Environmental Assessment
May 3, 2016 Competitive Lease Sale Parcels

WY-040-EA15-130

May 2016
The BLM’s multiple-use mission is to sustain the health and productivity of the public lands for the use and enjoyment of present and future generations. The Bureau accomplishes this by managing such activities as outdoor recreation, livestock grazing, mineral development, and energy production, and by conserving natural, historical, cultural, and other resources on public lands.
Contents

INTRODUCTION ...1

1.0 PURPOSE AND NEED ..3
1.1 CONFORMANCE WITH APPLICABLE LAND USE PLAN AND OTHER ENVIRONMENTAL ASSESSMENTS ..3
1.2 FEDERAL, STATE OR LOCAL PERMITS, LICENSES OR OTHER CONSULTATION REQUIREMENTS ..3
1.3 FEDERAL LEASING OF FLUID MINERALS ..4
1.4 SCOPING AND PUBLIC INVOLVEMENT ..6

1.4.1 Scoping ...6
1.4.2 Public Participation ...6

PROPOSED ACTION AND ALTERNATIVES ...7

2.0 ALTERNATIVES INCLUDING THE PROPOSED ACTION ..7
2.1 ALTERNATIVE A – NO ACTION ...7
2.2 ALTERNATIVE B – PROPOSED ACTION ..7
2.3 ALTERNATIVE C – DEFER PARCELS FOR SAGE GROUSE ..7
2.4 ALTERNATIVES CONSIDERED BUT NOT ANALYZED IN DETAIL ..7

AFFECTED ENVIRONMENT ..8

3.0 DESCRIPTION OF AFFECTED ENVIRONMENT ..8
3.1 RESOURCE VALUES BY PARCEL ...8

3.1.1 Identification of Issues ...8

3.2 RESOURCE VALUES COMMON TO ALL PARCELS ..9

3.2.1 Air Resources ...9
3.2.2 Wildlife and Special Status Species (Plants and Animals) ...44
3.2.3 Wilderness, Wilderness Study Areas, and Lands with Wilderness Characteristics47
3.2.4 Cultural and Paleontological Resources ...49
3.2.5 Soils ...49
3.2.6 Vegetation ...50
3.2.7 Invasive, Non-native Species ..50
3.2.8 Wastes, Hazardous or Solid ..50
3.2.9 Water Resources: Surface and Groundwater ..50
3.2.10 Livestock Grazing ..51
3.2.11 Recreation ...51
3.2.12 Visual Resources ..52
3.2.13 Public Health and Safety ...53
3.2.14 Socioeconomics ..54
3.2.15 Environmental Justice ..55
3.2.16 Solid Leasables (Coal and Sodium) and Locatables ...55

ENVIRONMENTAL IMPACTS ...55

4.0 DESCRIPTION OF IMPACTS ..55
4.1 IMPACTS OF ALTERNATIVE A (NO ACTION) ..55
4.1.1 Socioeconomic Resource ..56

4.2 IMPACTS OF ALTERNATIVE B (PROPOSED ACTION) AND ALTERNATIVE C (ADDITIONAL DEFERRED PARCELS) 56

4.2.1 Air Resources..59
4.2.2 Wildlife and Special Status Species (Plants and Animals) ...66
4.2.3 Wilderness, Wilderness Study Areas, and Lands with Wilderness Characteristics71
4.2.4 Cultural and Paleontological Resources ...70
4.2.5 Soils ..71
4.2.6 Vegetation ...72
4.2.7 Invasive, Non-native Species ...73
4.2.8 Wastes, Hazardous or Solid ..73
4.2.9 Water Resources: Surface and Groundwater ...74
4.2.10 Livestock Grazing ...78
4.2.11 Recreation ..78
4.2.12 Visual Resources ...79
4.2.13 Public Health and Safety ..80
4.2.14 Socioeconomics ..81
4.2.15 Environmental Justice ...82
4.2.16 Solid Leasables (Coal and Sodium) and Locatables ...82
4.2.17 Other Considerations in accordance with IM 2010-117 ...82

4.3 CUMULATIVE IMPACTS ...84
4.4 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF RESOURCES87

5.0 DESCRIPTION OF MITIGATING MEASURES AND RESIDUAL IMPACTS88

6.0 CONSULTATION/COORDINATION ...88
6.1 LIST OF PREPARERS/REVIEWERS ..88

7.0 REFERENCES ...90
7.1 AUTHORITIES ..94

LIST OF TABLES

Table 3-1. Affected Environment ..8
Table 3-2. Ambient Air Quality Standards for Criteria Pollutants ..23
Table 3-3. Ozone Design Values for 2009-2011 through 2011-2013 for Ozone Monitoring Sites in Southwestern Wyoming Compared with the NAAQS ..24
Table 3-4. Design Values for 2009-2011 through 2011-2013 for NO2 Monitoring Sites in Southwestern Wyoming Compared with the NAAQS ...28
Table 3-5. Maximum 24-Hour PM10 Concentrations for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS ...31
Table 3-6. 24-Hour PM2.5 Design Values for 2009-2011 through 2011-2013 for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS...

Table 3-7. Annual PM2.5 Design Values for 2009-2011 through 2011-2013 for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS...

Table 3-8. Summary of Visibility Conditions (Deciviews) for 2013 for IMPROVE Sites in Southwestern Wyoming Compared with Natural Visibility Conditions...

Table 3-9. Background ANC Values for Acid Sensitive Lakes...

Table 3-10. Summary of Climate...

Table 3-11. Socioeconomic Analysis Area, Population Estimates by County, in 2000, 2005, 2013...

Table 4-1 Lease Notices, Timing Limitation Stipulations (TLS), Controlled Surface Use (CSU), and No Surface Occupancy (NSO) Stipulations Applied to the Lease Parcels...

LIST OF FIGURES

Figure 3-1. Fourth Highest 8-Hour Average Ozone Concentration (ppb) for Monitoring Sites in Southwestern Wyoming...

Figure 3-2. 8-Hour Ozone Design Values (ppb) for Monitoring Sites in Southwestern Wyoming...

Figure 3-3. 1-Hour NO2 Design Values (ppb) for Monitoring Sites in Southwestern Wyoming...

Figure 3-4. Maximum 24-Hour PM10 Design Values (µg/m3) for Monitoring Sites in Southwestern Wyoming...

Figure 3-5. 24-Hour PM2.5 Design Values (µg/m3) for Monitoring Sites in Southwestern Wyoming...

Figure 3-6. Annual Average PM2.5 Values (µg/m3) for Monitoring Sites in Southwestern Wyoming...

Figure 3-7. Annual Average Visibility (Deciviews) for the Bridger Wilderness IMPROVE Site...

Figure 3-8. Annual Average Visibility (Deciviews) for the Boulder Lake IMPROVE Site...

Figure 3-9. Visibility in the Bridger Wilderness...

Figure 3-10a. Annual Average Concentration in Wet Deposition (mg/L) for NADP Monitoring Sites at Pinedale, South Pass, and Sink’s Canyon: Nitrate Ion Concentration...

Figure 3-10b. Annual Average Concentration in Wet Deposition (mg/L) for NADP Monitoring Sites at Pinedale, South Pass, and Sink’s Canyon: Sulfate Ion Concentration...

Figure 3-10c. Annual Average Concentration in Wet Deposition (mg/L) for NADP Monitoring Sites at Pinedale, South Pass, and Sink’s Canyon: Ammonium Ion Concentration...

Figure 3-11. Long-term Temperature (top) and Precipitation (bottom) Trends in the United States from NOAA Climate Prediction Center...
INTRODUCTION

The Bureau of Land Management (BLM) policy, derived from various laws, including the Mineral Leasing Act of 1920 (MLA), as amended [30 U.S.C. 181 et seq.] and the Federal Land Policy and Management Act of 1976 (FLPMA), is to make mineral resources available for disposal and to encourage development of mineral resources to meet national, regional, and local needs.

As required under the MLA, the Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA), and Title 43 Code of Federal Regulations (CFR) 3120.1-2(a), the BLM Wyoming State Office (WSO) conducts a quarterly competitive lease sale for nominated oil and gas lease parcels. A Notice of Competitive Oil and Gas Lease Sale, which lists parcels to be offered at the auction, is published by the BLM WSO at least 90 days before the auction is held. Lease stipulations applicable to each parcel are specified in the Sale Notice. The decision as to which public lands and minerals are open for leasing and what leasing stipulations may be necessary is made during the land use planning process. Surface management/use for mineral extraction on non-BLM administered land overlaying federal minerals will be determined by the BLM in consultation with the appropriate surface management agency or the private surface owner at the time such surface use is proposed by the leaseholder or designated agent.

Under the Mineral Leasing Act, issuing oil and gas leases is a discretionary authority conveyed to the Secretary of the Interior. In accordance with this discretionary authority and as described in sections 1.3 and 2.0 below, certain parcels would be available for offer at the May 3, 2016 competitive lease sale and others are deferred by State Director discretion and were not subject to detailed analysis in this EA. In carrying out the mineral leasing authority conveyed through the Mineral Leasing Act, the BLM must comply with other applicable federal laws and regulations, including, but not limited to the Endangered Species Act, the National Historic Preservation Act, the Clean Water Act, the Clean Air Act, and the Energy Policy Act.

Thirty-eight (38) parcels, containing 43,067.930 acres, were nominated and reviewed for the May 3, 2016 competitive lease sale.

The following portion of parcel 36 is closed to leasing because it is inside the incorporated City of Evanston: T.15 N, R.120 W, 06th PM, WY, Sec. 28 SSW, containing 40.000 acres. 43 CFR 3100.0-3,(2),(iii) states that oil and gas on public lands are subject to lease, except incorporated cities, towns and villages. This portion of this parcel has been deleted from the subject sale and is not analyzed in detail in this EA; as such, it will not be discussed further.
Parcel 4, within both the Rawlins and Lander Field Offices and totaling 1,087.710 acres, is deferred in its entirety via State Director discretion. This parcel is not analyzed in detail in this EA and will not be discussed further.

Parcel 5 contains 380,000 acres that is within the Lander Field Office; this acreage is deferred by State Director discretion: T.0270N, R.0890W, 06th PM, WY, Sec. 027, W2W2, W2NENW, SENW, E2SW, W2NWSE, SWSE and Sec 035 W2SWSW. An additional 20 acres of this parcel is located within Priority Habitat Management Areas for the Greater Sage Grouse and is deferred by State Director Discretion. All 400.00 acres of this parcel are not analyzed in detail in this EA and will not be discussed further.

Portions of 8 parcels, and 5 whole parcels, containing approximately 12,225.790 acres (See Appendix A), are located within Priority Habitat Management Areas as identified in the Wyoming Greater Sage-Grouse Land Use Plan Amendment (ARMPA) Final Environmental Impact Statement (FEIS) and Record of Decision (ROD) which was signed on September 21, 2015. The BLM has exercised its discretion and determined that it is appropriate to defer these parcels from the set of the preliminary parcels analyzed in detail in the Environmental Assessment for the May 2016 oil and gas lease sale. These deferrals are consistent with the BLM's sage grouse conservation plans and strategy, which direct the BLM to prioritize oil and gas leasing and development in a manner that minimizes resource conflicts in order to protect important GSG habitat and reduce development time and costs. Based on the foregoing, these parcels are deferred through State Director discretion. These parcels are not analyzed in detail in this EA and will not be discussed further.

All of the remaining 32 whole or partial parcels are available for offering at the May 3, 2016 Competitive Lease Sale under the applicable Field Office Resource Management Plans, as amended (2015).

The BLM WSO submitted the draft list of the parcels to the High Desert District (HDD), Kemmerer Field Office (KFO), Pinedale Field Office (PFO), Rawlins Field Office (RFO), and Rock Springs Field Office (RSFO) for review and processing. Interdisciplinary Teams (IDTs) in each Field Office, in coordination and consultation with the District Office, have reviewed the legal descriptions of the parcels to determine if they are in areas open to leasing; if appropriate stipulations have been included or additional stipulations are needed; whether or not new information is available since the land use plan was approved; if appropriate consultations have been conducted or if additional consultations are needed; and if there are special resource conditions of which potential bidders should be made aware.

This Environmental Assessment (EA) has been prepared by the HDD to document this review, as well as to disclose the affected environment, the anticipated impacts, and proposed mitigation of impacts.

This EA inclusively addresses 32 parcels (29,736.220 acres) located within the field offices in the High Desert District that have been nominated through “Expressions of Interest” for the May 3, 2016 Competitive Oil and Gas Lease Sale.
1.0 Purpose and Need

The BLM purpose for offering parcels and subsequent issuance of leases at the May 3, 2016 lease sale is to provide for exploration and development of additional oil and gas resources to help meet the nation’s need for energy sources, while protecting other resource values in accordance with guiding laws, regulations, and Land Use Planning decisions. Wyoming is a major source of natural gas for heating and electrical energy production in the United States. The offering for sale and subsequent issuance of oil and gas leases is needed to meet the requirements of the MLA, FLPMA, and the minerals management objectives in the Kemmerer, Pinedale, Rawlins, and Green River Resource Management Plans (RMP), as amended (2015). Oil and gas leasing provides the opportunity to expand existing areas of production and to locate previously undiscovered oil and gas resources to help meet the public’s energy demands.

Decisions to be made based on this analysis include which parcels would be offered for lease, which parcels would be deferred, which parcels are not available for leasing, and what stipulations will be placed on the parcels that would be offered for lease at the May 3, 2016 lease sale.

1.1 Conformance with Applicable Land Use Plan and Other Environmental Assessments

Pursuant to 40 CFR 1508.28 and 1502.21, this EA tiers to the FEIS’ prepared for each Field Office RMP, and any subsequent amendments. The impact analysis in the EISs for the effects from oil and gas development was based on and is commensurate with the Reasonably Foreseeable Development (RFD) scenario (i.e., the level of oil and gas development projected for the life of the plan based on historically and projected trends). The mitigation measures developed through the EISs reduce/minimize the anticipated impacts associated with the projected development to acceptable levels below the significance thresholds. The mitigation (i.e., stipulations and Best Management Practices (BMPs)) developed through the RMP process is carried into this EA, both through tiering and through actual application of stipulations to each parcel.

The EA conforms to the approved Kemmerer, Pinedale, Rawlins, and Green River RMPs (43 CFR 1610.5) RODs, as amended (2015) and Bureau of Land Management Casper, Kemmerer, Newcastle, Pinedale, Rawlins, and Rock Springs Field Offices September 21, 2015 Approved Resource Management Plan Amendment (ARMPA) for Greater Sage-Grouse (GRSG).

The Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015), identify lands as either open or closed to fluid mineral leasing, and provide specific stipulations that would be attached to new leases offered in certain areas.

1.2 Federal, State or Local Permits, Licenses or Other Consultation Requirements

Purchasers of oil and gas leases are required to comply with all applicable federal, state, and local laws and regulations including obtaining all necessary permits required should lease development occur and are required to submit bonding in accordance with 43 CFR 3104.1.
Interdisciplinary teams from each Field Office reviewed their respective lease parcel lists for this environmental assessment. Among other resource values, individual parcels may contain threatened, endangered, candidate, and BLM sensitive species (see Section 3.0 and Appendix B). The administrative act of offering parcels and subsequent issuance of oil and gas leases is consistent with the decisions in the Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015), including decisions relating to threatened, endangered, candidate, and BLM sensitive species. Offering and subsequent issuance of oil and gas leases is also consistent with the Biological Assessment and Biological Opinion (BA/BO) for these RMPs. No further consultation with the U.S. Fish and Wildlife Service (USFWS) is required at this stage.

Compliance with Section 106 responsibilities of the National Historic Preservation Act (NHPA) can be achieved by following the BLM Wyoming-State Historic Preservation Officer (SHPO) protocol agreement, which is authorized by the National Programmatic Agreement between the BLM, the Advisory Council on Historic Preservation, and the National Conference of SHPOs, and other applicable BLM handbooks.

1.3 Federal Leasing of Fluid Minerals

Analysis as required by the National Environmental Policy Act (NEPA) of 1969, as amended (Public Law 91-90, U.S.C. 4321 et seq.) was conducted by Field Office resource specialists who relied on personal knowledge of the areas involved and/or reviewed existing databases and file information to determine if appropriate stipulations had been attached to specific parcels before being made available for lease.

The offering and subsequent issuance of oil and gas leases is strictly an administrative action, which, in and of itself, does not cause or directly result in any surface disturbance. The issuance of an oil and gas lease, however, does convey to the lessee the rights to occupy, explore, and extract oil and gas resources from the lease with prior approval of the Authorized Officer. These post-leasing actions can result in surface impact.

As part of the lease issuance process, nominated parcels are reviewed against the appropriate land use plan, and stipulations are attached to mitigate any known environmental or resource conflicts that may occur on a given lease parcel. As stated above, on-the-ground impacts would potentially occur when a lessee applies for and receives approval to explore, occupy and/or drill on the lease. The BLM cannot determine at the leasing stage whether or not a nominated parcel will actually be leased, or if it is leased, whether or not the lease would be explored or developed. Over time, some leases expire and then are re-leased. Based on data extracted from the BLM Wyoming Oil and Gas Leasing webpage, 88 percent of the parcels offered for lease over the past 10 years were leased.

According to the Tenth Circuit Court of Appeals, site-specific NEPA analysis at the leasing stage may not be possible absent concrete development proposals. Whether such site-specific analysis is required depends upon a fact-specific inquiry. Often, where environmental impacts remain unidentifiable until exploration narrows the range of likely well locations, filing of an Application for Permit to Drill (APD) may be the first useful point at which a site-specific environmental appraisal can be undertaken (Park County Resource Council, Inc. v. U.S. Department of Agriculture, 10th Cir., April 17, 1987). In addition,
the Interior Board of Land Appeals (IBLA) has decided that "BLM is not required to undertake a site-specific environmental review before issuing an oil and gas lease when it previously analyzed the environmental consequences of leasing the land..." (Colorado Environmental Coalition, et al., IBLA 96-243, decided June 10, 1999). However, when site-specific impacts are reasonably foreseeable at the leasing stage, NEPA requires the analysis and disclosure of such reasonably foreseeable site specific impacts. (N.M ex rel. Richardson v. BLM, 565 F.3d 683, 718-19 (10th Cir. 2009). The BLM has not received any specific development proposals concerning the proposed lease parcels addressed in this EA. This site-specific environmental documentation would provide specific analysis for the well pad location or locations. Additional mitigation and BMPs may be applied as conditions of approval (COA) at that time. As well, proposals which would cause a violation of Federal and/or state laws (such Clean Air Act/Clean Water Act/T&E) or do not comply with the regulations at 43 CFR 3160, Onshore Orders, and Notice(s) to Lessee(s), would be denied regardless of stipulations attached to an issued lease.

The Energy Policy Act of 2005 categorically excludes certain oil and gas development activities from further NEPA analysis. However, excluded projects must conform to the applicable Resource Management Plan, including any constraints that would be imposed on subsequent development.

Offering, sale and issuance of leases with the application stipulations would not be in conflict with any local, county, or state plans.

Once a parcel is sold and the lease is issued, the lessee has the right to use as much of the leased lands as is reasonably necessary to explore and drill for all of the oil and gas within the lease boundaries, subject to the stipulations attached to the lease (43 CFR 3101.1-2 and 3101.1-3) and compliance with regulations found at 43 CFR 3160 and in associated Onshore Orders and Notice to Lessee(s).

Oil and gas leases are issued for a 10-year period and continue for so long thereafter as oil or gas is produced in paying quantities. If a lessee fails to produce oil and/or gas, does not make annual rental payments, does not comply with the terms and conditions of the lease, or relinquishes the lease, then ownership of the minerals leased revert back to the federal government and may be offered for lease again. If a lessee fails to pay rentals timely, or fails to pay the full amount due (and the amount is considered to be nominal), the lease can be reinstated following payment of the late fees and publication of a notice in the Federal Register.

Installing an oil and gas well on a lease is not permitted until the lessee or operator secures approval of an Application for Permit to Drill (APD) as required by 43 CFR 3162. Without a discrete development proposal, surface disturbance, waste handling and/or drilling, completion, and production cannot be reasonably predicted. However, this EA incorporates by reference, in its entirety, a Hydraulic Fracturing White Paper included in Appendix E. This document provides a general discussion of the hydraulic fracturing process (a completion/stimulation method) and potential issues associated with its use.
1.4 Scoping and Public Involvement

1.4.1 Scoping

Internal BLM scoping determined the parcels individually or collectively contain one or more of the following resource issues or concerns:

- Crucial big game winter and parturition habitat
- Big Game migration
- Sharp-tailed and Greater Sage-Grouse leks and nesting habitat
- Sharp-tailed and Greater Sage-Grouse key habitat areas
- Mountain plover nesting habitat
- Raptor nesting habitat
- Bald Eagle roosts
- Sensitive Species
- Water depletion effects to downstream threatened and endangered fish species
- Sensitive soils
- Slopes greater than 25 percent
- Riparian and live water habitat
- Air quality, including greenhouse gases (GHG) and visibility
- Surface and groundwater quality
- Wilderness characteristics
- Visual resource management (VRM)
- Recreation
- Socioeconomics
- Vegetation, including invasive non-native species
- Cultural and paleontological resources, including historic trails
- Leasable coal and sodium resources
- Proximity to residences
- Livestock grazing
- Watershed and hydrology
- Threatened/Endangered Species

1.4.2 Public Participation

Public participation was initiated when this EA was entered into the Wyoming NEPA tracking database through the Rock Springs Field Office in March 2015. A news release was issued on November 2, 2015 notifying the public that the EA was posted on the BLM Wyoming website for a 30-day public comment period. As required by BLM leasing policy, where parcels are split estate, a notification letter soliciting EA review and comments were sent to the appropriate surface owner based on the surface owner information provided by the party submitting the Expressions of Interest (EOI).
PROPOSED ACTION AND ALTERNATIVES

2.0 Alternatives Including the Proposed Action

2.1 Alternative A – No Action

Under the No Action Alternative BLM Wyoming would not offer thirty-two (32) parcels containing 29,736.220 acres for lease at the May 3, 2016 lease sale. This would mean that the Expressions of Interest would be denied or rejected and no lease parcels would be offered at the May 3, 2016 Oil and Gas Competitive Lease Sale. Choosing the No Action alternative would not prevent future leasing in these areas consistent with land use planning decisions and subject to appropriate stipulations, identified in the respective land use plans. Therefore, it is anticipated that these parcels, excluding those that fall within areas designated closed to fluid mineral leasing, could be re-nominated and considered for offer at a future date.

2.2 Alternative B – Proposed Action

Under Alternative B, thirty-two (32) parcels would be offered at the May 3, 2016 Oil and Gas Lease Sale. The offered parcels contain 29,736.220 acres of federal minerals that are available for oil and gas leasing under the Kemmerer, Pinedale, Rawlins, and Green River RMP RODs, as amended by the Bureau of Land Management Casper, Kemmerer, Newcastle, Pinedale, Rawlins, and Rock Springs Field Offices Approved Resource Management Plan Amendment (ARMPA) for Greater Sage-Grouse ROD (September 21, 2015), and would be located in General Habitat Management Areas (GHMA).

Nine (9) of the parcels to be offered, containing 6,514.800 acres, are located within the RFO; eleven (11) parcels containing 7,488.790 acres are located within the RSFO; four (4) whole parcels containing 5,585.890 acres are located within the PFO; and six (6) parcels containing 6,483.490 acres are in the KFO. Two parcels are located within both the RFO and RSFO (-014 and -018) and contain 3,783.250 acres.

Standard terms and lease parcel specific stipulations would be applied. Lease stipulations (as required by 43 CFR 3101.1-3) are added to each parcel as identified by referenced RMPs to address site specific concerns. Refer to Appendix B for a list of the parcels and proposed stipulations attached to each.

2.4 Alternatives Considered But Not Analyzed in Detail

An alternative was considered that would offer all 32 parcels with a no surface occupancy stipulation. This alternative was not carried forward into detailed analysis because it is not in conformance with the respective RMPs, as amended (2015), and would only prohibit surface occupancy for oil and gas development; whereas other non-oil and gas occupancy may not be similarly constrained. Further, this alternative would unnecessarily constrain oil and gas occupancy in areas where the Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015), have determined that less restrictive stipulations would adequately mitigate the anticipated impact.
No other alternatives to the proposed action were identified that would meet the purpose and need of the proposed action alternative analysis.

AFFECTED ENVIRONMENT

3.0 DESCRIPTION OF AFFECTED ENVIRONMENT

This section describes the current environment and present conditions of various resources that would be affected by the project. Aspects of the affected environment described in this section focus on the relevant major resources or issues. Only those aspects of the affected environment that are potentially impacted are described in detail. Prime or Unique Farmlands are not present on any of the parcels or partial parcels available for offer. All parcels analyzed in this EA were reviewed against the lands with wilderness characteristics requirements in BLM Washington Office (WO) IM 2011-154, Manual 6310, and the approved BLM Wyoming Leasing Reform Implementation Plan. See Appendix D for results of the lands with wilderness characteristics screen.

3.1 RESOURCE VALUES BY PARCEL

Table 3-1 provides a detailed listing of the resource values (including surface ownership, visual, riparian, soils, vegetation, slopes, livestock grazing, solid minerals, watershed, special management areas, cultural, paleontology, and wildlife) associated with each of the parcels available for offering through Alternative B at the May 3, 2016 competitive lease sale.

3.1.1 Identification of Issues

Analysis required by NEPA, as amended (Public Law 91-90, USC 4321 et seq.), was conducted by field office resource specialists who relied on site visits where access was available, personal knowledge of the areas involved, and/or review of existing databases and file information to determine if appropriate stipulations should be attached to specific parcels prior to being made available for lease. Resource values were identified for each parcel as presented in Table 3-1.

Field visits were performed on those parcels where the BLM had access or access was allowed by the surface owners. All of the 32 parcels analyzed in this EA, were visited using public access such as county or state roads. Pictures were taken at these parcels and where available, GPS coordinates were taken at those photo points. Geographical information system (GIS) data and digital ortho photo quads (DOQQ) were used regardless of whether or not the field teams could visit the parcels, but were predominantly relied on for review of the parcels that could not be visited.

The analysis of the parcels revealed no substantial resource values or concerns other than those already identified through review of the parcels via the KFO, PFO, RFO, and RSFO Geographic Information System (GIS) data bases and National Agriculture Imagery Program (NAIP 2012) digital aerial imagery.
<p>| Fiscal Year | Field | Split | Acres | VHRM Class | Riparian | Prevented | Sedge/ Grass/ Habitat (%) | Soils | Grazing Acreage | Vegetation | Sediment/ Coastal Barrier Areas | Major Watershed/ Pilot/ Colorado River Basin (Yes/No) | Special Management Areas | Potential for High Erosion | Cultural Value N/A | Pale, PFC Class | 4 (Yes/No) | Sage Grouse BMPs | Sage Grouse/ Sage-Grouse Teller Antlerless Hunting (Yes/No) | Sage Grouse/ Sage-Grouse Wildlife Management Grazing (Yes/No) | Sage-Grouse/ Sage-Grouse Wildlife Management Grazing/ Wildlife Management Grazing (Yes/No) | Other Special Status Species (Yak, Kudzu, Poison Ivy, Non-native) | Colorado/ Rocky Mountain Region (SRM/MRCY) | Big Game Wildlife Areas (CRCA/CRW) | Protecting Endangered Species (CRCA) | Roadside Migratory Routes | Riparian Migratory Routes | Unplugged Oil/ Gas Wells |
|------------|-------|-------|-------|-------------|----------|-----------|---------------------------|-------|----------------|------------|--------------------------------|---|--------------------------|--------------------------|----------------|----------------|----------------|---|---|---|---|---|---|---|---|---|
| 2021 | Rawlins | No | 35 | 0 | Yes | Yes | Yes | No | Rawlins Creek | Sagebrush | Sagebrush dominated with a variety of forbs and grasses | Rawlins Creek | No |</p>
<table>
<thead>
<tr>
<th>Parcel #</th>
<th>Field Office</th>
<th>Split Estates</th>
<th>VCHR Class</th>
<th>Riparian Areas</th>
<th>Perennial Human</th>
<th>Slope (Greater Than 25%)</th>
<th>Soils</th>
<th>Grazing Allowance</th>
<th>Vegetation</th>
<th>Mining Claim</th>
<th>Cultural Resource</th>
<th>Special Management Areas</th>
<th>Potential for Drayling</th>
<th>Cultural Site NRTH</th>
<th>Dwellings</th>
<th>Dwellings</th>
<th>Sajo/Grassland/Loamy-Soil-Tall-Shrub Concentration Area</th>
<th>(Yes/No)</th>
<th>Other Special Status Species (Tall, Candidate, Sensitivity Species)</th>
<th>Cenozoic Terrane/Cretaceous/Tertiary (Y/N)</th>
<th>Big Game Crucial Habitat</th>
<th>Burrowing Owl (BO)/Nesting Raptor Migration Route</th>
<th>Big Game Migration Route</th>
<th>Unplugged Oil/Gas Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Business</td>
<td>No</td>
<td>HI & IV</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Family Lakes (County)</td>
<td>Brown Creek</td>
<td>Upland grass and grass dominated vegetation with a variety of forbs</td>
<td>No</td>
<td>Yes</td>
<td>Sajo-Grassland Charcoal Basin</td>
<td>No</td>
<td>No</td>
<td>GHMA</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>Business</td>
<td>No</td>
<td>HI & IV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Valley Lakes (County)</td>
<td>Brown Creek</td>
<td>Upland grass and grass dominated vegetation with a variety of forbs</td>
<td>No</td>
<td>Yes</td>
<td>Sajo-Grassland Charcoal Basin</td>
<td>No</td>
<td>No</td>
<td>GHMA</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>Business</td>
<td>No</td>
<td>HI & IV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Murray Lakes (County)</td>
<td>Brown Creek</td>
<td>Upland grass and grass dominated vegetation with a variety of forbs</td>
<td>No</td>
<td>Yes</td>
<td>Sajo-Grassland Charcoal Basin</td>
<td>No</td>
<td>No</td>
<td>GHMA</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>Business</td>
<td>No</td>
<td>HI & IV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Sajo-Grassland</td>
<td>Brown Creek</td>
<td>Upland grass and grass dominated vegetation with a variety of forbs</td>
<td>No</td>
<td>Yes</td>
<td>Sajo-Grassland Charcoal Basin</td>
<td>No</td>
<td>No</td>
<td>GHMA</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>Business</td>
<td>No</td>
<td>HI & IV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Shampoo (County)</td>
<td>Brown Creek</td>
<td>Upland grass and grass dominated vegetation with a variety of forbs</td>
<td>No</td>
<td>Yes</td>
<td>Sajo-Grassland Charcoal Basin</td>
<td>No</td>
<td>No</td>
<td>GHMA</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>Business</td>
<td>No</td>
<td>HI & IV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Sajo-Grassland</td>
<td>Brown Creek</td>
<td>Upland grass and grass dominated vegetation with a variety of forbs</td>
<td>No</td>
<td>Yes</td>
<td>Sajo-Grassland Charcoal Basin</td>
<td>No</td>
<td>No</td>
<td>GHMA</td>
<td>Yes</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parcel #</td>
<td>Field Office</td>
<td>Split Details</td>
<td>NR01 Class</td>
<td>Ripped Score</td>
<td>Potential Divisions</td>
<td>Super-Grazable Since 2013</td>
<td>Soils</td>
<td>Grazing Allotment</td>
<td>Vegetations</td>
<td>Sediment Controlling Areas</td>
<td>Mining Claims</td>
<td>Major Watershed Colorado/Great Salt Lake Basin</td>
<td>Special Management Areas</td>
<td>Potential for Drilling</td>
<td>Cultural Sites/ NHT</td>
<td>Paleo. FVC > 5%</td>
<td>Other Special Status Species (T&E, Candidate, Sensitive Species)</td>
<td>Colorado or Monuments Tract (CRCT/ BCT)</td>
<td>Big Game Crucial Winter Range (CWR)/Parturition</td>
<td>Unplugged Oil or Gas Well</td>
<td>Bold Eagle Road</td>
<td>Big Game Migration Route</td>
<td>Unplugged Oil Gas Well</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>224</td>
<td>BADO</td>
<td>NO</td>
<td>14</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>Colorado River</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>BADO</td>
<td>NO</td>
<td>15</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>Colorado River</td>
<td>NO</td>
<td>NO</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>GHMA</td>
<td>No</td>
<td>No</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parcel #</td>
<td>Field Office</td>
<td>Split Estate</td>
<td>VRTY Class</td>
<td>Riparian Areas</td>
<td>Sedges</td>
<td>Grazing Allelment</td>
<td>Vegetation</td>
<td>Agricultural Land Use</td>
<td>Major Watershed (Platte, Colorado, Great Divide, Volta)</td>
<td>Special Management Areas</td>
<td>Potential for Decks</td>
<td>Cultural Sites NRTH</td>
<td>Other Special Stature Species</td>
<td>Colorado River Baseline</td>
<td>Big Game Migration Routes</td>
<td>Unplugged Oil or Gas Wells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>RMCO</td>
<td>417 4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>RMCO</td>
<td>417 4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>BLDJ</td>
<td>80 8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>BLDJ</td>
<td>80 8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>RMCO</td>
<td>417 4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>RMCO</td>
<td>417 4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-1: Affected Environment

| Parcel | WV-12H | Field Office | Strip | VHRM Class | Riparian Asset | Permanent Divide | Slopes Calculated 2010 | Soils | Grazing Allotment | Vegetation | Sediment Control Grazing Areas | Major Waterbody Colorado/Great Basin (RTP/No) | Special Management Area | Potential for Drilling | Cultural Site NR? | Paleontological Finds | Rare Plants | Sodium Claims? | Other Special Status Species | Colorado or Remarshal Tract (T&D, Candidate, Sensitive Species) | Big Game Critical Winter Range (CRW/R) | Raptor Roost Site (Yes/No) | Big Game Migration Route | Unplugged Oil or Gas Well |
|--------|--------|-------------|------|------------|----------------|------------------|------------------------|------|------------------|------------|-------------------------|--------------------------|------------------------|------------------------|------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| 020 | RV05 | 02 | 04 | Alkali Creek | Yes | Moderate to deep sandy shales, well drained with potential gravelly soil cover by each cation, most susceptible to erosion, low precipitation from 7 to 9 inches annually. | Alkali Creek | Yes | Moderate to deep sandy shales, well drained with potential gravelly soil cover by each cation, most susceptible to erosion, low precipitation from 7 to 9 inches annually. | Specie: Umpqua lewisi | No/No | Colorado River | No/No | Yes/No | No/No | No/No | No/No | No/Yes | No/No | No/No | No/No | No/No |
| 020 | RV05 | 02 | 04 | Alkali Creek | Yes | Moderate to deep sandy shales, well drained with potential gravelly soil cover by each cation, most susceptible to erosion, low precipitation from 7 to 9 inches annually. | Lower Basin | Yes | Moderate to deep sandy shales, well drained with potential gravelly soil cover by each cation, most susceptible to erosion, low precipitation from 7 to 9 inches annually. | Specie: Umpqua lewisi | No/No | Colorado River | No/No | Yes/No | No/No | No/No | No/No | No/Yes | No/No | No/No | No/No | No/No |
| 020 | RV05 | 02 | 04 | Alkali Creek | Yes | Moderate to deep sandy shales, well drained with potential gravelly soil cover by each cation, most susceptible to erosion, low precipitation from 7 to 9 inches annually. | Lower Basin | Yes | Moderate to deep sandy shales, well drained with potential gravelly soil cover by each cation, most susceptible to erosion, low precipitation from 7 to 9 inches annually. | Specie: Umpqua lewisi | No/No | Colorado River | No/No | Yes/No | No/No | No/No | No/No | No/Yes | No/No | No/No | No/No | No/No |

Note: The data includes a mix of ternary and binary values, indicating different levels of occurrence or presence. The table provides a detailed overview of the environmental impacts and considerations for the parcel area.
| Parcel # | Field Office | Split Estate | VRBA Class | Riparian Areas | Perennial Plants | Slope Greater than 25% | Soil | Grazing Alinement | Vegetation | Hydrologic Land Use Area | Major Watershed (Platte/ Colorado/Grant Divide/ North Platte) | Special Management Areas | Potential Use Designations | Cultural Sites/NR | Public/PVC Class | Sagebrush/Grass Dominant Areas | Sagebrush/Grass Dominant areas (VSM/ Year/Net) | Sagebrush/Grass Dominant Grounds Classified Areas (In/Net) | Sagebrush/Grass Dominant Grounds Classified Areas (Yes/Net) | Other Special Status Species (AV/ T&K, Candidate, Sensitive Species) | Colorado/Nevada/California Categorical (No/Yes) | Big Game Crust/Water Range (Yes/No) | Habitat Improvement (Yes/No) | Road Rights-Boots | Big Game Migration Routes | Upzoned Other Uses |
|----------|--------------|--------------|------------|----------------|------------------|---------------------|------|------------------|------------|---------------------|---------------------------|---------------------|------------------------|----------------|----------------|------------------------|------------------------|-----------------------------|--------------------------|-------------------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 3-04 | Boise | No | No | Yes | Rock point | High | High | X | Sage/Big sage | Sagebrush dominants | No | No | No | Yes | No | No | No | No | No | No | No | No | No | No | No | No |
| 3-05 | RBO | No | No | No | Sage/Big sage | High | High | X | Sage/Big sage | Sagebrush dominants | Yes | Yes | Yes | Yes | Yes| No | Yes | Yes | Yes | Yes | Yes | No | No | No | No | No |
Table 3-1. Affected Environment

<table>
<thead>
<tr>
<th>Parcel #</th>
<th>WY-IM</th>
<th>Field Office</th>
<th>Applicant/Owner</th>
<th>VRM Class</th>
<th>Potential Dwellings</th>
<th>No. of Dwellings</th>
<th>No. of Dwellings Approved</th>
<th>Potential Grazing</th>
<th>Soil</th>
<th>Grazing Allowance</th>
<th>Vegetation</th>
<th>Significant Land-Use Activity</th>
<th>Potential Areas</th>
<th>Special Environmental Requirements</th>
<th>Limiting Climate</th>
<th>Cultural Sites</th>
<th>NRHP</th>
<th>Other Special Status</th>
<th>Colorado/Divide Watershed (Platte/Rocky)</th>
<th>Big Game Migration Route</th>
<th>Burrowing Owl Habitat</th>
<th>Other Special Statuses</th>
<th>Status Species</th>
<th>Other Special Statuses</th>
<th>Status Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>RSFO</td>
<td>WY</td>
<td>WY</td>
<td>27</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Riparian corridor (Yes/No)</td>
<td>No</td>
</tr>
<tr>
<td>313</td>
<td>RSFO</td>
<td>WY</td>
<td>WY</td>
<td>27</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Riparian corridor (Yes/No)</td>
<td>No</td>
</tr>
<tr>
<td>Parcel #</td>
<td>WV-</td>
<td>Field Office</td>
<td>Acreage</td>
<td>2012 Class</td>
<td>Resistant Acid</td>
<td>Potential Hydro</td>
<td>Slope Gradient than 25%</td>
<td>Soils</td>
<td>Grazing Allotment</td>
<td>Vegetation</td>
<td>Sediment Coal Looting Area</td>
<td>Major Watershed (Colorado/Great Basin/Basin)</td>
<td>Cultural Site NER</td>
<td>Potential for Drilling</td>
<td>Boulder</td>
<td>Oil &// Gas Leasing</td>
<td>Special Management Area</td>
<td>Soils</td>
<td>Sage-Grouse/Sharp-tailed Grouse Nesting Habitat (Yes/No)</td>
<td>Sage-Grouse/Sharp-tailed Grouse Habitat (Yes/No)</td>
<td>Sage-Grouse/Sharp-tailed Grouse Habitat (Yes/No)</td>
<td>Sage-Grouse/Sharp-tailed Grouse Habitat (Yes/No)</td>
<td>Other Special Status Species (T&I, Candidate, Sensitive Species)</td>
<td>Colorado or Bonneville Cutthroat Trout (CRCT/BCT)</td>
<td>Big Game Crucial Winter Range (CWR)/Parturition</td>
</tr>
<tr>
<td>033</td>
<td>KFO</td>
<td>Y</td>
<td>III</td>
<td>Y</td>
</tr>
<tr>
<td>034</td>
<td>KFO</td>
<td>Y</td>
<td>III</td>
<td>Y</td>
</tr>
<tr>
<td>035</td>
<td>KFO</td>
<td>Y</td>
<td>III, IV</td>
<td>Y</td>
</tr>
<tr>
<td>036</td>
<td>KFO</td>
<td>Y</td>
<td>III</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 3-1. Affected Environment

<p>| Parcel | Field Office | Acreage | 2012 Class | Resistant Acid | Potential Hydro | Slope Gradient than 25% | Soils | Grazing Allotment | Vegetation | Sediment Coal Looting Area | Major Watershed (Colorado/Great Basin/Basin) | Cultural Site NER | Potential for Drilling | Boulder | Oil &// Gas Leasing | Special Management Area | Soils | Sage-Grouse/Sharp-tailed Grouse Nesting Habitat (Yes/No) | Sage-Grouse/Sharp-tailed Grouse Habitat (Yes/No) | Sage-Grouse/Sharp-tailed Grouse Habitat (Yes/No) | Sage-Grouse/Sharp-tailed Grouse Habitat (Yes/No) | Other Special Status Species (T&I, Candidate, Sensitive Species) | Colorado or Bonneville Cutthroat Trout (CRCT/BCT) | Big Game Crucial Winter Range (CWR)/Parturition | Intermountain Uniting Oil or Gas Well | Unplugged Oil or Gas Well |</p>
<table>
<thead>
<tr>
<th>Parcel #</th>
<th>Field Office</th>
<th>Split Estates</th>
<th>VRML Class</th>
<th>Riparian Areas</th>
<th>Perennial Fowr</th>
<th>Slopes Greater Than 25%</th>
<th>Sods</th>
</tr>
</thead>
<tbody>
<tr>
<td>037</td>
<td>KFO</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>KFO</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 RESOURCE VALUES COMMON TO ALL PARCELS

3.2.1 Air Resources

In addition to the air quality information in the RMPs cited above, new information about greenhouse gases (GHGs) and their effects on national and global climate conditions has emerged since the RMPs were prepared and have subsequently been analyzed in the Wyoming ARMPA FEIS (2015). Ongoing scientific research has identified the potential impacts of GHG emissions such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O); water vapor; and several trace gases on global climate. Through complex interactions on a global scale, GHG emissions cause a net warming effect of the atmosphere, primarily by decreasing the amount of heat energy radiated by the earth back into space. Although GHG levels have varied for millennia (along with corresponding variations in climatic conditions), industrialization and burning of fossil carbon sources have caused GHG concentrations to increase measurably, and are believed to contribute to overall climatic changes, typically referred to as global warming or global cooling.

This EA incorporates an analysis of the contributions of the proposed action to GHG emissions and a general discussion of potential impacts to climate.

Air quality, climate, and visibility are the components of air resources which include applications, activities, and management of the air resource. The BLM must consider and analyze the potential effects of authorized activities on air resources as part of the planning and decision making process. The Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015) all address air quality issues, impacts, and potential mitigation. It is important to reiterate the offering and issuing leases is an administrative action, and the offering and the issuing of leases, in and of themselves, does not create air quality impacts.

3.2.1.1 Air Quality

See section 3.2 of the ARMPA FEIS for additional discussion of Air Quality and related.

Regional air quality is influenced by the interaction of meteorology, climate, the magnitude and spatial distribution of local and regional air pollutant sources (including natural sources), and chemical properties of emitted air pollutants. The following sections summarize the existing climate and air quality within the area potentially affected by the parcels under consideration for leasing.

A variety of pollutants can affect air quality; these pollutants and their effects on health, visibility, and ecology are described in the following sections, along with data on existing air quality conditions found within the Kemmerer, Pinedale, Rawlins, and Rock Springs Field Office areas.

Monitoring and enforcement air quality standards are administered by the Wyoming Department of Environmental Quality-Air Quality Division (WDEQ-AQD). Wyoming Ambient Air Quality Standards (WAAQS) and National Ambient Air Quality Standards (NAAQS) identify maximum limits for concentrations of criteria air pollutants at all locations to which the public has access. The WAAQS and NAAQS are legally enforceable standards. Concentrations above the WAAQS and NAAQS represent a risk to human health that, by law, require public safeguards be implemented. State standards must be at
least as protective of human health as federal standards, and may be more restrictive than federal standards, as allowed by the Clean Air Act (CAA). Currently, the WDEQ-AQD does not have regulations regarding greenhouse gas emissions, although these emissions are regulated indirectly by various other regulations.

Pollutant concentration can be defined as the mass of pollutant present in a volume of air and is reported in units of micrograms per cubic meter (μg/m³), parts per million (ppm), or parts per billion (ppb). The State of Wyoming has used monitoring and modeling to determine that the Rock Springs, Rawlins and Kemmerer Field Office areas are currently in compliance with Wyoming and federal concentration standards; whereas the Pinedale Field Office has experienced exceedances of the ozone standard. In addition, the Clean Air Status and Trends Network (CASTNet) and Wyoming Air Resources Monitoring System (WARMS) monitoring networks are operational. Data from these systems have been determined to be representative of the area. There are two monitoring sites within the Kemmerer Field Office; four within the Pinedale FO; two in the Rock Springs FO; and two in the Rawlins FO.

Criteria air pollutants are those for which national concentration standards have been established; pollutant concentrations greater than the established standards represent a risk to human health or welfare. Table 3-2 shows the Wyoming and national ambient air quality standards (WAAQS/NAAQS). Background concentrations are in compliance with applicable WAAQS/NAAQS.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>Ozone Design Value (ppb)</th>
<th>NAAQS (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Piney</td>
<td>56-035-0099</td>
<td>Sublette</td>
<td>--</td>
<td>65</td>
</tr>
<tr>
<td>Boulder</td>
<td>56-035-0099</td>
<td>Sublette</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Daniel South</td>
<td>56-035-0100</td>
<td>Sublette</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Juel Spring</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Pinedale</td>
<td>56-035-0101</td>
<td>Sublette</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Hiawatha</td>
<td>56-037-0077</td>
<td>Sweetwater</td>
<td>--</td>
<td>64</td>
</tr>
<tr>
<td>Moxa</td>
<td>56-037-0300</td>
<td>Sweetwater</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Wamsutter</td>
<td>56-037-0020</td>
<td>Sweetwater</td>
<td>64</td>
<td>63</td>
</tr>
<tr>
<td>South Pass</td>
<td>56-013-0099</td>
<td>Fremont</td>
<td>67</td>
<td>65</td>
</tr>
<tr>
<td>Murphy Ridge</td>
<td>56-041-0101</td>
<td>Uinta</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Source: REF 1018
NAAQS National Ambient Air Quality Standards
ppb parts per billion
3.1.1.1 Ozone

Ozone is formed in the lower atmosphere by a series of reactions involving sunlight and precursor emissions of NO\textsubscript{X} and VOCs. Ozone and its precursors can be transported both into and out of the analysis region.

The Upper Green River Basin has been designated as a marginal nonattainment area for ozone. The designated nonattainment area includes Sublette County and portions of Lincoln and Sweetwater counties. This designation was based on ozone data for 2008 through 2010, as well as an analysis of whether nearby areas contribute to the nonattainment issues. Compliance with the 8-hour ozone NAAQS is based on the ozone “design value,” which is defined as the 3-year average of the annual fourth-highest observed 8-hour average ozone concentration. An ozone design value is first calculated for each monitoring site within a given area. The area-wide ozone design value is then defined as the maximum over all sites within the area. If the design value exceeds the 8-hour ozone NAAQS of 70 parts per billion (ppb), the area is designated nonattainment.

Ozone is currently measured at 10 monitoring sites within southwestern Wyoming. All 10 sites have sufficient data to calculate one or more 3-year design values. Ozone design values for each of these sites, for three recent 3-year design value periods (2010–2012, 2011–2013, and 2012–2014), are listed in Table 3-3.

Table 3-3. Ozone Design Values for 2010–2012 through 2012–2014 for Ozone Monitoring Sites in Southwestern Wyoming Compared with the NAAQS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>Ozone Design Value (ppb)</th>
<th>NAAQS (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulder</td>
<td>56-035-0099</td>
<td>Sublette</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Daniel South</td>
<td>56-035-0100</td>
<td>Sublette</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Juel Spring</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Pinedale</td>
<td>56-035-0101</td>
<td>Sublette</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>Hiawatha</td>
<td>56-037-0077</td>
<td>Sweetwater</td>
<td>--</td>
<td>64</td>
</tr>
<tr>
<td>Moxa</td>
<td>56-037-0300</td>
<td>Sweetwater</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Wamsutter</td>
<td>56-037-0020</td>
<td>Sweetwater</td>
<td>64</td>
<td>63</td>
</tr>
<tr>
<td>South Pass</td>
<td>56-013-0099</td>
<td>Fremont</td>
<td>67</td>
<td>65</td>
</tr>
<tr>
<td>Murphy Ridge</td>
<td>56-041-0101</td>
<td>Uinta</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Source: REF 1018
NAAQS National Ambient Air Quality Standards
ppb parts per billion

The design values for the Boulder monitoring site for the 2010-2012 and 2011-2013 design value periods are greater than the 2015 NAAQS. For the 2012-2014 period, the values are much lower and are below the NAAQS for all sites. Figure 3-1 displays the fourth-highest 8-hour average ozone concentrations and Figure 3-2 displays the 8-hour ozone design values for the monitoring sites for all years with available data. As noted earlier, the fourth-highest 8-hour average ozone concentration for each year is used to calculate the design value and assess compliance with the ozone NAAQS.
Figure 3-1. Fourth Highest 8-Hour Average Ozone Concentration (parts per billion) for Monitoring Sites in Southwestern Wyoming

a) Sublette County Monitoring Sites

Data Source: REF 1018
Note: The NAAQS for 8-hour average ozone concentration is 70 ppb.
NAAQS National Ambient Air Quality Standards
ppb parts per billion
Figure 3-2. 8-Hour Ozone Design Values (parts per billion) for Monitoring Sites in Southwestern Wyoming

a) Sublette County Monitoring Sites

b) Sweetwater, Fremont, and Uinta Counties Monitoring Sites

Data Source: REF 1018
Note: The NAAQS for 8-hour average ozone concentration is 70 ppb.
NAAQS National Ambient Air Quality Standards
ppb parts per billion

The design values displayed in Figure 3-2 are based on three years of data. Overall, the data indicate a slight downward in trend design value for all sites.
Ozone Nonattainment Designation

On April 30, 2012, the EPA formally recognized Wyoming’s UGRB as an ozone nonattainment area with a marginal classification. As a result of the nonattainment designation, the BLM must comply with General Conformity regulations in 40 CFR 93 Subpart B and Chapter 8, Section 3 of the Wyoming Air Quality Standards and Regulations (WAQSR). Per these regulations, the BLM must demonstrate that new actions occurring within the nonattainment area will conform with the Wyoming State Implementation Plan (SIP) by demonstrating that they will not: (1) cause or contribute to a new violation of the ozone standard; (2) interfere with provisions in the SIP for maintenance of any standard; (3) increase the frequency or severity of any existing violation; or (4) delay timely attainment of any standard or any required interim emissions reductions or other milestone. The BLM must first conduct an applicability analysis to determine if this Federal action will require a conformity determination. A conformity determination must be completed for a Federal action if the total of direct and indirect emissions from the project exceed the *de minimis* levels specified in 40 CFR 93.153(b). For a marginal nonattainment area, the *de minimis* threshold is 100 tons/year of oxides of nitrogen (NO\textsubscript{x}) or VOCs (the precursor pollutants that form ozone in the atmosphere). Federal actions estimated to have an annual net emissions increase less than the *de minimis* levels are not required to demonstrate conformity under the General Conformity regulations.

In accordance with 40 CFR 93.153, the General Conformity requirement does not apply to actions where the emissions are not reasonably foreseeable such as lease sales made on a broad scale followed by exploration and development plans. There are no direct effects from the proposed oil and gas lease sale because it is primarily an administrative action that only conveys the mineral rights to the potential lessee. Subsequent development proposals by lease holders will require to submittal of plans for any exploration or development that may occur and a site specific EA would be prepared to identify mitigation measures necessary to avoid undue degradation to the environment prior to approval any development activities. General Conformity is addressed at the proposal stage when emission generating activities are reasonably foreseeable and can be quantified.

Sulfur Dioxide

SO\textsubscript{2} is currently measured at the Moxa Arch site (in Sweetwater County), which was established in 2010. The level of the 1-hour NAAQS for sulfur dioxide is 75 parts per billion (ppb). The design values (3-year average of the 99th percentile of the annual distribution of daily maximum 1-hour average concentrations) for 2011-2013 and 2012-2014 were 18 and 17 ppb, respectively. Based on these data, the Federal and state ambient air quality standards for SO\textsubscript{2} (as listed in Table 3-2) is met. Thus, SO\textsubscript{2} does not appear to be a pollutant of concern for the analysis area. Note, however, that SO\textsubscript{2} monitoring is limited to one site

3.1.1.2 **Nitrogen Dioxide**

NO\textsubscript{2} is currently measured at nine monitoring within the three-county area as well as two additional sites just outside of the area. Relevant NAAQS for NO\textsubscript{2} include (1) the 1-hour NO\textsubscript{2}
NAAQS, which requires the 3-year average of the 98th percentile daily maximum 1-hour NO₂ concentration to be less than 100 ppb; and (2) the annual NO₂ NAAQS, which requires the annual average NO₂ concentration to be less than 53 ppb. All nine sites have sufficient data to calculate one or more 3-year average 1-hour NO₂ values. One-hour NO₂ design values for each of these sites, for 2010–2012, 2011–2013, and 2012–2014, are listed in Table 3-4.

Table 3-4. Design Values for 2010–2012 through 2012–2014 for NO₂ Monitoring Sites in Southwestern Wyoming Compared with the NAAQS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>3-Year Average 98th Percentile 1-Hour NO₂ (ppb)</th>
<th>NAAQS (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Piney</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>Boulder</td>
<td>56-035-0099</td>
<td>Sublette</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>Daniel South</td>
<td>56-035-0100</td>
<td>Sublette</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Juel Spring</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Pinedale</td>
<td>56-035-0101</td>
<td>Sublette</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Moxa</td>
<td>56-037-0300</td>
<td>Sweetwater</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Wamsutter</td>
<td>56-037-0020</td>
<td>Sweetwater</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>South Pass</td>
<td>56-013-0099</td>
<td>Fremont</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Murphy Ridge</td>
<td>56-041-0101</td>
<td>Uinta</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

Source: REF 1018
NAAQS National Ambient Air Quality Standards
NO₂ nitrogen dioxide
ppb parts per billion

The highest design values occur at the Boulder, Pinedale, Moxa and Wamsutter monitoring sites. The design values are consistent across the three multi-year periods, and none of the design values exceed the 1-hour NO₂ NAAQS. The data also indicate compliance with the annual NO₂ NAAQS. Figure 3-5 displays the 1-hour NO₂ design values for the ozone monitoring sites for all years with available data. As noted earlier, the 98th percentile (or eighth-highest) daily maximum 1-hour NO₂ concentration for each year is used to calculate the design value for each site and assess compliance with the NAAQS.
Figure 3-3. 1-Hour NO$_2$ Design Values (parts per billion) for Monitoring Sites in Southwestern Wyoming

a) Sublette County Monitoring Sites

b) Sweetwater, Fremont, and Uinta Counties Monitoring Sites

Data Source: REF 1018

Note: The NAAQS for 1-hour NO$_2$ concentration is 100 ppb.

NAAQS National Ambient Air Quality Standards
NO$_2$ nitrogen dioxide
ppb parts per billion
The design values displayed in Figure 3-3 are based on three years of data. Overall, the data indicate a downward trend most sites. The downward trends for all but the Boulder site are statistically significant.

3.1.1.3 **Sulfur Dioxide**

SO₂ is currently measured at the Moxa site (in Sweetwater County). This site was established in 2010. The 99th percentile daily maximum 1-hour SO₂ values are 21, 17, 16, 20 and 16 ppb for 2010 through 2014. The corresponding SO₂ design values are 18, 17 and 17 ppb for 2010–2012, 2011–2013 and 2012-2014, respectively, as listed in Table 3-5. The 1-hour SO₂ NAAQS sets a limit of 75 ppb for the 3-year average of the 99th percentile daily maximum 1-hour value. Therefore, the SO₂ design values are well below the NAAQS and SO₂ is not a pollutant of concern for the region. Note, however, that SO₂ monitoring is limited to one site.

Table 3-5. Three-Year Average 99th Percentile Daily Maximum 1-Hour SO₂ Values for 2010–2012 through 2012-2014 for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>3-Year Average 99th Percentile 1-Hour SO₂ (ppb)</th>
<th>NAAQS (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moxa</td>
<td>56-037-0300</td>
<td>Sweetwater</td>
<td>18 17 17</td>
<td>75</td>
</tr>
</tbody>
</table>

Source: REF 1018
NAAQS National Ambient Air Quality Standards
ppb parts per billion
SO₂ sulfur dioxide

3.1.1.4 **Carbon Monoxide**

CO is not routinely monitored within the region. CO was measured at the Murphy Ridge site (in Uinta County) during 2008. Based on these measurements, the daily maximum 1-hour CO value was 870 ppb (0.87 parts per million [ppm]) and the daily maximum 8-hour average CO value was 690 ppb (0.69 ppm). These values are well below the NAAQS limits of 35,000 and 9,000 ppb (35 and 9 ppm), respectively. Therefore, CO does not appear to be a pollutant of concern for the region. Note, however, that CO monitoring is limited to one site.

The 2011 National Emission Inventory indicates that CO emissions in the region are primarily from area (mostly oil and gas–related) and on-road mobile sources. CO concentrations are expected to be greatest near human-made CO sources such as oil and gas development areas, population centers, and roadways, but CO is not a primary air quality concern for the region.

3.1.1.5 **Lead**

Lead is not routinely monitored and is not a primary air quality concern for the region.
3.1.1.6 Particulate Matter

PM$_{10}$ and PM$_{2.5}$ are pollutants of concern within the region. At the regional scale, it is expected that fugitive dust sources are the dominant contributors to PM$_{10}$ and PM$_{2.5}$ concentrations. Fugitive dust is likely to occur naturally across the region, especially during high-wind events. Post-burn vegetative conditions associated with wildfires are also sources of fugitive dust. At the local level, concentrations are expected to be highest near towns, unpaved roads that experience high volumes of traffic, areas with depleted vegetative cover, and areas downwind of human-made sources of precursor emissions such as SO$_2$ and NO$_2$ that may react to form secondary PM$_{2.5}$.

Recent PM$_{10}$ data are available for seven monitoring sites within the region. Under the PM$_{10}$ NAAQS, the maximum 24-hour average PM$_{10}$ concentration cannot exceed 150 micrograms per cubic meter (µg/m3) more than once per year on average over 3 years. Wyoming DEQ also requires the annual PM$_{10}$ concentration to be less than 50 µg/m3. Maximum 24-hour PM$_{10}$ concentrations for monitoring sites within the area are listed in Table 3-6.

Table 3-6. Maximum 24-Hour PM$_{10}$ Concentrations for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>Maximum 24-Hour Average PM$_{10}$ (µg/m3)</th>
<th>NAAQS (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>Big Piney</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>190</td>
<td>59</td>
</tr>
<tr>
<td>Boulder</td>
<td>56-035-0099</td>
<td>Sublette</td>
<td>68</td>
<td>41</td>
</tr>
<tr>
<td>Daniel</td>
<td>56-035-0100</td>
<td>Sublette</td>
<td>72</td>
<td>41</td>
</tr>
<tr>
<td>Moxa</td>
<td>56-037-0300</td>
<td>Sweetwater</td>
<td>152</td>
<td>79</td>
</tr>
<tr>
<td>Wamsutter</td>
<td>56-037-0020</td>
<td>Sweetwater</td>
<td>72</td>
<td>193</td>
</tr>
<tr>
<td>South Pass</td>
<td>56-013-0099</td>
<td>Fremont</td>
<td>49</td>
<td>34</td>
</tr>
<tr>
<td>Murphy Ridge</td>
<td>56-041-0101</td>
<td>Uinta</td>
<td>53</td>
<td>43</td>
</tr>
</tbody>
</table>

Source: REF 1018

NAAQS National Ambient Air Quality Standards
PM$_{10}$ particulate matter less than 10 microns in diameter
µg/m3 micrograms per cubic meter

PM$_{10}$ concentrations exceeded 150 µg/m3 for 1 of the 3 periods at the Big Piney, Moxa, and Wamsutter sites. Therefore, while there are no violations of the PM$_{10}$ NAAQS, PM$_{10}$ is an air quality concern for the region. Figure 3-4 displays the maximum 24-hour PM$_{10}$ concentration for these sites for all years with available data.
Figure 3-4. Maximum 24-Hour PM$_{10}$ Design Values (micrograms per cubic meter) for Monitoring Sites in Southwestern Wyoming

a) Sublette County Monitoring Sites

b) Sweetwater, Fremont, and Uinta Counties Monitoring Sites

Source: REF 1018
Note: The NAAQS for 24-hour PM$_{10}$ is 150 µg/m3.
µg/m3 micrograms per cubic meter
NAAQS National Ambient Air Quality Standards
PM$_{10}$ particulate matter 10 microns or less in diameter

The data indicate no discernible trend in maximum 24-hour PM$_{10}$ for any of the sites. None of the trends are statistically significant.
Recent PM$_{2.5}$ data are available for two monitoring sites within the region. The NAAQS for PM$_{2.5}$ include (1) the 24-hour PM$_{2.5}$ NAAQS, which requires the 3-year average of the 98th percentile 24-hour average PM$_{2.5}$ concentration to be less than 35 µg/m3; and (2) the annual PM$_{2.5}$ NAAQS, which requires the 3-year average of the annual average PM$_{2.5}$ concentration to be less than 12 µg/m3. The 24-hour PM$_{2.5}$ design values are listed in Table 3-7 and the annual PM$_{2.5}$ design values are listed in Table 3-8.

Table 3-7. 24-Hour PM$_{2.5}$ Design Values for 2010–2012 through 2012–2014 for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>3-Year Average 98th Percentile 24-Hour PM$_{2.5}$ (µg/m3)</th>
<th>NAAQS (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Piney</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>23.3 -- 17.3 --</td>
<td>35</td>
</tr>
<tr>
<td>Pinedale</td>
<td>56-035-0101</td>
<td>Sublette</td>
<td>16.0 -- 17.3 --</td>
<td>35</td>
</tr>
</tbody>
</table>

Source: REF 1018

NAAQS National Ambient Air Quality Standards
PM$_{2.5}$ particulate matter less than 2.5 microns in diameter
µg/m3 micrograms per cubic meter

The 24-hour PM$_{2.5}$ design values are below the NAAQS for both sites.

Table 3-8. Annual PM$_{2.5}$ Design Values for 2010–2012 through 2012–2014 for Monitoring Sites in Southwestern Wyoming Compared with the NAAQS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>ID</th>
<th>County</th>
<th>3-Year Average 98th Percentile 24-Hour PM$_{2.5}$ (µg/m3)</th>
<th>NAAQS (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Piney</td>
<td>56-035-0700</td>
<td>Sublette</td>
<td>4.3 -- 5.6 --</td>
<td>12</td>
</tr>
<tr>
<td>Pinedale</td>
<td>56-035-0101</td>
<td>Sublette</td>
<td>5.1 5.6 5.8</td>
<td>12</td>
</tr>
</tbody>
</table>

Source: REF 1018

NAAQS National Ambient Air Quality Standards
PM$_{2.5}$ particulate matter less than 2.5 microns in diameter
µg/m3 micrograms per cubic meter

The annual PM$_{2.5}$ design values are also below the NAAQS for both sites. Figure 3-5 displays the 24-hour PM$_{2.5}$ design value and Figure 3-6 displays the annual average concentration for each 3-year period with available data. The design values are based on 3 years of data.
Figure 3-5. 24-Hour PM$_{2.5}$ Design Values (micrograms per cubic meter) for Monitoring Sites in Southwestern Wyoming

Source: REF 1018
Note: The NAAQS for 24-hour PM$_{2.5}$ is 35 µg/m3.
µg/m3 micrograms per cubic meter
NAAQS National Ambient Air Quality Standards
PM$_{2.5}$ particulate matter 2.5 microns or less in diameter

Figure 3-6. Annual Average PM$_{2.5}$ Design Values (micrograms per cubic meter) for Monitoring Sites in Southwestern Wyoming

Source: REF 1018
Note: The NAAQS for annual average PM$_{2.5}$ is 12 µg/m3.
µg/m3 micrograms per cubic meter
NAAQS National Ambient Air Quality Standards
PM$_{2.5}$ particulate matter 2.5 microns or less in diameter
For both the 24-hour and annual metrics, the data indicate a slight upward trend in PM$_{2.5}$ for the Pinedale site.

3.1.1.7 Visibility

The regional haze rule promulgated by EPA in 1999 requires states to establish Reasonable Progress Goals for improving visibility with the overall goal of attaining natural visibility conditions for Class I areas by 2064. Table 3-9 compares visibility in deciviews for the two IMPROVE monitoring sites in Sublette County for 2014 with the natural visibility conditions established by EPA for the Bridger Wilderness Area. The 2014 data indicate that natural background goals are achieved for the 20 percent best days for both sites. However, the deciview values for the 20 percent worst days and for all days are greater than natural background.

Table 3-9. Summary of Visibility Conditions (deciviews) for 2014 for IMPROVE Sites in Southwestern Wyoming Compared with Natural Visibility Conditions

<table>
<thead>
<tr>
<th>Site</th>
<th>20% Best Days (dv)</th>
<th>20% Worst Days (dv)</th>
<th>All Days (dv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMPROVE</td>
<td>Natural</td>
<td>IMPROVE</td>
</tr>
<tr>
<td>Bridger Wilderness (BRID1)</td>
<td>1.1</td>
<td>2.0</td>
<td>9.4</td>
</tr>
<tr>
<td>Boulder Lake (BOLA1)</td>
<td>1.4</td>
<td>2.0</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Sources: REF 1014; REF 1019

% percent
dv deciviews

IMPROVE Interagency Monitoring of Protected Visual Environments

Figure 3-7 and Figure 3-8 display annual average visibility in deciviews for the 20 percent best days, 20 percent worst days, and all days for each year during the period from 2005 to 2014 for the Bridger Wilderness Area IMPROVE site and for 2010 to 2014 for the Boulder Lake IMPROVE site.
Figure 3-7. Annual Average Visibility (deciviews) for the Bridger Wilderness IMPROVE Site

Source: REF 1014
% percent
IMPROVE Interagency Monitoring of Protected Visual Environments

Figure 3-8. Annual Average Visibility (deciviews) for the Boulder Lake IMPROVE Site

Source: REF 1014
% percent
IMPROVE Interagency Monitoring of Protected Visual Environments
The data for Bridger Wilderness indicate a slight downward trend (improved visibility) for the 20 percent best days during the 2002–2014 period. Only the trend for the 20 percent best days is statistically significant. For the other two categories of days, the data are quite variable and it is difficult to distinguish a trend. Visibility for 2012 is especially poor, compared with that of most other years, likely because of wildfires that occurred in several surrounding states in 2012.

Data collection for Boulder Lake began in mid-2009. The data for 2010 through 2014 show no apparent trend in visibility for any of the categories of days. There is an increase in deciviews (poorer visibility) for 2012, compared with that for the other years.

3.1.1.8 Hazardous Air Pollutants

Many VOCs are HAPs and are associated with human-made sources. The 2011 National Emission Inventory and 2008 and later Wyoming DEQ emissions inventories indicate that VOC emissions within the region are primarily from area sources associated with oil and gas development activities. Therefore, HAP concentrations are expected to be greatest near oil and gas development sources and are a potential air quality concern for the region.

HAPs are not routinely monitored within the region. However, Wyoming DEQ conducted HAP monitoring for several sites from February 2009 until March 2010. Table 3-10 summarizes observed HAP concentrations for the Boulder, Daniel South, and Pinedale monitoring sites. Measurements were taken every six days and the values represent averages for the entire monitoring period.

Table 3-10. Example HAP Concentrations (micrograms per cubic meter) for Sublette County, Wyoming

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Benzene</th>
<th>Ethylbenzene</th>
<th>Formaldehyde</th>
<th>Hexane</th>
<th>Toluene</th>
<th>Xylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulder</td>
<td>2.12</td>
<td>0.77</td>
<td>0.99</td>
<td>1.29</td>
<td>6.42</td>
<td>4.46</td>
</tr>
<tr>
<td>Daniel South</td>
<td>1.25</td>
<td>0.52</td>
<td>1.37</td>
<td>0.81</td>
<td>4.30</td>
<td>2.76</td>
</tr>
<tr>
<td>Pinedale</td>
<td>2.13</td>
<td>1.00</td>
<td>1.59</td>
<td>1.47</td>
<td>6.50</td>
<td>6.38</td>
</tr>
</tbody>
</table>

Source: REF 1020

µg/m³ micrograms per cubic meter

3.1.1.9 Deposition and Lake Chemistry

Sulfur and nitrogen compounds that can be deposited on terrestrial and aquatic ecosystems include nitric acid (HNO3), nitrate (NO3−), ammonium (NH4+), and sulfate (SO4−). Nitric acid (HNO3) and nitrate (NO3−) are not emitted directly into the air, but form in the atmosphere from industrial and automotive emissions of nitrogen oxides (NOx); and sulfate (SO4−) is formed in the atmosphere from industrial emission of sulfur dioxide (SO2). Deposition of HNO3, NO3− and SO4− can adversely affect plant growth, soil chemistry, lichens, aquatic environments, and petroglyphs (ancient carvings and/or engravings on rock surfaces). Ammonium (NH4+) is volatilized from animal feedlots and from soils following fertilization of crops.
Atmospheric deposition is measured at one NADP site (wet deposition) and one CASTNet site (dry deposition) in Pinedale (Sublette County) and two NADP sites in Fremont County. Wet deposition is characterized by the concentration of nitrate ion (NO_3^-), sulfate ion (SO_4^{2-}), and ammonium ion in precipitation samples. Figure 3-9 through Figure 3-1 display annual average concentration data for nitrate, sulfate, and ammonium ions from precipitation samples for each year during the period from 2005 to 2014 for the NADP sites. For each year, the data represent the average concentration based on all sampling periods. Units are milligrams per liter (mg/L).

Figure 3-9. Annual Average Concentration in Wet Deposition (milligrams per liter) for NADP Monitoring Sites at Pinedale, South Pass, and Sink’s Canyon: Nitrate Ion Concentration

Source: REF 1014

mg/L: milligrams per liter
NADP: National Atmospheric Deposition Program
NO_3^-: nitrate ion
Figure 3-10. Annual Average Concentration in Wet Deposition (milligrams per liter) for NADP Monitoring Sites at Pinedale, South Pass, and Sink’s Canyon: Sulfate Ion Concentration

![Graph showing annual average concentration of sulfate ion from 2005 to 2014 for Pinedale, South Pass, and Sink’s Canyon.]

Source: REF 1014

g/L milligrams per liter
NADP National Atmospheric Deposition Program
SO₄²⁻ sulfate ion

Figure 3-11. Annual Average Concentration in Wet Deposition (milligrams per liter) for NADP Monitoring Sites at Pinedale, South Pass, and Sink’s Canyon: Ammonium Ion Concentration

![Graph showing annual average concentration of ammonium ion from 2005 to 2014 for Pinedale, South Pass, and Sink’s Canyon.]

Source: REF 1014

g/L milligrams per liter
NADP National Atmospheric Deposition Program
The data indicate a decrease over time for nitrate and sulfate ions for all three sites in precipitation samples during this period. There is no discernible trend in ammonium ions. For Pinedale and Sink’s Canyon, the downward trends are statistically significant for nitrate and sulfate. For South Pass, the downward trend is statistically significant for sulfate. Figure 3-2 through Figure 3-4 display annual average concentration data for nitrate, sulfate, and ammonium ions for each year during the period from 2005 to 2014 for the Pinedale CASTNet site. The concentration measurements are used to estimate dry deposition. For each year, the data represent the average concentration based on all sampling periods. Units are µg/m³.

Figure 3-12. Annual Average Concentration (micrograms per cubic meter) for the CASTNet Monitoring Site at Pinedale: Nitrate Ion Concentration

Source: REF 1014

µg/m³: micrograms per cubic meter
CASTNet: Clean Air Status and Trends Network
NO₃⁻: nitrate ion
Figure 3-13. Annual Average Concentration (micrograms per cubic meter) for the CASTNet Monitoring Site at Pinedale: Sulfate Ion Concentration

Source: REF 1014
µg/m³ micrograms per cubic meter
CASTNet Clean Air Status and Trends Network
SO₄²⁻ sulfate ion

Figure 3-14. Annual Average Concentration (micrograms per cubic meter) for the CASTNet Monitoring Site at Pinedale: Ammonium Ion Concentration

Source: REF 1014
µg/m³ micrograms per cubic meter
CASTNet Clean Air Status and Trends Network
The concentration data that are used to estimate dry deposition indicate a decrease over time for all three pollutant species in air samples taken during this period. The downward trend is slight for NO$_3^-$ and ammonium ions and is more pronounced (and statistically significant) for the SO$_4^{2-}$ concentrations.

Seven lakes have been identified as being acid sensitive. Applicable thresholds for the assessment of changes in acid neutralizing capacity (ANC) of sensitive lakes include: 10 percent change in ANC for lakes with background ANC values greater than 25 micro equivalents per liter [µeq/L], and less than a 1 µeq/L change in ANC for lakes with background ANC values equal to or less than 25 µeq/L.

Available ANC values for each of the nearest sensitive lakes are provided in Table 3-11, along with the number of samples used in the calculation of the 10th percentile lowest ANC values. Of the seven lakes listed in Table 3-11, only Upper Frozen Lake is considered to be extremely sensitive to atmospheric deposition by the USFS since the background ANC is less than 25 µeq/L.

Table 3-11. Background ANC Values for Acid Sensitive Lakes

<table>
<thead>
<tr>
<th>Wilderness Area</th>
<th>Lake</th>
<th>Latitude (Deg, Min, Sec)</th>
<th>Longitude (Deg, Min, Sec)</th>
<th>10th Percentile Lowest ANC Value (µeq/L)</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridger</td>
<td>Deep</td>
<td>42°43'10"</td>
<td>109°10'15"</td>
<td>57.7</td>
<td>68</td>
</tr>
<tr>
<td>Bridger</td>
<td>Black Joe</td>
<td>42°44'22"</td>
<td>109°10'16"</td>
<td>62.6</td>
<td>78</td>
</tr>
<tr>
<td>Bridger</td>
<td>Lazy Boy</td>
<td>43°19'57"</td>
<td>109°43'47"</td>
<td>9.1</td>
<td>5</td>
</tr>
<tr>
<td>Bridger</td>
<td>Upper Frozen</td>
<td>42°41'13"</td>
<td>109°09'39"</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>Bridger</td>
<td>Hobbs</td>
<td>43°02'08"</td>
<td>109°40'20"</td>
<td>69.9</td>
<td>80</td>
</tr>
<tr>
<td>Fitzpatrick</td>
<td>Ross</td>
<td>43°23'35"</td>
<td>109°39'29"</td>
<td>53.0</td>
<td>61</td>
</tr>
<tr>
<td>Popo Agie</td>
<td>Lower Saddlebag</td>
<td>42°37'24"</td>
<td>108°59'42"</td>
<td>54.6</td>
<td>64</td>
</tr>
</tbody>
</table>

Source: Views (2014b)/ANC Acid Neutralizing Capacity

Deg Degree
Min Minute
Sec Second
µeq/l Microequivalent per liter

3.2.1.3 Climate and Climate Change and Greenhouse Gasses

The Kemmerer, Pinedale, Rock Springs and Rawlins field offices are located in a semi-arid, midcontinental climate regime typified by dry, windy conditions, limited rainfall, and long, cold winters (Trewatha and Horn 1980). Table 3-10 summarizes climate components in the area based on data
collected at several long-term meteorological stations located in and near the Kemmerer, Pinedale, Rock Springs, and Rawlins field office areas.

Table 3-10. Summary of Climate

<table>
<thead>
<tr>
<th>Wyoming Meteorological Station</th>
<th>Description</th>
</tr>
</thead>
</table>
| Kemmerer Water Treatment Station 1902 - 2011 | Mean maximum temperature: 54 °F
Mean minimum temperature: 24 °F
Mean annual precipitation: 9.45 inches
Mean annual snow depth: 2 inches
Mean annual snowfall: 50.6 inches |
| Rock Springs FAA Airport 1948-2012 | Mean maximum temperature: 55 °F
Mean minimum temperature: 31 °F
Mean annual precipitation: 8.68 inches
Mean annual snow depth: 1 inch
Mean annual snowfall: 43.6 inches |
| LaBarge 1958-2012 | Mean maximum temperature: 56 °F
Mean minimum temperature: 22 °F
Mean annual precipitation: 7.96 inches
Mean annual snow depth: 1 inch
Mean annual snowfall: 31.9 inches |
| Rawlins FAA Airport 1951-2012 | Mean maximum temperature: 55 °F
Mean minimum temperature: 30 °F
Mean annual precipitation: 9.04 inches
Mean annual snow depth: 1 inches
Mean annual snowfall: 51.9 inches |

Source: (Western Regional Climate Center 2012)

The region is subject to strong, gusty winds that are often accompanied by snow and blizzard conditions during the winter. Winds frequently originate from the west to northwest, and the mean annual wind speed is 9 miles per hour but can have sustained winds greater than 40 miles per hours.

Wind strength and frequency affects dispersion of noises, odors, and transport of dust and other airborne elements. Therefore, the region’s strong winds increase the potential for atmospheric dispersion of pollutants.

Climate change refers to any significant change in measures of climate (e.g., temperature or precipitation) lasting for an extended period (decades or longer). Global mean surface temperatures have increased nearly 1.8°F from 1890 to 2006. Models indicate that average temperature changes are likely to be greater in the Northern Hemisphere. Northern latitudes (above 24°N) have exhibited temperature increases of nearly 2.1°F since 1900, with nearly a 1.8°F increase since 1970 alone. Temperature in western Wyoming is expected to increase by 0.25 to 0.40 degrees Fahrenheit per decade while temperatures in surrounding locations in Utah, Wyoming, and Colorado are expected to increase by 0.40 to 1.2 degrees Fahrenheit per decade with the largest decrease expected in southwestern Wyoming (Figure 3-11). Precipitation across western Wyoming is expected to decrease by 0.1 to 0.6 inches per decade with the largest decrease expected in southwestern Wyoming Climate change may result from
natural processes, such as changes in the sun’s intensity; natural processes within the climate system (such as changes in ocean circulation); human activities that change the atmosphere’s composition (such as burning fossil fuels) and the land surface (such as urbanization) (IPCC 2007). Several activities that occur in the Kemmerer, Pinedale, Rock Springs and Rawlins Field Office areas contribute to the phenomena of climate change, including large wildfires and activities using combustion engines; changes to the natural carbon cycle; changes to radioactive forces and reflectivity (albedo); and emissions of greenhouse gases (GHGs), especially carbon dioxide and methane, from fossil fuel development.

Greenhouse gases are composed of molecules that absorb and reradiate infrared electromagnetic radiation. When present in the atmosphere the gas contributes to the greenhouse effect. Some GHGs such as carbon dioxide occur naturally and are emitted to the atmosphere through natural processes and human activities. Other GHGs (e.g., fluorinated gases) are created and emitted solely through human activities. The primary GHGs that enter the atmosphere as a result of anthropogenic activities include carbon dioxide (CO$_2$), methane (CH$_4$), nitrous oxide (N$_2$O), and fluorinated gases such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. Fluorinated gases are powerful GHGs that are emitted from a variety of industrial processes including production of refrigeration/cooling systems, foams and aerosols. Fluorinated gases are not primary to the activities authorized by the BLM and will not be discussed further in this document.

The Center for Climate Strategies (CCS) prepared the Wyoming Greenhouse Gas Inventory and Reference Case Projection 1990-2020 (Inventory) for the WDEQ through an effort of the Western Regional Air Partnership (WRAP). This inventory report presents a preliminary draft greenhouse gas (GHG) emissions inventory and forecast from 1990 to 2020 for Wyoming. This report provides an initial comprehensive understanding of Wyoming’s current and possible future GHG emissions. The information presented provides the state with a starting point for revising the initial estimates as improvements to data sources and assumptions are identified.

The CCS inventory report discloses that activities in Wyoming accounted for approximately 56 million metric tons (MMt) of gross carbon dioxide equivalent (CO$_2$e) emissions in 2005, an amount equal to 0.8% of total U.S. gross GHG emissions. These emission estimates focus on activities in Wyoming and are consumption-based; they exclude emissions associated with electricity that is exported from the state. Wyoming’s gross GHG emissions increased 25% from 1990 to 2005, while national emissions rose by only 16% from 1990 to 2004. Annual sequestration (removal) of GHG emissions due to forestry and other land-uses in Wyoming are estimated at 36 MMtCO2e in 2005. Wyoming’s per capita emission rate is more than four times greater than the national average of 25 MtCO2e/yr. This large difference between national and state per capita emissions occurs in most of the sectors – Wyoming’s emission per capita significantly exceed national emissions per capita for the following sectors: electricity, industrial, fossil fuel production, transportation, industrial process and agriculture. The reasons for the higher per capita intensity in Wyoming are varied but include the state’s strong fossil fuel production industry and other industries with high fossil fuel consumption intensity, large agriculture industry, large distances, and low population base. Between 1990 and 2005, per capita emissions in Wyoming have increased, mostly due to increased activity in the fossil fuel industry, while national per capita emissions have changed relatively little.
Ongoing scientific research has identified the potential impacts of anthropogenic GHG emissions and changes in biological sequestration due to land management activities on global climate. Through complex interactions on a regional and global scale, these GHG emissions and net losses of biological carbon sinks cause a net warming effect of the atmosphere, primarily by decreasing the amount of heat energy radiated by the earth back into space. Although GHG levels have varied for millennia, recent industrialization and burning of fossil carbon sources have caused carbon dioxide equivalent (CO$_2$e) concentrations to increase, and are likely to contribute to overall global climatic changes. The Intergovernmental Panel on Climate Change (IPCC) recently concluded that “warming of the climate system is unequivocal” and “it is extremely likely that more than half of the observed increase in global average surface temperature from 1951 to 2010 was caused by the anthropogenic increase in GHG concentrations and other anthropogenic forcings together” (IPCC 2014).

It is important to note that GHGs will have a sustained climatic impact over different temporal scales and it is theorized that recent emissions of carbon dioxide can influence climate for 100 years. In contrast, black carbon is a relatively short-lived pollutant, as it remains in the atmosphere for only about a week. It is estimated that black carbon is the second greatest contributor to global climate change behind CO$_2$ (Ramanathan and Carmichael 2008). Without additional meteorological monitoring systems, it is difficult to determine the spatial and temporal variability and change of climatic conditions, but increasing concentrations of GHGs are likely to accelerate the rate of climate change.
Figure 3-11. Long-term Temperature (top) and Precipitation (bottom) Trends in the United States from NOAA Climate Prediction Center

(http://www.cpc.noaa.gov)
Some authorized activities within the Kemmerer, Pinedale, Rock Springs and Rawlins field offices generate GHG emissions. Oil and gas development activities can generate CO₂ and NH₄ (during processing). Carbon dioxide emissions result from the use of combustion engines for OHV and other recreational activities. Wildland fires also are a source of CO₂ and other GHG emissions, and livestock grazing is a potential source of methane. Other activities in the Kemmerer, Pinedale, Rock Springs and Rawlins Field Office areas with the potential to contribute to climate change include soil erosion from disturbed areas and fugitive dust from roads, which have the potential to darken snow-covered surfaces and cause faster snow melt. A description of the potential GHG emissions associated with the parcels proposed for leasing is included in Section 4.

3.2.2 Wildlife and Special Status Species (Plants and Animals)

Wildlife and other Special Status Species resources associated with each parcel/partial parcel available to offer for leasing are presented in Table 3-1.

Crucial winter range is a key requirement for the health and survival of big game herds. The availability of good winter range where big game can find shelter and adequate food means all the difference between strong populations or a herd weakened by starvation and at increased risk for disease and predation. Parturition or birthing areas are locations where hiding cover provides shelter and forage for nursing mothers and their young. The Wyoming Game and Fish Department (WGFD) defines these two types of important wildlife; crucial winter range (CWR) and parturition range (PR). Disturbance of animals on CWR and PR by people and motor vehicles and the loss of CWR and PR from development can heavily impact big game animals during these times.

Migratory birds are those that migrate for the purpose of breeding and foraging at some point in the year. According to Instruction Memorandum No. 2008-050, the BLM must include migratory birds in every NEPA analysis of actions that may have the potential to affect them, in order to fulfill its obligations under the Migratory Bird Treaty Act.

Raptors include eagles, hawks, owls, falcons, and vultures. Twenty seven species of raptors are known or have the potential to occur within the High Desert District. Nine of the 10 raptor species breed in Wyoming; the remaining species—the rough-legged hawk—is a winter resident. Four of the owl species are year-round residents in the state, while the snowy owl is a winter resident only. Raptors can be found collectively in all vegetative types.

Studies conducted for the Greater Sage-Grouse (Holloran 2005), for pronghorn (Berger et al. 2008), and for mule deer (Sawyer et al. 2010) demonstrate that intense oil and gas development such as that occurring on the Jonah and Pinedale Anticline Project areas can negatively affect these species and impact their use of crucial habitats in close proximity to the development, as well as migration corridors (Sawyer et al. 2010). It is not possible to determine or even reasonably project at the leasing stage whether an individual parcel will be sold; and if a lease is subsequently issued whether it will be developed, or what the intensity level of that development may be. Using oil & gas reasonable foreseeable development (RFD) scenarios, the EISs for the Kemmerer, Pinedale, Green River, and Rawlins RMPs, as amended (2015) evaluated affects to sage grouse, big game crucial winter and
parturition ranges, including overlapping winter ranges of multiple species, and concluded that areas containing the parcels addressed in this EA would be satisfactorily mitigated through the required stipulations. Table 3-1 identifies parcels with Big Game Crucial Winter Range and Big Game Migration Corridors that have been identified.

3.2.2.1 Special Status Species
Section 7 of the Endangered Species Act (ESA) of 1973, as amended, requires that BLM land managers ensure that any action authorized, funded, or carried out by the BLM is not likely to jeopardize the continued existence of any Federally Designated Threatened or Endangered (T&E) species. The BLM Special Status Species Policy outlined in BLM Manual 6840 (transmitted under IM WO 2009-039) and IM WY-2010-027 is to conserve listed species and the ecosystems on which they depend, while ensuring that actions authorized or carried out by the BLM are consistent with the conservation needs of special status species and minimize the likelihood and need for federal listing under the ESA. The BLM policy is to promote conservation and survival of those BLM designated species that are rare or uncommon, either because they are restricted to specific uncommon habitat or because they may be in jeopardy due to human or other actions.

By BLM policy, species proposed for federal listing shall be conferenced over with the FWS where BLM actions are determined “may affect, likely to adversely affect.” BLM policy also provides that it is not necessary to consult or conference for federal candidate or Bureau sensitive species. However, States or offices may wish to seek technical assistance from the FWS when it is determined to be advantageous to a species’ conservation or BLM management options.

Other management direction is based on Kemmer, Rawlins, Pinedale and Green River RMP management objectives, activity level plans, and other aquatic habitat and fisheries management direction, including 50 CFR 17, the Land Use Planning Handbook, Appendix C, Part E, Fish and Wildlife.

BLM is responsible for managing sensitive plants species on the Wyoming State Director’s Sensitive Species List. Plant species are listed on the BLM Wyoming State Director’s Sensitive Species List http://www.blm.gov/wy/st/en/programs/pcp/species/sensitive.html. The Kemmerer, Rawlins, Pinedale, and Green River RMPs, as amended (2015) provide listings of sensitive species within the field office areas, and have evaluated the need to protect habitat necessary for the success of species identified through these regulations and policies. Parcels identified as available for lease under Alternative B may contain habitat or potentially contain habitat for sensitive species. Refer to Table 3-1 for a listing of T&E, candidate, and sensitive species associated with or potentially associated with the individual proposed May 3, 2016 lease parcels.

The Greater Sage-Grouse was a candidate species for listing under provisions of the ESA as determined by the USFWS and documented in a March 5, 2010 Federal Register notice declaring that listing of the Greater Sage-Grouse was warranted but precluded. Since that time, the BLM has made a concerted effort to update their RMPs and issued a ROD for the Greater Sage Grouse Land use Plan amendment on September 21, 2015. Concurrent with the signing of these RODs, the USFWS determined that the Greater Sage-Grouse was no longer warranted for listing due to the collaborative effort, science-based
conservation campaign and the collective effort of federal, state and private partners across its range. All
of the proposed sale parcels for the May 3, 2016 sale, are located in General Habitat Management Areas
(GHMA) as identified in the ARMPA ROD. These areas may provide nesting, wintering, and/or breeding
habitat for Greater Sage-Grouse (see Table 3-1).

Parcel 5 is located in the Platte River drainage. Parcels 34 and 35 are located in the Bear River drainage.
Perennial streams and their associated riparian habitats, located downstream of the referenced parcels,
may provide downstream habitat for the threatened and endangered pallid sturgeon, Least Tern, Piping
Plover, Western Prairie Fringed Orchid, Whooping Crane and designated critical habitat for the
Whooping Crane, all of which occur far downstream and only consider depletions for correlated impact
analyses. The remaining parcels are located either in the Great Divide closed basin or in the Colorado
River drainage. The Colorado River basin provides habitat for the threatened and endangered Colorado
pikeminnow, razorback sucker, bonytail and humpback chub fish species. None of the parcels in this
analysis contain live water.

In 2006, USFWS, BLM, USFS, NPS, and fish and wildlife management agencies in Colorado, Wyoming,
and Utah jointly developed a conservation agreement and strategy to “assure the long-term viability of
Colorado River cutthroat trout (CRCT) throughout their historic range.” No parcels have been identified
as having CRCT.

Parcels containing streams will also have associated riparian habitat, as presented in Table 3-1. Some
streams and riparian areas may provide habitat for special status fish, bird, amphibian, and reptilian
species. Semlitsch and Bodie (October 2003) state, “It is generally acknowledged that terrestrial buffers
or riparian strips 30-60 m wide will effectively protect water resources.” They further state the
importance of amphibian and reptilian core habitat and suggest including “three terrestrial zones adjacent
to core aquatic and wetland habitats…(1) a first terrestrial zone immediately adjacent to the aquatic
habitat, which is restricted from use and designed to buffer the core aquatic habitat and protect water
resources; (2) starting again from the wetland edge and overlapping with the first zone, a second
terrestrial zone that encompasses the core terrestrial habitat defined by semiaquatic focal-group use (e.g.,
amphibians...); and (3) a third zone, outside the second zone, that serves to buffer the core terrestrial
habitat from edge effects from surrounding land use” and “Although wetlands vary in many
characteristics related to type, region, topography, climate, and land-use surrounding them, the data we
compiled suggest that a single all-encompassing value for the size of core habitats can be used
effectively.” Based on the definition for riparian habitat (i.e., areas adjacent to rivers and streams with a
differing density, diversity, and productivity of plant and animal species relative to nearby uplands) is
appears that the Semlitsch and Bodie core habitat zone would correlate with riparian areas. They
recommend a minimum core zone of 142 meters (465 feet). The BLM 500foot buffer from the edge of
riparian habitat or surface water meets this minimum core zone width.

Portions of parcel 32 is in the Pinedale Field Office are in the Beaver Creek Area of Critical
Environmental Concern. Management goals and objectives are to provide suitable habitat in the Beaver
Creek ACEC to ensure long-term species sustainability and functioning habitats and to support the
Conservation Agreement and Strategy (CAS) for Colorado River Cutthroat Trout (CRCT) in the States of
Colorado, Utah, and Wyoming, and to ensure that elk parturition areas are available for use by calving elk.

Parcel 27 has special status plant populations as identified by the RSFO RMP. Representative Beaver Rim Phlox (*Phlox pungens*) communities would be NSO areas as mapped on the Rock Springs Field Office GIS database.

In Wyoming, the Yellow-billed cuckoo is dependent on areas of woody, riparian vegetation that cover 50 acres or more within arid to semiarid landscapes, that combine a dense shrubby understory for nesting and a cottonwood overstory for foraging. Currently, yellow-billed cuckoo occurs on the western side of the Rocky Mountains along the Lower Green River Basin from the Seedskadee NWR to the Flaming Gorge Reservoir and west to the Bear River Drainage. Yellow-billed cuckoo also occurs along the North Platte River drainage. The western distinct population of the bird is protected as a threatened species while the eastern population is a BLM sensitive species.

The Wyoming pocket gopher, a species on the BLM Wyoming Sensitive Species List, was petitioned to be included on the threatened and endangered species list. The U.S. Fish and Service subsequently determined that listing was not warranted. The Wyoming pocket gopher is known to occur only in Sweetwater and Carbon counties in Wyoming. They prefer dry, gravelly, shallow-soil ridge tops within greasewood plant communities.

The Idaho pocket gopher is known from Uinta, Lincoln, and Sublette counties. The species occupies shallow, stony soils and has been documented in open sagebrush, grassland plains, and subalpine mountain meadow habitats in Wyoming.

See Section 3.14 of the ARMPA FEIS for additional discussion of Special Status Species in the project area.

3.2.3 Wilderness, Wilderness Study Areas, and Lands with Wilderness Characteristics

3.2.3.1 Wilderness and Wilderness Study Areas

There are no congressionally designated wilderness areas on BLM-administered lands within the HDD, but there are five wilderness study areas located within the RFO, one in the KFO, two in PFO and 13 in the RSFO. (Note: Adobe Town WSA occurs within portions of the Rawlins and Rock Springs field offices). WSAs in the project area include:

<table>
<thead>
<tr>
<th>Rawlins Field Office</th>
<th>Kemmerer Field Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Town WSA</td>
<td>Raymond Mountain WSA</td>
</tr>
<tr>
<td>Ferris Mountains WSA</td>
<td></td>
</tr>
<tr>
<td>Encampment River Canyon WSA</td>
<td></td>
</tr>
<tr>
<td>Prospect Mountain WSA</td>
<td></td>
</tr>
<tr>
<td>Bennett Mountains WSA</td>
<td></td>
</tr>
<tr>
<td>Pinedale Field Office</td>
<td>Scab Creek WSA</td>
</tr>
<tr>
<td></td>
<td>Lake Mountain WSA</td>
</tr>
<tr>
<td></td>
<td>Rock Springs Field Office</td>
</tr>
</tbody>
</table>
Wilderness Study Areas are managed according to the non-impairment standard. Under this standard, these lands are managed in a manner so as not to impair the suitability of such areas for preservation as wilderness. At present, the BLM manages these lands in accordance with the Kemmerer, Pinedale, Rawlins, and Green River RMPs, and the Interim Management Policy for Lands Under Wilderness Review until Congress either designates each WSA as “wilderness” or releases it from consideration and the land reverts to multiple-use management. None of the parcels on the May 3, 2016 list are within any of the WSAs.

3.2.3.2 Lands with Wilderness Characteristics

Wilderness characteristics are resource values that include naturalness, outstanding opportunities for solitude, or outstanding opportunities for primitive and unconfined recreation. Areas evaluated for wilderness characteristics generally occur in undeveloped locations of sufficient size (typically greater than 5,000 contiguous acres) to be practical to manage for these characteristics.

The BLM Land Use Planning Handbook (H-1601-1) states that the BLM must consider the management of lands with wilderness characteristics during the land use planning process. The criteria used to identify these lands are essentially the same criteria used for determining wilderness characteristics for wilderness study areas (WSA). However, the authority set forth in section 603(a) of FLPMA to complete the three-part wilderness review process (inventory, study, and report to Congress) expired on October 21, 1993; therefore, FLPMA does not apply to new WSA proposals and consideration of new WSA proposals on BLM-administered public lands is no longer valid. The BLM is still required under Section 201 of FLPMA to “…maintain on a continuing basis an inventory of all public lands and their resource and other values....” This includes reviewing lands, in this case lease parcels, to determine if they possess wilderness characteristics (refer to Appendix D).

Parcels or portions of parcels 21 and 22 have been determined to have lands with wilderness characteristics (Appendix D). Information on lands with wilderness characteristics inventories may be found http://www.blm.gov/wy/st/en/field_offices/Pinedale/LWC.html for PFO. Approximately 40% of the lands with wilderness characteristics inventory areas in the PFO have existing oil and gas leases. Parcels 21 and 22 in PFO are within the Normally Pressured Lance (NPL) Natural Gas Development Project Area where an EIS is in progress. The lands with wilderness characteristics falling within the NPL project boundary currently have existing leases covering approximately 85% of the acreage. Lands with wilderness characteristics would only apply to the BLM surface of this parcel. Parcels 13 and a part of 18, which have been determined through inventory to not have wilderness characteristics, are located within the RFO Adobe Town Dispersed Recreation Use Area (DRUA) which is subject to management...
decisions in the Rawlins RMP. The Rawlins RMP approved in December 2008 determined these “lands to be unmanageable for wilderness character because of preexisting oil and gas leases, the BLM elected to manage lands with wilderness character for multiple use and not for protection of wilderness character.”

Parcel 15 is inside the Adobe Town Citizens’ Proposed Wilderness Area. Parcel 20 and a portion of parcel 18 are inside the Kinney Rim North Citizens’ Proposed Wilderness Area. Portions of parcels 16, 17, and 18 are inside the Kinney Rim South Citizens’ Proposed Wilderness Area. BLM inventory information, in consideration of the Citizens’ Proposed Wilderness proposals, continue to confirm that these lands do not contain lands with wilderness characteristics.

Parcel 15 falls within the Adobe Town area lands designated by the State of Wyoming as a “very rare or uncommon” area. The designation of the Adobe Town Rare and Uncommon Area by the Wyoming Environmental Quality Council applies State of Wyoming protection only as related to non-coal mining operations and does not limit the development of oil and gas resources. BLM management of the Adobe Town area, including the Adobe Town WSA and Adobe Town DRUA, meets or exceeds the management protections of the State of Wyoming “very rare or uncommon” designation (Rawlins RMP, 2008).

3.2.4 Cultural and Paleontological Resources

All parcels addressed in this EA have the potential to contain surface and buried archaeological materials. Once the decision is made by the lessee to develop a lease, an area specific cultural records review would be completed to determine if there is a need for a cultural inventory of the areas of proposed surface disturbance. Generally, a cultural inventory will be required before new surface disturbance and all historic and archaeological sites that are eligible for listing in the National Register of Historic Places would be either avoided by the undertaking, have adverse effects to sites minimized or mitigated, or have the information in the sites extracted through archaeological data recovery. See Table 3-1 for individual parcels that have been identified as having known cultural sites and National Historic Trails.

The parcels addressed in the EA also have a potential to contain vertebrate and non-vertebrate fossils. Post-lease development proposals would be evaluated on a case-by-case basis to determine if paleontological surveys would be required prior to surface disturbance. Parcels that have a Potential Fossil Yield Class of Class 4 (High) or Class 5 (Very High) are identified in Table 3-1.

3.2.5 Soils

Soils within the project area are generally considered to be highly erodible from both wind and water action regardless of slope. Sandy soil textures present in the proposed project area generally have a severe hazard for wind erosion and a slight or moderate hazard for water erosion due to naturally high infiltration capacities. Heavier, more clayey, soil textures generally have a slight or moderate hazard of wind erosion and severe hazard of water erosion. Soils in Wyoming are especially dependent on vegetative cover to prevent erosion; ground cover and root systems anchor the soil, recycle nutrients, and add scarce organic matter. Soil characteristics and slope information for the parcels are summarized in the Affected Environment, Table 3-1.
3.2.6 Vegetation

Vegetation types occurring on the parcels are summarized in the Affected Environment, Table 3-1. All of the proposed parcels, with the exception of 17, include sagebrush vegetation at varying degrees.

3.2.7 Invasive, Non-native Species

Populations of invasive or non-native species were not identified on the parcels offered for leasing. Infestations of noxious weeds can have a negative impact on biodiversity and natural ecosystems. Noxious weeds affect native plant species by out-competing native vegetation for light, water and soil nutrients. Locally, regionally, and nationally noxious weeds infestations cause decreased quality of agricultural products due to high levels of competition from noxious weeds; decreased quantity of agricultural products due to noxious weed infestations; and increased costs to control and/or prevent the noxious weeds.

Recent federal legislation has been enacted requiring state and county agencies to implement noxious weed control programs. Monies would be made available for these activities from the federal government, generated from the federal tax base. Therefore, all citizens and taxpayers of the United States are directly affected when noxious weed control/prevention is not exercised. The field offices work cooperatively with county and local weed control agencies to identify and manage noxious weeds.

3.2.8 Wastes, Hazardous or Solid

There are no identified hazardous or solid waste sites on the parcels addressed in this EA. Should a parcel be leased and developed, generation and temporary storage of waste materials (solid and liquid) would likely occur. Waste materials would be managed in accordance with Onshore Orders 1 & 7, Resource Conservation and Recovery Act (RCRA), applicable Wyoming Department of Environmental Quality (WDEQ) regulations, and Wyoming Oil and Gas Conservation Commission (WOGCC) rules. Fluid handling would be evaluated at the development stage and fluids associated with any subsequent drilling, completions and/or production would either be treated, evaporated, or transferred to an approved WDEQ treatment facility; solids would be treated on site or transferred to a WDEQ approved facility. Parcel 8, which is deferred, contains four unplugged CBM wells. Several of the parcels contain wells which have previously been plugged and abandoned. The integrity of these wells, and their potential to act as contamination pathways would be evaluated at the development stage.

3.2.9 Water Resources: Surface and Groundwater

Surface water hydrology within the area is typically influenced by geology, soil characteristics, precipitation and vegetation. Anthropogenic factors that currently affect surface water resources include livestock grazing management, private, commercial and industrial development, recreational use, drought, and vegetation control treatments. Ephemeral drainages that discharge into perennial waters are located within the various parcels/partial parcels available for offer. Perennial streams with associated riparian habitat area are present for many parcels, as identified in Table 3-1.

Groundwater hydrology within the area is influenced by geology and recharge rates. Groundwater quality and quantity can be influenced by precipitation, water supply wells and various disposal activities.
Groundwater quality across the Kemmerer, Pinedale, Rawlins, and Rock Springs field offices varies with depth from potable waters with low total dissolved solids (TDS) to highly saline, non-potable sources; additionally known areas of fluoride levels in exceedance of state water quality standards exist within all four field offices and are known to be naturally occurring. Most of the groundwater in KFO, PFO, RFO, and RSFO area is used for industrial, domestic and livestock/irrigation purposes. Information contained in Appendix E, Hydraulic Fracturing White Paper, Section II Operational Issues/Water Availability and Consumption Estimates (page 3) is incorporated by reference. The information contained there indicates that throughout the state, approximately 15 million acre feet of surface and/or groundwater are available for use. The largest user of groundwater in the state is the industrial water use sector which includes electric power generation, coal mining, conventional oil and gas production, uranium mining, trona mining and soda ash production, bentonite mining, gypsum mining, coalbed methane (CBM) production, manufacturing of aggregate, cement, and concrete, and road and bridge construction. Total current industrial surface water use for WY is estimated to be 125,000 acre feet per year and total current groundwater use is estimated to be 246,000 acre feet per year. Several parcels contain land with private surface overlying federal minerals (i.e., split-estate) and are identified in Table 3-1. The private surface lands have or have the potential to contain private residences and associated facilities such as domestic water supply wells. Otherwise, there are no known domestic or municipal water supply sources on or in the general vicinity of the available parcels, although there may be stock, industrial supply, or monitoring wells present. Where parcels contain areas of perennial surface water, riparian and wetland areas, stipulations have been added through Lease Notice #1 to limit occupancy within 500’ feet. Based upon site-specific analysis, this offset could be increased. Lease Notice #1, applied to all parcels, notifies all lessees that occupancy within ¼ mile of all occupied dwellings may be restricted at the time of development and Onshore Order #1 requires that Operators identify all existing wells, and their status, within 1 mile of their proposed development.

A portion of parcel 32 is within the Beaver Creek Area of Critical Environmental Concern. Management goals and objectives are to provide suitable habitat in the Beaver Creek ACEC to ensure long-term species sustainability and functioning habitats and to support the Conservation Agreement and Strategy (CAS) for Colorado River Cutthroat Trout (CRCT) in the States of Colorado, Utah, and Wyoming, and to ensure that elk parturition areas are available for use by calving elk.

3.2.10 Livestock Grazing

The parcels are used primarily for livestock grazing as they are located in primarily rural areas with large blocks of federal public domain lands. Grazing allotment information for the parcels is listed in the Affected Environment, Table 3-1. The grazing on these parcels is primarily for livestock but may also support sheep, and could contain range improvement structures such as reservoirs, water wells, and fences. Parcels 1 and 38 have permitted water wells to support range stock.

3.2.11 Recreation

Recreational use of the available parcels and the surrounding areas is typically for hunting, fishing, camping, sightseeing, off-highway vehicle use, and other recreational activities. In the national survey of fishing, hunting and wildlife-associated recreation for activities in 2011, expenditures from fishing and hunting significantly increased. In Wyoming, more than 443,000 people participated in fishing and
hunting in 2011. Additionally, 518,000 people participated in some form of wildlife watching (USFWS 2011 National Survey of Fishing, Hunting, and Wildlife Associated Recreation). The total number of hunting and fishing recreation use days in Wyoming in 2011 was 4,849,000. Based on the number of recreation days and average expenditure per day, hunters, anglers and trappers expended approximately $752 million in pursuit of their sport. Non-consumptive users provided about $350 million through wildlife watching, wildlife photography, etc. In total, wildlife associated recreation accounted for over 1 billion dollars in income to the state for the year 2011.

For lands managed by the Department of the Interior (which include those BLM-administered lands within the May 3, 2016 lease sale) more than 389 million recreational visits in 2012 supported more than 372,000 jobs nationwide and contributed over $45 billion in economic activity (USDI 2012). For Wyoming, the outdoor recreation experiences boost economic activity from hunting, angling, and tourism, supporting 52,000 jobs across the state, contributing more than $4.4 billion annually to Wyoming’s economy, generates $250 million annually in state tax revenue and produces $3.6 billion annually in retail sales and services across Wyoming (accounting for 17% of gross state product)(Outdoor Industry Foundation 2006.).

Trout are considered a popular sport fish in the United States and in 2011, it was estimated that more than 7.2 million anglers fished for trout (U.S. Fish and Wildlife Service 2011.). In Wyoming, it is estimated that of the 303,000 freshwater anglers over the age of 16 who fish, more than 69 percent seek trout, making Wyoming the state with the second highest participation rate for trout fishing in the United States.

Parcels 13 and 18 are located within the RFO Adobe Town Dispersed Recreation Use Area (DRUA) which is subject to management decisions in the Rawlins RMP. The Rawlins RMP approved in December 2008 determined these “lands to be unmanageable for wilderness character because of preexisting oil and gas leases, the BLM elected to manage lands with wilderness character for multiple use and not for protection of wilderness character.” Surface occupancy or use will be restricted or prohibited unless the operator and surface managing agency arrive at an acceptable plan for mitigation of anticipated impacts to recreational opportunity class setting within the Adobe Town Dispersed Recreation Use Area.

Several parcels are also located in proximity to the Adobe Town Wilderness Study Area and may receive sporadic recreational use due to the isolation and unique geologic features found in the area.

3.2.12 Visual Resources

The BLM Visual Resource Management (VRM) Class objectives are as follows:

- **Class I**: to preserve the existing character of the landscape. The level of change to the characteristic landscape should be very low and must not attract attention.
- **Class II**: to retain the existing landscape character and the level of change to the characteristic landscape should be low. Management activities should not attract the attention of the casual observer. Changes would be required to repeat the basic elements of form, line, color, and texture found in the predominant natural features of the characteristic landscape. Modifications to a proposal
would be required if the proposed change cannot be adequately mitigated to retain the character of the landscape.

- Class III: to partially retain existing landscape character. The level of change to the characteristic landscape should be moderate. Management activities may attract attention but should not dominate a casual observer's view. Changes should repeat the basic elements found in the predominant natural features of the characteristic landscape.
- Class IV: to provide for management activities which require major modification of the existing landscape character. Every attempt, however, should be made to reduce or eliminate activity impacts through careful location, minimal disturbance, and repeating the basic landscape elements.

All individual parcel VRM Class designations are identified in Table 3-1. RSFO parcel 15 and PFO parcels 31 and 32 contain lands of VRM Class II category. VRM Classifications only apply to the BLM-administered surface estate and do not apply to non-BLM checkerboard lands or on private or State lands.

During the preparation of the Rawlins RMP, the BLM had not updated its Visual Resource Inventory (“VRI”) and the VRM portion of the RMP was remanded to the RFO in order to update the VRI and potentially revise the VRM classifications. Concerning visual resource management until the VRM land use planning amendment is completed, the 2008 RMP ROD states, “Until such time, the Approved RMP will utilize the VRM class designations as established and analyzed in the No Action Alternative, Alternative 1 in the Proposed RMP/Final EIS.” The RFO has completed the required VRI and in February 2011 issued the updated VRI results. The VRM classification will not be determined until the ROD for the RMP VRM amendment is approved and until that time, all of these parcels are managed according to the VRM Class III. VRI is not an equivalent of VRM classification. VRI is a determination of existing visual values and not a land use planning decision. VRM is a land use planning decision based on many factors, one of which is VRI. All parcels have been reviewed for potential conflicts with the preferred VRM RMP amendment in Rawlins. No parcels are recommended for deferral based on this review.

3.2.13 Public Health and Safety

Oil and gas development, as well as other industrial uses, such as coal and trona mining, has been occurring in the HDD Field Offices for many decades. Due to the scattered nature and the small area encompassed by the respective parcels coupled with low population density, industrial safety programs, standards, and state and federal regulations, offering these parcels is not expected to materially increase health or safety risks to humans, wildlife, or livestock. Parcels that contain lands with private surface overlying federal minerals (i.e., split-estate) are identified in Table 3-1. Other private surface lands have or have the potential to contain private residences and associate facilities such as domestic water supply wells. Several of these parcels may be used for individual, dispersed, recreational activities as discussed under Visual Resource Management, Wilderness, and Recreation. Please see information under Air Resources and Water Resources in the attached Hydraulic Fracturing White Paper for additional information regarding management of air quality emissions and water quantity/quality in WY.
3.2.14 Socioeconomics

See section 3.11 of the ARMPA FEIS for additional discussion of Socioeconomics within the project area.

The proposed lease parcels are located in Carbon, Sweetwater, Sublette, Lincoln, and Uinta counties, Wyoming. These five counties are the basis for the socioeconomics analysis area. Table 3-11 shows changes in population for each county and the State of Wyoming between 2000, 2010 and 2013. All of the counties had an increase in population when comparing 2000 to 2013, however from 2010-2013 some of the counties actually saw a decrease in population. The data in Table 3-11 indicates that the increase in population has occurred since 2000, with the largest increase occurring in Sublette County. This large increase is likely due to the ongoing energy development occurring in that county. Both Carbon and Uinta counties saw lower population increases than the state of Wyoming as a whole.

Social conditions in the Kemmerer, Rawlins, Pinedale and Rock Springs Field Office areas that concern human communities include towns, cities, rural areas, and the custom, culture, and history of the area as it relates to human settlement, as well as current social values. BLM management actions can impact social conditions in the area and in nearby communities.

Much of Wyoming is dependent upon resource development as a base for its economy. In the counties with parcels for lease, this was particularly true in Sweetwater County in 2012 when 25 percent or more of the employment was in the mining sector, which includes oil and gas extraction (BEA 2014).

<table>
<thead>
<tr>
<th>Area</th>
<th>Population Estimates in</th>
<th>Percent Change</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon County</td>
<td>15,579</td>
<td>15,885</td>
<td>15,748</td>
</tr>
<tr>
<td>Sweetwater County</td>
<td>37,484</td>
<td>43,806</td>
<td>45,237</td>
</tr>
<tr>
<td>Sublette County</td>
<td>5,920</td>
<td>10,247</td>
<td>10,041</td>
</tr>
<tr>
<td>Uinta County</td>
<td>19,662</td>
<td>21,118</td>
<td>21,066</td>
</tr>
<tr>
<td>Wyoming</td>
<td>493,958</td>
<td>563,626</td>
<td>583,233</td>
</tr>
</tbody>
</table>

Sources: U.S. Census Bureau 2014, 2014

Leasing mineral rights for the development of Federal minerals generates public revenue through the bonus bids paid at lease auctions and annual rents collected on leased parcels not held by production. Nominated parcels approved for leasing are offered by the BLM at a minimum rate of $2.00 per acre at the lease sale. These sales are competitive and parcels with high potential for oil and gas production often command bonus bids in excess of the minimum bid. For example, the last four lease sales conducted for HDD yielded an average of $106.77 per acre. In addition to bonus bids, lessees are required to pay rent annually until production begins on the leased parcel, or until the lease expires. These rent payments are equal to $1.50 an acre for the first five years and $2.00 an acre for the second five years of the lease.
Forty-nine percent of these Federal leasing revenues from public domain minerals are distributed to the State who distributes 25 percent of federal revenue from public domain minerals back to the counties where the leases exist.

In general, resource development and protection are both important to sustaining the values within the area. However, the challenge is seeking an appropriate balance between resource development and protection, which is central to the BLM mission.

3.2.15 Environmental Justice

Executive Order 12898 requires Federal agencies to assess projects to ensure there is no disproportionately high or adverse environmental, health, or safety impacts on minority and low income populations. A review of the parcels offered for lease indicates there are no impacts on minority or low-income populations.

3.2.16 Solid Leasables (Coal and Sodium) and Locatables

None of the parcels analyzed in this EA are located within a Sodium or Coal leasing area as summarized in the Affected Environment, Table 3-1. No mining or mill site claims, including Uranium, are present within the boundaries of the subject sale parcels at the time of writing this document.

ENVIRONMENTAL IMPACTS

4.0 Description of Impacts

As previously stated, the sale of parcels and issuance of oil and gas leases is strictly an administrative action. Nominated lease parcels are reviewed against the appropriate land use plan, and stipulations are attached to mitigate any known environmental or resource conflicts that may occur on a given lease parcel. On-the-ground impacts would not occur until a lessee applies for and receives approval to undertake surface-disturbing lease actions. The BLM cannot determine at the leasing stage whether or not a proposed parcel will actually be sold, or if it is sold and issued, whether or not the lease would be explored or developed. Consequently, the BLM cannot determine exactly where a well or wells may be drilled or what technology that may be used to drill, complete and produce wells, so the impacts listed below are more generic, rather than site-specific. Additional NEPA and technical engineering analysis would be conducted prior to approval of an APD to ensure that the proposal is compliant with all Federal and/or state rules and regulations. Additional mitigation and BMPs may be applied as COAs at that time to mitigate identified impacts.

4.1 Impacts of Alternative A (No Action)

Under this alternative none of the parcels designated as open to leasing would be offered for lease and there would be no subsequent physical impacts to the existing environment caused by post-lease well development. The only impact resulting from the No Action Alternative would be to socioeconomics as a result of not offering the federal mineral estate for lease contract.
4.1.1 Socioeconomic Resource

Based on the assumption that all 32 parcels and/or portions of parcels (29,736,220 acres) identified in Alternative A would not be offered, and based on the minimum acceptable bid of $2.00 per acre, the government would lose the opportunity to collect a minimum of $59,472.44, as well as any royalties that would be collected from any subsequent hydrocarbon production. Lease bids are on average, much higher than the $2.00 per acre minimum; consequently the economic loss would likely be much higher than that projected. For example, the last four lease sales conducted for HDD yielded $23,336,945 from 293,421 acres sold for an average of $97.47 per acre. Based on this average, implementing the No Action Alternative would potentially result in a loss of $2,893,389.36 compared to the Proposed Action.

The State of Wyoming, as well as many counties and communities within, rely on oil and gas development for part, if not the majority, of their economic base. The employment and purchasing opportunities associated with developing and producing wells on the leases is also foregone, as would the opportunity to provide oil and gas resources from these lease parcels to help meet the nation’s energy needs. Refer to the Final EISs for the Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015), for additional socioeconomic analysis and discussion of potential direct, indirect, and cumulative impacts to socioeconomics.

Refer to Section 4.11 of the ARMPA FEIS (beginning on page 4-134) for a discussion of potential impacts to Socioeconomics.

4.2 Impacts of Alternative B (Proposed Action)

Alternative B would offer 32 parcels (29,736,220 acres) at the May 3, 2016 BLM Wyoming oil and gas lease sale. Again the reader is reminded that at the leasing stage the BLM cannot predict whether or not any of the parcels will actually be sold, if they are sold and a lease is issued whether or not they will actually be developed, and if development does occur what the development level would be. Table 4-1 displays the stipulations that would be applied to each parcel to mitigate anticipated impacts in accordance with the associated field office RMP.

The current RMPs, as amended (2015), have evaluated the need to protect habitat necessary for the success of species identified through these regulations and policies. Three categories of stipulations are used in the following sections. No Surface Occupancy (NSO) is the most stringent. Under an NSO, use or occupancy of the land surface for fluid mineral exploration or development is prohibited to protect identified resource values. Controlled Surface Use (CSU) is less stringent. Under a CSU use and occupancy is allowed (unless restricted by another stipulation) but identified resource values require special operational constraints that will limit surface disturbance and/or limit development of the oil and gas reservoir. CSU’s are used for operating guidance, not as a substitute for the NSO or Timing stipulations. Timing limitation stipulations (TLS) prohibit surface use during specified time periods to protect identified resource values. This stipulation does not apply to the operation and maintenance of production facilities unless the findings of site-specific analysis demonstrates the continued need for such mitigation and that less stringent, project specific mitigation measures would be insufficient. BLM retains full discretion to deny all lease development if an Operator cannot show compliance with all Federal and/or state rules and regulations, or Federal laws.
<table>
<thead>
<tr>
<th>Parcel #</th>
<th>Lease Notice #1, 2, 3</th>
<th>Lease Stip #1, 2, 3</th>
<th>Big Game Crucial Winter Range TLS</th>
<th>GSG/Sharp-tailed Nesting TLS</th>
<th>B. Owl/Raptor Nesting TLS</th>
<th>Mountain Plover TLS</th>
<th>Bald Eagle Nest/Move or Nesting TLS</th>
<th>Greater Sage-Grouse winter concentration area or winter habitat TLS</th>
<th>Big Game Birth Season Winter TLS or Nesting CSU</th>
<th>GSG/Sharp-tailed Lek Winter TLS or Nesting CSU</th>
<th>Raptor/CSU/NSO</th>
<th>Amphib Species CSU</th>
<th>Cult. Res. CSU or NSO</th>
<th>Historic Trails CSU &/or NSO</th>
<th>Adobe Town DRUA CSU</th>
<th>Vernal Pool CSU</th>
<th>Coal/Trona CSU</th>
<th>SRMA/SMA/WHMA CSU or NSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
</tr>
<tr>
<td>005</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
</tr>
<tr>
<td>007</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
</tr>
<tr>
<td>008</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
</tr>
<tr>
<td>014</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
</tr>
<tr>
<td>017</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
</tr>
<tr>
<td>021</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor and Burrowing Owl</td>
<td>CSU</td>
<td>NSO</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
</tr>
<tr>
<td>022</td>
<td>Applied</td>
<td>Applied</td>
<td>CSU</td>
<td>Applied</td>
<td>Raptor and Burrowing Owl</td>
<td>CSU</td>
<td>NSO</td>
<td>CSU</td>
<td>Applied</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
<td>CSU</td>
</tr>
</tbody>
</table>

Table 4-1 Lease Notices, Timing Limitation Stipulations (TLS), Controlled Surface Use (CSU), and No Surface Occupancy (NSO) Stipulations Applied to the Lease Parcels Based on Affected Resources Elements Identified in the Affected Environment Section
Table 4-1 Lease Notices, Timing Limitation Stipulations (TLS), Controlled Surface Use (CSU), and No Surface Occupancy (NSO) Stipulations Applied to the Lease Parcels Based on Affected Resources Elements Identified in the Affected Environment Section

<table>
<thead>
<tr>
<th>Parcel # WY-1605-</th>
<th>Lease Notice #1, 2, 3</th>
<th>Lease Stipulation #1, 2, 3</th>
<th>Big Game Crucial Winter Range TLS</th>
<th>GSG/Sharp-tailed Nesting TLS</th>
<th>B. Owl/Raptor Nesting TLS</th>
<th>Mountain Plover TLS</th>
<th>Bald Eagle Roost/Nest TLS or NSO</th>
<th>Greater Sage-Grouse winter concentration area or winter habitat TLS</th>
<th>Big Game Birth TLS/CSU</th>
<th>GSG/Sharp-tailed Lek NSO/CSU</th>
<th>Raptor CSU/NSO</th>
<th>Amphib Species CSU</th>
<th>Cult. Res. CSU or NSO</th>
<th>Historic Trails CSU &or NSO</th>
<th>Adobe Town DRUA CSU</th>
<th>VRM II CSU</th>
<th>Coal/Trona CSU</th>
<th>SRMA/SMA/WHMA CSU or NSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>Applied</td>
<td>Applied</td>
<td>Applied</td>
<td>Raptor and Burrowing Owl</td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>025</td>
<td>Applied</td>
<td>Applied</td>
<td>Applied</td>
<td>Burrowing Owl</td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>026</td>
<td>Applied</td>
<td>Applied</td>
<td>Applied</td>
<td>Burrowing Owl</td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>027</td>
<td>Applied</td>
<td>Applied</td>
<td>Applied</td>
<td>Raptor and Burrowing Owl</td>
<td></td>
<td></td>
<td>CSU</td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>028</td>
<td>Applied</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td></td>
<td></td>
<td>CSU</td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>032</td>
<td>Applied</td>
<td>Applied</td>
<td>Applied</td>
<td>Raptor</td>
<td>TLS</td>
<td>CSU</td>
<td>NSO</td>
<td></td>
<td>Applied</td>
</tr>
<tr>
<td>038</td>
<td>Applied</td>
<td>Applied</td>
<td></td>
<td>Applied</td>
</tr>
</tbody>
</table>
4.2.1 Air Resources

4.2.1.1 Air Quality

Refer to Sections 4.2 (page 4-5) and 4.22.3 of the ARMPA FEIS (beginning on page 4-134) for a discussion of potential impacts to Air Quality, and related values. Refer to Section 4.2.4 (beginning on page 4-7) of the ARMPA FEIS for a discussion of potential impacts to Air Quality resulting from oil and gas development, including potential greenhouse gas emissions.

The administrative act of offering any of these parcels and the subsequent issuing of leases would have no direct impacts to air quality. Any potential effects to air quality would occur if and when the leases were developed. Any proposed development project would be subject to additional analysis of possible air effects before approval. The analysis may include air quality modeling for the activity in accordance with the National BLM, EPA and NPS Air Quality MOU. Over the last 10 years, the development on federal oil and gas mineral estate in the Kemmerer, Rawlins, Pinedale and Rock Springs field offices has resulted in an average of 545 wells being spudded annually (approximately 15 in KFO, 180 in RFO, 235 in PFO, and 115 in RSFO). These wells would incrementally contribute a small percentage of the total emissions (including GHGs) from oil and gas activities in Wyoming.

Potential impacts of development could include increased airborne particulates associated with the construction of new well pads, pipelines, or roads, exhaust emissions from drilling and completion equipment/activities, compressors, vehicles, and dehydration and separation facilities, as well as releases of GHG and volatile organic compounds during many of these activities. The following sources of emissions are anticipated during oil and gas development should the leases be sold and development proposed: combustion engines (i.e. fossil fuel fired internal combustion engines used to supply electrical or hydraulic power for hydraulic fracturing to drive the pumps and rigs used to drill the well, drill out the hydraulic stage plugs and run the production tubing in the well; generators to power drill rigs, pumps and other equipment; compressors used to increase the pressure of the oil or gas for transport and use; tailpipe emissions from vehicles transporting equipment to the site), venting (i.e. fuel storage tanks vents and pressure control equipment), mobile emissions (i.e. vehicles bringing equipment, personnel or supplies to the location), fugitive sources (i.e. Pneumatic valves tank leaks, dust). A number of pollutants associated with the combustion of fossil fuels are anticipated to be released during drilling/completion operations include: CO, NOx, SOx, PM, CO2, CH4 and N2O. Venting may release VOCs/HAPs, H2S, and CH4. The amount of increased emissions cannot be quantified at this time since it is unknown how many wells or what type (oil, gas or both) may be proposed for development, the types of equipment needed if a well were to be put into production (e.g., compressor, separator, dehydrator), or what technologies may be employed by a given company. The degree of impact will also vary according to the characteristics of the geologic formations from which production occurs.

During the completion phase, of the principal pollutants emitted are VOCs, HAPs, particulate matter and NO2. VOCs and NO2 contribute to the formation of ozone. During well completion, injected fracturing fluids, formation fluids and reservoir gas are flowed back to the surface. The flowback of formation fluids and reservoir gas will include additional VOCs and methane, along with hazardous air pollutants such as benzene, ethylbenzene, and n-hexane. Pollution also may be emitted from other processes and equipment during production and transportation of oil and gas from the well to a processing facility. Appendix E,
Hydraulic Fracturing White Paper, Section II, Operational Issues/Gas emissions (page 2) is incorporated by reference.

The Reasonably Foreseeable Development (RFD) in the Rawlins RMP assumes that 3,711 federal wells would be put into production over a 20-year life of project assumption (LOP), which equates to approximately 186 wells per year. The RFD was derived for analysis purposes on a field office-wide basis and is not intended to be a development cap. The RFD document for the Kemmerer RMP estimated that approximately 120 wells would be drilled/completed annually for Federal minerals. The RFD for Pinedale RMP is 9,150 wells (457/year) and the Green River RMP is 2,400 (120/year). Development density (i.e., wells per square mile) and number of wells installed annually depend on a number of variables including market trends, technology available (vertical, directional, or horizontal), and the geology of the hydrocarbon-bearing zone. As a result, the number of wells that could potentially be put into production under a full field development scenario as a result of offering the leases is unknown.

Current APD permitting trends within the field offices confirm that these assumptions are still accurate.

Coal-bed natural gas (CBNG) development currently exists within the RFO. Approximately 8.5 percent of the active wells in the RFO are CBNG wells. The RFD grouped CBNG wells and conventional wells together in the scenario. RSFO also has existing CBNG development and has a coal-bed natural gas RFD of approximately 15 wells per year. Based on the existing development and the RFD for the Rawlins and Rock Springs field offices, CBNG-related emissions can be expected. Although the RFD for the Kemmerer RMP assumes a CBNG development rate of up to 15 wells per year, there currently is no active or proposed CBNG development in the Field Office; therefore, there are no expected emissions. Several CBNG wells exist in the Pinedale Field Office, but have proven unproductive; therefore, there are no expected emissions from this source.

4.2.1.2 Visibility and Deposition

Visibility impacts resulting from oil and gas development are assessed at the project proposal stage utilizing approved methodologies developed by Federal Land Managers responsible for Federal Class I and wilderness areas and wildlife refuges. The Federal Land Managers’ Air Quality Related Values Work Group (FLAG 2010) guidance provides a quantitative method for assessing and analyzing impacts to Class I and sensitive Class II areas. Since the methodology requires development of an emissions inventory and the location where the development will occur, FLAG analysis cannot be completed at the leasing stage since development scenarios are not reasonably foreseeable. As noted in chapter 3 however, the number of days experiencing visibility impairment have decreased over time.

Dry deposition of Nitrates and Sulfates can lead to acidification and eutrophication of high altitude water bodies. Statistically significant downward trends in both of these parameters have occurred at

NO2 is a red-brown gas formed during operation of internal combustion engines. Such engines emit a mixture of nitrogen gases, collectively called nitrogen oxides (NOx). NO2 can contribute to brown cloud conditions, and can react with other nitrogen compounds to form ammonium nitrate particles and nitric acid, which can cause visibility impairment and acid rain. Microbiological activity in soil can be a natural source of nitrogen compounds.
SO2 forms during combustion from trace levels of sulfur in coal or diesel fuel. It can react with ammonium to form ammonium sulfate ([NH4] 2SO4) and with water vapor to form sulfuric acid (H2SO4), which can cause visibility impairment and acid rain. Emissions from volcanoes are natural sources of SO2. Anthropogenic sources include refineries and power plants.

Sulfur and nitrogen compounds that can be deposited on terrestrial and aquatic ecosystems include nitric acid (HNO3), nitrate (NO3-), ammonium (NH4+), and sulfate (SO4--). Nitric acid (HNO3) and nitrate (NO3-) are not emitted directly into the air, but form in the atmosphere from industrial and automotive emissions of nitrogen oxides (NOx); and sulfate (SO4--) is formed in the atmosphere from industrial emission of sulfur dioxide (SO2). Deposition of HNO3, NO3-and SO4--can adversely affect plant growth, soil chemistry, lichens, aquatic environments, and petroglyphs (ancient carvings and/or engravings on rock surfaces). Ammonium (NH4+) is volatilized from animal feedlots and from soils following fertilization of crops. Deposition of NH4+ can affect terrestrial and aquatic vegetation via soil nitrogen balance and aqueous nitrogen chemistry. While this type of deposition may be beneficial as a fertilizer, it can adversely affect plant growth stages such as budding, leafing development maturation and reproduction.

4.2.1.3 Greenhouse Gas Emissions and Climate Change

Refer to Section 4.2.4 (beginning on page 4-7) of the ARMPA FEIS for a discussion of potential impacts to Air Quality resulting from oil and gas development, including potential greenhouse gas emissions.

The administrative act of leasing all or part of 32 parcels covering 29,736.220 acres would not result in any direct GHG emissions. However, in regard to future development, the assessment of GHG emissions and climate change is in its formative phase. While it is not possible to accurately quantify potential GHG emissions in the affected areas as a result of making the proposed tracts available for leasing, some general assumptions can be made: offering the proposed parcels may result in the development and production of new wells. Wyoming’s gross GHG emissions are expected to continue to grow to 69 MMtCO2e by 2020, 56% above 1990 levels. As shown in Figure 3-12 (from the CCS inventory report), demand for electricity is projected to be the largest contributor to future emissions growth, followed by emissions associated with transportation. Although GHG emissions from fossil fuel production had the greatest increase by sector in the period 1990 to 2005, the growth from this sector is projected to decline due to the assumption of decreased carbon dioxide emissions from venting at processing plants. Additional capture of fugitive emissions will likely result in additional reductions.

Oil and gas produced from the leases have the potential to displace coal for the production of electricity. For an equivalent amount of electricity produced, CO2 emissions could be reduced by 46% using natural gas and by 26% using oil when compared to using coal.

The Petroleum Association of Wyoming’s website (http://www.pawyo.org/facts-figuers.pdf) reports that in 2014, there were 35,258 active gas and oil wells in the state, 43 operational gas processing plants, 6 oil refineries, and over 38,600 miles of crude oil, gas, and petroleum product pipelines located across all land ownership patterns in the state. There are significant uncertainties associated with estimates of Wyoming’s GHG emissions from this sector. This is compounded by the fact that there are no regulatory
requirements to track CO2 or CH4 emissions. Therefore, estimates based on GHG emissions measurements in Wyoming are not possible at this time (Wyoming GHG Inventory and Reference Case Projection CCS, Spring 2007).

However, as reported by the same CCS inventory report, emissions from the fossil fuel sector grew 101% from 1990 to 2005 and are projected to increase by a further 10% between 2005 and 2020 (if economic incentives remain). The natural gas industry is the major contributor to both GHG emissions and emissions growth, with CH4 emissions from coal mining second. That said, it is worth noting that a significant portion of the emissions attributed to the natural gas industry are due to vented gas from processing plants, many of which are used for injection in enhanced oil recovery operations. Additionally, many technological advances in emission control technology have been implemented by the oil and gas industry to reduce emission levels.

4.2.1.4 Climate

Some information and projections of impacts beyond the global scale are becoming available. Chapter 3 of the Climate Change Supplementary Information Report for Montana, North Dakota, and South Dakota (Climate Change SIR 2010) describes impacts of climate change in detail at various scales, including the state scale when appropriate. The following bullet points summarize potential changes identified by the EPA that are expected to occur at the regional scale, where the proposed action and its alternatives are to take place. The EPA identifies this area as part of the Mountain West and Great Plains region (http://www.epa.gov/Region8/climatechange/pdf/ClimateChange101FINAL.pdf):

- The region is expected to experience warmer temperatures with less snowfall.
- Temperatures are expected to increase more in winter than in summer, more at night than in the day, and more in the mountains than at lower elevations.
- Earlier snowmelt means that peak stream flow would be earlier, weeks before the peak needs of ranchers, farmers, recreationalist, and others. In late summer, rivers, lakes, and reservoirs would be drier.
- More frequent, more severe, and possibly longer-lasting droughts are expected to occur.
- Crop and livestock production patterns could shift northward; less soil moisture due to increased evaporation may increase irrigation needs. Drier conditions would reduce the range and health of ponderosa and lodgepole pine forests, and increase the susceptibility to fire. Grasslands and rangelands could expand into previously forested areas.
- Ecosystems would be stressed and wildlife such as the mountain line, black bear, long-nose sucker, marten, and bald eagle could be further stressed.

Other impacts could include:

- Increased particulate matter in the air as drier, less vegetated soils experience wind erosion.
- Shifts in vegetative communities which could threaten plant and wildlife species.
- Changes in the timing and quantity of snowmelt which could affect both aquatic species and agricultural needs. Projected and documented broad-scale changes within ecosystems of the U.S. are summarized in the Climate Change SIR (2010). Some key aspects include:
Large-scale shifts have already occurred in the ranges of species and the timing of the seasons and animal migrations. These shifts are likely to continue (Climate Change SIR 2010). Climate changes include warming temperatures throughout the year and the arrival of spring an average of 10 days to 2 weeks earlier through much of the U.S. compared to 20 years ago. Multiple bird species now migrate north earlier in the year.

Fires, insect epidemics, disease pathogens, and invasive weed species have increased and these trends are likely to continue. Changes in timing of precipitation and earlier runoff increase fire risks.

Insect epidemics and the amount of damage that they may inflict have also been on the rise. The combination of higher temperatures and dry conditions have increases insect populations such as pine beetles, which have killed trees on millions of acres in western U.S. and Canada. Warmer winters allow beetles to survive the cold season, which would normally limit populations; while concurrently, drought weakens trees, making them more susceptible to mortality due to insect attack.

While long-range regional changes might occur within this project area, it is impossible to predict precisely when they could occur. The following example summarizing climate data for the West North Central Region (MT, ND, SD, and WY) illustrates this point at the regional scale.

A potential regional effect of climate change is earlier snowmelt and associated runoff. This is directly related to spring-time temperatures. Over a 112-year period, overall warming is clearly evident with temperatures increasing 0.21 degrees Fahrenheit per decade (Figure 3-11). This would suggest that runoff may be occurring earlier than in the past. However, data from 1991-2005 indicate a 0.45 degrees Fahrenheit per decade cooling trend (Figure 3-11). This example is not an anomaly, as several other 15-year windows can be selected to show either warming or cooling trends. Some of these year-to-year fluctuations in temperature are due to natural processes, such as the effects of El Niños, La Niñas, and the eruption of large volcanoes (summarized in the Climate Change SIR 2010). This information illustrates the difficulty of predicting actual regional or site specific changes or conditions which may be due to climate change during any specific time frame.
The assessment of GHG emissions and climate change is in its formative phase. It is currently not feasible to know with certainty the net impacts from the proposed action on climate. The inconsistency in results of scientific models used to predict climate change at the global scale coupled with the lack of scientific models designed to predict climate change on regional or local scales, limits the ability to quantify potential future impacts of decisions made at this level. When further information on the impacts to climate change is known, such information would be incorporated into the BLM planning and NEPA documents as appropriate.

4.2.1.5 Mitigation

The BLM holds regulatory jurisdiction over portions of natural gas and petroleum systems, identified in the EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks document. Exercise of this regulatory jurisdiction has led to development of “Best Management Practices (BMPs)” designed to reduce emissions from field production and operations. Analysis and approval of future development on the
lease parcels may include applicable BMPs as Conditions of Approval (COAs) in order to reduce or mitigate GHG emissions, if necessary and within the authority of the BLM to administer. Additional measures developed at the project development stage may be incorporated as applicant-committed measures by the project proponent, added to necessary State of Wyoming air quality permits, or as COAs in the approved APD or with a programmatic EIS.

Such mitigation measures may include, but are not limited to:

- Flare hydrocarbon and gases at high temperatures in order to reduce emissions of incomplete combustion through the use of multi-chamber combustors;
- Water dirt roads during periods of high use in order to reduce fugitive dust emissions;
- Require that vapor recovery systems be maintained and functional in areas where petroleum liquids are stored;
- Installation of liquids gathering facilities or central production facilities to reduce the total number of sources and minimize truck traffic;
- Use of natural gas fired or electric drill rig engines;
- The use of selective catalytic reducers and low-sulfur fuel for diesel-fired drill rig engines; and,
- Adherence to BLM’s Notice to Lessees’ (NTL) 4a concerning the venting and flaring of gas on Federal leases for natural gas emissions that cannot be economically recovered,
- Flaring of hydrocarbon gases at high temperatures in order to reduce emissions of incomplete combustion;
- Protecting frac sand from wind erosion
- Implementation of directional and horizontal drilling technologies whereby one well provides access to petroleum resources that would normally require the drilling of several vertical wellbores;
- Performing interim reclamation to reclaim areas of the pad not required for production facilities and to reduce the amount of dust from the pads.

Additionally, the BLM encourages oil and gas natural gas companies to adopt proven cost-effective technologies and practices that improve operation efficiency and reduce natural gas emissions to reduce the ultimate impact from the emissions.

In October 2012, the EPA promulgated air quality regulations for completion of hydraulically fractured gas wells. These rules require air pollution mitigation measures that reduce the emissions of VOCs during gas completions. Mitigation includes a process known as “Green Completion” in which the recovered products are sent through a series of aboveground, closed, separators which then negates the need for flowing back into surface pits as the product is then immediate sent to gas lines and the fluids are transferred to onsite tanks. Green completions have been required by the WDEQ for many years in the Upper Green River Basin and will be required throughout the state of WY by 2015.

EPA Inventory data show that adoption by industry of the BMPs proposed by the EPA Natural Gas Energy Star program has reduced emissions from oil and gas exploration and development. The four field offices will continue to work with industry to facilitate the use of the relevant BMPs for operations proposed on federal mineral leases where such mitigation is consistent with agency policy and determined necessary through the NEPA process.
4.2.2 Wildlife and Special Status Species (Plants and Animals)

As previously stated, it is not possible to predict whether or not a parcel would be sold and if it is sold, whether or not it would developed. Should a lease be developed and surface disturbing and/or disruptive activities occur on the parcels containing crucial big game winter range during the crucial wintering period, it could cause impacts to wintering moose, mule deer, pronghorn, and elk, such as causing animals to move to less suitable winter habitat and conceivably causing fetal abortion by pregnant females. Well pad, road, and pipeline development into areas currently void of surface disturbing or disruptive activities could result in habitat fragmentation, which, depending on the intensity of the development, vegetative cover and terrain, may affect short-term and long-term habitat viability.

Activities associated with development of oil and gas resources, are highly likely to result in displacement of wildlife. As stated in Section 1.3, it is not possible at the lease offering stage to accurately predict whether a parcel would actually be leased; if it is leased, whether or not a given parcel would be explored or developed; and if explored or developed, what the development intensity (down-hole and surface well pad spacing) will be. Surface disturbing or disruptive activities within big game migration routes during the migration period could result in animals altering their travel routes and expending energy needed during the winter season to avoid the activity. For those species who show high fidelity to these migration corridors, such as mule deer, the loss of the corridors could result in a brain drain such that the animals could eventually lose all knowledge of these pathways if long-term disruptions are caused.

4.2.2.1 Special Status Species

Refer to Section 4.14 (beginning on page 4-250) of the ARMPA FEIS for a discussion of potential impacts to Special Status Species.

There are many sources of habitat fragmentation, all of which may affect the Greater Sage-Grouse. Industrial development, livestock grazing, mining, gravel pit operations, oil and gas activity, land exchanges and disposal, vegetation manipulation, fuel reduction projects, and other activities may disturb and fragment natural habitat conditions. Structures such as power lines, towers, and industrial disruptive activities may cause avoidance and abandonment of habitat. Livestock grazing, fuels treatments, and weed infestations are factors which may cause habitat degradation depending upon severity, intensity, and design.

Based on site-specific environmental analysis, the BLM may require additional avoidance and/or impact minimization measures in order to manage Greater Sage-Grouse habitat in support of management objectives at the time of development should these parcels be sold and issued. These measures may include, but are not limited to, disturbance density limitations or surface use and timing restrictions in proximity to certain habitats (e.g., winter concentration areas, Greater Sage-Grouse leks, etc.). Restrictions and prohibitions may be more restrictive than current RMP stipulation guidance if supported by site-specific NEPA analysis of a development proposal, the measures are in conformance with the RMP, as amended (2015).

In the event post-lease development without appropriate stipulations were to occur on leases in Greater Sage-Grouse habitat, it could potentially result in surface disturbing and/or disruptive activities within 2
miles or greater of a grouse lek or other known nesting habitats during the nesting period, within winter concentration areas, and/or within ¼ mile or greater of leks that are located outside of PHMA, during the breeding season and/or direct mortality. Direct and/or indirect impacts could result in habitat fragmentation, reduced breeding success and/or nest abandonment as well as cause Greater Sage-Grouse to move to less suitable winter habitat. Stipulations for the protection of leks, nesting habitat, and winter concentration areas have been added to specific parcels, as identified in Table 4-1.

All other impacts are the same as those described in the Kemmerer, Rawlins, Pinedale, and Green River RMPs, as amended (2015), as they relate to Greater Sage-Grouse. In accordance with the ARMPA, steps would be taken to locate disturbances in the least sensitive habitats (based on vegetation, topography, or other habitat features) and resources whether inside or outside of PHMAs.

Yellow-billed cuckoo habitat is not known to exist on any of the subject parcels. Site specific surveys would be required if habitat is subsequently found, prior to authorization of surface disturbance.

Impacts to the Idaho and Wyoming pocket gopher may result in direct mortalities of individuals, as a result of crushing from construction activities, vehicles, and equipment. Additional impacts may result from increased habitat fragmentation and human presence and noise. Habitat disturbance may encourage future colonization in the short term, based on the availability of disturbed soils that could occur.

Conservation recommendations under the required biological opinion written by the USFWS on behalf of the endangered and sensitive Bear River, Platte River, and Colorado River fishes shall be adhered to by all BLM in consideration of all future authorized post-lease actions.

Surface disturbing and/or disruptive activities from February 1 to July 31, or up to September 15th in the case of burrowing owls, may cause impacts to nesting raptors, including burrowing owls and several species of migratory birds if they are present in the proposed disturbance area in accordance with the applicable RMP. For Neotropical migratory birds, pre-disturbance nesting surveys would be completed prior to surface disturbance. Activities would be prohibited until completion of the fledging should nesting migratory birds be found. Absence surveys for Neotropical migratory birds, the primary direct impacts could include disturbance, nest destruction, nest abandonment, and/or egg and chick mortality. Site-specific surveys for special status plants and wildlife would be considered at the APD stage to determine the presence/absence of important plant and wildlife resources, including special status species such as nesting birds, sensitive plants, sensitive mammals, amphibians and reptiles and the potential need for additionally protective Conditions of Approval.

Well-pad, road, and pipeline development in undisturbed areas, could result in habitat fragmentation and possible direct mortality, which depending on the intensity of the development, vegetative cover, and terrain could affect a variety of wildlife species, including but not limited to, Greater Sage-Grouse, Wyoming pocket gopher, migratory birds, raptors, white-tailed prairie dog, mule deer, pronghorn, elk, reptilian and amphibian species. Should post-lease development actually occur on any of the parcels, the related surface disturbance could result in short- and long-term losses of wildlife habitat and site specific loss of vegetation communities. Short-term habitat loss would include all initial surface disturbance associated with the project. This short-term disturbance typically would be ongoing until those portions
of a well pad not needed for production operations, road disturbance outside the shoulders, and the pipeline disturbance are reclaimed. Long-term habitat loss would include those portions of the pad needed for production operations for the life of the well and travel path and shoulders of the access roads. Vegetation communities which require long term recovery (Sagebrush types would be lost until reclamation and recovery is successful and complete). Impacts from surface disturbing activities may also include behavioral changes from increased human activity, associated noise and fragmentation, and direct mortality from associated crushing or uprooting due to vehicular movements, construction activities and vegetation removal.

Water depletions for well pad and road construction, well drilling, well completion operations, pipeline hydrostatic testing, and dust abatement could potentially reduce stream flows in the Colorado and Platte River systems, potentially affecting threatened or endangered fish, wildlife and plant species that depend on habitats associated with those river systems. The depletion quantities would vary depending on the amount of freshwater needed to support wells being drilled and completed and whether or not non-contributing sources of water could be utilized. Information contained in Appendix E, Hydraulic Fracturing White Paper, Section II, Operational Issues/Water Availability and Consumption (page 4 and Attachment 1), is incorporated by reference which shows that adequate water sources are available for projected oil and gas development needs. All depletions in these river systems are subject the USFWS mitigation requirements (including potential depletion fund payments); specific project proposals resulting in a “may affect, likely to adversely affect” determination are required to undergo formal consultation with the USFWS before any project approval.

4.2.2 Other wildlife (Avian, Aquatic, and Terrestrial) and Plants

Post-lease actions (construction, drilling/completion, production, and maintenance) during the migratory bird breeding and nesting periods in the vicinity of suitable nesting habitats with active nests may cause impacts to nesting birds, such as crushing of nests, including eggs or hatchlings, and/or egg or hatchling abandonment. Operations during the breeding season could result in take under the Migratory Bird Treaty Act (MBTA) including the resulting reduction in breeding success. Site specific NEPA analysis for development proposals would address impacts minimization and mitigation measures needed based on habitats and species potentially affected.

4.2.2.3 Mitigation

A portion of parcel 32 is within the Beaver Creek ACEC and is stipulated with a Controlled Surface Use stipulation for protection of the Beaver Creek ACEC values.

Parcel 27 has a special status plant populations as identified by the RSFO RMP. Representative Phlox plant communities would be NSO areas as mapped on the Rock Springs Field Office GIS database.

As prescribed by the Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015) wildlife impacts at the leasing stage would be mitigated through timing limitations, controlled surface use and/or no surface occupancy stipulations where applicable. See Table 4-1 for a reference to the stipulations to be applied and to Appendix B for the specific wildlife stipulations applied to each parcel. Based on these stipulations, the impacts to wildlife identified in the final EISs for the governing RMPs were determined
not to be significant. This EA identifies similar impacts; implementation and adherence to these stipulations as stated in this EA is expected to achieve analogous results. In the event lease development is proposed, BMPs such as directional and/or horizontal drilling, installation of multiple wells per pad, well pad siting criteria, etc. could be implemented to mitigate site-specific direct/ indirect or cumulative impacts to wildlife and their habitats, including but not limited to parturition and crucial winter habitat, migratory bird nesting habitat, and wildlife migration routes. Additionally, the BLM would consider the guidelines in Wyoming Game and Fish Department (WGFD) “Recommendations for Development of Oil and Gas Resources within Crucial and Important Habitat” (2010) to the extent practicable.

Water depletion impacts to downstream fish and wildlife habitat in the Colorado River system would be mitigated through adherence to the recovery program with the USFWS at the time of extraction. Water depletion impacts to the North Platte River system would be mitigated in accordance with the Platte River Recovery and Implementation Program. Impacts to streams, fisheries, riparian habitat, and aquatic species would be mitigated through application of the requirements in Lease Notice No. 1 or special lease stipulations; such as the restriction on surface disturbing activities within 500’ of perennial water sources and/or riparian habitat. Spills would be handled in accordance with NTL-3A. A controlled surface use stipulation is applied to all offered parcels and provides protection for current and future threatened, endangered, and special status species. Operators are encouraged to recycle and reuse produced water in their operations to minimize dependence on freshwater sources. At a minimum the surface casing portion of the well bore must be drilled using freshwater to minimize contamination of usable groundwater that could discharge to surface waters.

Management practices identified on a case-by-case basis will be applied to surface disturbing activities to prevent destruction or loss and to maintain, or enhance Special Status plant and animal Species and their habitats.

Habitat containing threatened, endangered, proposed, and candidate plant species, as well as those plants listed on the Wyoming BLM sensitive list, would potentially limit the location of utility/transportation facilities, wind energy, and/or communication sites. The sensitive species habitat would be avoided where possible, and, in situations where these areas would not be avoided, additional BMPs would minimize disturbance to the habitat.

4.2.3 Wilderness, Wilderness Study Areas, and Lands with Wilderness Characteristics

4.2.3.1 Wilderness, Wilderness Study Areas

No parcels are being offered in designated wilderness areas or wilderness study areas.

4.2.3.2 Lands with Wilderness Characteristics

Refer to Section 4.6 (beginning on page 4-81) of the ARMPA FEIS for a discussion of potential impacts to Lands with Wilderness Characteristics. (LWC).
Parcels or portions of parcels 21 and 22 have been determined to have lands with wilderness character (Appendix D). Parcels 21 and 22 are within the Normally Pressured Lance (NPL) Natural Gas Development Project Area where an EIS is in progress. The lands with wilderness characteristics falling within the NPL project boundary currently have existing leases covering approximately 85% of the acreage.

Parcels 13 and a part of 18, which have been determined through inventory to not have wilderness characteristics, are located within the RFO Adobe Town Dispersed Recreation Use Area (DRUA) which is subject to management decisions in the Rawlins RMP. The Rawlins RMP approved in December 2008 determined these “lands to be unmanageable for wilderness character because of preexisting oil and gas leases, the BLM elected to manage lands with wilderness character for multiple use and not for protection of wilderness character.”

Parcel 15 is inside the Adobe Town Citizens’ Proposed Wilderness Area. Parcel 20 and a portion of parcel 18 are inside the Kinney Rim North Citizens’ Proposed Wilderness Area. Portions of parcels 16, 17, and 18 are inside the Kinney Rim South Citizens’ Proposed Wilderness Area. BLM inventory information indicates that these lands do not contain lands with wilderness characteristics.

Parcel 15 also falls within the Adobe Town area lands designated by the State of Wyoming as a “very rare or uncommon” area. The designation of the Adobe Town Rare and Uncommon Area by the Wyoming Environmental Quality Council applies State of Wyoming protection only as related to non-coal mining operations and does not limit the development of oil and gas resources. BLM management of the Adobe Town area, including the Adobe Town WSA and Adobe Town DRUA, meets or exceeds the management protections of the State of Wyoming “very rare or uncommon” designation (Rawlins RMP, 2008).

No other parcels were identified as having lands with wilderness characteristics nor has the BLM received new information in the form of Citizens Wilderness Proposals. Offering parcels that have been determined to not contain wilderness characteristics would not impact wilderness characteristics or preclude the BLM’s ability to determine manageability for lands with wilderness characteristics during a land use planning process. Impacts to lands identified as having wilderness characteristics as result of future lease development would be consistent with those identified in the Field Office RMPs, as amended (2015) and may include both short-term and long-term direct and indirect impacts resulting in the temporary loss of one or more of the individual wilderness components. Specific impacts, and necessary mitigation, would be identified at the APD stage should the parcels be sold and development proposed.

4.2.3.1 Mitigation
Through the site specific NEPA process, mitigation would be applied to minimize or avoid these impacts and adequate and timely reclamation would be a priority. Those parcels located within the DRUA are stipulated with a CSU to minimize impacts to both recreation and visual resources, both of which are LWC considerations.

4.2.4 Cultural and Paleontological Resources

Once the decision is made by the lessee to develop a lease, area specific cultural records review would be completed to determine if there is a need for a detailed cultural inventory of those areas that could be
affected by the subsequent surface disturbing activities. Generally, a cultural inventory will be required and all identified historic and archaeological sites that are eligible for listing in the National Register of Historic Places or potentially eligible to be listed would be either avoided by the undertaking, have adverse effects to sites minimized or mitigated, or have the information in the sites extracted through archaeological data recovery before surface disturbance. Offering lease parcels for sale would not, in and of itself, impact historic or prehistoric resources. Development within the viewshed of contributing segments of National Historic Trails could impact the trail setting; however, the extent of potential impacts cannot be determined absent a specific surface use or occupancy proposal.

A site and resource inventory and mitigation process similar to that described for cultural resources also applies to paleontological resources.

4.2.4.1 Mitigation

Lease Notice No. 2 is applied to all parcels offered for leasing. Avoidance measures, including no surface occupancy and controlled surface use stipulations, would be imposed wherever eligible cultural and/or paleontological resources, including National Historic Trails, are potentially impacted (refer to Table 4-1 and Appendix B for the parcels with cultural and historic stipulations).

4.2.5 Soils

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to soils. Subsequent development of the lease could physically disturb the topsoil and could expose the substratum soil on subsequent project areas. Direct impacts resulting from the oil and gas construction of well pads, access roads, and reserve pits include removal of vegetation, exposure of the soil, mixing of horizons, compaction, loss of top soil productivity and susceptibility to wind and water erosion where construction of these facilities are necessary. Wind erosion could be a moderate contributor to soil erosion given the soil texture in the area. Indirect impacts such as runoff, erosion and off-site sedimentation could result from construction and operation of well sites, access roads, gas pipelines and facilities.

Contamination of soil from drilling/completion and production wastes mixed into soil or spilled on the soil surfaces could cause a long-term reduction in site productivity if not adequately identified and addressed. Some of these direct impacts can be reduced or avoided through proper design, construction and maintenance, and implementation of best management practices.

Based on the Kemmerer, Pinedale, Rawlins, and Green River RMPs, surface disturbance is restricted or prohibited on steep slopes and also within floodplains; consequently impacts to these resources/landforms are not anticipated from post-leasing development. The requirements in the BLM Wyoming Reclamation Policy would be implemented for all surface disturbing activities. In accordance with the policy, additional pre-disturbance and pre-reclamation data may be required when soils with a low potential for reclamation are identified to minimize impacts and ensure proper reclamation methods are used.

4.2.5.1 Mitigation

Leaseholders/operators would be required to adhere to the BLM Wyoming Reclamation Policy (BLM 2012b) which includes preparing and submitting for BLM approval a detailed reclamation plan. In
accordance with the BLM Wyoming Reclamation Policy, the operator would stockpile the topsoil from the surface of well pads which would be used for surface reclamation of the well pads. The impact to the soil would be remedied upon reclamation of well pads when the stockpiled soil that was specifically conserved to establish a seed-bed is spread over well pads and vegetation re-establishes.

Reserve pits where allowed would be closed, re-contoured and reseeded as described in COAs attached to APDs and in accordance with Onshore Order #1. Upon abandonment of wells and/or when access roads are no longer in service the Authorized Officer would issue instructions and/or orders for surface reclamation of the disturbed areas.

Lease Notice No.1 strictly controls surface disturbance on slopes greater than 25 percent and is applied to all parcels.

Parcel 31 has an NSO for slopes greater than 25%.

All development operations on Federal leases are required to have adequate spill prevention and countermeasure plans in place.

4.2.6 Vegetation

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to vegetation. Impacts to vegetation, both direct and indirect, would occur when the lease is developed in the future. The potential impacts would be analyzed on a site specific basis before oil and gas development.

Should post-lease development actually occur on any of the parcels, the related surface disturbance would result in short- and long-term losses of vegetation. Short-term vegetation loss would include all initial surface disturbance associated with the project until those portions of a well pad not needed for production operations, road disturbance outside the shoulders, and the pipeline disturbance are reclaimed. Long-term habitat loss would include those portions of the pad needed for production operations for the life of the well and travel path and shoulders of the access roads. Both short- and long-terms losses of vegetation would result in a commensurate reduction in foraging habitat available for wildlife and livestock. Vegetation loss could also potentially correlate to a reduction in nesting habitat for ground or shrub nesting avian species, as well as a loss of hiding cover for certain avian and mammalian species.

4.2.6.1 Mitigation

When reviewing proposed surface disturbing projects, BLM Wyoming Reclamation Policy (BLM 2012b), which includes guidance on the preparation of detailed reclamation plans and objectives, will be followed including the identification of low reclamation potential soils. Lease Stipulation #2 is applied for protection of sensitive plants and sensitive species wildlife habitats that could include seasonal timing restrictions, avoidance of specialized habitat features, and restrictions on structure types to minimize impacts to vegetation and special status species habitats from any future development activities. BMP’s to address noise, dust, and visual impacts could also be required. In accordance with the ARMPA ROD, steps would be taken to locate disturbances in the least sensitive habitats (based on vegetation,
topography, or other habitat features) and resources whether inside or outside of PHMAs (utilizing the DDCT analysis process, as appropriate).

4.2.7 Invasive, Non-native Species

The act of offering, selling, and issuing federal oil and gas leases does not produce invasive/non-native species impacts. Subsequent development produces impacts in the form of surface disturbance. The construction of an access road and well pad may unintentionally contribute to the establishment and spread of noxious weeds. Noxious weed seed could be carried to and from the project areas by numerous methods, including construction equipment, the drilling rig and transport vehicles. The main mechanism for seed dispersion on the road and well pad is by equipment and vehicles that were previously used and or driven across or through noxious weed infested areas. The potential for the dissemination of invasive and noxious weed seed may be elevated by the use of construction equipment typically contracted out to companies that may be from other areas.

4.2.7.1 Mitigation

In the event noxious weeds are discovered during construction of any access roads and well pads, measures will be taken to mitigate those impacts. Washing and decontaminating the equipment entering and exiting the construction areas would minimize this impact. Additionally, seed mixes used for reclamation are required to be certified weed-free and all Operators must have an approved Weed Management Plan. Monitoring and mitigation for weeds will continue after construction until reclamation is complete.

4.2.8 Wastes, Hazardous or Solid

The lease parcels fall under environmental regulations that impact exploration and production waste management and disposal practices and impose responsibility and liability for protection of human health and the environment from harmful waste management practices or discharges.

Any potential for waste impact would not occur until post-lease development activities are initiated. Impacts could be in the form of drilling or completion fluid spills, formation fluid spills, dry material or chemical spills, fuel spills, trash scatter on and off the well pads, and hydrocarbon or gas releases.

4.2.8.1 Mitigation

Future development activities on these lease sale parcels would be regulated under the Resource Conservation and Recovery Act (RCRA), Subtitle C regulations. Additionally, waste management requirements are included in the 12 point surface use plan and the 9 point drilling plan required for all APDs (see also BLM-Wyoming Instruction Memorandum 2012-007, “Management of Oil and Gas Exploration and Production Pits”). Leaseholders proposing development would be required to have approved Spill Prevention Control and Countermeasure Plans, if the applicable requirements of 40 CFR 112 are met, and comply with all requirements for reporting of undesirable events. Lease bonds would not be released until all facilities have been removed, wells are plugged, and satisfactory reclamation has occurred.
4.2.9 Water Resources: Surface and Groundwater

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to water quality. Subsequent development of the lease can lead to surface disturbance from the construction of well pads, access roads, pipelines, and powerlines, which can result in degradation of surface water quality and groundwater quality from point source pollution, nonpoint source pollution, increased surface water runoff and increased erosion. Alteration of natural drainage paths and channel morphology can also occur as a result of surface disturbance associated with the installation of oil and/or gas wells. Natural drainage paths are often re-routed around well pads; channel morphology is altered at road and pipeline crossings. Removal of vegetation and subsequent erosion can also cause rill and gully erosion leading to a loss of channel stability as well as an increase in sedimentation within drainages.

The magnitude of these impacts to water resources would depend on the proximity of the disturbance to the drainage channel, slope aspect and gradient, the degree and extent of soil disturbance, soil characteristics, duration and time within which construction activity would occur, and the timely implementation and success or failure of mitigation measures.

Direct impacts to surface water would likely be greatest shortly after the start of construction activities and would likely decrease in time due to natural stabilization, and reclamation efforts. Impacts to groundwater would be less evident and occur on a longer time scale. Construction activities would occur over a relatively short period (commonly less than a month); however, natural stabilization of the soil can sometimes takes years to establish to the degree that will adequately prevent accelerated erosion caused by compaction and removal of vegetation. Spills of materials used to drill/complete the wells and or produced formation fluids could result in contamination of the soil onsite, or offsite, and may potentially impact surface and groundwater resources in the long term if not detected and addressed.

Petroleum products and other chemicals used in the drilling and/or completion process could degrade groundwater quality through a variety of operational sources including but not limited to pipeline and well casing failure, well (gas and water) construction, and spills. Similarly, improper construction and management of reserve and evaporation pits could also degrade ground water quality through leakage and leaching if not properly constructed, maintained, and ultimately closed.

Oil and gas contained in geologic formations is often not under sufficient hydraulic pressure to flow freely to a production well. The formation may have low permeability or the area immediately surrounding the well may become packed with cuttings. A number of techniques are used to increase or enhance the flow. They include hydraulic fracturing and acid introduction to dissolve the formation matrix and create larger void space(s). The use of these flow enhancement techniques and secondary recovery methods result in physical changes to the geologic formation that will affect the hydraulic properties of the formation. Typically, the effects of these techniques and methods are localized to the area immediately surrounding the individual well, are limited to the specific oil and gas reservoir, and do not impact adjacent aquifers.

The potential for negative impacts to groundwater caused from completion activities such as hydraulic fracturing, a common practice used in the HDD, have not been confirmed but based on its history of use
are not likely. A recent study completed on the Pinedale Anticline did not find a direct link to known detections of petroleum hydrocarbons to the hydraulic fracturing process although the cause of groundwater contamination in the Pavillion field has not been resolved. Authorization of the proposed projects would require full compliance with local, state, and federal directives and stipulations that relate to surface and groundwater protection and the BLM would deny any APD who proposed drilling and/or completion process was deemed to not be protective of usable water zones as required by 43 CFR 3162.5-2(d). The EPA and State agencies regulate the disposal of wastes generated by the development and production of oil and gas. Underground waste disposal is regulated under the UIC program, which is authorized under the Safe Drinking Water Act (SDWA). RCRA conditionally exempted wastes associated with exploration, development, and production of oil and gas from regulation as a hazardous waste. Exempted wastes include well completion, treatment and stimulation fluids, workover wastes, packing fluids, and constituents removed from produced water before disposal.

As stated, groundwater could be affected by multiple factors, including industrial, domestic, or agricultural activities through withdrawal, injection (including chemical injection), or mixing of materials from different geologic layers or the surface. Withdrawal of groundwater could affect local groundwater flow patterns and create changes in the quality or quantity of the remaining groundwater. Based on an evaluation of statewide groundwater availability, and the total projected number of wells to be drilled/completed on BLM lands, adequate water supplies are available and would not result in significant impacts on a regional basis even during drought conditions. Loss of a permitted source of groundwater supply due to drawdown would be considered a significant impact if it were to occur. This potential would be assessed at the development stage should a parcel be sold and subsequent development proposed. The drilling of horizontal wells, versus directional and vertical wells may initially appear to require a greater volume of water for drilling/completion purposes. However, a horizontal well develops a much larger area of the reservoir than a directional and/or vertical well and actually results in a lesser volume of fluids being required.¹

Information contained in Appendix E, Hydraulic Fracturing White Paper, Section III, Potential Impacts to Usable Water zones (pages 6-10 and Attachment 1), is incorporated by reference. The information being incorporated by reference is generally summarized below. Impacts to the quality of groundwater, should they occur, would likely be limited to a near well bore location due to inferred groundwater flow conditions in the area of the parcels and based on studies completed in the Pinedale Anticline. Impacts to near well groundwater could occur from poor casing and/or cementing practices and the use of potentially hazardous materials within those formations containing freshwater and/or usable water zones. The materials proposed for use in the drilling program within freshwater and/or usable water zones are typically water based and would be protective of usable zones, both water quality and formation integrity. If an operator proposed to use oil based mud in their drilling program, their use is limited to the production formation and formations containing waters deemed to not be usable.

¹ Vertical and directional wells can easily require one well per 10 acres resulting in 64 wells per section. This is in contrast to one horizontal well per 640 acres or one per 320 acres which results in a net decrease in total fluid volumes needed and in surface disturbance acreages.
Exploration, development, and production of traditional oil and gas resources typically do not significantly deplete ground water on a regional basis but may have a limited, short-duration, near-well bore drawdown around the water supply well depending upon length and intensity of pumping activity. Oil and gas resources are often developed from geological reservoirs that do not contain significant amounts of freshwater with the exception of some CBM developed formations; however, the development and production of oil and gas can affect adjacent or nearby aquifers. Potential impacts result from the creation of artificial pathways between oil and gas reservoirs and adjacent aquifers. Modification of ground water flow paths may cause fresh ground water to come in contact with oil or gas. In addition, improper disposal of waste waters (brine, storm runoff), drilling/completion fluids, and other wastes can impact the quality of underlying ground water (U.S EPA 1987).

A high risk of fluid migration exists along the vertical pathways created by inadequately constructed wells and unplugged inactive wells. Brine or hydrocarbons can migrate to overlying or underlying aquifers in such wells. This problem is well known in the oil fields around Midland, TX. Since the 1930s, most States have required that multiple barriers be included in well construction and abandonment to prevent migration of injected water, formation fluids, and produced fluids. These barriers include (1) setting surface casing below all known aquifers and cementing the casing to the surface, and (2) extending the casing from the surface to the production or injection interval and cementing the interval. Barriers that can be used to prevent fluid migration in abandoned wells include cement or mechanical plugs. They should be installed (1) at points where the casing has been cut, (2) at the base of the lowermost aquifer, (3) across the surface casing shoe, and (4) at the surface. Individual states, including WY, and the BLM have casing programs for oil and gas wells to limit cross contamination of aquifers.

Any proposed drilling/completion activities would have to be in compliance with Onshore Order #2, 43 CFR 3160 regulations, and not result in a violation of a Federal and/or State law. If these conditions were not met, the proposal would be denied. As such, no significant impacts to groundwater from the proposed action are expected.

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to watersheds. Subsequent development of a lease may result in long- and short term alterations to the hydrologic regime depending upon the intensity and context of a specific proposal. Flows of perennial streams, ephemeral, intermittent rivers and streams and their associate could be directly affected in the short term by an increase in impervious surfaces resulting from the construction of the well pad and road. An increase in impervious surfaces provides for reduced infiltration which can then cause overland to move more quickly causing peak flow to potentially occur earlier, have a higher flow velocity and/or a larger volume then the channels are equipped for. Increased velocity and volume of peak flow can cause bank erosion, channel widening, downward incision, and disconnection from the floodplain. The potential hydrologic effect to low flow is reduced surface storage and groundwater recharge, which can then result in reduced base flow to perennial rivers and/or streams and potentially causing intermittent channels to become ephemeral. The direct impact would be that hydrologic processes may be altered where the perennial, ephemeral, and intermittent river and stream system responds by changing physical parameters, such as channel configuration. These changes may in turn impact water quality and ultimately the aquatic ecosystem through eutrophication, changes in water temperature, and/or a change in the food structure.
Minor long-term direct and indirect impacts to the watershed and hydrology could continue for the life of surface disturbance from water discharge from roads, road ditches, and well pads, but would decrease once all well pads and road surfacing material has been removed and reclamation of well pads, access roads, pipelines, and powerlines have taken place. Interim reclamation of the portion of the well pad not needed for production operation, as well as re-vegetating the portion of the pad that is needed for production operations, as well as re-vegetating road ditches would reduce this long-term impact. Short-term direct and indirect impacts to the watershed and hydrology from access roads that are not surfaced with impervious materials would occur and would likely decrease in time due to reclamation efforts.

4.2.9.1 Mitigation

Portions of parcel 32 are in the Beaver Creek ACEC and will be intensively managed per the Pinedale RMP and the parcel is subject to a CSU for protection of those identified ACEC values.

Lease Notice No. 1 is applied to all lease parcels and restricts surface disturbing activities within 500 feet of surface water and/or riparian areas to protect the water and riparian resources and within ¼ mile of occupied residences.

All depletions potentially affecting Threatened and Endangered aquatic species would require consultation with USFWS and all water discharged would require State permits under the National Pollution Discharge Elimination System (NPDES) and approval by the BLM at the APD stage; potential impacts would be mitigated at that time. The EPA and State agencies regulate the disposal of wastes generated by the development and production of oil and gas. Underground waste disposal is regulated under the UIC program, which was authorized under the Safe Water Drinking Act. Additionally, if an operator proposed the use of diesel in its completion proposal, they would also have to obtain permission from EPA under the UIC program. If a drilling/completion proposal is found to not be protective of usable water zones, as required by 43 CFR 3162.5-2(d) and Onshore Order #2, the proposal would be denied regardless of any stipulations attached to the lease. For example, if a proposal included the use of hazardous and/or toxic materials within a formation containing usable waters, it would be denied.
Requirements for groundwater monitoring both pre and post oil and gas development have recently been instituted throughout WY by the Wyoming Oil and Gas Conservation Commission. This monitoring will add a level of certainty regarding the impacts of oil and gas drilling/completion activities on groundwater in WY.

The use of practices such as but not limited to closed-loop mud systems or lined reserve pits would reduce or eliminate seepage of waste fluids into the soil and eventually reaching groundwater. The casing and cementing requirements imposed on proposed wells would reduce or eliminate the potential for groundwater contamination from drilling/completion/production fluids and other surface sources. Additional mitigation could include, but would not be limited to: the use of recycled water for drilling and completion fluids below the surface casing zone, installation of backflow preventers, installation of oil and gas related water wells to aquifers below those providing residential and/or municipal water supplies and then cementing from the nearest shale/clay zone below the deepest culinary/livestock water well in the vicinity back to the surface, and insuring that access to water wells is only provided to authorized users. Using the lowest quality water necessary and cementing any water supply wells to surface will reduce the potential for mixing of lower quality waters with potable sources. Additionally, drilling with
oil-base mud or requiring the use of closed loop or semi-closed loop drilling mud systems in areas where shallow groundwater may be encountered, the use of closed-loop or semi-closed loop drilling systems may be required (see also BLM-Wyoming Instruction Memorandum 2012-007, “Management of Oil and Gas Exploration and Production Pits”). The use of materials that are not protective of usable water zones is prohibited by regulation. Floodplains would be managed in accordance with Executive Order 11988.

4.2.9.2 Mitigation

Stormwater Pollution Prevention and Control Plans are required by the State of Wyoming before any surface disturbance associated with construction actions greater than 1 acre in size. On a case-by-case basis, the Authorized Officer may require additional erosion control measures to reduce the volume of surface runoff and subsequent sediment transport. The operator would stockpile the topsoil from the surface of well pads which would be used for surface reclamation of the well pads. Reserve pits, where authorized, would be re-contoured and reseeded as described in the APD COA. Upon abandonment of the wells and/or when access roads are no longer in service the Authorized Officer would issue instructions and/or orders for surface reclamation of the disturbed areas as described in the APD COA. Implement interim reclamation BMP measures.

4.2.10 Livestock Grazing

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to livestock grazing. Subsequent development of a lease may generate impacts to livestock but would be addressed on a site specific basis once the extent of development is known.

Post-lease development could result in short-term and long-term losses of vegetation, which correlates to short-term and long-term losses of livestock forage. Short-term losses would occur until the portions of a well pad not needed for production operations, road disturbance outside the shoulders, and the pipeline disturbance, are reclaimed with established vegetation. Long-term losses would be the portions of the pad needed for production operations for the life of the well, as well as the maintained portions of the access roads. Increased traffic associated with well-field development increases the possibility of animals being injured or killed in collisions with vehicles. All range improvements would be avoided by development to the extent practical.

4.2.10.1 Mitigation

Reclaim and re-vegetate all disturbed areas not needed for well production operations. Avoid range improvements by 500 feet (Standard Lease Notice No. 1). Avoid livestock trailing routes. Securing reserve pits and production facilities against livestock entry with cattleguards, fences and gates would reduce adverse effects to livestock. All development proposals would be coordinated with the applicable grazing lessee.

4.2.11 Recreation

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to the recreational use of public land. Subsequent development of a lease may generate impacts to recreation activities. For public land areas that are small or land-locked by private or state land, recreation
opportunities would be limited or non-existent due to land ownership or access restrictions. Recreational use on larger blocks of public land and on smaller blocks of public land where there is public access, including areas with citizen proposed wilderness could be impacted by post-lease oil and gas development. The quality of the recreational experience would likely be diminished by oil and gas development operations by noise and changes in scenic quality. Recreation on split estate lands would be at the discretion of the private landowner.

Construction and drilling operations would potentially cause game animals and birds to move away from the activity. Studies have shown that animals have moved 2 miles or more from logging operations and other similar activities. Studies also show that elk avoid areas within 1-2 miles of roads (Powell 2003). If post-lease development operations coincide with hunting season, it is expected that hunters would experience reduced success rates within a 2-mile area of the activity. It is also likely that some hunters would experience a diminished quality in their hunting adventure. In addition to facilitating mineral extraction, new oil and gas roads could provide better access to the lease areas for recreational opportunities but can also result in increased poaching activities or wildlife harassment. However, the presence of oil and gas facilities would likely diminish the recreational experience and a decline in recreational use of an area due to oil and gas development would potentially affect local, state, and regional revenues generated through recreation. The level of economic decline would depend on type and level of use and the level of decline.

4.2.11 Mitigation

Parcels 13 and 18 are located within the RFO Adobe Town Dispersed Recreation Use Area (DRUA) which is subject to management decisions in the Rawlins RMP. The Rawlins RMP approved in December 2008 determined these “lands to be unmanageable for wilderness character because of preexisting oil and gas leases, the BLM elected to manage lands with wilderness character for multiple use and not for protection of wilderness character.” Surface occupancy or use will be restricted or prohibited unless the operator and surface managing agency arrive at an acceptable plan for mitigation of anticipated impacts to recreational opportunity class setting within the Adobe Town Dispersed Recreation Use Area

Additional mitigation and/or COAs, such as seasonal restrictions or BMPs such as directional drilling, liquids gathering systems, pad drilling, etc. could be identified at the development stage to further reduce impacts associated with oil and gas development.

4.2.12 Visual Resources

Since well locations cannot be accurately determined at the leasing stage, it is not possible to accurately predict the visual impacts. Development intensity, terrain, and proximity to visual receptors (e.g., main travel corridors, towns, recreation facilities, etc.) will greatly influence the VRM impacts. For example, a single well pad screened by terrain at an area absent of visual receptors would have low to negligible impacts in Class III or IV areas; whereas well pads developed next to a major travel route on in the viewshed of a town or recreation facility may have substantial impact. It is possible that post-lease industrial development could result in portions or all of a VRM area to be re-evaluated and potentially downgraded to a lower classification.
As previously stated, parcels 13 and a part of 18 are within the Adobe Town DRUA which was designated VRM Class III in the December 2008 Rawlins RMP. RFO issued the results of a new VRI inventory in 2011. The VRM classification through the pending RMP amendment to the 2008 Rawlins RMP may or may not correspond to the VRI classifications and will not be determined until the Decision Record for the RMP amendment is approved. Management objectives for other resource values can result in a VRM classification that varies from the VRI classification.

Offering parcels at the May 3, 2016 lease sale would not compromise BLM’s ability to select any of the alternatives being analyzed in the ongoing VRM RMP Amendment. The authority the BLM has to condition approval of lease development actions with reasonable measures to protect natural resources and environmental quality will ensure that by offering these lease parcels the BLM will not limit the choice of reasonable alternatives in the ongoing VRM amendment to the Rawlins RMP.

4.2.12.1 Mitigation

Parcels located within the RFO Adobe Town Dispersed Recreation Use Area (DRUA) are subject to management decisions in the Rawlins RMP, as amended (2015). The Rawlins RMP approved in December 2008 determined these “lands to be unmanageable for wilderness character because of preexisting oil and gas leases, the BLM elected to manage lands with wilderness character for multiple use and not for protection of wilderness character. Surface occupancy or use will be restricted or prohibited unless the operator and surface managing agency arrive at an acceptable plan for mitigation of anticipated impacts to protect recreational opportunity class setting within the Adobe Town Dispersed Recreation Use Area.

RSFO parcel 15 and PFO parcels 31 and 32 contains lands of VRM Class II category. Surface occupancy or use will be restricted or prohibited unless the operator and surface managing agency arrive at an acceptable plan for mitigation of anticipated impacts to Class II Visual Resource Management Areas.

The flat colors Shale Green, Covert Green, or Shadow Gray from the Standard Environmental Colors Chart would be used on all facilities to closely approximate the vegetation within the setting. All facilities, including the meter buildings, would be painted one of these colors as determined during a site-specific review, unless other colors more closely match the surrounding landscape. Facility painting schemes also may include camouflage patterns or other management practices to reduce facility visibility or visual contrast in particularly sensitive areas. If the proposed area is in a scenic corridor use of landscape features for screening, use of low profile tanks, and/or offsite production may be recommended. A CSU stipulation is applied to all parcels in areas currently containing lands with a VRM Class II designation unless otherwise called for in the RMP; see Tables 3-1, 4-1, and Appendix B.

4.2.13 Public Health and Safety

The act of offering, selling, and issuing federal oil and gas leases does not produce impacts to public health and safety. Subsequent development of a lease may generate impacts. An explanation of the processes used to develop shale and conventional onshore oil and gas, using horizontal drilling and
hydraulic fracturing as well as environmental and health risks are discussed in Appendix E, Hydraulic Fracturing White Paper, Section VI, Public Health and Safety, page 12. Vehicle and equipment operations associated with the subsequent construction, drilling, and production operations could affect members of the public using the same roads and general areas and/or the employees of the oil and gas drilling, completion or services companies. Releases of gas from the well bore, production facilities and spills could potentially adversely affect members of the public in the vicinity as well as members of the workforce. The level of affect would depend on the product released or spilled, level of activity, density of development, technological and safety controls/regulations, and the receptors susceptibility.

Parcels containing lands with private surface overlying federal minerals (i.e., split-estate) are identified in Table 3-1. Parcels 36 and 38 may contain occupied dwellings. The private surface lands have or have the potential for future development of private residences and associate facilities such as domestic water supply wells. Residences along routes to, or in the vicinity of, active drilling and completion operations would likely experience increased traffic and noise, as well as night lighting. Traffic and drilling operations in close proximity to residences would increase the potential for collisions with the residents, pets, and livestock, as well as an increased potential for fire, hydrocarbon release, and explosion from well blow-out during drilling operations. None of the parcels overlay lands associated with municipalities or municipal water supplies.

4.2.13.1 Mitigation

Prepare and implement safety contingency plans and comply with Onshore Order No. 6, 43 CFR 3162.5-1, and all requirements for reporting undesirable events under NTL 3A.

Lease Notice No. 1 restricts surface disturbance within ¼ mile of occupied dwellings and is applied to all parcels to mitigate impacts to private residences. BLM Wyoming has issued policy (IM WY-2015-054) to address setbacks from occupied structures that will be implemented at the development stage. The State of WY also imposes a minimum 350’ offset from all sources of drinking water including private water wells.

4.2.14 Socioeconomics

Refer to section 4.11 of the ARMPA FEIS (beginning on page 4-134) for a discussion of potential impacts to socioeconomics.

Based on the assumption that all 32 parcels and/or portions of parcels (29,736.220 acres) identified in Alternative B would be sold and based on the minimum acceptable bid of $2.00 per acre, the government would lose the opportunity to collect a minimum of $59,472.44 under Alternative A, as would include any royalties that would be collected from subsequent production. Typically, lease bids are substantially higher than the $2.00 per acre minimum; consequently the economic loss would likely be much higher than that projected. For example, the last four lease sales conducted for HDD yielded $23,336,945 from 293,421 acres sold for an average of $97.47 per acre. Based on this average, implementing Alternative A would potentially result in a loss of $2,898,389.36 compared to the Proposed Action.
While the act of leasing federal minerals itself would result in no social impacts, subsequent development of a lease may generate impacts to people living near or using the area in the vicinity of the lease.

Oil and gas exploration, drilling, or production could create additional inconvenience to these people due to increased traffic and traffic delays, noise and visual impacts. This could be most noticeable in rural areas where oil and gas development has been minimal. The amount of inconvenience would depend on the activity affected, traffic patterns within the area, noise levels, length of time, and season these activities occurred, etc. Creation of new access roads into an area could allow increased public access and potential exposure of private property to vandalism. For leases where the surface is privately owned and the subsurface is federally owned, surface owner agreements, standard lease stipulations, and BMPs could address many of the concerns of private surface owners.

4.2.14.1 Mitigation
None identified.

4.2.15 Environmental Justice
No minority or low income populations in this area of the lease parcels proposed for sale meet the criteria of needing environmental justice consideration so therefore no disproportionate impacts to environmental justice populations would occur.

4.2.15.1 Mitigation
None identified.

4.2.16 Solid Leasables (Coal and Sodium) and Locatables
There are no conflicts with coal or trona development from the offering and issuance of the lease parcels in the Proposed Action. No mining or mill site claims, including Uranium, are present on any of the parcels at the time of writing this document. The oil and gas lessee would conduct its operations, so far as reasonably practicable, to avoid damage to any known deposit of any mineral for which any mining claim is located, and should not endanger or unreasonably or materially interfere with the mining claimant's operations, including any existing surface or underground improvements, workings, or facilities which may have been made for the purpose of mining operations. The provisions of the Multiple Mineral Development Act (30 U.S.C. § 521 et seq.) shall apply to the leased lands.

4.2.16.1 Mitigation
See Tables 3-1 and 4-1 and Appendix B. All parcels are subject to Standard Lease Stipulation #3, Multiple Mineral Development. There are no known conflicts.

4.2.17 Other Considerations in accordance with IM 2010-117
A. There is a risk of drainage to Federal mineral resources due to development of nearby non-Federal parcels if the parcel is not leased.
All parcels were reviewed for active drainage and no cases have been identified either for the parcels being offered or for those being deferred. Many of the lands surrounding the deferred parcels are in high or very high areas of potential development and are adjacent to lands that are already leased or are actively producing; as a result, drainage could occur in the future.

B. In undeveloped areas, are non-mineral resource values greater than potential mineral development values?

All of parcels addressed in this EA have multiple surface resource values (see the affected environment discussions above). Whether the surface resource values for a given parcel are greater or less than the potential oil and gas development potential is subjective. Persons interested in preserving the surface resources would very likely say those values are greater than the potential mineral development value; whereas somebody interested in securing and developing one of the leases would likely say that the mineral value is greater. The Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015) have addressed values of the lands containing the parcels in this EA and have made resource allocations. All parcels fall within areas that are available for oil and gas leasing as determined by the RMPs. All of the parcels have stipulations attached in conformance with the subject RMP, and are intended to mitigate impacts to the surface resource values.

C. Stipulation constraints in existing or proposed leases make access to and/or development of the parcel or adjacent parcels operationally infeasible, such as an NSO parcel blocking access to parcels beyond it or consecutive and overlapping timing restrictions that do not allow sufficient time to drill or produce the lease without harm to affected wildlife resources.

Most parcels have one or more timing limitation, controlled surface use, or no surface occupancy stipulations. The vast majority of the parcels have multiple timing limitation stipulations that restrict activity from November 15 through July 31. Oil and gas operators have successfully conducted operations within the portion of the year falling outside these restrictions for the past 2 to 3 decades. CSU stipulations are used to control the rate, intensity, and density of development and serve to mitigate on-the-ground impacts to insignificance.

D. Parcel configurations would lead to unacceptable impacts to resources on the parcels or on surrounding lands and cannot be remedied by reconfiguring.

While there are a number of parcels that have one or more disconnected components, accessing and developing would not result in any impacts beyond those addressed in this EA as most of the surround lands have existing oil and gas lease contracts in place without lease-wide NSOs. The EA has not identified any unacceptable/unmitigatable impacts from the configuration of those parcels with disconnected components, nor has it identified that there would be unacceptable/unmitigatable from all or portions of a parcel.

E. The topographic, soils, and hydrologic properties of the surface will not allow successful final landform restoration and revegetation in conformance with the standards found in Chapter 6 of the Gold Book, as revised.
A number of the parcels have areas with slopes greater than 25 percent and Parcel 31 is restricted by an NSO for slopes greater than 25 percent. Construction on such slopes would increase the difficulty of achieving successful reclamation and landform restoration; however, standard lease stipulations restrict or prohibit occupation on these slopes. Additionally, parcels with these slopes also have areas with lesser slopes that are suitable for construction where there would be a high potential for successful reclamation. Many of the parcels fall within the 7- to 9-inch annual precipitation range. These drier sites also hamper successful reclamation, but there are procedures, such as strategic irrigation, hydro-mulching, etc. available to assist with achieving the Gold Book reclamation standards. Lease Notice No. 1 restricts surface use or occupancy on slopes greater than 25 percent.

F. Construction and use of new access roads or upgrading existing access roads to an isolated parcel would have unacceptable impacts to important resource values.

As previously stated, at the leasing stage the BLM does not have proposals for development; consequently, it is not possible to predict where or if oil or gas development would occur. Likewise the BLM cannot predict where or if access roads for oil and gas development would be proposed. Without a concrete development access road proposal, the BLM cannot determine whether or not road development to or within a given parcels would or would not have unacceptable impacts.

The majority of the parcels are located within areas of existing oil and gas development, with existing roads and infrastructure and would not have impacts beyond what has already been identified in the subject RMP FEIS’, as amended (2015).

G. Leasing would result in unacceptable impacts to the resources or values of any unit of the National Park System or national wildlife refuge.

None of the parcels are within the proximity of a National Park or national wildlife refuge.

H. Leasing would result in unacceptable impacts to specially designated areas (whether Federal or non-Federal) and would be incompatible with the purpose of the designation.

Table 3-1 (Affected Environment) provides a listing of the parcels that contain ACECs, SMAs, and SRMAs. The Kemmerer, Pinedale, Rawlins, and Green River RMPs, as amended (2015, provide for oil and gas leasing in these areas with the appropriate stipulations and additional mitigation as required at the APD stage.

4.3 Cumulative Impacts

Refer to Section 4.22 in the ARMPA FEIS (beginning on page 4-464), for a discussion of potential cumulative impacts to resources within the project area.

Offering the subject parcels for lease, and the subsequent issuance of leases, in and of itself, would not result in any cumulative impacts. The referenced RMPs/EISs provide cumulative affects analysis for oil
and gas development based on the reasonable, foreseeable oil and gas development scenario. The offering of the proposed lease parcels is consistent with that analysis. As discussed in Section 1.3, it is assumed that any development on those leases would occur within the RFD level analyzed in the EISs for the governing RMPs and that the impacts would also be within the thresholds of identified in the EISs. And as stated in Section 1.1, “The mitigation measures developed through those EISs reduced/minimized the anticipated impacts associated with the projected development to acceptable levels below the significance threshold”; therefore, since the proposed parcels are within areas designated by the RMPs as available for oil and gas leasing and development and as such are a subset of the RMP, it is anticipated that this will also hold evident for the parcels. Again, it is important to emphasize that at the leasing stage is not possible to predict if a parcel would be leased; if it is leased whether or not it would be developed; and if it is developed at what intensity/spacing, which is why additional NEPA is required when a definitive development proposal is received.

Subsequent to the issuance of the RMPs, additional projects, such as the Gateway West, TransWest, and Gateway South transmission lines, as well as the Chokecherry-Sierra Madre, Sand Hills Ranch, and White Mountain Wind Energy Development Projects, Bird Canyon Field Natural Gas Development, Hiawatha Field Project, and the Normally Pressured Lance Oil and Gas Development Project have been submitted to the BLM. The EISs/EAs prepared or being prepared for those projects address the cumulative effects of those individual projects in conjunction with each other and other ongoing projects. As stated Section 1.3, additional site-specific NEPA analysis will be conducted in the event a development proposal is submitted for one or more of the parcels addressed in this EA. This site-specific analysis will address the cumulative effects of that development in conjunction with other project within the cumulative affects area.

The average number of oil and gas wells drilled annually in the HDD and probable GHG emission levels, when compared to the total GHG emission estimates from the total number of federal oil and gas wells in the state, represent an incremental contribution to the total regional and global GHG emission levels. For additional information on projected emissions of GHGs, please see Wyoming Greater Sage-Grouse Land Use Plan Amendment FEIS pages 4-15 thru 4-20, 4-27 thru 4-28, 4-32 thru 4-33, and 4-36 thru 4-37. This incremental contribution to global GHG gases cannot be translated into incremental effects on climate change globally, regionally, or in the area of these site-specific actions. As oil and gas and natural gas production technology continues to improve in the future, one assumption is that it may be feasible to further reduce GHG emissions. Information contained in Appendix E, Hydraulic Fracturing White Paper, Section II Operational Issues/Gas emissions (page 2) is incorporated by reference.

Based on research compiled for the International Panel on Climate Change Fourth Assessment Report, 2001, 2007, and 2014, potential effects of climate change on resources in the affected environment are likely to be varied. Figure 4-2 below, taken from the Fourth Assessment Report, indicates varying responses of the natural world to increasing temperatures as a result of increasing global temperatures.
Within North America, the report specifically forecasts that: Warming in western mountains is projected to cause decreased snowpack, more winter flooding and reduced summer flows, exacerbating competition for over-allocated water resources; in the early decades of the century, moderate climate change is projected to increase aggregate yields of rain-fed agriculture by 5 to 20%, but with important variability among regions; major challenges are projected for crops that are near the warm end of their suitable range or which depend on highly utilized water resources; cities that currently experience heat waves are expected to be further challenged by an increased number, intensity and duration of heat waves during the course of the century, with potential for adverse health impacts and coastal communities and habitats will be increasingly stressed by climate change impacts interacting with development and pollution. Specific modeling and/or assessments of the potential effects for the HDD and for the State of Wyoming currently do not exist.

In 2001, the Intergovernmental Panel on Climate Change (IPCC) pointed out that by the year 2100, global average surface temperatures would increase 2.5 to 10.4° F. above 1990 levels (IPCC 2007). The National Academy of Sciences (2006) has confirmed these findings, but also indicated that there are uncertainties regarding how climate change may affect different regions. Computer model forecasts indicate that increases in temperature will not be evenly or equally distributed, but are likely to be accented at higher latitudes. Warming during the winter months is expected to be greater than during the summer, and increases in daily minimum temperatures is more likely than increases in daily maximum temperatures.
Regarding the linkage between climate change related warming and associated impacts, an assessment of the IPCC states that difficulties remain in attributing observed temperature changes at smaller than continental scales. Therefore, it is currently beyond the scope of existing science to predict climate change on regional or local scales resulting from specific sources of GHG emissions. Emissions of all regulated pollutants (including GHGs) and their impacts will be quantified and evaluated at the time that a specific development project is proposed.

IPCC also discloses that significant uncertainties remain with respect to the estimates of the current level of emissions and projections of future production of fossil fuels as the oil and gas industry is difficult to forecast with the mix of drivers: economics, resource supply, demand, and regulatory procedures. The assumptions used for the projections, based on recent trends or State production trends in the near-term, and AEO 2006 growth rates through 2020, do not include any significant changes in energy prices, relative to today’s prices. Large price swings, resource limitations, or changes in regulations could significantly change future production and the associated GHG emissions. Other uncertainties include the volume of GHGs vented from gas processing facilities in the future, any commercial oil shale or coal-to-liquids production, and potential emissions-reducing improvements in oil and gas production, processing, and pipeline technologies.

The cumulative impacts related to ozone are the same as described in Section 4.2.1.1. This lease sale complies with 40 CFR 93.153 concerning ozone.

4.4 Irreversible and Irretrievable Commitments of Resources

An irreversible commitment of a resource is one that cannot be reversed (e.g., the extinction of a species, disturbance to protected cultural resources, or extraction of fossil fuels); irreversible commitments of resources are actions which disturb or remove either a non-renewable resource or a renewable resource to the point that it can only be renewed over a long period of time (centuries); a resource is irreversibly committed when a decision or action alters the resource so that it cannot be restored or returned to its original or predisturbance condition; and, the resource or its productivity or its utility would be consumed, committed, or lost forever. Definitions of an irretrievable commitment of resources include: An irretrievable commitment of a resource caused by a management action or land use decision is one that directly removes the resource from availability or that renders its productivity or utility lost for a period of time (e.g., closure of an area to resource extraction); an irretrievable commitment is the loss of opportunities for production or use of a renewable resource for a short to medium period of time (years); or, a resource is irretrievably committed when a decision results in the loss of production or future use of the resource.

The administrative action of offering and issuing an oil and gas lease does not, in and of itself, directly result in an irreversible or irretrievable commitment of resources but without an NSO it does guarantee the right of access. However, until an Operator is able to submit an APD that complies with all BLM regulations found at 43 CFR 3160 and in Onshore Orders and NTL’s, access will not be granted regardless of the stipulations on the lease.
Irreversible and/or irretrievable commitment of resources that could potentially result from post-lease oil and gas development on the May 3, 2016 lease parcels would be within the irreversible and irretrievable commitment of resources analyzed and disclosed in the EISs for the Pinedale, Rawlins, Kemmerer, and Green River RMPs.

5.0 Description of Mitigating Measures and Residual Impacts

The lease sale will be mitigated by attaching appropriate conditions of approval to any subsequent requests for lease development either on a case-by-case basis or upon receipt of a project proposal (see Table 4-1 and Appendix B). The KFO, PFO, RFO, and RSFO Surface Use and Occupancy Requirements, Conditions of Approval, and the Special Leasing Stipulations as specified in the respective RMPs, as amended (2015) provide adequate mitigation for issuance of all lease parcels under the Proposed Action.

Direct, indirect, cumulative and residual impacts of leasing and lease development are generally described in the Kemmerer, Pinedale, Rawlins, and Green River RMP FEISs for the respective RMPs, as amended (2015). An environmental analysis will be prepared on a case-by-case basis upon receipt of future subsequent lease actions.

6.0 Consultation/Coordination

WYOMING GAME AND FISH DEPARTMENT (WGFD)
Tony Mong, WY Game and Fish Dept. Additional WGFD review of the May 3, 2016 Lease parcels was conducted by the BLM Wyoming State Office with the WGFD headquarters in Cheyenne, initiated by transmittal of the initial preliminary parcel list and the associated parcel stipulations.

Letters were sent to landowners notifying them that the minerals under their surface lands had been nominated for lease on XXXXX.

Letters were sent to landowners on November 2, 2015 inviting them to comment on this EA.

6.1 List of Preparers/Reviewers

KEMMERER FIELD OFFICE
Jessup Weichelt Wildlife Biologist
Jennie Frankus Archaeological Technician
Doug Tingwall Archaeologist
Erik Norelius Assistant Field Manager, Minerals and Lands
Alexia Williams Outdoor Recreation Planner
Christine Mallory, Natural Resource Specialist

PINEDALE FIELD OFFICE
Tim Zebulske Supervisory Natural Resource Specialist
Brian Roberts Natural Resource Specialist & Soils
J. D. "Sam" Drucker Paleontology & Cultural Resources
Rusty Kaiser Wildlife Biologist
Dale Woolwine Wildlife Biologist
Martin Hudson Recreation Planner
Kellie Roadifer Range Conservationist
Anthony Howard Range Conservationist
Therese Hartman Wyoming Game & Fish Department

ROCK SPRINGS FIELD OFFICE
Ted Inman Natural Resource Specialist
Brandon Teppo Natural Resource Specialist
Douglas Lynn Supervisory Natural Resource Specialist
Mark Snyder Supervisory Wildlife Biologist
Scott Stadler Supervisory Archeologist
Bob Price Supervisory Range Management Specialist
Lacey Anderson Range Management Specialist
Shawn James Range Management Specialist
Jessey Dowdy Archeologist
Tom Milton Archeologist
Gene Smith Archeologist
Dennis Doncaster Hydrologist
Jim Glennon Botanist

RAWLINS FIELD OFFICE
John Sjogren Natural Resource Specialist
Natasha Keierleber Archeologist
Megan Vasquez Civil Engineer Technician
Frank Blomquist Wildlife Biologist
Sandra Taylor Wildlife Biologist
Ben Smith Wild Horse Specialist
Susan Foley Weed & Pest Coordinator
Mark Newman Geologist
Kelly Owens Hydrologist
David Hullum Outdoor Recreation Planner
Brandon Snyder Realty Specialist
Eric Collier Range Management Specialist

HIGH DESERT DISTRICT OFFICE
Thomas Foertsch Resource Advisor

BLM WYOMING STATE OFFICE
Merry Gamper Physical Scientist
7.0 References

Colorado State University, VIEWS 2.0. 2014. VIEWS Data Wizard. Available online: http://views.cira.colostate.edu/web/DataWizard/.

Feeney et al. 2004. “Big Game Migration Corridors in Wyoming,” Figure 1. University of Wyoming.

York, New York. (Available on the Internet: http://data.giss.nasa.gov/gistemp/graphs/Fig.B.lrg.gif).

N.M ex rel. Richardson v. BLM, 565 F.3d 683, 718-19 (10th Cir. 2009).

Energy Development (Supplement to *National Sage-Grouse Habitat Conservation Strategy*).” Washington, D.C.

Wyoming Game and Fish Department. 2010. “Recommendations for Development of Oil and Gas Resources within Crucial and Important Habitat.” Cheyenne, Wyoming.

7.1 Authorities

40 CFR All Parts and Sections inclusive - Protection of Environment, Revised as of July 1, 2001.

43 CFR All Parts and Sections inclusive - Public Lands: Interior, Revised as of October 1, 2000.