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Appendix H – Fire and Fuels 
 

Issue 1 - Assumptions, Methods, etc. 
 

Methods 

Study Area 
The Nature Conservancy assessed forest vegetation restoration needs across five million acres of forest 
across southwestern Oregon (Figure H-1). Within the study area, they focused on the 1.2 million acres of 
BLM land as the lands that changed by Alternative (Figure H-2). This geography generally includes the 
extent of historically frequent fire forests within SW Oregon. These forests cover very broad climatic, 
edaphic, and topographic gradients with varying natural disturbance regimes. 
 

 
Figure H-1. Analysis area. 
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Figure H-2. BLM-administered land within the analysis area. 
 

Core Concepts and Data Sources 
The Nature Conservancy (TNC) built upon the conceptual framework of the LANDFIRE and Fire 
Regime Condition Class (FRCC) programs (Barrett et al. 2010, Rollins 2009) and incorporated Oregon 
and BLM specific datasets. TNC’s assessment of forest vegetation departure is based on four primary data 
inputs: 1) a classification and map of forested biophysical settings, 2) NRV reference conditions for each 
biophysical setting, 3) a delineation of “landscape units” for each biophysical setting, and 4) a map of 
present day forest vegetation structure. 
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Mapping Forested Biophysical Settings 
Biophysical settings are potential vegetation units associated with characteristic land capabilities and 
disturbance regimes (Barrett et al. 2010). Many different forested biophysical settings are found across 
Washington and Oregon based on vegetation, soils, climate, topography, and historic disturbance regimes 
(Keane et al. 2007, Pratt et al. 2006, Rollins 2009). They provide the framework for describing fire 
regimes. TNC mapped biophysical settings using the 30m pixel Integrated Landscape Assessment 
Projects’ Potential Vegetation Type (PVT) dataset (Halofsky et al. In press), which compiled previous 
potential forest vegetation classification and mapping efforts including Simpson (2007) and Henderson 
et.al. (2011). TNC also incorporated subsequent refinements to PVT mapping in southwestern Oregon by 
Henderson (2013). 
 
A biophysical setting model from either the LANDFIRE Rapid Assessment or the later LANDFIRE 
National program (Rollins 2009, Ryan and Opperman 2013) was assigned to each PVT mapping unit 
(Table H-1). Assignments were made by staff in the U.S. Forest Service Pacific Northwest Region 
Ecology Program based upon the geographic, environmental, and biological characteristics of the 
biophysical setting models and the PVT mapping units. TNC defined forests across our study area as 
those described as a “forest” or “forest and woodland” land cover class in the biophysical setting model. 
National Forest System lands are typically considered “forest” if they have >10% tree canopy cover, and 
this generally coincides with forest, and forest and woodland land cover classes (USDA FS 2004). 
 
Table H-1. ILAP PVT to LANDFIRE BpS model crosswalk. 
Integrated Landscape Assessment 
Project Potential Vegetation Type 
(ILAP PVT) 

LANDFIRE 
Biophysical 

Settings (BpS) 
Douglas-fir - White oak 0210290 
Oregon white oak 0210290 
Douglas-fir - Dry 0710270 
Douglas-fir - Moist R#DFHEwt 
Douglas-fir - Moist R#DFHEwt 
Western hemlock - Coastal R#DFHEwt 
Western hemlock - Cold R#DFHEwt 
Western hemlock - Moist R#DFHEwt 
Western hemlock - Moist (Coastal) R#DFHEwt 
Western hemlock - Wet R#DFHEwt 
Douglas-fir - Dry R#MCONdy 
Douglas-fir - Dry R#MCONdy 
Douglas-fir - Dry R#MCONdy 
Douglas-fir - Xeric R#MCONdy 
Grand fir - Warm/Dry R#MCONdy 
Mixed Conifer - Dry R#MCONdy 
Mixed Conifer - Dry (Pumice soils) R#MCONdy 
Grand fir - Cool/moist R#MCONms 
Grand fir - Cool/moist R#MCONms 
Grand fir - Cool/moist R#MCONms 
Mixed Conifer - Moist R#MCONms 
Douglas-fir - Moist R#MCONsw 
White fir - Intermediate R#MCONsw 
White fir - Moist R#MCONsw 



Appendix H – Fire and Fuels 
 

1116 | P a g e  
 

Integrated Landscape Assessment 
Project Potential Vegetation Type 
(ILAP PVT) 

LANDFIRE 
Biophysical 

Settings (BpS) 
Tan oak - Douglas-fir - Dry R#MEVG 
Ultramafic R#MEVG 
Idaho fescue - Prairie junegrass R#MGRA 
Oregon white oak - Ponderosa pine R#OAPI 
Lodgepole pine - Dry R#PICOpu 
Lodgepole pine - Wet R#PICOpu 
Jeffery Pine R#PIJEsp 
Ponderosa pine - Dry R#PIPOm 
Ponderosa pine - Lodgepole pine R#PIPOm 
Ponderosa pine - Dry, with juniper R#PIPOxe 
Ponderosa pine - Xeric R#PIPOxe 
Shasta red fir - Dry R#REFI 
Shasta red fir - Moist R#REFI 
White fir - Cool R#REFI 
Mixed Conifer - Cold/dry R#SPFI 
Subalpine fir - Cold/Dry R#SPFI 
Sitka spruce R#SSHE 
Tan oak - Douglas-fir - Moist R#TAOAco 
Tan oak - Moist R#TAOAco 
Shasta red fir - Moist R1RFWF 
White fir - Cool R1RFWF 

 
 

Natural Range of Variability Reference Conditions 
Each biophysical setting model is composed of a suite of 3-5 successional/structural stages (s-classes). 
These classes typically include: A) Early Development, B) Mid-Development Closed Canopy, C) Mid-
Development Open Canopy, D) Late Development Open Canopy, and E) Late Development Closed 
Canopy. The definition of each s-class in terms of species composition, stand structure, and stand age is 
unique for each biophysical setting (Table H-2 and Table H-3). The percentage of a biophysical setting 
in each s-class will differ depending on disturbance frequencies and/or intensities. The LANDFIRE and 
FRCC conceptual framework assumes that, given natural processes, a biophysical setting will have a 
characteristic range of variation in the proportion in each s-class and that an effective indicator of 
“ecological condition” for a given landscape is the relative abundance of each s-class within biophysical 
settings (Barrett et al. 2010, Keane et al. 2011). 
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NRV reference models describe how the relative distribution of s-classes for a biophysical setting were 
shaped by succession and disturbance prior to European settlement and provide a comparison to present-
day forest conditions (Keane et al. 2009, Landres et al. 1999). LANDFIRE biophysical setting models are 
used to develop NRV estimates using state-and-transition models incorporating pre-European settlement 
rates of succession and disturbance. Rates were determined through an intensive literature and expert 
review process (Keane et al. 2002, Keane et al. 2007, Pratt et al. 2006, Rollins 2009). 
 
The distribution of s-classes for each biophysical setting, which results from running state-and-transition 
models for many time-steps (Table H-4) does not represent a specific historical date, but instead 
approximates characteristic conditions that result from natural biological and physical processes operating 
on a landscape over a relatively long time. NRV is frequently represented by a single value, the mean 
relative abundance of each s-class from a collection of Monte Carlo state-and-transition model 
simulations (e.g., Low et al. 2010, Shlisky et al. 2005, Weisz et al. 2009). However, TNC developed and 
used ranges for each s-class resulting from the stochastic variation within the state-and-transition models. 
TNC ran 10 simulations for each biophysical setting state-and-transition model over 1,000 pixels and 
1,000 annual time steps. Simulations were started with an equal portion in each s-class and it took 200 to 
400 years for the initial trends to stabilize. TNC calculated the range for each s-class as +2 standard 
deviations from the mean abundance from the last 500 time steps (Provencher et al. 2008). Simulations 
were modeled using the Vegetation Dynamics Development Tool (ESSA Technologies 2007). 
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Landscape Units 
Following the LANDFIRE and FRCC conceptual framework, TNC defined discrete landscape units to 
compare present-day forests to modeled NRV reference conditions (Barrett et al. 2010, Pratt et al. 2006). 
Landscape units were chosen that would adequately represent the scale of disturbance of a particular PVT 
and were composed of forested lands within a BLM management district. This would allow 
summarization in an accurate and usable way for managers (Figure H-3). 
 

 
Figure H-3. Landscape units. 

Present-Day Forest Structure and Composition 
TNC characterized present-day forest vegetation with the gradient nearest neighbor imputation (GNN, 
Ohmann and Gregory 2002, Figure 3) datasets produced by the US Forest Service Pacific Northwest 
Research Station and Oregon State University Landscape Ecology, Modeling, Mapping, and Analysis 
research group (www.fsl.orst.edu/lemma) and outputs from the BLM vegetation modeling process (see 
the Vegetation Modeling Appendix). 
 
All lands that are outside of BLM ownership used the GNN data for current conditions; the BLM land 
used the RMP data. 
 
To compare present-day forest vegetation to the NRV reference conditions, TNC mapped the current 
distribution of s-classes for each biophysical setting using BLM Alternative data for the BLM lands and 
GNN data for all other ownerships. S-class mapping was based upon tree canopy cover and tree size 
thresholds provided for each s-class in the biophysical setting model descriptions (Appendix A.2). 
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Departure Analysis 
Departure in ths project is defined as is the difference between a modeled reference condition and the 
current conditions in acres (Figure H-4). In an effort to frame ecological departure appropriately, TNC 
chose to look at the whole landscape and summarize departure for each analysis area (district) by 
alternative. This meant that the BLM s-class by alternative (Figure H-5) was mosaiced with the base 
GNN data (Figure H-6) to create a landscape s-class layer that combined both the BLM data and the 
GNN data (Figure H-7). 
 
This process of combining BLM data and GNN data was completed for each Alternative and departure 
was calculated for each of these mosaiced dataset. Seven different landscape s-class layers were 
developed: Current Condition, Alternative A, Alternative B, Alternative C, Alternative D, No Action 
alternative, and No Timber Harvest alternative. 
 
Departure was calcuated for each combination of PVT and landscape unit (strata) and summarized as an 
acre value. Departue can be summarized in a deficit or excess acres of s-class or in a combined overall 
departure acres; both were summarized in this analysis. 
 
All the results were summerized by alternative and analysis unit in Excel as well as summarys of s-class 
by alternative to help frame the conversation and discussion in the RMP. 
 

 
Figure H-4. Example strata departure summary calculation. 
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Figure H-5. BLM s-class. 
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Figure H-6. GNN s-class data. 



Appendix H – Fire and Fuels 
 

1125 | P a g e  
 

 
Figure H-7. BLM and GNN s-class data combined. 
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Issue 2 and 3 - Assumptions and District-Specific Results 

Issue 2 
How would the alternatives affect fire resistance in the fire-adapted dry forests at the stand level? 

Issue 3 
How would the alternatives affect wildfire hazard at the stand – level within close proximity to 
developed areas? 

 Common Analytical Assumptions 
 The results of this analysis does not include effects from non-commercial hazardous fuels 

work, which would contribute toward increasing fire resistance and reducing fire hazard 
similarly among all alternatives. A large portion of non-commercial hazardous fuels work 
takes place on non-forested lands, which are not included in this analysis. 
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 Vegetation community structure is an important factor affecting potential fire behavior, post-
fire effects, fire resistance, and fire hazard. 

 General assumptions regarding vegetation structural stage classification and the probable fire 
behavior based on vertical and horizontal fuel profile were used to generate relative stand-
level resistance to replacement fire and fire hazard ratings. 

 
Table H-5. Acres of forested and non-forested BLM-administered lands within the planning area by 
district/field office. 
District/Field Office Forest (Acres) Non-Forest (Acres) Totals (Acres) 
Coos Bay 304,031 20,206 324,237 
Eugene 297,223 13,841 311,065 
Klamath Falls 46,773 167,312 214,085 
Medford 749,112 66,556 806,678 
Roseburg 399,165 24,477 423,642 
Salem 374,394 24,765 399,159 
 

Assumptions of General Stand Structure-Stage and Fire 
Interactions 

Early-Successional 
The BLM assumes that although early-successional communities have less than 30 percent canopy cover, 
resulting in somewhat discontinuous surface fuel loading, this structural stage is typically comprised of 
highly flammable vegetation (Agee 1993). When combined with open conditions that can increase surface 
wind speeds and flames lengths (Pollet and Omi 2002, Rothermel 1983), in general, this structural stage 
presents relatively moderate resistance to replacement fire and moderate fire hazard. 

Stand–establishment and High-Density Young Stands 
The stand establishment and high-density young stand structural stages maintain low canopy base heights 
and a combination of highly flammable early-successional vegetation, along with increased cover. In 
general, these structural stages present relatively low resistance to replacement fire and high fire hazard 
(Odion et al. 2004, Weatherspoon and Skinner 1995). 

Low-Density Young Stands 
Although, the canopy base height may be low in young stands of lower density, in general, there is greater 
separation between crowns (vertically and horizontally). This discontinuity in the fuel profile results in 
relatively lower canopy bulk densities, moderate fire hazard, and moderate resistance to replacement fire 
within both the younger and structural legacy components of the stand. 

Structural Legacies 
The stand establishment and high-density young stand structural stages maintain low canopy base heights 
and a combination of highly flammable early-successional vegetation, along with increased cover. In 
general, these structural stages present relatively low resistance to replacement fire and high fire hazard 
(Odion et al. 2004, Weatherspoon and Skinner 1995). However, both early-successional and stand 
establishment phases with structural legacies would have some separation of crown layers between legacy 
trees and understory vegetation, resulting in somewhat discontinuous ladder fuels and increased fire 
resistance in structural legacies. Pockets of heavy surface and ladder fuels may result in potential 
mortality to structural legacies from cambial damage (trees < 20" DBH have a 35-70% mortality, USDI 
BLM 2008 WOPR) or passive torching. This potential for cambial damage to overstory legacy structures 
increases along with understory vegetative cover and height (Peterson et al. 2005). Despite some potential 
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separation in crown layers, in general, young high density stands have high continuous surface and ladder 
fuel loading, low canopy fuel base heights, and taller vegetation, relative to early successional and stand 
establishment vegetation. This fuel profile in the young high density stands increases crown fire potential 
of the young stand component and structural legacies (Odion et al. 2004), resulting in lower relative 
resistance to replacement fire and higher fire hazard. 
 
Overstory canopy cover from structural legacies could also partially shelter the stand, reducing surface 
winds and slowing the drying of fuels (NWCG 2014 Fire Behavior Field Reference Guide), and thus help 
moderate fire behavior. Alternatively, open stand conditions have the potential to increase surface winds 
and thus flame lengths (Pollet and Omi 2002, Rothermel 1983). Increased winds in combination with low 
canopy base heights can increase torching potential and fire hazard, therefore no distinction is made 
between early-successional, stand establishment, and young stands with structural legacies in regards to 
fire hazard. 

Mature Single-layered Canopy 
In general, mature single layer stands have low surface fuel loading (due to closed canopy shading 
inhibiting understory growth), higher canopy base heights, and thus a lower probability of torching and 
crown fire initiation within stand, creating a low stand-level fire hazard condition (Jain et al. 2012). 
Although, continuous canopy cover of high canopy bulk density is susceptible to crown fire spread from 
adjacent stands (Scott and Reinhardt 2001, Jain and Graham 2007, Jain et al. 2012). 

Mature Multi-layered Canopy and Structurally-complex 
Multi-layered and structurally mature and older forests have the potential to exhibit the full range of fire 
behavior (surface to crown fire). In general, these structural stages have heterogeneous composition, 
which can alter fire spread (Jain et al. 2012, Finney 2001) and a greater number of large diameter (> 20 
in. DBH) trees with thick bark, improving stand-level fire resistance, and reducing stand-level fire hazard 
(Agee and Skinner 2005) and potentially increasing the likelihood of burning at low to moderate severity 
(Alexander et al. 2006). Multi-aged closed forest conditions can potentially create a vertical fuel ladder 
for surface fire to reach the canopy (North et al. 2009) and support accumulations of continuous heavy 
surface and ladder fuels, and increase the potential for torching and crown fire, significantly reducing 
resistance to control. Alternatively, these structural types can create influential microclimates and shelter 
surface winds, harboring conditions that are more likely to result in lowered fire severity (Odion et al. 
2004), particularly in topographic locations with low fire probability. 
 
Ultimately, fire behavior in these structural stages will result from several factors, including weather, fuel 
moisture, and topographic influences, along with the vertical and horizontal continuity of the fuel profile. 
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Table H-6. BLM defined structural stages and subdivisions, relative stand-level resistance to replacement 
fire ratings and assumptions regarding overall fuel profile continuity, and vertical and horizontal fuel 
continuity. 
Structural 
Stages Subdivisions 

Resistance to 
Replacement 

Fire 

Assumptions Behind Resistance Ratings 
Entire Fuel Profile 

continuity 
Horizontal Fuel 

Profile Continuity 
Vertical Fuel 

Profile Continuity 
Early 
Successional 

with Structural Legacies Moderate Semi-discontinuous Semi-discontinuous Semi-discontinuous 
without Structural Legacies Moderate Semi-discontinuous Continuous Semi-discontinuous 

Stand 
Establishment 

with Structural Legacies Moderate Semi-discontinuous Semi-discontinuous Continuous 
without Structural Legacies Low Continuous Continuous Continuous 

Young Stands – 
High Density 

with Structural Legacies Low Continuous Continuous Continuous 
without Structural Legacies Low Continuous Continuous Continuous 

Young Stands –  
Low Density 

with Structural Legacies Moderate Semi-discontinuous Continuous Semi-discontinuous 
without Structural Legacies Moderate Semi-discontinuous Continuous Semi-discontinuous 

Mature Single-Layered Canopy High Discontinuous Discontinuous Continuous 
Multi-layered Canopy Mixed Mixed continuity Mixed continuity Mixed continuity 

Structurally 
Complex 

Developed Structurally 
Complex Mixed Mixed continuity Mixed continuity Mixed continuity 

Existing Old Forest Mixed Mixed continuity Mixed continuity Mixed continuity 
Existing Very Old Forest Mixed Mixed continuity Mixed continuity Mixed continuity 

 
Table H-7. BLM defined structural stages and subdivisions, relative stand-level fire hazard ratings and 
assumptions regarding surface fuel loading, canopy base height, and canopy fuel bulk density (continuity) 
as the basis for the hazard rating. 

Structural 
Stages Subdivisions 

Fire 
Hazard 
Rating 

Assumptions Behind Hazard Ratings 
Surface 

Fuel 
Loading 

Canopy 
Base 

Height 

Canopy Fuel 
Bulk Density 
(Continuity) 

Early 
Successional 

with Structural legacies Moderate 

Low Low 

Moderate without Structural Legacies Moderate 
Stand 
Establishment 

with Structural Legacies High 

High without Structural Legacies High 
Young Stands – 
High Density 

with Structural Legacies High 
without Structural Legacies High 

Young Stands – 
Low Density 

with Structural Legacies Moderate 
Moderate without Structural Legacies Moderate 

Mature Single-Layered Canopy Low Moderate High 
Multi-Layered Canopy Mixed 

Mixed Structurally 
Complex 

Developed Structurally Complex Mixed 
Existing Old Forest Mixed 

Existing Very Old Forest Mixed 
 

Issue 2 - Stand-Level Fire Resistance in the Harvest Land Base 
by District 
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Figure H-8. Stand-level fire resistance categories in the Harvest Land Base in the dry forest in the 
Klamath Falls Field Office for the current condition and each alternative in 50 years. 
 
 

 
Figure H-9. Stand-level fire resistance categories in the Harvest Land Base in the dry forest on the 
Medford District for the current condition and each alternative in 50 years. 
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Figure H-10. Stand-level fire resistance categories in the Harvest Land Base in the dry forest on the 
Roseburg District for the current condition and each alternative in 50 years. 
 

Issue 3 - Stand-Level Fire Hazard Within Wildland Developed 
Areas by District 
 
Stand-level fire hazard within close proximity to developed areas – All BLM lands by District 
 

 
Figure H-11. Stand-level fire hazard for all BLM-administered lands on the Coos Bay District within the 
WDA, current condition and by alternative in 2063. 
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Figure H-12. Stand-level fire hazard for all BLM-administered lands on the Eugene District within the 
WDA, current condition and by alternative in 2063. 
 

 
Figure H-13. Stand-level fire hazard for all BLM-administered lands on the Klamath Falls Field Office 
within the WDA, current condition and by alternative in 2063. 
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Figure H-14. Stand-level fire hazard for all BLM-administered lands on the Medford District within the 
WDA, current condition and by alternative in 2063. 
 

 
Figure H-15. Stand-level fire hazard for all BLM-administered lands on the Roseburg District within the 
WDA, current condition and by alternative in 2063. 
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Figure H-16. Stand-level fire hazard for all BLM-administered lands on the Salem District within the 
WDA, current condition and by alternative in 2063. 
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Figure H-17. Stand-level fire hazard in the Late-Successional Reserves in the dry forest in the 
coastal/north for the current condition and each alternative in 50 years. 
 

 
Figure H-18. Stand-level fire hazard in the Late-Successional Reserves in the dry forest in the 
interior/south for the current condition and each alternative in 50 years. 
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