	

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
S1206035	Water		Dissolved Mercury by EPA 245.1 - Water	2	SAMP
S1206035	Water	EPA 245.1	Total Mercury by EPA 245.1 - Water	2	SAMP
S1206035	Water	EPA 300.0	Anions by ION Chromatography	4	SAMP
S1206035	Water	EPA 353.2	Nitrogen, Nitrate-Nitrite (as N)	4	SAMP
S1206035	Water	SM 2320B	Alkalinity	4	SAMP
S1206035	Water	SM 2540	Solids By SM 2540	4	SAMP
S1206035	Water	SM 5310B	Total Organic Carbon	2	SAMP

## II. SAMPLE PROCEDURES

All samples were collected as specified in the work plan and documented on the chain-of-custody (COC) and in field notebooks. Samples were analyzed as specified on the COC. Samples were packaged, shipped and received as specified in the work plan. All samples must be received cold (4 ±2) °C and in good condition as documented on the Cooler Receipt Form.

#### **REVIEW RESULTS:**

All sample procedures were followed and the sample coolers were received at the appropriate temperatures. No problems with the condition of the sample upon receipt are documented.

Rinsate blanks were not required for this sampling as dedicated sampling equipment was used for each monitoring well. Trip blanks were submitted daily to be associated with these samples.

## III. LABORATORY DATA

## 1.0 HOLDING TIMES

Holding times are established and monitored to ensure analytical results accurately represent analyte concentrations in a sample at the time of collection. Exceeding the holding time for a sample generally results in a loss of the analyte due to a variety of mechanisms, such as deposition on the sample container walls or precipitation.

## **REVIEW RESULTS:**

All samples were analyzed within the project and method specified holding times for all analytes except as noted in the case narratives for the short hold time tests, as it was not possible to have them delivered within the holding time due to the location of the sampling points. This was taken into account during the initial sample planning phase and it was agreed that the data would be qualified as estimated with a "J" flag. Samples were analyzed with in the long term hold times before any of the analytical data was rejected. Data should be considered usable for project purposes.

## 2.0 BLANKS

Laboratory and field blank samples are analyzed and evaluated to determine the existence and magnitude of possible contamination during the sampling and analysis process. As noted in Table 2, analyte concentrations in the blanks are generally below the practical quantitation limit (PQL). If the analyte is present in the sample at similar trace levels, then the analyte is likely a common background contaminant from some phase of the sampling, extraction, or analytical procedure and associated low level sample concentrations are not considered to be site related. If the analyte concentration is above the PQL, then there is a potential contamination problem and sample results may be biased high or the data unusable.

#### **REVIEW RESULTS:**

All blanks were performed at the required frequency. Several analytes were detected in the method blanks as noted on Table 2. Samples are qualified as noted on Table 2A.

## 3.0 SURROGATE SPIKE RECOVERY

Laboratory performance for individual samples analyzed for organic compounds is established by means of surrogate spiking activities. Samples are spiked with surrogate compounds prior to preparation and analysis. Unusually low or high surrogate recovery values may indicate some deficiency in the analytical system or that some matrix effects exist, resulting in low or high sample results for target compounds. Sample surrogate recoveries outside QC limits (if applicable) are presented in Table 3.

### **REVIEW RESULTS:**

Surrogate recoveries were acceptable in all applicable samples.

## 4.0 MATRIX SPIKE AND MATRIX SPIKE DUPLICATE ANALYSIS

The matrix spike and matrix spike duplicate (MS/MSD) analyses are intended to provide information about the effects that the sample matrix exerts on the digestion/extraction and measurement methodology. MS recovery values that do not meet laboratory QC criteria may indicate that sample analyte results are being attenuated

in the analysis procedure. These results are presented in Table 4 (if applicable). The potential sample bias may be estimated by noting the degree to which the MS concentration was elevated or lowered in the spike analysis. However, this bias should serve only as approximations; sample-specific problems may be the cause of the discrepancy, particularly in soil samples. Recoveries of a post-digestion spike or a laboratory control sample (LCS) are used to verify that the analytical methodology is acceptable and that MS recoveries are due to matrix effects. An MSD analysis is performed to evaluate the precision of the sample results. Precision is measured as the relative percent difference (RPD) between analytical results for duplicate samples. The laboratory's failure to produce similar results for MSD samples may indicate that the samples were non-homogeneous (particularly in soil samples), or that method defects may exist in the laboratory's techniques.

#### **REVIEW RESULTS:**

The MS/MSD sample analyses were performed at the required frequency.

MS/MSD recoveries were non-compliant for several analytes, results are qualified as noted on Table 4. Qualifiers were only added to the parent sample as noted due to matrix effects for organic analytes, and were added to all samples in the analytical batch for inorganic analytes.

#### 5.0 LABORATORY CONTROL SAMPLE ANALYSIS

The LCS is analyzed to monitor the efficiency of the digestion/extraction procedure and analytical instrument operation. The ability of the laboratory to successfully analyze an LCS demonstrates that there are no analytical problems related to the digestion/sample preparation procedures and/or instrument operations. The LCS results outside QC limits are presented in Table 5 (if applicable). Sporadic and marginal QC failures for multiple component methods do not indicate an analytical concern. If recoveries are high and the compounds are not detected in the samples, then no data qualification is required. All recoveries should be above 10% or the non-detect results flagged "UR" as rejected.

## **REVIEW RESULTS:**

All LCS analyses were within control limits and performed at the required frequency.

#### IV. COMPOUND IDENTIFICATION AND QUANTITATION

Compound identities are assigned by comparing sample compound retention times to retention times from known (standard) compounds and identification of an acceptable mass spectrum. Compounds detected below the PQL in samples should be considered estimated and are qualified "J." The samples with compounds above the linear range were all re-analyzed at a higher dilution factor.

#### **REVIEW RESULTS:**

All compound identification and quantitation criteria were achieved.

ClientSampID	TestNo	R_DilFac
S1206022-001	EPA 1632	20
S1206022-001	EPA 1632	400
S1206022-003	EPA 1632	400
S1206022-004	EPA 1632	400
S1206022-005	EPA 1632	20
S1206022-005	EPA 1632	400
S1206022-006	EPA 1632	20
S1206022-006	EPA 1632	400
S1206022-007	EPA 1632	10
S1206022-008	EPA 1632	20
S1206022-008	EPA 1632	400
S1206022-009	EPA 1632	20
S1206022-009	EPA 1632	400

## V. FIELD DUPLICATE SAMPLE RESULTS

Field duplicate samples were collected and analyzed as an indication of overall precision for both field and laboratory. Field duplicate results are summarized in Table 7 (if applicable). The results are expected to have more variability than laboratory duplicates, which measure only laboratory precision. It is expected also that soil field duplicates will exhibit greater variance than water field duplicates due to the difficulties associated with collecting identical field samples. The QC criteria used to assess field

duplicate samples for this project was limits of 70% RPD for soils and 40% RPD for waters, or twice the general laboratory duplicate criteria. If both compounds were below the laboratory PQL or one of the compounds was present as a non-detect, then the compounds are generally not qualified due to field duplicate precision. There are no guidelines regarding data qualification based on poor field duplicate precision. Professional judgment was used to determine whether or not to qualify results.

## **REVIEW RESULTS:**

The RPD ratings are listed on Table 7 as "Good" if the RPD is less than field duplicate QC criteria of 40% and as "Poor" if the RPD exceeded the field duplicate QC criteria.

No field duplicate pairs were noted in this data set.

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	UINITS	PQL
EPA 1630	B121025- BLK1	MB	MeHg	0.012		A	ng/L	0.049
EPA 1630	B121025- BLK2	MB	MeHg	0.011		А	ng/L	0.049
EPA 1630	B121025- BLK3	МВ	MeHg	0.009		A	ng/L	0.049
EPA 1630	B121025- BLK4	МВ	MeHg	0.008		A	ng/L	0.049
EPA 1632	B121077- BLK1	MB	As(Inorg)	0.179		A	ug/L	0.500
EPA 1632	B121077- BLK2	MB	As(Inorg)	0.137		A	ug/L	0.500
EPA 1632	B121077- BLK3	МВ	As(Inorg)	0.141		A	ug/L	0.500
EPA 1632	B121079- BLK1	МВ	As(III)	0.039		A	ug/L	0.500
SM 2540	DI	МВ	Total Suspended Solids	52		A	mg/L	5
SW 6010C	ICB MBLK	MB	Magnesium	0.07		Α	mg/L	0.02

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
SM 2540	0512MW15GW	Total Suspended Solids	52	5	U	5
SM 2540	0512MW12GW	Total Suspended Solids	52	ND	U	5
SM 2540	0512MW08GW	Total Suspended Solids	52	ND	U	5
SM 2540	0512MW17GW	Total Suspended Solids	52	ND	U	5
SM 2540	0512MW24GW	Total Suspended Solids	52	ND	U	5
SM 2540	0512MW51GW	Total Suspended Solids	52	17	U	5
SM 2540	0512MW19GW	Total Suspended Solids	52	17	U	5
SM 2540	0512MW14GW	Total Suspended	52	171	U	5

Method	Sample ID	Analyte	Blank Result	Sample Result	Sample Qual	PQL
		Solids				
SM 2540	0512RD05SW	Total Suspended Solids	52	8	U	5
SM 2540	0512RD09SW	Total Suspended Solids	52	16	U	5
SM 2540	0512MW12GW	Total Suspended Solids	52	14	U	5
SM 2540	0512MW01GW	Total Suspended Solids	52	47	U	5
SM 2540	0512MW04GW	Total Suspended Solids	52	9	U	5
SM 2540	0512MW28GW	Total Suspended Solids	52	30	U	5
SM 2540	0512MW33GW	Total Suspended Solids	52	8	U	5

Table 2B - List of Samples Qualified for Field Blank Contamination

None

**Table 3 - List of Samples with Surrogates outside Control Limits** 

None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac.	Low Limit
EPA 1632	0512RD08SW	MS	As (III)	1.651	5.000	51	1	65
SW6020A	0512MW14GW	MSD	Manganese	10.4	1.1	149	1	75
SW6020A	0512MW12GW	MS	Manganese	1.21	0.2	71.8	1	75
SW6020A	0512MW12GW	MS	Zinc	0.26	0.2	131	1	75
SW6020A	0512MW12GW	MS	Manganese	1.21	0.2	65.5	1	75
SW6020A	0512MW27GW	MS	Manganese	1.55	0.2	-78.7	1	75

Sample ID Analy	vte M	Method	RPD	RPD Limit	No. of Affected Samples	Sam Qua
-----------------	-------	--------	-----	-----------	-------------------------	------------

Sample ID	Analyte	Method	RPD	RPD Limit	No. of Affected Samples	Sar Qua
0512MW29GW	Mercury	EPA 1631	25	20	1	J

## **Table 5 - List LCS Recoveries outside Control Limits**

None

## Table 6 -Samples that were Reanalyzed

None

## Table 7 – Summary of Field Duplicate Results

None

## 6.0 OVERALL ASSESSMENT OF DATA

All data were reviewed and considered usable with qualification as noted in this report.