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Although Hamilton (1989) concluded that projects loégﬁrgdlié %%]rg-gradiem
streams had higher failure rates than those in gently-sioping streams, we found no
evidence to support this generalization in our study streams. In fact, in southwest
Washington the incidence of damage increased as slope decreased (regression analysis,
P < 0.04, r = -0.79), due largely to burial of structures in low-gradient reaches. In
southwest Oregon damage rate did not vary significantly with slope, nor did failure rate
in either region. However, high-gradient streams were not well-represented in our
sample; only three projects were located in stream reaches exceeding 2% slope.
Regression of failure and damans ratac againgt an indov nf atream nawer. defined ac the
product of channel slope and mean active channel depth, were similar to regressions
using channel slope alone.

Neither failure nor overall damage rates appeared to be strongly related to the
estimated absolute or felative magnitude of the flood peak projects experienced during
1986. There was little difference in median or range of failure rates between one group
of projects that had peak flows of 2-year recurrence interval and another group that had
5-10-year peak flows. Falls Creek was the only project where no incidence of damage
or failure was recorded, perhaps because this high-elevation stream (830 m) did not
experience a large rain-on-snow peak flow in 1986.

The correlation between active channel width and slope (regression analysis, P
<0.01, r = -0.68) and relationships among these variables and drainage area, discharge,
and bed and bank texture, make simple, univariate explanations of patterns in damage
difficult. There was no obvious overall relationship between failure or damage rates and
valley segment type, a broad classification that accounts for covariation of numerous
geomorphic parameters (Frissell et al. 1986). In general, however, there appeared to be
a trend of more extensive damage in wide, low-gradient reaches in alluvial valleys and

alluvial fan areas, which are susceptible to bedload accumulation and bank erosion
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when the drainage catchment has been disturbed by logging or large natural landslides.
Additionally, some projects in terrace-bound valley or alluviated canyon segment types
(comparatively narrow channels with restricted floodplains) in southwest Oregon had
high failure rates which, based on field evidence, appeared to result from the scouring

effects of high-energy, sediment-charged flood flows.

3.2 Mode of Damage

Processes that damaged structures included design- or material-related
phenomena, such as failure of cables and anchoring devices, but also included a wide
variety of processes producing changes in the immediate environment of structures,
such as bank erosion and bedload deposition (Table 17). In some cases such channel
changes appeared to be largely a direct but unanticipated hydraulic consequence of
placement of the structures themselves (e.g., bank erosion at the lateral margins of log
weirs; see Cherry and Beschta (1988]). However, in most instances, the channel
changes that damaged structures appeared to be primarily driven by watershed-scale
phenomena, such as active landslides or road failures upstream causing massive
bedload deposition in the project area. Many structures exhibited evidence of multiple,
sometimes interacting modes of damage.

Southwest Oregon projects suffered damage from a wide variety of processes,
ranging from failure of anchoring devices and structural breakage indicative of high
hydrodynamic stress, to burial and channel shifting indicative of high rates of bedload
transport and deposition. In comparison, fewer failure modes were observed in
southwest Washington projects, and these were mostly indicative of changes in erosion

and deposition in low-gradient reaches. For example, a series of boulder placements in
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Table 17. Percent of structures in each project for which there was evidence that the indicated process contributed to

failure or impairment.

Because many structures exhibited multiple failure modes, percentages across rows do not

necessarily add to 100. Modes of damage are arranged from high-energy, scour-related processes at left to low-energy,

deposition-related processes at right.

Logs Bed scour '
Anchor Stranded  Under- Anchor Bar or Burial
Bolt Cable Out of mining Bank Tree Channel by
Stream Breakage Failure Failure Channel Structure Erosion Washout  Shift Bedload  Unknown
Bear Cr. 21 21 0 16 16 0 0 5 0
Silver Cr. 0 17 0 0 17 0 0 33 0
Snasta Costa Cr. 11 17 22 0 11 17 6 0
Foster Cr. 0 7 0 7 7 0 13
Euchre Cr. 0 0 0 0 16 16 0 89
Crooked Bridge Cr. 0 0 0 0 0 0 0 0 100
Outcrop Cr. 0 0 20 0 20 0 e 0 20
Boulder Cr. 0 0 0 20 20 0 0 0 40
Total S. W. OR 6 10 5 5 13 3 4 5 27
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Table 17. Continued

Bed scour
Under- Anchor Bar or Burial
Log Cable mining Bank Tree Channel by

Stream Breakage Faflure Failure Channel Structure Erosion Washout Shift Bedload  Unknown
Layout Cr. 0 0 4 6 ] 11 11 0
Upper Trout Cr. 0 o} 80 0 0 20 20 20
Lower Trout Cr. 0 0 0 0 0 0 40 0
Wind R. 0 0 0 0 30 80 0
Trapper Cr. 0 10 10 0 0 20 20 10
Falls Cr. 0 0 0 0 0 0 0 0
Rush Cr. 0 11 0 0 0 0 0 0
Total S.W. WA 0 3 13 7 0 10 22 3
Total All Projects 1 7 11 2 7 12 17

€61
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Wind River, expected to scour pools within a long rifile, instead triggered deposition of a
large mid-channel gravel bar, isolating the structures from the low-flow channel.

We noted numerous sites where structures caused inadvertant physical effects
that we judged to be adverse, rather than beneficial. Adverse effects for which we found
evidence included 1) accelerated bank erosion at log weirs, 2) direct damage to gravel
bars and riparian vegetation by heavy equipment, 3) felling of key streamside trees to
provide sources of materials, causing loss of shade and bank stability, 4) flood rip-out of
riparian trees used to anchor log structures, 5) aggradation of gravel bars or silt and
sand deposits {see also Platts and Nalson 1385), which caused shallowing and loss of
microhabitat diversity in pre-existing natural pools, and 6) concentrated flood pulses of
bedload and debris triggered by collapse of structures during the flood. Eggs and fry
of fish which spawned in the gravel above log weirs, as well as juvenile fishes wintering
in and near the structures, may have been killed when the structures failed and washed
out. Fragments of epoxy or resins used to anchor structures were very common in
many pools, and there is evidencé that these materials can be toxic to fishes (Fontaine
1988). Frayed cables and sheets of ripped-out geotextile or chain-link anchoring
material at damaged structures created obvious aesthetic impacts. Furthermore, repairs
may have exacerbated initial damage. Rip-rap, which was used extensively in attempts
to suppress bank erosion associated with log weirs, may adversely affect stream habitat
over the long term (Richards 1982; Sedell and Frogatt 1984; Bravard et al. 1986; Li et al.
1984; Knudsen and Dilley 1987).

Modes of damage differed by valley segment type. In canyon-type segments,
scour-related damage processes, such as cable breakage and loss of anchor trees,
were common. In alluvial valleys, bank erosion, channel switching, and bedload
aggradation were the primary proximal causes of damage and failure. These differences

are partly related to different hydraulic and sedimentological forces and constraints
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between valley segment types, but are also related to differences in structure design

(e.g., anchoring systems) between valley types.

3.3 Effect of Structure Type

Of the eight structure designs for which we had sufficient sample size, only two--
cabled natural woody debris, and individual boulder placements-- were not impaired. or
failed in more than half the cases (Fig. 28). All log weir designs had high rates of
impairment or failure, and one type, the downstream-V weir, failed or was impaired in
every instance. Boulder structures had lower failure rates than log weirs. Previous
studies have reported low failure rates for boulder structures in streams of less than two
percent gradient, but higher failure rates in steeper streams (Hamilton 1989). Although
many boulders had been almost completely buried in place by bedload deposits, we
classified these as impairments rather than failures, since they could someday be re-
excavated by the stream.

To some extent, failure and impairment rates presented in Fig. 28 are biased by
the fact that not all designs were represented in all streams. For example, the higher
success rate of boulder projects is partly related to their concentration in relatively stable

southwest Washington streams where damage to structures of all types was small.
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Figure 28. Failure and impairment rates of structures classified by design. Structure
type codes are: NLWD = cabled natural large woody debris or jam; TLOG =
transverse log weir, DLOG = diagonal log weir; VLOG = downstream *"V* log weir;
LLOG = lateral log deflector MOG = multiple log structure; BLD = individually
placed boulders; BCLUS = clustered boulders. Number at top of bar indicates
number of structures in sample.



Percent

1004

804

60

40

204

DSuccess Elmpoired Failure

19 23 12 30 17 9 15

NIWD ~ DLOG | LLoG ' pip 7
TLOG VLOG MLOG BCLUS

Figure 28

197

EREAR
i

f st



o

198

3.4 Inter-regional Patterns

When we compared our results with data from other regions in western Oregon
(Table 18), we found that the projects we studied had higher than average rates of
impairment and failure. However, the projects we evaluated were located in regions with
intense winter precipitation and substantially higher peak discharge than most other
regions (Figure 29, Table 19). There was a positive relationship between impairment and
failure rates and peak flows. Streams in regions characterized by 10-year-recurrence-
interval peak flows exceeding 1.0 m*sec™km? had high but variable rates of damage
(range 0-100%, median 46%) and failure (range 0-100%, median 14%) (Figure 30).

The regions with highest peak flows include the North Coast Range and South
Coast/Klamath Mountains in Oregon, very steep and mountainous areas within intense
rainfall and frequent rain-on-snow events, and the Columbia Cascades, part of the
Cascade Range immediately north and south of the Columbia River that is subject to
severe and frequent winter storms funneling through the Columbia Gorge from both
coastal and interior areas. The South Coast/Klamath Mountains region, which had the
highest incidence of damage to structures, has mean 10-year peak flows in excess of
2.0 m*sec'*m? (180 cfsmi®). Projects in other parts of western Oregon experience
much lower peak flows and had lower rates of damage (range 0-67%, median 12%), and
only limited incidence of failure (range 0-35%, median 0.5%) (Figure 30).

We had limited data for North Coast Oregon streams. We expect that when
more projects are evaluated, many will suffer high failure and impairment rates because
of the region’s high peak flows and high frequency of long-runout debris ﬂowé (C.
Frissell and R. Nawa, Oregon State University, unpublished data). However, the

abundance of clays and lower proportion of fine sands and silt in soils of this region



Table 18. Rates of physical tailure and damage reported for
projects in western Oregon surveyed by other agencies. n
= number of structures in project. Data sources indicated
in parentheses as follows: a = B. Higgins and H. Forsgren,
Mt. Hood National Forest, unpublished data; b = D. Hohler,
. Mt. Hood National Forest, unpublished data; ¢ = House et
al. (1989).

Failure Damage
Region Project _n_ Rate (X) _Rate (%)
High Lake Br. (a)- 24 12.5 25
Cascades Rock Cr. (a) 83 0 12
Buck Cr. (a) 10 0 0
Clear Br. (a) 15 0 20
Robinhood Cr. (a) 12 33 67
Western Fish Cr. (b) 252 4 31
Cascades Pansy Cr. (a) 11 13 27
Cooper Cr. (a) 9 0 0
Oak Grove Cr. (a) 79 0 0
Pinhead Cr. (a) 17 18 24
Fall Cr. (a) 12 0 8
Central E.F. Lobster Cr.
Coast (1981) (¢) 45 0 4
Range Tobe Cr. (1982) (c) 20 0 0
U. Lobster Cr.
(1982) (c) 9 [0} 0
S.Fk. Lobster Cr.
(1982) (c) 65 35 35
tittle Lobster Cr.
(1986) (c) 142 2 4
J Line Cr. (1987) (c) 30 4 12
Lobster Cr.
(1987) (c) 37 7 37
U. tobster Cr.
(1987) (c) 14 1 40
E.F. Lobster Cr.
(1987) (c¢) 1 0 22
North E. Beaver Cr.
Coast {1983) (c) 32 0 0
Range U. Nestucca R.
(1984) (c) 148 3 33
L. Elk Cr. (1986) (c) 92 4 15
Mid. Nestucca R.
(1987) (c) 42 19 31
U. ELk Cr. (1987) (c) 77 0 4
Columbia S.Fk. Salmon R. (a) 34 3 24
Cascades Kool Cr. (a) [ 17 17
Clear Cr. (a) 16 56 75
Clear Fk. Sandy R. (a) 10 100 100
Stitl Cr. (a) 264 1 3

Ramsey Cr. (a) 7 0 57
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Table 19. Unit discharge (m*seckm™) of ten-year
recurrence interval peak flow (Q,,) of selected Oregon
streams having greater than 20 years of record, drainage
area exceeding 100 km® but less than 2500 km?, and no
significant influence of reservoir regulation. Data from
Friday and Miller (1984). Some stations with records
starting about 1957 or later were excluded due to bias of
large floods in 1960's and 1970’s. For stations with present
flow regulation, data are for pre-dam period only. HC =
High Cascades, WC = Western Cascades, CCR = Central
Coast Range, NCR = North Coast Range, CCA =
Columbia Cascades, SCK = South Coast/Klamath

Mountains.
Regjon Station Elev,(m) Unit 0,4
L1d Salmon R. near Government Camp - 1050 0.83
Calman 0 halou ! fmnav e 760 n s
Clackamas R. at Big Bottom 620 0.48
Squaw Cr. near Sisters 1060 0.27
Red Blanket Cr. near Prospect 845 0.33
Middle Fk. Rogue R. nr. Prospect 800 0.38
Rogue R. above Bybee Cr. 1055 0.25

Kigh Cascades median = 0.38

MC  Clackamas R. sbove Three Lynx Cr. 335 0.69

Breitenbush R. above Canyon Cr. 480 1.12
N. Santiam R. below Boulder Cr. 485 0.74
S. Santiam below Cascadia 230 1.32
Calapooyis R. at Holliey 160 1.03
Mohawk R. near Springfield 135 0.63
S. Fk. McXenzie R. above Cougar L. 520 0.66
Salmon Cr. near Oakridge 445 G.67
N. Fk. Mid. Fk. Villamette R.

near Oakridge 315 0.65
Hills Cr. above Wills Cr. Lake 500 0.79
Mid. Fk. Willamette R. ab. Salt Cr. 370 0.79
Elk Cr. neer Trail (733 0.87

3

3

Western Cascades median =

CCR  Yaquina R. near Chitwood 15 0.78
Alsea R. near Tidewater 15 1.03
Siuslaw R. near Mapleton 10 0.89
K. Fk. Siuslaw R. near Minerva 10 0.84

Central Coast Range median = 0.86

CCA M.Fk. Hood R. near Dee 245 1.38
Little Sandy R. near Bull Run 220 1.7
Sandy R. near Marwot 220 1.14
Salmon River at Welches 410 1.00

Columbis Cascades median = 1.27

NCR Wilson R. near Tillamook 20 1.78
Trask R. near Tiliamook 20 1.33
Nestucca R. near Beaver 15 1.33
Sitetz R. at Sitetz 30 1.56

North Coast Range median = 1.46

sScK S.Fk. Coquille R. at Powers 60 1.72
€. Fk. 1llinois R. near Yakilma 540 2.01

M. Fk. Illnois R. betow Rock Cr. 460 2.39
Sucker Creek near Holland 540 1.22
Chetco R. at Brookings 15 2.64

South Coast/Klamath Mountains median = 2.01
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Figure 29. Box plots of 10-y peak flow standardized by drainage area for streams in
six regions of western Oregon. Horizontal bar is median, box is interquartite range,
and vertical line is data range. Number is sample size. HC = High Cascades, WC =
Western Cascades, CCR = Central Coast Range, CCA = Columbia Cascades, NCR
= North Coast Range, SCK = South Coast/Klamath Mountains.
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Figure 30. Relation between rates of failure (A) and overall damage (B) of projects
and regional median 10-y-recurrence-interval peak flow standardized by drainage
area. Each point represents one or more projects (full data in Appendix 1).
Horizontal bars indicate regional median. Curves are second-order regressions fitted
to indicate trend, are not necessarily statistically significant. Southwest Washington
projects from Table 2 are classified as Columbia Cascades region, except Rush Cr.
and Falls Cr. in High Cascades. Southwest Oregon projects from Table 2 comprise
the sample for South Coast/Klamath Mountains region.
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may render stream banks more resistant to erosion than those of South Coast Oregon,
moderating failure rates somewhat.

Our experience indicates that sediment yield might be positively correlated and
channel stability negatively correlated with regional peak flow. Undoubtedly these
patterns reflect relationships among many aspects of geology, precipitation, soils,vand
hydrologic and geomorphic processes that are of critical importance to habitat
management, from both an ecological and an engineering standpoint. The data for the

South Coast/Klamath mountains region of Oregon are likely representative of conditions
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4. Discussion

Artificial stream structures suffered widespread damage in most of the streams
we surveyed in southwest Oregon and southwest Washington. Rather unpredictable
damage rates and the wide range of causes of failure indicate that complex, multi-scale
interactions between watershed conditions, fluvial processes, and structure design
determine the physical success or failure of individual structures and projects. Because
streams in these two regions experience intense flood flows, high bedload yields, and
often unstable channels, artificial structures are highly vulnerable to damage.

The wide range of failure modes indicates that simpie changes in structure
design or materials are unlikely to overcome the problem of high damage rates.
Overall, processes of failure and impairment were dominated by changes in channel
morphology, apparently unanticipated by project designers. These changes were often

related to dynamic conditions in the watershed or riparian zone, particularly as they
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affected sediment load, streambank stability, and hydrology. Internal structure or
material failure, the dominant concern of most biologists and hydrologists who build
these projects, appears to be a far less imponant cause of damage than are watershed-
driven aspects of channel dynamics.

We sampled only a subset of the projects present in southwest Oregon and
Washington in 1986, but we believe our results are representative of other nearby
projects. For example, we observed compiete failure of slruclures.m Deep Creek, a

tributary of Pistol River in southwest Oregon caused by sediment-laden flood pulses that
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survey Deep Creek and several other projects in detail because repairs were already well
underway before we were able to inspect the sites.

Few simple rules about design of artificial structures emerge from our study, but
we can offer some general guidelines for stream restoration projects. Structure designs
that least often failed were those that minimally modified the pre-existing channel, such
as cabling intended to stabilize natural accumulations of woody debris. Elaborate log
weirs and other artificial structures, which (if they stay in place) cause immediate and
more obvious changes in channel morphology and hydraulics, were subject to high
rates of damage. - In large, low-gradient streams, configuration of the valley and large-
scale roughness elements such as major channel bends exert primary control on the
locations and morphology of pools and riffles (Lisle 1986), and sediment yield and peak
flows strongly constrain channel stability and streambed dynamics. Smalier-scale
structures such as log weirs can work effectively only within limits imposed by these
larger-scale processes and patterns. These observations suggest that, at least in
southwest Washington and southwest Oregon, it is unrealistic to expect the installation
of new artificial structures to stabilize channels, and in fact the opposite result may be as

likely.
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Within the study areas, the stream habitats that are most important for fish, and
most in need of restoration, are those least amenable to structural modification with
existing technology. We observed the highest rates of failure and impairment in the
streams draining watersheds most severely damaged by roads, logging, and landslides.
Projects with highest failure rates in southwest Washington were located in an alluvial
depositional areas of Trapper Creek and Layout Creek, in valley segments prone to
natural instability that has been aggravated by removal of natural woody debris and
logging of riparian vegetation. Deposition of bedioad sediments in wide, low-gradient
alluvial valley segments, and the erosion of streambanks and shifting of channelsr
associated with this deposition were the most common causes of damage to structures
in our study streams. Low-gradient alluvial valieys are also the most critical of stream
habitats for spawning and rearing of chinook and coho saimon, and steelhead trout
(Reimers 1971; Stein et al. 1972; Leider et al. 1986; Lichatowich 1989; and Nawa and
Frissell, Oregon State Univer;sity, unpublished data). Sediment accumulation in alluvial
valley streams can cause numerous adverse effects: loss of pools, destabilization of
woody debris, frequent channel shifting and abandonment, increased fine sediments and
increased scour of spawning gravel, channel widening, and increased summer stream
temperature due to loss of shade (e.g., Lisle 1982; Hagans et al. 1986; Everest et al.
1987). The dominance of sand and gravel in streambanks in alluvial valley and alluvial
fan segments makes them highly susceptible to erosion, particularly when riparian
vegetation, the roots, stems, and foliage of which help stabilize riparian soils, has been
removed by logging, grazing, floods, or builders of artificial structures.

it may take decades or centuries for low-gradient channels in alluvial valleys to
recover from downstream-propagating impacts of bedload accumulation (Lisle 1981,
Madej 1984; Hagans et al. 1986). Such a recovery process proceeds only after

sediment yield from the watershed declines to natural levels, which has not yet occurred
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in many southwest Oregon basins. These basins continue to suffer impacts from failing
roads, streamside landslides in second-growth forests, increased logging on steep,
highly erodible lands under federal ownership (Frissell and Nawa 1989), and repeated
short-rotation logging on private lands where there is little regulatory protection for
unstable siopes and headwater stream channels (Bottom et al. 1985). Re-establishment
of mature riparian forests to stabilize streambanks and floodplain surfaces is also

needed iui feCOVEiy i Lnaiiiict HI(prﬂOlOgy (USle 190‘11

4.1 Implications for Economic Analyses

Existing environmental and economic analyses assume a life span of 20 to 25 y
for artificial structures in south coastal Oregon (Johnson 1984: U.S.D.A. 1989). This
means that the average life span or half-life for all structures (not the maximum life span)
must approach 20 y or more. More than half of the structures should survive much
longer than 20 years. Our data indicate that a flood event of less than 10-y recurrence
interval caused failure rates often exceeding 50 percent. Given that the probability of
occurrence of a 10-y or greater flood event within the first decade after installation is
about 0.65, and within the first 20 years is about 0.88, it seems likely that a majority of
projects in southwest Oregon will experience failure rates exceeding 50 percent before
they are 20 years old.

Larger floods might have more severe effects. The probability of at least one
20-y flood occurring within any 20-y period is 0.64, and the probability of a flood of 50-y
or greater recurrence interval within 20 y is 0.33— significant enough to be factored into
half-life calculations that would be necessary to accurately estimate average life span for

projects. Considering these factors, we estimate the average half-life (the time elapsed
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when 50% of the structures are destroyed) of projects in southwest Oregon is less than
10 years, and that of southwest Washington is 15 years or less.

It is unlikely that most stream structure projects in Southwest Oregon and
southwest Washington projects would appear cost-effective if planners used realistic
estimates of project life, maintenance costs, and adverse side effects. The high rates of
impairment we obse&ed in the field indicate structural damage and wear that, if not
repaired, greatly increase the risk of failure during subsequent years. The repair of fiood
damage that is necessary to reduce future failures of structures imposes a heavy
maintenance hurden, the cogte of which are seldnm factarad inta the eronomic analvses
used to justify such projects. Unintended adverse effects, or “negative benefits,” are
also neglected in most benefit/cost analyses of artificial structures. Where projects
have high impairment rates, there is a high likelihood of realized or potential net
damage, rather than benefit to fish and water quality; such risks should be explicitly

addressed in project plans and disclosed in environmental analyses.

4.2 Implications for Habitat Management

Despite the rather high incidence of physical failure and damage, and despite
the lack of demonstrated biological success of surviving structures in the study areas,
an inflexible, prescriptive or "cookbook” approach continues to dominate the analysis,
planning, and budgeting processes within agencies responsible for fish habitat
management in the region. Currently, most habitat projects in the Pacific Northwest
seem to rest on the mechanistic assumption that the problem is simply lack of woody
debris, and that the solution is to add standard devices such as log weirs, with each

new structure creating an incremental improvement of habitat and a known poundage of



210
new fish. However, the widespread loss of woody debris and habitat diversity in
northwest streams is symptomatic of a complex of ecological problems, driven by
changes in riparian forests, channelization, and basin-scale erosion and sedimentation
processes (Bisson et al. 1987; Eimore and Beschta 1987; Hicks et al. In press). Events
such as sediment-laden ﬂpods and debris flows often re-shape channel morphology and
fish habitat many kilometers downstream from their site of origin (Benda 1980).

Restoration programs in the regions we studied should follow a hierarchical
strategy, emphasizing 1) prevention of slope erosion, channelization, and inappropriate
floodplain dovelopment especially in arovinncly rinimnactad hahitat refunia 2\
rehabilitation of failing roads, active landslides, and other sediment sources, and 3)
reforestation of floodplains, and unstable slopes (Lisie 1982; Overton 1984; Reichard
1984; Weaver et al. 1987). Direct structural modifications of channels are unlikely to
succeed unless these larger-scale concerns are dealt with first.

Our results point to the general need to consider physical (as well as biological)
phenomena. in regional and watershed-scale contexts when planning stream restoration
projects. In the long run, evaluation and planning of stream modification projects could
greatly benefit from application of a hierarchical classification system, such as those
proposed for land systems by Warren (1979) and Lotspeich and Platts (1982) and for
streams by Platts (1979) and Frissell et al. (1986). Such an approach can provide a
conceptual framework to order, analyze, and predict complex aspects of system
behavior across different scales of space and time, by setting local, site-specific
concerns in the context of large-scale dynamics of the watershed and system (Frissell et
al. 1986).

If a hierarchical and contextual approach were used to plan and implement fish
habitat restoration programs, many of the costly failures we observed could undoubtedly

be avoided, and resources could be directed to effectively treat the primary causes of
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habitat problems-- sedimentation from eroding roads and logged slopes, and logging,

grazing, channelization, and urbanization in riparian areas and floodplains.
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