Petrographic Analyses of Selected Horizons, Aurora 089 No. 1 OCS-Y-0943 Well, Offshore Northeast Alaska
Part 1: Depth Intervals 14,680' to 14,860' and 16,445' to 16,630'

Thomas C. Mowatt, Arthur C. Banet, Jr., and John W. Reeder
Authors

Thomas C. Mowatt is a geologist in the Branch of Lease Operations and Arthur C. Banet, Jr. is a geologist in the Branch of Mineral Assessment, both within the Division of Mineral Resources, Alaska State Office, Bureau of Land Management, Anchorage, Alaska. John W. Reeder is a geologist with the Division of Geological and Geophysical Surveys, State of Alaska, Eagle River, Alaska.

Open File Reports

Open File Reports identify the results of inventories or other investigations that are made available to the public outside the formal BLM-Alaska technical publication series. These reports can include preliminary or incomplete data and are not published and distributed in quantity. The reports are available at BLM offices in Alaska, the USDI Resources Library in Anchorage, various libraries of the University of Alaska, and other selected locations.

Copies are also available for inspection at the USDI Natural Resources Library in Washington, D.C. and at the BLM Service Center Library in Denver.
Petrographic Analyses of Selected Horizons, Aurora 089 No. 1 OCS-Y-0943 Well, Offshore Northeast Alaska

Part 1: Depth Intervals 14,680' to 14,860' and 16,445' to 16,630'

Thomas C. Mowatt
Arthur C. Banet, Jr.
John W. Reeder

Bureau of Land Management
Alaska State Office
Anchorage, Alaska 99513

Open File Report 42
May 1992
Acknowledgements

It is a pleasure to acknowledge the continued support and encouragement provided by John Santora (Deputy State Director, Mineral Resources), Joseph Dygas (Chief, Branch of Lease Operations), and Gary Brougham (Chief, Branch of Mineral Assessment) all with the Alaska State Office, Bureau of Land Management, Anchorage. The excellent professional atmosphere and interactions continually afforded by these gentlemen have been most conducive to substantive professional productivity.

The key role of Erick V. Kaarlela, Division of Minerals, Washington Office, BLM, as to the support from that level is also acknowledged with appreciation. Technical interactions with BLM colleagues, in particular A. Seidlitz, C. Gibson, R. Bascle, J. Russell, and R. Teseneer have been most helpful as well. We have also benefited considerably from continued informal interactions with associates in the private and academic sectors. Thoughts and insights thus exchanged remain an essential aspect of original technical endeavors, and we gratefully acknowledge these anonymous fellow-scientists.

The continued outstanding support furnished by the Alaska Resources Library, BLM, is also sincerely appreciated. The knowledgeable, cooperative, pleasant staff- M. Shepard, Supervisory Librarian; as well as K. Vitale, L. Tobiska, D. Hunter, in particular- continue to represent a most valuable asset to our professional activities. E. Bovy, T. McPherson, and E. Doyle, BLM, are thanked for their able assistance in report preparation.
Table of Contents

1. Introduction 1
2. Summary overview of regional geology 4
3. Stratigraphy 8
4. Petrographic studies 13
5. General analytical considerations 14
6. Sample descriptions 15
7. Summary and observations 42
8. References 48

List of Figures

1. Index map showing major geographic features of Arctic Alaska, Yukon and portions of Northwest Territories 2
2. Aurora well location, outcrops and major geographic features, including ANWR 1002 area and nearest exploration wells 3
3. Major tectonic features of Alaska and adjacent Canada, depicting locations of the Barrow Arch, Colville Basin, key fault systems, local depocenters, and positive elements 5
4. Summary comparison of major depositional sequences in northeast Alaska 6
5. Generalized SW-NE cross-section, superimposing major North Slope petroleum traps 7
6. Geophysical logs through Oruktalik Sand Unit 11
7. Geophysical logs through Tapkaurak Sand Unit 12

List of Tables

1. A comparison of lower Cretaceous sands and shale units from northeast Alaska 9

List of Plates

1. Selected geophysical logs from Aurora well.
2. Geophysical and mud log interpretations.
ERRATA

Page 1:
Subtitle-
"Part 1. Depth intervals 14,680-14,860'..."

Page 10:
Second line on page-
"... (16,646-16,620 feet). See figure 7."

and
Middle Brookian Sequence-
"...(67 percent sand) sandstone unit between 14,828 and 14,865 feet (figure 6)."

Page 43:
"Oruktalik Sand"-
"It may be observed on figure 6 as well."

Page 45:
"Tapkaurak Sand"-
"It may be observed on our figure 7 as well."
Petrographic Analyses of Selected Horizons,
Aurora 089 No. 1 OCS-Y-0943 Well,
Offshore Northeast Alaska

Part 1: Depth Intervals 14,680' - 14,680' and 16,445 - 16,630'

Abstract

The Aurora well affords the most recently available geological information pertinent to the Arctic National Wildlife Refuge (ANWR) to the south. The well is located approximately three and one-half miles north of Griffin Point (T.8N., R.37E., sec. 9), and approximately five miles northeast of Tapkaurak Point (T.8N., R.36E., sec. 1), which is the site of the Chevron KIC No. 1 Jago well.

Petrographic analyses have been, or are being performed of thin-sections representing suites of well cuttings fragments from selected stratigraphic horizons over the depth interval 13,800-18,190 feet. Emphasized, and reported on here, were two zones of well-developed sand/sandstone, the "Oruktaliq Sand" (14,680-14,860 feet), of predominantly litharenite/cherty aspect, and the somewhat more quartzose "Tapkaurak Sand" (16,445-16,630 feet). Results of this work provide information fundamental to increased understanding and further elucidation of geological, petrophysical, and geophysical relationships regarding this key well.

1. Introduction

The Aurora 089 No. 1 OCS-Y-0943 well is located offshore of the Arctic National Wildlife Refuge, 1002 area. The location is approximately 20 miles east of Barter Island and 3.5 miles north-northeast of Griffin Point (figures 1 and 2). The Aurora drilled 18,325 feet of clastic section, making it one of the deepest wells on the North Slope (plates 1 and 2). It required almost a year onsite for drilling, during 1987 and 1988, because of various unforeseen hole problems (Banet, 1992a).

The petrographic analyses reported on here are of cuttings samples of two specifically selected intervals. Samples are of 10 foot increments from the predominantly sandstone intervals 14,680-14,860 feet, and 16,445-16,620 feet. These intervals include the informally-named Oruktaliq sand (14,685-14,828 feet) and Tapkaurak sand (16,446-16,620 feet) of Banet (1992a). The thin-section descriptions are divided into generalized summaries of the predominant and subordinate cuttings fragment types. There are additional comments on important specific fragments, in terms of framework grain characteristics, amounts and
Figure 1.
Index map showing major geographic features of Arctic Alaska, Yukon and portions of Northwest Territories
Figure 2.
Aurora well location, outcrops and major geographic features including ANWR 1002 area and nearest exploration wells.
types of cements, matrix constituents, visible porosity, and aspects of reservoir quality present as well as potential. This information is complementary to Banet (1992a), which describes the megascopic aspect of washed cuttings of selected intervals, and discusses log analyses.

2. Summary Overview of Regional Geology

Data from this exploration well fills an extensive gap between exploration efforts in Alaska and in the Canadian Beaufort Sea and Mackenzie Delta where integrated geologic and seismic data are available. Figure 3 shows some of the major tectonic features of the North Slope.

The Barrow Arch is the most important of these. Rather than being a single entity, it is a mostly linear series of temporally- and spatially-separated uplifts central to the regional tectonics. The Mountain Front is the surface expression of the structurally competent allochthons involved in this part of the foreland fold and thrust belt of this part of the Rocky Mountain Cordillera. The Colville Trough and Beaufort Shelf are the depocenters of Brookian sedimentation (figure 3). The Aurora well location is north of and external to the northernmost Bulge of the Rocky Mountain Cordillera's leading edge at the Niguanak area (the surficial representation of the greatest distal extent of deformation into the foreland). The Bulge is a compressional uplift, in which stratigraphic units from all the major depositional megasequences in this region are exposed. Figure 4 presents a summary description and comparison of these major depositional megasequences in northeast Alaska.

The common folds and faulting reveal that this area has an extensive history of multiphasic deformation. Also the severity of induration indicates that most of the sediments exposed along the mountain front have been deeply buried prior to uplift (Tailleur and Weimer, editors, 1987; Bird and Magoon, editors, 1987; Kelley and Detterman, 1989; Banet, 1990).

The Aurora well is also located along the trend of the Hinge Line (figures 2 and 3), which is an extensional tectonic feature affecting the subsurface geometry of the major depositional megasequences, offshore. Craig and others (1985) illustrate that pre-Ellesmerian basement rocks are down-dropped to the north along normal faults, typically forming grabens (figure 5). Along the Barrow Arch, mostly separate and discrete blocks of Ellesmerian and basement rocks were regionally uplifted and eroded at an angular lower Cretaceous
Figure 3.
Major tectonic features of Alaska and adjacent Canada, featuring the Barrow Arch, Colville Basin, fault systems, local depocenters and positive elements.
Figure 4. A summary comparison of major depositional sequences in northeast Alaska.
Figure 5.
Generalized SW-NE cross section, superimposing major North Slope petroleum traps.

Faults, unconformities, thicknesses and stratigraphic geometries highly stylized.

Hydrocarbon discoveries near ANWR highlighted
unconformity (LCU). Locally, complete or partial Ellesmerian sections are preserved in some of these grabens.

During lower Cretaceous time, several pulses of locally deposited Breakup Sequence sands were shed from the Barrow Arch uplifts. The lithologies of these sands reflect their distinct, separate and unique provenance (table 1). Most of the sands are quartzose, with varying amounts of unique, subordinate clasts, fragments, clays, and cements characteristic of their sources and environments of deposition. Craig and others (1985), and Hubbard and others (1987) posit that extraordinarily thick sections of these Breakup Sequence sands and finer-grained clastic sediments were shed northward into the grabens.

Regional subsidence, and the Brooks Range uplift, resulted in the deposition of thick, extensive progradations of petrologically immature sands and finer-grained clastic sediments. Three distinct pulses of Brookian sedimentation occurred from middle Cretaceous through Pliocene time. Subsequent deformation began in western Alaska and generally proceeded to the east-northeast (Molenaar, 1983; Craig and others, 1987).

However, in this area the Bulge-forming uplift shed north-northwest prograding middle and upper Brookian depositional sequences (upper Cretaceous-Pliocene) which overstepped the Barrow Arch and the Hinge Line. Seismic stratigraphic analyses suggest that the middle Brookian sediments may be on the order of 20,000 feet thick on the Beaufort shelf. The Aurora location is also juxtaposed to the Barter Island and Demarcation sub-basins (Grantz and Mays, 1983), which are believed to contain thick sections of upper Brookian sediments (Banet, 1990, 1992a, 1992b).

3. Stratigraphy

Breakup Sequence

The Aurora well penetrated a sedimentary section composed of both Brookian and Breakup Sequence rocks (figure 4). The deepest section is termed Unit I. At the Aurora well, it is made up of at least 1,000 feet of interbedded shales and thin-bedded sandstones that correlate to the Kingak Formation (upper Jurassic). A lower Cretaceous unconformity (LCU of onshore nomenclature) truncates the Kingak. The overlying Unit II is the Tapkaurak Unit (17,325-16,646 feet). This is a coarsening and thickening upwards section of interbedded sandstones.
Table 1.
A comparison of lower Cretaceous sands and shale units from northeast Alaska.

HRZ AT KUPARUK
4 - 9 %TOC
shale w/ paper fissility
~200' Albian - Aptian

KALUBIK FORMATION
below HRZ - 150 API
internal, local HRZ
overlies Kuparuk sands
mud & silt

carbonaceous
moderately fissile
pyritic & sideritic
200 ft. to 300 ft.
marine deposition
Barremian - Aptian

BREAKUP SEQUENCE

PEBBLE SHALE
GRZ
LCU basal unconformity
No. Slope regional
silty shale
black, fissile, pyritic
minor bentonite
200 ft. to 300 ft.
floating pebbles/grains
rich source rock
TOC to ~ 5%

KONGAKUT FM.
sh, silt, minor ss
4 members
depth water turbidite
~ 150 ft.
internal unconformities
GRZ in Pebble Sh.
black, manganiferous
few fossils
floating chert pebbles
Kemik sand ~ 200 ft.
quartz arenite to-
feldspathic wacke
very fine-grained
basal contact conformable
Haul. to Barr.

BREAKUP SEQUENCE

ARCTIC CK.
ss & sh
vf. to fine grained
quartzose
5 ft. to 90 ft. beds
~ 250 ft.
thin to eastward
siliceous, hard
100% recrystallized
deep marine & turbidites
flutes, grooves & load casts
blk. fissile shale
minor bentonites
Albian - Aptian

AURORA UNIT III
LTU at top
sh, silt & carb sh
grey to dk. grey
very thin beds
very silty cuttings
500 ft.
~SE-NW transport

lean source rock

BREAKUP SEQUENCE

AURORA UNIT II
no GRZ
LCU at base
distinct contacts
interbedded ss & sh
coarsens & thickens upwards
174 ft. massive sand at top
Tapkaurak sand
fine to coarse-grained
clear to white grains
subrounded/subangular
dolomitic cement
unconsol. to med. hard

BREAKUP SEQUENCE

AURORA UNIT III
LTU at top
sh, silt & carb sh
grey to dk. grey
very thin beds
very silty cuttings
500 ft.
~SE-NW transport

lean source rock

BREAKUP SEQUENCE

AURORA UNIT II
no GRZ
LCU at base
distinct contacts
interbedded ss & sh
coarsens & thickens upwards
174 ft. massive sand at top
Tapkaurak sand
fine to coarse-grained
clear to white grains
subrounded/subangular
dolomitic cement
unconsol. to med. hard

BREAKUP SEQUENCE
and shale, which culminates in the very thick-bedded Tapkaurak sand (16,646 - 16,620 feet). See figure 6. In cuttings, this sandstone is mostly quartzose, fine- to coarse-grained, with subangular to subrounded clasts. There are abundant, clear to milky quartz grains with minor amounts of chert, volcanic, and other igneous rock fragments (biotitic micas from drilling additives are also present).

Unit III is mostly shale (16,446- 15,937 feet). The shale is mostly brown to dark-gray with some carbonaceous laminations. There are a few thin, light gray or brown siltstone stringers. Logs indicate that Unit III is truncated by an unconformity. This is the lower Tertiary unconformity (LTU), and it is analogous to the lower Tertiary unconformity at the Point Thomson area, where middle Brookian sediments overlie Breakup Sequence sediments and basement rocks.

Middle Brookian Sequence

Unit IV is the basal part of the middle Brookian sequence at Aurora. This is the Oruktalik Unit. By analogy to the Point Thomson area, it is considered to be Paleocene in age (Banet, 1992a). The Oruktalik consists of an overall coarsening- upwards sequence of interbedded shales and sandstones. The shales are mostly blocky, gray- to black, and silty. The sandstones are widely spaced near the base of the section, becoming amalgated into a single predominantly (67 percent sand) sandstone unit between 14,828 and 14,685 feet (figure 7). The Oruktalik sand consists of thin to thick beds that are generally friable. The cuttings are comprised of fine to coarse-grained, predominantly black and white chert fragments. Upsection, larger-grained, subangular fragments become common, and the mudlog includes reported conglomerate. Minor lithologies include siltstone, white and clear quartz clasts, and some coal. This section recorded overpressure, a gas show, and some minor staining.

Soft, friable, and interbedded siltstones, gummy clays, and shales with minor amounts of thin-bedded and widely-spaced sandstones comprise the remainder of the middle Brookian sequence sediments at Aurora. Units V through XIII (13,725-2,385 feet) are differentiated on their log characteristics and geochemistry (Banet, 1992a). These lithologies represent shelf environments of deposition. Regional interpretations indicate that this sequence is Paleocene to upper Eocene in age (Hubbard and others, 1987; Banet, 1992a, 1992b).
Figure 6.
Geophysical logs through the Oruktalik unit and sample descriptions.
Figure 7.
Geophysical logs through the Tapkaurak unit and sample descriptions.
Upper Brookian Sequence

Log analysis suggests that an unconformity at 2,385 feet separates the middle from the upper Brookian sediments. This unconformity is of middle- to upper Miocene age (Hubbard and others, 1987). However, comparisons to the Canadian Beaufort suggest that multiple unconformities may also be present at this location (Dixon and others, 1985). Lithologically, Unit XIV is similar to the underlying middle Brookian sediments, but it also includes some conglomerate, peat, and partially coalified wood fragments. These constituents are commonly found in the mostly nonmarine Sagavanirktok Formation (Oligocene-Pliocene) of onshore nomenclature.

Tuktoyaktuk Sequence

Regional geology suggests that the upper Brookian section is overlain by some of the easterly-derived Tuktoyaktuk Sequence sediments (Banet, 1990). In northern Alaska, these are commonly referred to as the Gubik Formation. There is an angular unconformity between the upper Brookian Sagavanirktok and the Gubik at exposures in the ANWR 1002 area. Comparisons to the Tuktoyaktuk Sequence of the Canadian Beaufort suggest that this area may have also undergone several episodes of local uplift and erosion.

4. Petrographic Studies

This report presents the results of petrographic analyses of selected materials from the Aurora well. This well is of significant interest for a number of reasons, which, with further particulars of the well, are discussed elsewhere (Banet, 1992a, b).

The studies described were somewhat limited, due to several factors. Information on the well was scheduled to be made public on August 26, 1991. On August 21, 1991, the Bureau of Land Management (BLM) made a formal request to the Geological Materials Center (GMC), State of Alaska, Eagle River, for access to, and sampling of materials of interest from this well, as soon as the materials had been transferred to the GMC repository and, thus, entered the public domain. This was the first request received by the GMC regarding the Aurora well materials. In the interim, however, prior to public release of these materials, representatives of a major petroleum company also expressed similar interests to the GMC. BLM agreed to defer to this organization, which
promptly proceeded to examine, and sample, the drill cuttings and core materials upon their being made public.

Fourteen samples, all consisting of drill cuttings fragments, were selected by this company, from each of which a standard petrographic thin-section was prepared. After the company analyses had been carried out, these thin-sections were returned to the GMC, and made available to BLM for independent study. During the course of our analyses, yet another major petroleum company expressed strong interest, on two separate occasions, in also examining these thin-sections, and, each time they were immediately made available to this organization. Additionally, an independent consulting geologist from outside Alaska subsequently made a special trip here to examine this suite. BLM has also examined the entire collection of materials from the Aurora well presently on hand at the GMC, and selected an additional suite of samples, which will be analyzed petrographically as well.

The present report deals with our analysis of just the fourteen thin-sections prepared by the first petroleum company. Due to the apparently keen interest, it was felt appropriate to make the results of our work on them available in timely fashion. Given the essentially descriptive intent of this report, we restrict ourselves here to documentation of observed materials, deferring extensive discussion of more interpretative considerations such as geological relationships, implications, etc. to a subsequent report.

5. General Analytical Considerations

Fourteen standard petrographic thin-sections were examined, using a Nikon petrographic microscope in transmitted light, supplemented by inclined reflected light illumination. One-half of each thin-section had been chemically treated with staining reagents to facilitate the identification of calcite, ferroan calcite, dolomite, and ferroan dolomite phases.

Each thin-section is comprised of a large number (many hundreds) of small (+/- 3.0 mm, and smaller) drill cuttings fragments. As is well-known, there are distinct disadvantages, and some advantages, to working with such samples.

Each sample, additionally to materials representing stratigraphic horizons (rocks, i.e.) penetrated by the drill, contains significant, often predominant, proportions of apparent "contaminant" materials added
during the drilling operations. The more-readily recognized of these latter components included micaceous (apparently principally vermiculite/hydrobiotite/biotite; with lesser muscovite); woody (+/-bone/perlite?); and possibly other organic materials. There may be others as well.

Perhaps (?) the "granitoid", as well as the perthitic fragments, similarly, represent introduced materials, possibly in this case associated with the micaceous materials. It should be noted that, though found as discrete cuttings fragments throughout the entire interval studied, neither "granitoid" nor perthitic grains have been recognized as constituents of sedimentary rock fragments in any of the thin-sections we have examined thus far from the Aurora well.

The "metamorphosed" sandstones-wackes, as a variation on this "anthropogenic materials" theme, may well not represent indigenous stratigraphic materials of this nature. "Artefacts" of the "metamorphic" effects of the drill bit on rock materials, though somewhat difficult to recognize as such in many instances, have been reported and documented in the technical literature. The essentially ubiquitous presence of trace amounts of fragments with this type of "metamorphosed" appearance in the thin-sections studied thus far in the Aurora well tends to suggest that they may well be representative of such "artefacts."

The descriptions which follow include generalized summary comments for each thin-section examined. Additionally, as appropriate, more detailed analyses of particular fragments are presented as well. Numerous photomicrographs were made during the course of the work, and are on file with the Branch of Lease Operations, Division of Mineral Resources, BLM, Alaska State Office, Anchorage. Copies of portions of selected geophysical logs are included here as Figures 6 and 7, covering the depth intervals represented by these samples. Depths, in feet, are below the kelly bushing, which was reported as 106 feet above the sea floor at the drill-site. Plates 1 and 2 provide additional information and perspective.

6. Sample Descriptions

Those cuttings fragments identified with a capital letter (ie., "A") have been either subjected to detailed petrographic analysis, or described in summary fashion, and recorded as photomicrographs.

14,680' - 14,690'

Principal fragment types

Predominant

1. Fine-medium-grained litharenite. The dominant rock material in this thin-section. "A" and "B", described below, are representative. Some fragments are feldspar-bearing/feldspathic (plagioclase: oligoclase-andesine). "E" is an example.

2. Siltstone-mudstone/shale. A major constituent of the suite of cuttings fragments in this thin-section. Some are bimodal, with sand-sized grains (quartz, rock fragments, some plagioclase) "floating" in a silt-clay matrix.

Subordinate

3. Discrete quartz. Trace.

6. Discrete potassium feldspar; at least one perthitic fragment was noted. "C" is an example. Trace.

7. Pyrite-rich clastic sedimentary rocks- some may, rather, be volcanic rocks (?). Trace.

9. "Metamorphosed" sandstone/micaceous sandstone; metamorphic ocks/fault-related/artefacts of drilling (?). "F" is an example. Trace.

10. Organic materials; many are black, a few are reddish. A minor component.

Fragment "A"

Grains = 80%+/-; matrix = nil; cement = 10%; visual porosity = 10%.
Grains consist of quartz (30%), monocrystalline principally, some polycrystalline, most exhibit undulose extinction; feldspars (10%)-plagioclase, +/-?; lithic grains (+/-60%)-principally sedimentary rocks, featuring argillaceous rocks and cherts, with trace amounts of carbonates (limestone, dolomite), and trace proportions of metamorphic (?)-chloritic and igneous (felsic volcanic?) rock fragments.Opaque materials (+/- 3%)- organic (also some hydrocarbon staining ?), and pyrite in detrital lithic grains.

Cement principally carbonate (dolomite, most likely), with subordinate quartz. Suggestions of organic materials (hydrocarbons?) associated with inter- and intragranular porosity, and with fractures.

Visual porosity principally secondary in character, featuring corroded grain edges and interiors, as well as cements; significant microporosity as well. Some apparent fracture porosity may well, rather, represent artefacts of sampling/sample preparation. Effectiveness of total porosity fair-good(?).

Grain contacts range through concavo-convex, perhaps greater; the rock appears to have undergone a moderate degree of compaction.

This specimen represents fair reservoir quality as is, with potential for improvement elsewhere via further development of secondary dissolution porosity (carbonates, cherts, other lithic fragments, feldspars are possible candidates).

Fragment "B"

Grains = 80%+/-; matrix = 5% (also some pseudomatrix); cement = 5%; visual porosity = 3%+/-.

Grains consist of quartz (40%+/-); feldspars (10%+/-)- plagioclase, potassium feldspar (?)-; lithic fragments (50%)- featuring cherts, argillaceous rocks, carbonate fragments, metamorphic rocks (?), igneous rocks (??); opaques (5%+/-)- organic matter, traces of pyrite; trace amounts of glauconite (?), chlorite.

Matrix of argillaceous materials, with indications of associated organic materials (hydrocarbons ?).

Cement principally consists of carbonate mineral(s?), most likely dolomitic; subordinate quartz cement.

Visual porosity secondary in character, principally reflecting dissolution of detrital grain edges and interiors (lithic fragments, feldspars), as well as partial dissolution of cements (carbonates). Associated subordinate microporosity. Effectiveness of total porosity essentially nil.

Grain contacts range through concavo-convex. The rock has undergone a moderate degree of apparent compaction.
This rock possesses essentially nil reservoir quality as is. It has a fair degree of potential for improvement elsewhere, via secondary dissolution porosity development (carbonates, cherts, lithic fragments, feldspars are possible candidates). However, the grain size, degree of compaction, clay content, and quartz cementation are negative factors in the latter regard.

**Fragment "E"

Grains = 95%+; matrix = <5%; cement = trace; visual porosity is nil.

Grains consist of quartz (30%+-), mostly monocrystalline, with straight as well as undulose extinction represented; feldspars (10%-+) plagioclase (An5 or 35), potassium feldspar (?); lithic fragments (50%+)- cherts, carbonate fragments, argillaceous rock fragments, metamorphic and/or igneous rock fragments (?); trace amount of possibly detrital opaques- most likely organic materials; trace amount of mica(s?) in particle sizes sufficiently large to warrant their being distinguished from being considered under the term "detrital matrix".

Matrix of argillaceous materials; also lesser pseudomatrix.

Cement consists of quartz; there may be small/trace amounts of clay minerals occurring as cement as well- this is optically indeterminate here.

Visual porosity is nil

Grain contacts range through concavo-convex; some lithic fragments and micas have been deformed sufficiently to be termed pseudomatrix. This rock has undergone moderate apparent compaction.

This rock has nil reservoir quality as is. Poor/fair(?) potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates, cherts, feldspars are the most likely candidates). However, the grain size, degree of compaction, and the clays/micas matrix/pseudomatrix are negative factors in the latter regard.

**14,710' - 14,720'

Principal fragment types

Predominant

1. Cherts; a variety of types. Major component of these cuttings fragments. Some contain appreciable amounts of carbonate minerals. "C" is an example.
2. Litharenites. Various constituent grain sizes, conglomeratic to fine sand. A major component. Many are feldspar-bearing/feldspathic (plagioclase, +/- ?). Chert grains are important constituents as well. Appreciable amounts of carbonate minerals may be associated. "A" and "B" are examples.

3. Organic materials. An appreciable component. Mostly black, a few are reddish.

Subordinate

4. Siltstones-mudstones/shales. Some are organic-rich. There are also quartz and carbonate-filled veins in some. A minor component of these cuttings fragments.

5. Discrete quartz. Some are well-rounded. A minor component.

7. Arenites with abundant pyrite, as rims on fragments, grains; within fragments. Trace.

8. Volcanic ("felsic") rocks. "D" is an example- featuring: euhedral plagioclase phenocrysts, twinned, albite/andesine composition, slightly zoned; in a very-fine grained groundmass of quartz, +/- (?) of "cherty" aspect. Trace component.

9. Medium (+?) grained litharenite, comprised of sedimentary rock fragments, and one igneous (basaltic) rock fragment. The latter features: sub-euhedral plagioclase phenocrysts, 0.1 mm (+) in size, of optically indeterminate composition; chlorite interstitial to the plagioclase. Moderate degree of alteration- of plagioclase to clinozoisite/and, possibly, also albitization (?), and chlorite (representative of original glassy to fine-grained matrix material) suggests metamorphism (low-grade) of this rock, prior to its' being incorporated into the litharenite. Only one fragment was recognized in this thin-section, "E".

10. Igneous (volcanic ?) rock fragment. Plagioclase; euhedral, twinned, fairly fresh, albite/andesine. It is problematic as to whether this cuttings fragment "F" represents one lithology- ie. a volcanic (?) rock, or, rather, the fragment is a sedimentary rock (litharenite), with grains(?) of igneous rocks incorporated

11. "Metamorphosed" sandstones-wackes. Metamorphic rocks/ fault-related/artefacts of drilling (?). Trace component

Fragment "A"

Conglomeratic litharenite/conglomerate. One constituent grain (partial) is of granule -or possibly larger- size; the other detrital grains comprising this specimen are in the fine-medium sand size range. Vague layering is manifest. The grains are poorly sorted, subangular-subrounded; the specimen is immature texturally, mineralogically, and diagenetically.

Grains = 80%+; matrix = <5%; cement = 8%+/-; visual porosity is nil.
Grains consist of quartz (10%)- monocrystalline, polycrystalline, straight as well as undulose extinction; lithic fragments (90%/+) - siltstones/very fine sandstones, cherts, argillaceous rock fragments; opaques (<3%)- pyrite, organic materials.

Matrix of argillaceous materials. Some of the associated organic materials may represent hydrocarbons (?).

Cements consist of carbonate minerals (70%--ferroan calcite, principally), as well as "opaline" (?) silica/zeolites(?)—on the order of 30% of the total cement—of a paragenesis subsequent to at least some of the carbonate cement.

Visual porosity is nil.

Grain contacts range through line to concavo-convex. This rock shows the effects of moderate apparent compaction.

This rock has nil reservoir quality as is. Fair - or better- potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates, cherts, "opaline silica"/zeolites(?) are principal candidates).

Fragment "B"

Grains poorly-moderately sorted; subangular-subrounded-rounded. Texturally, mineralogically, diagenetically immature.

Grains =90%; matrix =<5%; cement =<5%; trace of visual porosity.

Grains consist of quartz (40%)- monocrystalline, undulose extinction; feldspars (10%)- plagioclase; lithic fragments (50%+/-) - cherts, argillaceous siltstones, sandstones; opaques (<5%)- pyrite, organic materials.

Matrix of argillaceous materials; associated organic materials may represent hydrocarbons (?) at least in part.

Cement consists of quartz.

Visual porosity trace (microporosity). Nil effectiveness.

Grain contacts range through concavo-convex. This specimen has undergone moderate apparent compaction.

Nil reservoir quality as is. Poor-fair(??) potential for improvement elsewhere, via development of secondary dissolution porosity (feldspars, cherts the principal candidates). However, the degree of compaction, and matrix/pseudomatrix militate against this somewhat.

Fragment "C"

Chert. Fragment includes one fine sand-size quartz grain, as well as numerous rhombs of carbonate (ferroan calcite), in a crystalline silica matrix.
Visual porosity nil.

Nil reservoir quality as is. Cherts, particularly those containing appreciable carbonate mineral components, are candidates for secondary dissolution porosity development under appropriate conditions.

14,740′ - 14,750′

Principal fragment types

Predominant

1. Wood/bone (?) material; contaminant from drilling operations. The predominant component of the cuttings fragments in this thin-section. "B" is an example.

2. Cherts, of various aspect; there is a plethora of types in this thin-section. A major component of the cuttings fragments from this interval. Some are pyritic, or carbonate-bearing.

3. Argillaceous rocks: mudstones/shales-siltstones. Include organic-rich, quartz-veined, siliceous (some spiculitic ?) varieties. A major component of the cuttings fragments in this thin-section.

Subordinate

4. Litharenites: conglomeratic and finer-grained. Feature quartz, cherts, lesser argillaceous rock fragments. "A" is an example. Some ("G", eg.) are feldspar-bearing (plagioclase). A minor component of this thin-section.

6. Volcanic rock fragments. "C" is an example. Trace component.

7. Calcite/limestone. Trace component.

9. Photomicrographs "X" feature a fragment comprised of a chert (?)/volcanic rock (?) grain, with carbonate (some is ferroan calcite); grains of argillaceous rocks; a grain of volcanic/igneous rock, with highly altered plagioclase, associated with carbonate +/- other phases. This fragment is a silica-cemented ("cherty") litharenite; or, rather, a felsic tuff/breccia (?)?

10. Photomicrographs "W, Y" are overviews of this thin-section. "W" include parts/all of fragments "A, X". "Y" feature a fragment of silty mudstone adjacent to fine sand-size wacke, as well as other fragments.
Fragment "A"

Conglomeratic litharenite. Fine-medium sand size grains, with one pebble of chert. Poorly sorted; sand size grains are angular-subrounded, pebble is rounded/well-rounded. Texturally submature; mineralogically and diagenetically immature.

Grains = 90%; matrix = trace-nil (although the sand size grains may be considered as "matrix" to the pebble); cement = 10%; visual porosity = trace-nil.

Grains consist of quartz (20%+) mono- and polycrystalline, with straight as well as undulose extinction represented; lithic fragments (70%+) cherts (some with pyrite), argillaceous rocks; others (5%+) chlorite, micas, glauconite (?).

Matrix of argillaceous materials, as well as some pseudomatrix after lithic fragments.

Cement consists of carbonate minerals- dolomite, with zones of ferroan dolomite at the margins; discrete ferroan calcite.

Visual porosity nil.

Grain contacts range through concavo-convex; also feature pseudomatrix developed from deformation of lithic fragments. This specimen has undergone moderate apparent compaction.

Nil reservoir quality as is. Moderate potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates, cherts are principal candidates). If hydrocarbons were to enter a rock such as this as prior to carbonate cementation, the rock would have good reservoir characteristics.

Fragment "C"

Felsic volcanic rock. Probably a constituent of a coarser-grained sedimentary rock type (conglomerate/breccia). Features phenocrysts of quartz, plagioclase (oligoclase- twinned, zoned, deformed, occurring as glomeroporphyritic aggregates). Groundmass of siliceous, +/- other optically obscure materials- including some plagioclase laths, opaques (pyrite, +/-?). A relatively unaltered rock.

14,770' - 14,780'

Principal fragment types

(This suite is very similar to that from the overlying interval, 14,740-14,750').

Predominant

1. Wood/bone (?) material, contaminant from drilling operations. The predominant component of this thin-section.
2. Cherts, of various aspect. Includes pyritic, organic-rich, carbonate mineral(s)-associated (some rhombic ferroan calcite) types. A major component of this thin-section.

3. Argillaceous rocks: mudstones/shales. May be organic-rich, veined with quartz (eg. "B"), spiculitic? (and/or radiolarian?).

Subordinate

4. Litharenites: conglomeratic to fine sand-sized constituent grains. "A" is a feldspar-bearing (plagioclase; oligoclase-andesine) example. A minor component of this thin-section.

6. Volcanic ("felsic") rocks. Trace component.

7. Photomicrographs "W" show an overview of this thin-section, including fragment "A".

Fragment "A"

Litharenite. Vague layering. Fine sand size grains; well sorted; subangular-subrounded. Texturally, mineralogically, diagenetically immature.

Grains = 90%; matrix = 10%; cement nil; visual porosity = trace.

Grains consist of quartz (50%+/-)- mono- and polycrystalline, with straight and undulose extinction represented; feldspars (10%)- plagioclase, potassium feldspars (?); lithic fragments (40%)- cherts, argillaceous rocks; chlorite (3%+/-); trace pyrite.

Matrix of argillaceous materials; also some argillaceous lithic fragments have been deformed into pseudomatrix.

Visual porosity consists of traces of microporosity and possibly fracture porosity. Pore linings of clay materials, apparently principally detrital. Porosity effectiveness is nil.

Grain contacts range through concavo-convex, with some deformation resulting in formation of pseudomatrix. This rock has undergone moderate apparent compaction.

Nil reservoir quality as is. Clays, grain size, degree of compaction militate against further improvement. However, development of secondary dissolution porosity (from cherts, feldspars, +/-?) could be construed as reasonably feasible. Perhaps, on balance, there is likely poor-fair potential for significant improvement.
14,800' - 14,810'

Principal fragment types

Predominant

1. Wood/bone (?) material. Contaminant from drilling operations. A major component of this thin-section.

Subordinate

5. Organic matter; most is black, some reddish. A minor component of this thin-section.

6. Volcanic rocks. "B" is an example; "C" may be, also. Trace component.

11. "Problematic" fragment ("W"). Comprised of grain showing micrographic/micropegmatitic texture (?)- quartz, in a "host" of orthoclase (?) microperthite (?), with an attached rhomb of ferroan calcite.

13. Photomicrographs "D" show general overviews of this suite.

Fragment "A"

Grains = 90%; matrix trace; cement = 10%; visual porosity trace (artefact?).

Grains consist of quartz (30%)- mono- and polycrystalline, straight and undulose extinction represented; feldspars (10%)- plagioclase, potassium feldspars (?);
lithic fragments (50%+/-)- cherts, argillaceous rocks, sandstones/siltstones; opaques (5%)- organic matter, lesser pyrite.

Matrix of argillaceous materials.

Cement consists of dolomite; indications of associated organic materials (including hydrocarbons?).

Traces of visual porosity, as microporosity; also fracture porosity (artefact?). Effectiveness nil.

Grain contacts range through concavo-convex; some argillaceous lithic fragments have been deformed to pseudomatrix. This rock has undergone a moderate degree of apparent compaction.

Nil reservoir quality as is. Fair potential for improvement, via development of secondary dissolution porosity (carbonates, cherts, feldspars, are principal candidates).

Fragment "B"

Mafic/intermediate (?) volcanic rock. This fragment is 0.9mm in its' longest dimension in thin-section. It consists of scattered microphenocrysts of plagioclase (oligoclase)- moderately deformed, twinned; finer grained matrix of plagioclase crystals of similar character, with associated interstitial chlorite (after original pyroxene/glass?, presumably). Cf. comments above regarding fragment "C", 14,740-14,750'.

Fragment "C"

Comprised of two grains, each on the order of 0.3+mm. One, perhaps, represents an altered olivine (?)- as evidenced by olivine-like partings, black opaque phases associated, and iddingsite-like material along the partings. Or, rather, an unusual "chert"(?). The other grain has the general aspect of a very fine-grained volcanic rock (?), or representative of "chilled marginal zone/matrix" (?). There are plagioclase laths, barely discernible, in a quartz +/-(? groundmass. In any event, a curiosity here, as a lithic fragment.

14,830' - 14,840'

Principal fragment types

Predominant

1. Discrete quartz. Fragments are mostly angular-subangular; range from 0.8 mm and smaller in size, as cuttings fragments. A major component of this thin-section.
2. Cherts, of various aspect. Some are carbonate-bearing (including ferroan calcite). A major component.

4. Litharenites: conglomeratic and finer-grained. "B" and "C" are examples. Some are pyritic (one is >50% pyrite); one feldspar-bearing (plagioclase) example ("Y") was noted. A major component of this thin-section.

Subordinate

6. Organic material; mostly black. Minor component.

7. Wood/bone (?) material; contaminant from drilling operations. Minor component.

8. Volcanic rocks. "E" is an example. Predominantly plagioclase, twinned, albite-andesine; minor quartz, opaque minerals. Trace component.

9. Discrete plagioclase (+/- potassium feldspars?). Twinned, albite-andesine; some strongly zoned. Trace component.

12. "Granitoid" rock (?). "X" - quartz, plagioclase (albite-andesine).

13. Photomicrographs "Z" show overviews of this thin-section, including a chert-bearing conglomeratic litharenite. Also other quartz, carbonate-bearing (ferroan calcite), argillaceous rocks (pyrite-rich) fragments.

Fragment "A"

Arenaceous (very fine-fine sand size quartz grains) dolomite. Visual porosity trace amount (artefact?) - fracture; effectiveness nil.

Fragment "B"

Litharenite. Vague layering. Framework grains range from medium sand (trace)-fine (principally)- very fine sand size, with finer materials as well; poorly-moderately sorted; angular-subangular-subrounded. Texturally, mineralogically, diagenetically immature.

Grains = 90%;+; matrix = 5%;+; cement is nil; visual porosity = traces (artefacts?).

Grains consist of quartz (50%+/-)- mono- and polycrystalline, straight and undulose extinction represented; feldspars (5%+/-)- plagioclase, potassium feldspars (?);
lithic fragments (40%+/-)- cherts, argillaceous rocks; opaques (5%+/-)- pyrite, also dark organic materials; trace amounts of chlorite.

Matrix of argillaceous materials. Cement nil (pyrite may, actually, be authigenic/diagenetic, here).

Visual porosity (fracture; artefacts?) in trace amounts. Effectiveness nil. Grain contacts range through intergrown/interlocking; also some argillaceous lithic fragments have been deformed to pseudomatrix. The rock has undergone a moderate (+) degree of apparent compaction.

Nil reservoir quality as is. A fair degree of potential for improvement elsewhere, via development of secondary dissolution porosity (cherts, feldspars, +/- chlorite and/or clays are candidates). However, the grain sizes, poor sorting, degree of apparent compaction, and the clay/matrix are all negative factors in this regard. On balance, probably poor potential for improvement of reservoir quality.

Fragment "C"

Litharenite. Massive fabric. Detrital grains range from medium sand (trace)- fine sand size, with lesser amounts of very fine sand, silt sizes. Sorting moderate-good. Grains are subangular-subrounded. Texturally submature; mineralogically, diagenetically immature.

Grains = 95%+; matrix = trace; cements = 5%+/-; visual porosity = trace (artefacts?).

Grains consist of quartz (40%)- mono- and polycrystalline, straight and undulose extinction represented; feldspars (5%)- plagioclase, potassium feldspars (?); lithic fragments (50%+-) cherts, argillaceous rocks, subordinate carbonate fragments (ferroan calcite, ferroan dolomites); traces of glauconite (?), chlorite (?).

Matrix of argillaceous materials.

Cements consist principally of carbonate minerals-- ferroan calcite, ferroan dolomite (?); subordinate amount of pyrite; questionable traces of quartz- perhaps relict on detrital grains.

Visual porosity consists of fractures, which may in fact be artefacts of sampling/sample preparation. Effectiveness is nil.

Grain contacts range through intergrown/interlocking; some lithic fragments have been deformed to pseudomatrix. The rock has undergone a moderate (+) degree of apparent compaction.

Nil reservoir quality as is. Fair potential for improvement elsewhere, via development of secondary dissolution porosity (cherts, feldspars, carbonate minerals are principal candidates). However, the degree of compaction, and the matrix/pseudomatrix are negative factors in this regard. On balance, a poor-fair potential for improvement.
14,850' - 14,860'

Principal fragment types

The cuttings in this thin-section are rather similar in types, and relative abundances, to those in the overlying interval (14,830' - 14,840'). The thin-section here is, again, dominated by discrete quartz fragments- generally angular to subangular. There are lesser amounts of cherts, and argillaceous rocks- siltstones/ mudstones/shales.

Also present, in subordinate amounts, are organic materials (mostly black), occasional discrete plagioclase, and carbonates (calcite/ limestone, dolomite). A minor proportion of this cuttings suite consists of litharenites; conglomeratic and finer-grained.

Photomicrographs "A-D, X" depict general characteristics of this thin-section.

16,445' - 16,450'

Principal fragment types

Predominant

1. Discrete quartz. Angular-subangular, to well-rounded, range 0.9 mm and smaller in size, as cuttings fragments. Some show quartz cement/overgrowths. Photomicrographs "C-G" illustrate these features. A major component of this thin-section.

3. Litharenites-quartz arenites. Fragments "A" and "B" are representative. Photomicrographs "C, E, F" also show these. A major component of this thin-section.

Subordinate

5. Cherts. May be pyritic- one fragment consists of >50% pyrite "framboids". A trace component.

8. Mica (s?): of "bleached" aspect- perhaps vermiculitic; some muscovite. Indigenous to the strata, or, rather, contaminants from drilling operations? Trace components.

Fragment "A"

Grains = 90%; matrix nil; cement = 10%; visual porosity nil.

Grains consist of quartz (100%+-)- most are monocrystalline, with straight extinction; some are polycrystalline, with undulose as well as straight extinction represented.

Cement consists of carbonate mineral(s)- dolomite, some siderite, most likely-(90%), and quartz (10%). The carbonate cement occurs in the unstained portion of the thin-section, unfortunately. Some of this material shows discernible zoning, from darker central portions of patches of intergranular cements to lighter toned margins- ie. perhaps from less to more ferroan, paragenetically, with deposition from pore margins inward.

Remnant visual porosity is nil.

Grain contacts range through intergrown/interlocking. The rock has undergone a moderate (+) degree of apparent compaction.

Nil reservoir quality as is. Fair potential for improvement elsewhere, via dissolution of carbonate minerals. Quartz cementation, degree of apparent compaction, patchy distribution of carbonate cement are negative factors in this regard. On balance, poor/fair (?) potential for improvement. Pre-cementation, of good reservoir quality.

Fragment "B"

Litharenite/sublitharenite. Vague layering. Detrital grains range from trace amounts of very coarse (?) sand to predominant proportions of fine-very fine sand size materials. Sorting is poor-moderate, the grains are angular-subangular-subrounded-rounded. Texturally, mineralogically, diagenetically immature.

Grains = 90%; matrix = 8%+-; cement = trace; visual porosity is nil. Grains consist of quartz (70%)- mono- and polycrystalline, straight and undulose extinction are represented; lithic fragments (30%)- chert, siliceous arenite, perhaps (?) trace amounts of volcanic rocks; trace of glauconite.
Matrix of argillaceous materials; indications of organic materials associated (hydrocarbons?).

Cement consists of traces of quartz. Visual porosity nil (some fractures, which likely are artefacts)

Grain contacts range through concavo-convex/intergrown. This rock has undergone a moderate (+) degree of apparent compaction.

Nil reservoir quality as is. Poor-fair potential for improvement elsewhere, via development of secondary dissolution porosity (cherts, glauconite are principal candidates). Clays, grain size, degree of compaction, quartz cementation are negative factors in this regard. On balance, poor potential for improvement.

16,470' - 16,480'

Principal fragment types

Predominant

1. Discrete quartz. Angular to well-rounded, 1.0 mm and smaller in size, as cuttings fragments. Some show quartz cement/overgrowths. Photomicrographs "E, G, H, L" illustrate these. A major component of this thin-section.

Subordinate

4. Discrete plagioclase; twinned. Trace component.

5. Cherts. Some are pyritic. Trace component.

Fragment "A"

Sublitharenite. Massive fabric. Detrital grains include trace amount of coarse sand, and predominant proportions of medium sand size materials. Moderately-well sorted, the grains are subrounded-rounded. Texturally mature, mineralogically and diagenetically immature.

Grains = 85%; matrix nil; cement = 10%; visual porosity = 5% (much/all actually artefact?)

Grains consist of quartz (80%)- mono- and polycrystalline, most exhibit undulose extinction; feldspars (trace)- plagioclase (and/or as cement ??); lithic fragments (20%)- argillaceous rocks, cherts, possibly some glauconite(?), perhaps trace amounts of volcanic rocks (?).

Cements consist of quartz (75%), dolomite (25%), trace of plagioclase (??).

Visual porosity ambiguous as to "artefact/non-artefact" character. Consists of apparent (?) secondary dissolution (edges and internal portions) of lithic fragments, and also of fractures. If non-artefact, the resultant porosity could be fairly effective..

Grain contacts range through concavo-convex/intergrown. The rock has undergone a moderate (+) degree of apparent compaction.

Poor reservoir quality as is. Poor potential for improvement elsewhere, via dissolution of dolomite, and/or lithic fragments. Quartz cementation, degree of apparent compaction, and paucity of potentially labile grains are all negative factors. Prior to deep burial-compaction-quartz cementation, however, this rock likely had fair or better reservoir quality.

Fragment "B"

Quartzarenite. Massive fabric. Medium sand (trace) and fine sand size grains, very well sorted, subangular-subrounded. Texturally submature/mature, mineralogically and diagenetically immature.

Grains = 85%; matrix nil; cement = 15%; visual porosity = trace (artefact?).

Grains consist of quartz (98%+/-)- most are monocrystalline, some are polycrystalline, undulose extinction is ubiquitous; lithic fragments (trace)-argillaceous rocks; traces of black organic matter.

Cements consist of quartz (30%), and carbonates (70%)- dolomite, and siderite. The latter occurs as a "beadwork" along detrital grain margins, in places, and shows no evidence of reaction to the staining reagents applied.

Visual porosity consists of fractures, likely artefact in character (?). Effectiveness nil.

Grain contacts range through intergrown. The rock has undergone a moderate (+) degree of apparent compaction.
Nil reservoir quality as is. Fair potential for improvement elsewhere, via development of secondary dissolution porosity. In particular, the carbonate cements, especially the "beadwork," represent prime candidates for this. Negative factors include the quartz cementation and the degree of apparent compaction.

Fragment "C"

Grains = 90%; matrix = 10%; cement = trace; visual porosity = trace (artefact?).

Grains consist of quartz (50%)- most are monocrystalline, some are polycrystalline, with straight as well as undulose extinction represented; feldspars (trace)-plagioclase, potassium feldspars (?); lithic fragments (45%)- cherts, argillaceous rocks, subordinate volcanic rocks; traces of organic materials; micas/chlorite (5%).

Matrix of argillaceous materials, with indications of associated organic materials (including hydrocarbons?).

Cements consist of quartz and carbonates (dolomite?).

Visual porosity consists of apparent secondary dissolution at certain grain edges, as well as of fractures; both may well represent artefacts of sampling/sample preparation (?).

Grain contacts range through concavo-convex, with slightly deformed layer silicate minerals (micas/chlorites, ie.). The rock has undergone moderate apparent compaction.

Nil reservoir quality as is. Fair potential for improvement elsewhere, via development of secondary dissolution porosity (cherts, lithic fragments, feldspars, are candidates). Negative factors include clays/micas/chlorites, and the degree of apparent compaction.

Fragment "D"

Sublithic wacke/arenite. Massive fabric. Framework grains very fine sand size, principally, with appreciable proportions of finer grained materials as well. Poorly-very poorly sorted, ranging from very angular through subangular. Texturally, mineralogically, diagenetically immature.

Grains = 85%; matrix = 15%; cement nil; visual porosity nil.

Grains consist of quartz (80%+/-). Most are monocrystalline, some are polycrystalline, straight as well as undulose extinction are represented; feldspars (5%)- plagioclase, potassium feldspars (?); lithic fragments (15%)- cherts, argillaceous rocks, trace of carbonate fragments; black organic matter (3%); glauconite (trace).
Matrix of argillaceous materials; associated organic materials. Grain contacts range through concavo-convex; somewhat "cushioned" by the matrix. The rock has undergone a moderate degree of apparent compaction.

Nil reservoir quality as is. Poor potential for improvement- relative paucity of dissolution candidate materials, grain size, argillaceous matrix are all negative factors.

Fragment "G"

Grains = 85%; matrix nil; cement = 15%; visual porosity = 5% (at least part of which may well be artefact).

Grains consist of quartz (90%)- mono- and polycrystalline, most exhibit undulose extinction; lithic fragments (10%)- one grain, now partially leached, of argillaceous?/volcanic? character.

Cements consist of quartz (10%), and carbonate (90%). The latter, unfortunately, do not occur in the stained portion of the thin-section, hence their mineralogic composition is ambiguous- likely calcite, possibly dolomite, some siderite.

Visual porosity consists of partial secondary dissolution (of an argillaceous?/volcanic? lithic fragment), as well as fractures (which may well represent artefacts of sampling/sample preparation).

Grain contacts range through intergrown/sutured. This rock has undergone moderate (++) apparent compaction.

Nil reservoir quality as is. Fair potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates, lithic fragments are candidates). Degree of apparent compaction, quartz cementation are negative factors in this regard. On balance, poor-fair potential for improvement.

Fragment "I"

Grains = 90%+; matrix = trace; cement = 5%+; visual porosity nil.

Grains consist of quartz (50%)- mono- and polycrystalline, most exhibit undulose extinction; feldspars (5%)- plagioclase, potassium feldspar (?); lithic fragments (45%)- cherts, argillaceous rocks.
Matrix of argillaceous materials; associated black organic materials (somewhat granular in aspect, = dead oil?).

Cement consists of quartz.

Grain contacts range through intergrown, with some lithic fragments deformed to pseudomatrix. This rock has undergone a moderate (+++) degree of apparent compaction.

Nil reservoir quality as is. Poor-fair potential for improvement elsewhere, via development of secondary dissolution porosity (cherts, lithic fragments are candidates). The degree of apparent compaction, pressure solution/intergrowths/quartz cementation, and pseudomatrix development are negative factors. On balance, poor potential for improvement.

16,500' - 16,510'

Principal fragment types

The principal differences between the cuttings fragments suite from this interval and that from the overlying interval (16,470-16,480') are a relative decrease in the proportion of discrete quartz fragments, and a relative increase in arenite fragments (made up principally of quartz grains) in the 16,500-16,510' materials. These two fragment types are each major components of this suite. There is also somewhat more discrete micaceous material in this thin-section (contaminants from drilling?). Otherwise, the constituent fragments in the two suites are not dissimilar.

"A" is representative of the quartz arenite-sublitharenite fragments noted. Photomicrographs "B-I, Q" show other examples/varieties- some containing glauconite grains.

Photomicrographs "J, K" show general aspects of the suite: quartz, arenites, argillaceous rocks, cherts, plagioclase, orthoclase microperthite, pyrite-bearing fragments, wood, micas.

Photomicrographs "E" show an arenite featuring carbonate and quartz cements, as well as glauconite (?).

"C" features glauconite grains- a not uncommon constituent in other fragments in this thin-section. This lithology is a major component of the cuttings fragments in this thin-section. "D" is another example, showing a somewhat deformed ("squashed") glauconite grain, with associated (micro) porosity.

Photomicrographs "H" show an arenite-wacke, with some 30% pyrite "cement".

Photomicrographs "F" show a siltstone with coarser grains, including glauconite.

Photomicrographs "G" include views of discrete plagioclase, and discrete orthoclase microperthite with twinned plagioclase "guests."
Fragment "A"

Quartzarenite/sublitharenite. Massive fabric. Framework grains are principally coarse-very coarse sand size, well sorted, and rounded-well rounded. Texturally mature, mineralogically and diagenetically submature-immature.

Grains = 85%; matrix nil; cement = 10%; visual porosity = 5%.

Grains consist of quartz (90%)- principally monocrystalline, some are polycrystalline, most exhibit undulose extinction; lithic fragments (10%)- one rounded grain, a very fine sandstone/wacke; one grain/flake of chlorite(?).

Cements consist of quartz (90%), and carbonate(s). The latter do not occur in the stained portion of the thin-section, hence their mineralogy is somewhat ambiguous-most likely dolomite, and siderite.

Visual porosity is secondary in character, representing partial internal dissolution of a lithic fragment. Effectiveness is nil.

Grain contacts range through intergrown. This rock has undergone moderate (+) apparent compaction.

Nil reservoir quality as is. Poor potential for improvement, due to degree of apparent compaction, quartz cementation, and paucity of potentially reactive dissolution candidate materials. Prior to compaction/cementation, the well rounded, coarse-very coarse sand size grains would have afforded excellent reservoir quality.

16,530'-16,540'

Principal fragment types

(This suite is quite similar to that from the overlying interval, 16,500-16,510').

Predominant

1. Arenites-litharenites. "A-C, M" are examples. Photomicrographs "L, Q-S" include others. Glaucinite often present. A major component of this thin-section.

2. Argillaceous rocks: siltstones-mudstones/shales. Some are organic-rich. Photomicrographs "F, L, Q-S" include examples. A major component.

3. Discrete quartz. Mostly angular-subangular as cuttings fragments, similar in general aspect to the quartz grains comprising the arenites in this suite. Photomicrographs "F, L, Q-S" include examples. A major component.

Subordinate

4. Discrete feldspar. Plagioclase, twinned, oligoclase-andesine; also (?) potassium feldspars. Minor component of this thin-section.
5. "Granitoid" rocks. Associations of quartz-feldspars (plagioclase, orthoclase, +/- microperthites)-mica (muscovite). Photomicrographs "E, G, H" are examples; "L" show another. Minor component.

9. Metamorphic rock. Consists of a grain of plagioclase (cordierite ?), and a grain(s?) of a pale yellowish mineral (an amphibole ? --on basis of apparent birefringence and cleavage). One fragment noted, shown in photomicrographs "Q". Indigenous (?), or a "contaminant" associated with micaceous and/or "granitoid" materials?

Fragment "A"

Grains = 80%; matrix nil; cement = 20%; visual porosity = trace.

Grains consist of quartz (80%+/-)- mono- and polycrystalline, most exhibit undulose extinction; feldspar (5%)- one plagioclase grain; lithic fragments (10%)- cherts (?) / volcanic rocks (??)

Cements consist of quartz (50%), and carbonate(s)- likely dolomite, possibly siderite. Some of the latter occurs as "beadwork" among framework grains.

Visual porosity principally secondary in character, representing partial dissolution of cherts and other lithic fragments. Fractures are also present, most likely artefacts of sampling/sample preparation. Effectiveness of visual porosity nil.

Grain contacts range through intergrown/sutured. This rock has undergone a moderate (+++) degree of apparent compaction.

Nil reservoir quality as is. Poor-fair potential for improvement elsewhere, via dissolution of carbonates and/or cherts/lithic fragments. Degree of apparent compaction, grain intergrowth/quartz cementation are negative factors. The spatial arrangement of the carbonate cements such as intergranular "beadwork" is, however, a positive factor. On balance, a poor-fair potential for improvement.
Fragment "B"

Grains = 80%; matrix nil; cement = 20%; visual porosity = trace.

Grains consist of quartz (90%)- mono- as well as polycrystalline, most exhibit undulose extinction; feldspars (5%)- one grain of plagioclase; lithic fragments (5%)- one chert grain.

Cements consist of quartz (10%), and carbonate(s)- probably dolomite, perhaps some siderite.

Visual porosity secondary in character, representing partial dissolution of chert. Effectiveness nil. Grain contacts range through intergrown. This rock has undergone a moderate (++) degree of apparent compaction. The carbonate cementation preceded some of this compaction, shielding some of the quartz grains from pressure solutioning/attendant quartz cementation.

Nil reservoir quality as is. Fair-good potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates, cherts are candidates).

16,560' - 16,570'

Principal fragment types

This suite resembles that from the overlying (16,530-16,540') interval, except that there is a somewhat greater proportion of argillaceous rock (siltstones-mudstones/shales) fragments in this thin-section.

Predominant

1. Argillaceous rocks: siltstone-mudstone/shale. May be organic-rich, and/or carbonate-rich. "A" is an example. Photomicrographs "B, E, F" show others. A major component of this thin-section.

2. Arenites-wackes. "C" is a fossiliferous fine sand-sized example, with appreciable argillaceous matrix. Photomicrographs "B, D, E, F" show other types. "G" is a typical arenite. Photomicrographs "B and D" show several variants of this general type as well. "I" is a similar arenite, with glauconite grains. Arenite grain sizes include very coarse sand, and smaller. A major component of this thin-section.
Subordinate

3. Discrete quartz. Angular to well-rounded, as cuttings fragments. Some exhibit quartz overgrowths. Minor component of this thin-section.

5. Discrete feldspar. Plagioclase, twinned, oligoclase-andesine; +/- potassium feldspars (?). Trace component.

6. "Granitoid" rocks. Consist of intergrown feldspars- plagioclase, and orthoclase microperthites with twinned plagioclase- and quartz (some as rounded "blebs"). Photomicrographs "E, F, and H" show examples. Trace component.

8. Photomicrographs "Q" show a fragment featuring medium-fine sand-sized grains (quartz, mostly), "floating" (?) in a "matrix" (?)- now recrystallized (?)/surrounded by a "cement" (?) of carbonate. A grain of glauconite is also in evidence.

9. Photomicrographs "R" depict a fragment comprised of coarse, and smaller, sand-sized grains (quartz, cherts, feldspars, glauconite) in an optically indeterminate "matrix" (?)/"cement" (?) of argillaceous and/or carbonate material.

Fragment "A"

Sandy-silty calcareous mudstone. Sand-silt size detrital grains "floating" in a matrix of argillaceous and carbonate materials. Poorly sorted, these grains range from angular-subangular-subrounded. Texturally, mineralogically, and diagenetically immature.

Grains = 20%; matrix = 50%+; cement = 30%+/-; visual porosity = trace (artefacts?).

Grains consist of quartz (100%+/-) mono- as well as polycrystalline, with both straight and undulose extinction represented.

Matrix of argillaceous materials, with associated organic materials (including hydrocarbons?).

Cement somewhat ill-defined as such; calcite.

Visual porosity secondary in character (?), including microporosity. May well be artefact. Effectiveness nil.

This rock has undergone a moderate degree of apparent compaction.

Nil reservoir quality as is. Poor potential for improvement.
Fragment "G"

Grains = 85%; matrix nil; cement = 15%; visual porosity = trace (artefact?).

Grains consist of quartz (100%+/- mono- as well as polycrystalline, most exhibit undulose extinction.

Cements consist of quartz (60%), and carbonate(s). The latter, unfortunately, do not occur in the stained portion of the thin-section, hence some ambiguity as to their mineralogy- likely dolomite, possibly siderite.

Grain contacts range through intergrown. This rock has undergone moderate (+) apparent compaction.

Nil reservoir quality as is. Poor potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates). The degree of apparent compaction and the quartz cementation are negative factors. However, prior to this compaction/cementation, this clean medium-coarse sand/sandstone would have possessed excellent reservoir properties.

16,620' - 16,630' (Thin-section # 1)

Principal fragment types

Predominant

1. Argillaceous rocks: siltstone-mudstone/shale. May be organic, and/or pyrite-rich. Photomicrographs "G-I" include examples. A major component of this thin-section.

2. Arenites. A few contain very coarse-coarse-medium sand-sized grains; most are finer-grained. "A, B" are examples. Photomicrographs "C, F (which includes one plagioclase grain), G-I" include other examples. Glaucnite was not noted. A few fragments show extremely "tight" quartz cementation developed, verging on "metamorphic" (cf. photomicrographs "G"). Arenite fragments comprise a major component of this thin-section.

3. Discrete quartz. Angular to well-rounded. Photomicrographs "G, H" include examples. A major/minor component of this thin-section.

Subordinate

5. Cherts. Some are pyritic. Trace component.

Fragment "A"

Quartzarenite and quartz wacke; two lithologies represented in this cuttings fragment. Each will be discussed independently, below.

Quartzarenite. Massive fabric. Principally medium sand size grains, well-very well sorted, subrounded-rounded. Texturally, mineralogically, and diagenetically mature.

Grains = 90%; matrix nil; cement = 10%; visual porosity = trace (artefact?).

Grains consist of quartz (90%)- mono- as well as polycrystalline, most exhibit undulose extinction; lithic fragments (10%)- one rounded grain of very fine sandstone/siltstone aspect.

Cement comprised of quartz.

Grain contacts range through intergrown/sutured. This rock has undergone moderate (+) apparent compaction.

Nil reservoir quality as is. Nil potential for improvement, diagenetically.

Quartz wacke. Medium(?)-fine sand size detrital grains, in a matrix of argillaceous materials. Poorly sorted, the sand size grains range from subangular-subrounded-rounded. Texturally immature, mineralogically and diagenetically submature.

Grains = 55%; matrix = 45%; cement nil; visual porosity nil.

Grains consist of quartz (100%+/-) mono- as well as polycrystalline, most exhibit undulose extinction.

Matrix of argillaceous materials, with appreciable associated black organic materials (including hydrocarbons?).

This rock has undergone a moderate degree of apparent compaction.

Nil reservoir quality as is. Nil potential for improvement, diagenetically.
Fragment "B"

Grains = 85%: matrix nil; cement = 15%; visual porosity = trace (artefact?).

Grains consist of quartz (90%)- mono- as well as polycrystalline, most exhibit undulose extinction; lithic fragments (10%)- cherts, argillaceous rocks.

Cements consist of quartz (90%), and ferroan calcite (10%). Some of the latter may represent replacement (of feldspar/lithic fragment/?). Some crystals which may be dolomite are also associated.

Visual porosity principally secondary in character, with associated microporosity, representing partial dissolution of lithic fragments (or, rather, artefact of sampling/sample preparation?).

Grain contacts range through intergrown/sutured (quartz), with some lithic fragments deformed to pseudomatrix. This rock has undergone a moderate (++) degree of apparent compaction.

Nil reservoir quality as is. Poor-fair (?) potential for improvement elsewhere, via development of secondary dissolution porosity (carbonates, cherts, other lithic fragments are candidates). The degree of apparent compaction, and quartz cementation are negative factors.

16,620' - 16,630' (Thin-section # 2)

Principal fragment types

Principal fragment types are virtually identical to the suite in thin-section # 1 from this same interval.

Photomicrographs "V" feature an "overview" typical of this suite: discrete quartz, as well as fragments of arenites featuring quartz cement over rounded detrital grains; also organic materials, argillaceous rocks (siltstone-mudstone/shale), some of which are organic-rich.

Photomicrographs "W" show similar materials, and also feature an organic-rich siltstone with a very-coarse sand-size, angular "floating" quartz grain.

Photomicrographs "X" show another overview of this suite: medium sand, and very-fine sand-sized arenites, some with carbonate (dolomite ?) cements; discrete quartz; siltstones; organic materials.

Photomicrographs "Y and Z" feature higher magnification views of the medium sand-sized arenite fragment shown in photomicrographs "X", illustrating the apparent bimodal texture, and the dolomite (?) cement. Similarities are readily
apparent between this fragment and other typical arenites in both thin-sections from this interval.

Photomicrographs "T" include an arenite fragment (possibly from an "up-hole" source?), with two grains of glauconite (rare-unique in the thin-sections from this interval). These photomicrographs also show fragments of argillaceous rocks, quartz, other arenites.

7. Summary

Data from the Aurora well represents a major contribution to the publicly available stratigraphy and regional geology of the Arctic National Wildlife Refuge (ANWR) 1002 area, and the U. S./Canadian Beaufort Sea. This exploration endeavor drilled and logged almost 18,325 feet (KB was reported as 106 feet above the sea floor) of clastic section, making it one of the deepest North Slope wells. With depth, the drilling encountered the unconsolidated, easterly-derived Tuktoyaktuk depositional sequence sediments, the southerly-derived upper and middle Brookian sequence sediments, and the locally-derived Breakup sequence sands and shales.

The informally-named Oruktalik sand is the major sand of the middle Brookian sequence. In both cuttings and thin-section descriptions, it is predominantly a chert litharenite, resembling most other Brookian sands in the region. Stratigraphically and petrographically it is somewhat similar to the Flaxman sands, found to the west of the 1002 area.

The Tapkaurak sand is the principal sand of the Breakup sequence in this well. It shares similarities to both the Kuparuk River sands and the Kemik sands, found to the west, and southwest, respectively. Petrographically, the Tapkaurak sand is a mature, quartzose sandstone, like the Kemik and Kuparuk River sands. It also contains some clasts perhaps associated with derivation from local basement uplifts- in this respect being somewhat akin to the Point Thomson sand in terms of manifesting features due to unique and local provenance.

The foregoing descriptions of cuttings samples afford insights as to the petrologic/petrophysical characteristics of the stratigraphic horizons representing the two most well-developed deep zones of sand/sandstone occurrences recognized from wireline log responses in the Aurora well. Relationships among mineralogies, lithologies, petrophysical and log characteristics will be the subject of a subsequent report, based on work presently in progress.
Similarly, discussion of geological implications, in particular regarding sedimentology, stratigraphy, and regional relationships is deferred pending results of this work. It is anticipated that study of the Aurora well will provide information useful in furthering knowledge relevant to petroleum geology in the northern Alaska region, onshore as well as offshore.

The two zones of well-developed sand/sandstone stratigraphic horizons have been discussed in general fashion, and informally named, elsewhere (Banet, 1992a, b). Observations regarding these zones, in terms of the present petrographic studies, are summarized below.

"Oruktalik Sand"

The uppermost of these two zones. It is encompassed by the cuttings samples representing the depth intervals between 14,680 and 14,860 feet (below the kelly bushing). It may be observed on figure 2 as well. This zone has been informally designated the "Oruktalik sand" (Banet, 1992).

Based on the observed nature of the cuttings fragments, some summary comments may be offered:

14,680' - 14,690'

Major: fine-medium sand-sized litharenites argillaceous rocks; siltstone-mudstone/shale

Minor: organic materials (?)

Trace: discrete quartz
plagioclase
potassium feldspars (including perthite)
granitoid rocks
limestone

14,710' - 14,720'

Major: cherts
conglomeratic-fine sand-sized litharenites

Minor: argillaceous rocks; siltstone-mudstone/shale
discrete quartz
organic materials (?)
Trace: plagioclase
volcanic rocks ("felsic")
14,740' - 14,750'
Major: cherts
argillaceous rocks; siltstone-mudstone/shale
Minor: conglomeratic and finer-grained litharenites
organic materials (?)
Trace: volcanic rocks
limestone

14,770' - 14,780'
Major: cherts
argillaceous rocks; siltstone-mudstone/shale
Minor: conglomeratic and finer-grained litharenites
Trace: organic materials (?)
volcanic rocks

14,800' - 14,810'
Major: cherts
argillaceous rocks; siltstone-mudstone/shale
conglomeratic and finer-grained litharenites
Trace: organic materials (?)
volcanic rocks
discrete quartz
plagioclase
ferroan calcite
calcite/limestone

14,830' - 14,840'
Major: discrete quartz
cherts
argillaceous rocks; siltstone-mudstone/shale
conglomeratic and finer-grained litharenites
Minor: organic materials (?)
Trace: volcanic rocks
plagioclase
ferroan calcite
calcite/limestone
granitoid rocks
14,850' - 14,860'

Major: discrete quartz
cherts
argillaceous rocks; siltstone-mudstone/shale

Minor: conglomeratic and finer-grained litharenites
organic materials (?)

Trace: plagioclase
volcanic rocks
calcite/limestone

"Tapkaurak Sand"

This is the lower of these two zones, encompassed by the cuttings samples representing the depth interval between 16,445 and 16,630 feet. It may be observed on our figure 3, as well. This zone has been informally termed the "Tapkaurak sand" (Banet, 1992).

Based on the observed nature of the cuttings fragments, the following summary comments are offered:

16,445' - 16,450'

Major: discrete quartz
argillaceous rocks; siltstone-mudstone/shale
litharenites-quartz arenites (coarse sand-sized and finer)

Minor: feldspars; plagioclase, perthite

Trace: cherts
carbonate minerals
organic materials (?)
16,470' - 16,480'

Major: discrete quartz
argillaceous rocks; siltstone-mudstone/shale
arenites-wackes (very-coarse sand-sized, and finer)

Trace: plagioclase
cherts

16,500' - 16,510'

Major: arenites-sublitharenites (very coarse sand-sized and finer)
discrete quartz
argillaceous rocks; siltstone-mudstone/shale

Trace: plagioclase
cherts

16,530' - 16,540'

Major: arenites-litharenites (coarse sand-sized, and finer)
argillaceous rocks; siltstone-mudstone/shale
discrete quartz

Trace: feldspars; plagioclase +/- (?)
granitoid rocks
organic materials (?)

16,560' - 16,570'

Major: argillaceous rocks; siltstone-mudstone/shale
arenites-wackes (very-coarse sand-sized, and finer)

Minor: discrete quartz

Trace: feldspars; plagioclase, +/-?
granitoid rocks
organic materials (?)

16,620' - 16,630'

Major: argillaceous rocks; siltstone-mudstone/shale
arenites (very-coarse sand-sized, and-mostly-finer)
discrete quartz

Minor: organic materials (?)
Trace: cherts
feldspars; plagioclase, perthite
carbonates; dolomite, ferroan calcite
8. References

